
1

AMS 209, Fall 2016
Final Project Type A – Numerical Linear Algebra:

Gaussian Elimination with Pivoting for Solving Linear Systems

1. Overview

We are interested in solving a well-defined linear system given as

Ax = b, (1)

where A is a n× n square matrix and x and b are n-vectors.

1.1. Invariant Transformations

1.1.1. Permutation To solve a linear system, we wish to transform the given
linear system into an easier linear system where the solution x = A−1b remains
unchanged. The answer is that we can introduce any nonsingular matrix M and
multiply from the left both sides of the given linear system:

MAx = Mb. (2)

We can easily check that the solution remains the same. To see this, let z
be the solution of the linear system in Eqn. (2). Then

z = (MA)−1Mb = A−1M−1Mb = A−1b = x. (3)

Example: A permutation matrix P, a square matrix having exactly one 1 in
each row and column and zeros elsewhere – which is also always a nonsingular
– can always be multiplied without affecting the original solution to the system.
For instance,

P =

 0 0 1
1 0 0
0 1 0

 (4)

permutes v as

P

 v1
v2
v3

 =

 0 0 1
1 0 0
0 1 0

 v1
v2
v3

 =

 v3
v1
v2

 . (5)

�

1.1.2. Row scaling Another invariant transformation exists which is called
row scaling, an outcome of a multiplication by a diagonal matrix D with nonzero
diagonal entries dii, i = 1, . . . n. In this case, we have

DAx = Db, (6)

2

by which each row of the transformed matrix DA gets to be scaled by dii from
the original matrix A. Note that the scaling factors are cancelled by the same
scaling factors introduced on the right hand side vector, leaving the solution to
the original system unchanged.

Note: The column scaling does not preserve the solution in general. �

1.2. LU factorization by Gaussian elimination

Consider the following system of linear equations:

x1 + 2x2 + 2x3 = 3, (7)

−4x2 − 6x3 = −6, (8)

−x3 = 1. (9)

We know this is easily solvable since we already know x3 = −1, which gives
x2 = 3, therefore recursively arriving a complete set of solution with x1 = −1.
When putting these equations into a matrix-vector form, we have 1 2 2

0 −4 −6
0 0 −1

 x1
x2
x3

 =

 3
−6

1

 , (10)

where the matrix has a form of (upper) triangular.

Therefore, our strategy then is to devise a nonsingular linear transforma-
tion that transforms a given general linear system into a triangular linear system.
This is a key idea of LU factorization (or LU decomposition) or also known as
Gaussian elimination.

The main idea is to find a matrix M1 such that the first column of M1A
becomes zero below the first row. The right hand side b is also multiplied by M1

as well. Again, we repeat this process in the next step so that we find M2 such
that the second column of M2M1A becomes zero below the second row, along
with applying the equivalent multiplication on the right hand side, M2M1b.
This process is continued for each successive column until all of the subdiagonal
entries of the resulting matrix have been annihilated.

If we define the final matrix M = Mn−1 · · ·M1, the transformed linear
system becomes

Mn−1 · · ·M1Ax = MAx = Mb = Mn−1 · · ·M1b. (11)

Note: As seen in the previous section, we recall that any nonsingular matrix
multiplication is an invariant transformation that does not affect the solution to
the given linear system.

The resulting transformed linear system MAx = Mb is upper triangular
which is what we want, and can be solved by back-substitution to obtain the

3

solution to the original linear system Ax = b.

Example: We illustrate Gaussian elimination by considering:

2x1 +x2 +x3 = 3,
4x1 +3x2 +3x3 +x4 = 6,
8x1 +7x2 +9x3 +5x4 = 10,
6x1 +7x2 +9x3 +8x4 = 1.

