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Library Proxy
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Comments on Homework

Homework 2 should be graded soon.

For Homework 3 and future homeworks, SHA-1 hash must be
submitted to web form by 11:00 pm on Wednesday for full
credit. Don’t put off until last minute!

My office hours today will be 9:30–9:55 am.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 11
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How fast are computers?

Kilo = thousand (103)
Mega = million (106)
Giga = billion (109)
Tera = trillion (1012)
Peta = 1015

Exa = 1018

Processor speeds usually measured in Gigahertz these days.

Hertz means “machine cycles per second”.

One operation may take a few cycles.

So a 1 GHz processor (109 cycles per second) can do
> 100, 000, 000 floating point operations per second
(> 100 Megaflops).
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The Cray-1 computer

• World’s first “supercomputer”
• Sold to Los Alamos, NCAR, etc. starting in 1976
• Price: up to $8.8 million

• Speed: 80-100 Mflops
• Memory: 8MB
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Overview

High Performance Computing (HPC) often means heavy-duty
computing on clusters or supercomputers with 100s of
thousands of cores.

“World’s fastest computer”

#1. Titan (Oak Ridge National Lab): 560,640 cores,
≈ 20 Petaflops = 20, 000, 000, 000, 000, 000 flops

See http://top500.org for current list.
R.J. LeVeque, University of Washington AMath 483/583, Lecture 11
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How fast are computers?

Not long ago counting flops was the best way to measure
performance for scientific computing.

Example: Computing matrix-matrix product C = AB.

If A and B are n× n then so is C.

Each element cij is the inner product of
ith row of A with jth column of B.

Requires n multiplications and n− 1 additions to compute cij .

n2 elements in C =⇒ Requires O(n3) floating point ops total.
Note: n = 10, 000 =⇒ n3 = 1012

(> 1, 000 seconds on 1 GHz processor)

But these days, the bottle neck is often
getting data to and from the processor!

Note that each element of A,B is used n times.
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Memory Hierachy

(Main) Memory: “Fast” memory that is hopefully large enough
to contain all the programs and data currently running.

(But not nearly fast enough to keep up with CPU.)

Typically 1 – 4 GB.

Recall GB = gigabyte = 109 bytes = 8× 109 bits.

For example, 1GB holds a single 10, 000× 10, 000 matrix of
floating point values (8 bytes each),

or 125 matrices that are each 1000× 1000.

Hard Drive: Slower memory that contains data (including
photos, video, music, etc.) and all programs you might want to
use.

Typically 80 – 500 GB. (Slower but cheaper.)
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32-bit vs. 64-bit architecture

Each byte in memory has an address, which is an integer.
On 32-bit machines, registers can only store

232 = 4294967296 ≈ 4 billion distinct addresses

=⇒ at most 4GB of memory can be addressed.

Newer machines often have more, leading to the need for 64-bit
architectures (8 bytes for addresses).

264 = 1.84× 1019 distinct addresses

=⇒ could address an exabyte of memory.

Note: Integers might still be stored in 4 bytes, for example.

Floats might be either real(kind=4) or real(kind=8).
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CPU and registers

CPU — central processor unit

Executes instructions such as add or multiply.

Takes data from registers, performs operations, stores back to
registers.

Transferring between registers and processor is very fast.

Different types of registers, e.g.
• Integer, floating point
• instruction registers
• address registers

Generally a very small number of registers.

Data and instructions must be transferred between other
memory and registers as needed.
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Memory Hierachy

Between registers and memory there are 2 or 3 levels of cache,
each larger but slower.

Registers: access time 1 cycle

L1 cache: a few cycles

L2 cache: ∼ 10 cycles

(Main) Memory: ∼ 250 cycles

Hard drive: 1000s of cycles

R.J. LeVeque, University of Washington AMath 483/583, Lecture 11



Terminology

Latency refers to amount of time it takes to complete a given
unit of work.

Throughput refers to the amount of work that can be
completed per unit time.

Exploit parallelism to hide latency and increase throughput.

Even a “single core” machine has lots of things going on at
once.

For example:
• Pipelined operations
• Executing / fetching / storing
• Prefetching future instructions
• Prefetching data into cache
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5-stage instruction pipeline for RISC machine

IF = Instruction Fetch,
ID = Instruction Decode,
EX = Execute,
MEM = Memory access,
WB = Register write back.
http://en.wikipedia.org/wiki/Instruction_pipeline

R.J. LeVeque, University of Washington AMath 483/583, Lecture 11
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Reducing memory latency

Reduce memory fetches by reusing data in cache as much as
possible. Requires temporal locality.

Very simple Python example: if len(x) much larger than
cache size,

z = 0.; w = 0.
for i in range(len(x)):

z = z + x[i]
for i in range(len(x)):

w = w + 3. * x[i]

should be rewritten as

for i in range(len(x)):
z = z + x[i]
w = w + 3. * x[i]

Note: Both are bad in Python, use e.g. z = np.sum(x); w = 3*z
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Cache lines

When data is brought into cache, more than 1 value is fetched
at a time.

A cache line typically holds 64 or 128 consecutive bytes (8 or
16 floats).