(12)

or in a matrix notation

Ax =

 2 1 1 0
4 3 3 1
8 7 9 5
6 7 9 8


 x1
x2
x3
x4

 =

 3
6
10
1

 = b. (13)

The first question is to find a matrix M1 that annihilates the subdiagonal
entries of the first column of A. This can be done if we consider a matrix
M1 that can subtract twice the first row from the second row, four times the
first row from the third row, and three times the first row from the fourth row.
The matrix M1 is then identical to the identity matrix I4, except for those
multiplication factors in the first column:

M1A =

 1
−2 1
−4 1
−3 1


 2 1 1 0

4 3 3 1
8 7 9 5
6 7 9 8

 =

 2 1 1 0
1 1 1
3 5 5
4 6 8

 , (14)

where we treat the blank entries to be zero entries. At the same time, we proceed
the corresponding multiplication on the right hand side to get:

M1b =

 3
0
−2
−8

 . (15)

The next step would be to annihilate the third and fourth entries from the second
column (3 and 4), which will give a next matrix M2 that has the form:

M2M1A =

 1
1
−3 1
−4 1


 2 1 1 0

1 1 1
3 5 5
4 6 8

 =

 2 1 1 0
1 1 1

2 2
2 4

 , (16)

now with the right hand side:

M2M1b =

 3
0
−2
−8

 . (17)

4

The last matrix M3 will complete the process, resulting an upper triangular
matrix U:

M3M2M1A =

 1
1

1
−1 1


 2 1 1 0

1 1 1
2 2
2 4

 =

 2 1 1 0
1 1 1

2 2
2

 = U,

(18)
together with the right hand side:

M3M2M1b =

 3
0
−2
−6

 = y. (19)

We see that the final transformed linear system MAx = Ux = y is up-
per triangular which is what we wanted and it can be solved easily by back-
substitution, starting from obtaining x4 = −3, followed by x3, x2, and x1 in
reverse order to find a complete solution

x =

 0
1
2
−3

 . (20)

The full LU factorization A = LU can be established if we compute

L = (M3M2M1)
−1 = M−1

1 M−1
2 M−1

3 . (21)

At first sight this looks like an expensive process as it involves inverting a series
of matrices. Surprisingly, however, this turns out to be a trivial task. The
inverse of Mi, i = 1, 2, 3 is just itself but with each entry below the diagonal
negated. Therefore, we have

L = M−1
1 M−1

2 M−1
3

=

 1
−2 1
−4 1
−3 1


−1  1

1
−3 1
−4 1


−1  1

1
1
−1 1


−1

=

 1
2 1
4 1
3 1


 1

1
3 1
4 1


 1

1
1
1 1



=

 1
2 1
4 3 1
3 4 1 1

 . (22)

Notice also that the matrix multiplication M−1
1 M−1

2 M−1
3 is also trivial and is

just the unit lower triangle matrix with the nonzero subdiagonal entries of M−1
1 ,

M−1
2 , and M−1

3 inserted in the appropriate places.

5

All together, we finally have our decomposition A = LU: 2 1 1 0
4 3 3 1
8 7 9 5
6 7 9 8

 =

 1
2 1
4 3 1
3 4 1 1


 2 1 1 0

1 1 1
2 2

2

 . (23)

�

Quick summary: Gaussian elimination proceeds in steps until a upper trian-
gular matrix is obtained for back-substitution: ∗ ∗ ∗ ∗∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

 M1−−→

 ∗ ∗ ∗ ∗0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗

 M2−−→

 ∗ ∗ ∗ ∗0 ∗ ∗ ∗
0 0 ∗ ∗
0 0 ∗ ∗

 M3−−→

 ∗ ∗ ∗ ∗0 ∗ ∗ ∗
0 0 ∗ ∗
0 0 0 ∗


(24)

�

Algorithm: LU factorization by Gaussian elimination:

for k = 1 to n− 1
#[loop over column]
if akk = 0 then

stop
#[stop if pivot (or divisor) is zero]

endif
for i = k + 1 to n

mik = aik/akk
#[compute multipliers for each column]

endfor
for j = k + 1 to n

for i = k + 1 to n
aij = aij −mikakj
#[transformation to remaining submatrix]

endfor
endfor

endfor

The above algorithm yields both U and L:

• the subdiagonal entries of L are given by `i,k = mi,k.

• the operations in the algorithm computes new entries ui,j of U, ranging
2 ≤ i, j ≤ n. Note that the first row of U is the same as the first row of
the original A.

• Make sure you also perform the similar operations to the right hand side
vector b.

6

1.3. Pivoting

1.3.1. Need for pivoting We obviously run into trouble when the choice of a
divisor – called a pivot – is zero, whereby the Gaussian elimination algorithm
breaks down. As illustrated in Algorithm above, this situation can be easily
checked and avoided so that the algorithm stops when one of the diagonal entries
become singular.

The solution to this singular pivot issue is almost equally straightforward:
if the pivot entry is zero at state k, i.e., akk = 0, then one interchange row k
of both the matrix and the right hand side vector with some subsequent row
whose entry in column k is nonzero and resume the process as usual. Recall
that permutation does not alter the solution to the system.

This row interchanging process is called pivoting, which is illustrated in the
following example.

Example: Pivoting with permutation matrix can be easily explained as below: ∗ ∗ ∗ ∗0 0 ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗

 P−→

 ∗ ∗ ∗ ∗0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 ∗ ∗

 (25)

where we interchange the second row with the fourth row using a permutation
matrix P given as

P =

 1
1

1
1

 . (26)

�

Note: The potential need for pivoting has nothing to do with the matrix being
singular. For example, the matrix

A =

[
0 1
1 0

]
(27)

is nonsingular, yet we can’t process LU factorization unless we interchange rows.
On the other hand, the matrix

A =

[
1 1
1 1

]
(28)

can easily allow LU factorization

A =

[
1 1
1 1

]
=

[
1 0
1 1

] [
1 1
0 1

]
= LU, (29)

while being singular. �

7

1.3.2. Partial pivoting There is not only zero pivots, but also another situ-
ation we must avoid in Gaussian elimination – a case with small pivots. The
problem is closely related to computer’s finite-precision arithmetic which fails to
recover any numbers smaller than the machine precision ε. Recall that we have
ε ≈ 10−7 for single precision, and ε ≈ 10−16 for double precision.

Example: Let us now consider a matrix A defined as

A =

[
ε̃ 1
1 1

]
, (30)

where ε̃ < ε ≈ 10−16, say, ε̃ = 10−20. If we proceed without any pivoting (i.e.,
no row interchange) and take ε̃ as the first pivot element, then we obtain the
elimination matrix

M =

[
1 0
−1/ε̃ 1

]
, (31)

and hence the lower triangular matrix

L =

[
1 0

1/ε̃ 1

]
(32)

which is correct. For the upper triangular matrix, however, we see an incorrect
floating-point arithmetic operation

U =

[
ε̃ 1
0 1− 1/ε̃

]
=

[
ε̃ 1
0 −1/ε̃

]
, (33)

since 1/ε̃ >> 1. But then we simply fail to recover the original matrix A from
the factorization:

LU =

[
1 0

1/ε̃ 1

] [
ε̃ 1
0 −1/ε̃

]
=

[
ε̃ 1
1 0

]
6= A. (34)

Using a small pivot, and a correspondingly large multiplier, has caused an un-
recoverable loss of information in the transformation.

We can cure the situation by interchanging the two rows first, which gives
the first pivot element to be 1 and the resulting multiplier is −ε̃:

M =

[
1 0
−ε̃ 1

]
, (35)

and hence

L =

[
1 0
ε̃ 1

]
and U =

[
1 1
0 1− ε̃

]
=

[
1 1
0 1

]
(36)

in floating-point arithmetic. We therefore recover the original relation:

LU =

[
1 0
ε̃ 1

] [
1 1
0 1

]
=

[
1 1
ε̃ 1

]
= A, (37)

8

which is the correct result after permutation. �

The foregoing example is rather extreme, however, the principle in gen-
eral holds to find the largest pivot in producing each elimination matrix, by
which one obtains a smaller multiplier as an outcome and hence smaller er-
rors in floating-point arithmetic. We see that this process involves repeated use
of permutation matrix Pk that interchanges rows to bring the entry of largest
magnitude on or below the diagonal in column k into the diagonal pivot position.

Quick summary: Gaussian elimination with partial pivoting proceeds as below.
Assume xik is chosen to be the maximum in magnitude among the entries in
k-th column, thereby selected as a k-th pivot: ∗ ∗ ∗ ∗

∗ ∗ ∗
xik ∗ ∗
∗ ∗ ∗

 P1−−→

 ∗ ∗ ∗ ∗
xik ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

 M1−−→

 ∗ ∗ ∗ ∗
xik ∗ ∗
0 ∗ ∗
0 ∗ ∗

 (38)

In general, A becomes an upper triangular matrix U after n− 1 steps,

Mn−1Pn−1 · · ·M1P1A = U. (39)