L1 Cache might hold 1000 cache lines.

Cache miss occurs if the the value you need next is not in
cache.

Another cache line will be brought from higher up the hierachy,
and may displace some variables in cache.

Those cache lines will first have to be written back to memory.

Bottom line: Good to do lots of work on each set of data while
in cache, before it has to be written back.

Organize algorithm for Temporal locality.
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Spatial locality

Also good to organize algorithm so data that is consecutive in
memory is used together when possible.

If data you need is scattered through memory, many cache
lines will be needed and will contain data you don’t need.

This is called spatial locality.
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Multi-dimensional array storage

A =

[
10 20 30
40 50 60

]
Apy = reshape(array([10,20,30,40,50,60]), (2,3))
Afort = reshape((/10,20,30,40,50,60/), (/2,3/))

Suppose the array storage starts at memory location 3401.

In Python or Fortran, the elements will be stored in the order:

loc 3401 Apy[0,0] = 10 Afort(1,1) = 10
loc 3402 Apy[0,1] = 20 Afort(2,1) = 40
loc 3403 Apy[0,2] = 30 Afort(1,2) = 20
loc 3404 Apy[1,0] = 40 Afort(2,2) = 50
loc 3405 Apy[1,1] = 50 Afort(1,3) = 30
loc 3406 Apy[1,2] = 60 Afort(2,3) = 60
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Memory layout of 1000× 3 array in Fortran

Memory location or offset of each array element:

1 1001 2001
2 1002 2002
3 1003 2003
4 1004 2004
5 1005 2005
...

...
...

999 1999 2999
1000 2000 3000


Looping over elements by column steps through memory
sequentially (stride = 1)

Looping over elements by row does not.
stride = 1000 in this case since we jump ahead 1000 locations
in memory with each step.
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Spatial locality

Suppose A is n× n matrix,
D is n× n diagonal matrix with diagonal elements di.

Compute product B = DA with elements bij = diaij .

Which is better in Python?? Same number of flops!

for i in range(n):
for j in range(n):

b[i,j] = d[i] * a[i,j]

or

for j in range(n):
for i in range(n):

b[i,j] = d[i] * a[i,j]

Answer: First one faster in Python (but loops still slow!)
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Array ordering — which loop is faster?

integer, parameter :: m = 4097, n = 10000
real(kind=8), dimension(m,n) :: a

do i = 1,m
do j=1,n

a(i,j) = 0.d0
enddo

enddo

do j = 1,n
do i=1,m

a(i,j) = 0.d0
enddo

enddo

First: 0.72 seconds, Second: 0.19 seconds
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Much worse if m is high power of 2

integer, parameter :: m = 4096, n = 10000
real(kind=8), dimension(m,n) :: a

do i = 1,m
do j=1,n

a(i,j) = 0.d0
enddo

enddo

do j = 1,n
do i=1,m

a(i,j) = 0.d0
enddo

enddo

First: 2.4 seconds, Second: 0.19 seconds
R.J. LeVeque, University of Washington AMath 483/583, Lecture 11



More about cache

Simplied model of one level direct mapped cache.

32-bit memory address: 4.3× 109 addresses

Suppose cache holds 512 = 29 cache lines (9-bit address)

A given memory location cannot go anywhere in cache.
9 low order bits of memory address determine cache address.

For a memory fetch:
• Determine cache address, check if this holds desired

words from memory.
• If so, use it.
• If not, check “dirty bit” to see if has been modified since

load.
• If so, write to memory before loading new cache line.
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Cache collisions

Return to example where matrix has 4096 = 212 rows.

Cache line holds 64 bytes = 8 floats. 4096/8 = 512 cache lines
per column of matrix.

Loading one column of matrix will fill up cache lines
0, 1, 2, . . . , 511.

Second column will go back to cache line 0.
But all elements in cache have been used before this happens,

Prefetching can be done by optimizing compiler.

Worse — Going across the rows:

The first 8 elements of column 1 go to cache line 0.

The first 8 elements of column 2 also map to cache line 0.

Similarly for all columns. The rest of cache stays empty.
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More about cache

If cache holds more lines:

1024 lines =⇒
first 8 bytes of column 1 go to cache line 0,
first 8 bytes of column 2 go to cache line 512,
first 8 bytes of column 3 go to cache line 0,
first 8 bytes of column 4 go to cache line 512.

Still only using 1/512 of cache.

In practice cache is often set associative: small number of
cache addresses for each memory address.
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Padding

Matrix dimensions that are high powers of 2 should usually be
avoided.

Even though natural for some algorithms such as FFTs

May be worth declaring larger arrays and only using part of it.
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Code optimization

Basic considerations like memory layout should always be kept
in mind.

However:
• Also important to consider programmer time.

• Writing readable code is very important in getting program
correct.

• Some optimizations not worth spending time on.

• Often best to first get code working properly and then
determine whether optimization is necessary.
“Premature optimization is the root of all evil” (Don Knuth)

• If so, determine which parts of code need to be improved
and spend effort on these sections. (Tools such as gprof)

• Use optimized software such as BLAS, LAPACK.
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