�

Note: The expression in Eq. 39 can be rewritten in a way that separates the
elimination and the permutation processes into two different groups

P = Pn−1 · · ·P2P1, (40)

L = (M
′
n−1 · · ·M

′
2M

′
1)

−1, (41)

so that we write the final transformed matrix as

PA = LU. (42)

To do this we first need to find what M
′
i should be. Consider reordering the

operations in Eq. 39 in the form, for instance with n− 1 = 3,

M3P3M2P2M1P1 = M
′
3M

′
2M

′
1P3P2P1(= L−1P). (43)

Rearranging operations,

M3P3M2P2M1P1 (44)

= (M3)(P3M2P
−1
3)(P3P2M1P

−1
2 P−1

3)(P3P2P1) (45)

≡ (M
′
3)(M

′
2)(M

′
1)P3P2P1, (46)

whereby we can define M
′
i, i = 1, 2, 3 equals to Mi but with the subdiagonal

entries permuted:

M
′
3 = M3 (47)

M
′
2 = P3M2P

−1
3 (48)

M
′
1 = P3P2M1P

−1
2 P−1

3 (49)

9

We can see that the matrix M
′
n−1 · · ·M

′
2M

′
1 is unit lower triangular and

hence easily invertible by negating the subdiagonal entries to obtain L. �

Example: To see what is going on, consider

A =

 2 1 1 0
4 3 3 1
8 7 9 5
6 7 9 8

 . (50)

With partial pivoting, let’s interchange the first and third rows with P1: 1
1

1
1


 2 1 1 0

4 3 3 1
8 7 9 5
6 7 9 8

 =

 8 7 9 5
4 3 3 1
2 1 1 0
6 7 9 8

 . (51)

The first elimination step now looks like this with left-multiplication by M1: 1
−1/2 1
−1/4 1
−3/4 1


 8 7 9 5

4 3 3 1
2 1 1 0
6 7 9 8

 =

 8 7 9 5
−1/2 −3/2 −3/2
−3/4 −5/4 −5/4

7/4 9/4 17/4

 . (52)

Now the second and fourth rows are interchanged with P2: 1
1

1
1


 8 7 9 5

−1/2 −3/2 −3/2
−3/4 −5/4 −5/4

7/4 9/4 17/4

 =

 8 7 9 5
7/4 9/4 17/4
−3/4 −5/4 −5/4
−1/2 −3/2 −3/2

 .
(53)

With multiplication by M2 the second elimination step looks like: 1
1

3/7 1
2/7 1


 8 7 9 5

7/4 9/4 17/4
−3/4 −5/4 −5/4
−1/2 −3/2 −3/2

 =

 8 7 9 5
7/4 9/4 17/4

−2/7 4/7
−6/7 −2/7


(54)

Interchanging the third and fourth rows now with P3: 1
1

1
1


 8 7 9 5

7/4 9/4 17/4
−2/7 4/7
−6/7 −2/7


 8 7 9 5

7/4 9/4 17/4
−6/7 −2/7
−2/7 4/7

 . (55)

The final elimination step is obtained with M3: 1
1

1
−1/3 1


 8 7 9 5

7/4 9/4 17/4
−6/7 −2/7
−2/7 4/7

 =

 8 7 9 5
7/4 9/4 17/4

−6/7 −2/7
2/3

 .
(56)

10

�

Remark: The name “partial” pivoting comes from the fact that only the cur-
rent column is searched for a suitable pivot. A more exhausting pivoting strat-
egy is complete pivoting, in which the entire remaining unreduced sub matrix is
searched for the largest entry, which is then permuted into the diagonal pivot
position. �

Algorithm: LU factorization by Gaussian elimination with Partial Pivoting:

for k = 1 to n− 1
#[loop over column]
Find index p such that
|apk| ≥ |aik| for k ≤ i ≤ n
#[search for pivot in current column]

if p 6= k then
interchange rows k and p
#[interchange rows if needed]

endif
if akk = 0 then

continue with next k
#[skip current column if zero]

endif
for i = k + 1 to n

mik = aik/akk
#[compute multipliers for each column]

endfor
for j = k + 1 to n

for i = k + 1 to n
aij = aij −mikakj
#[transformation to remaining submatrix]

endfor
endfor

endfor

