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AMS 209, Fall 2016
Final Project Type B – Numerical PDE:
Linear Advection and Diffusion Equation

1. Overview

We are interested in solving a linear advection-diffusion PDE given as

ut + aux = κuxx, (1)

where a is a constant advection velocity and κ ≥ 0 is a constant diffusion coeffi-
cient. Note if κ < 0 then Eq. (1) would be a “backward heat equation”, which
is an ill-posed problem.

2. Initial and boundary conditions

We impose an initial condition at t = 0,

u(x, 0) = u0(x) (2)

and a boundary condition on a bounded domain xa ≤ x ≤ xb
u(xa, t) = ga(t) and u(xb, t) = gb(t), for t > 0. (3)

3. Discretization in space and time

Let us take the discretization technique with which we have a spatial resolution
of N and a temporal resolution of M :

xi = xa + (i− 1

2
)∆x, i = 1, ..., N, (4)

tn = n∆t, n = 0, ...M. (5)

Notice that the cell interface-centered grid points are written using the ‘half-
integer’ indices:

xi+ 1
2

= xi +
∆x

2
. (6)

4. Imposing Boundary Conditions via Guard-cell (or ghost-cell)

We can introduce the so-called ‘guard-cell’ or ‘ghost-cell’ (simply GC) on each
end, having extra two GC points,

x0 = xa −∆x/2 (7)

xN+1 = xb + ∆x/2. (8)

With these two extra GC points (one GC on each end) over the spatial domain
the difference equation are evolved only over the interior points, whereas the
boundary conditions are explicitly imposed at the two GC points,

un0 = ga(tn), unN+1 = gb(t
n). (9)
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Figure 1.

5. Finite discretizations of advection and diffusion equations

5.1. Finite difference scheme for 1D advection

First consider a simple advection equation with constant speed a > 0:

ut + aux = 0, with u(x, 0) = u0(x). (10)

Let us denote our discrete data at each (xi, t
n) as:

uni = u(xi, t
n) (11)

The forward difference approximation scheme for first-order spatial and temporal
derivatives writes, respectively:

ux(x, t) =
u(x+ ∆x, t)− u(x, t)

∆x
+O(∆x), (12)

ut(x, t) =
u(x, t+ ∆t)− u(x, t)

∆t
+O(∆t). (13)

Dropping the truncation error terms O(∆x) and O(∆t) yields a simple first-order
difference scheme that approximates the advection PDE. As a result, we arrive
at a first-order accurate discrete difference equation from an analytic differential
equation:

un+1
i − uni

∆t
+ a

uni+1 − uni
∆x

= 0, (14)
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which gives a temporal update scheme of un+1
i in terms of the known data at

t = tn:

un+1
i = uni − a

∆t

∆x

(
uni+1 − uni

)
(15)

On the other hand, if we use a backward difference scheme for ux

ux(x, t) =
u(x, t)− u(x−∆x, t)

∆x
+O(∆x), (16)

we arrive at another first-order difference equation

un+1
i = uni − a

∆t

∆x

(
uni − uni−1

)
. (17)

Another approximation is available using the centered differencing scheme,

un+1
i = uni − a

∆t

2∆x

(
uni+1 − uni−1

)
. (18)

The choice of ∆t should be small enough, satisfying:

|a|∆t ≤ ∆x. (19)

This is called the Courant–Friedrichs–Lewy (CFL) condition (or simply the
Courant condition). The CFL condition describes a necessary (but not suffi-
cient) condition for convergence when solving discrete PDEs using finite differ-
ence approximations (e.g., finite difference, finite volume methods).

5.2. Finite difference scheme for 1D diffusion

Consider now a temporal evolution of solving the classical homogeneous heat
equation (or diffusion equation) of the form

ut = κuxx (20)

with κ > 0.
We use a similar but different discretization technique from the previous

example of the 1D advection finite difference scheme in order to discretize Eq.
(20). For a spatial discretization, we adopt the standard second-order central
difference difference scheme,

uxx(x, t) =
u(x+ ∆x, t)− 2u(x, t) + u(x−∆x, t)

∆x2
+O(∆x2), (21)

which gives a final discrete form of our explicit finite difference scheme for the
heat equation:

un+1
i = uni + κ

∆t

∆x2

(
uni+1 − 2uni + uni−1

)
(22)

Similar to the 1D advection case, we choose ∆t satisfying

κ∆t ≤ ∆x2

2
. (23)
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Notice that Eq. (21) is nothing but is naturally obtained by applying the
forward and backward difference schemes consecutively:

uxx(x, t) =
∂

∂x

(∂u
∂x

)
(24)

≈ ∂

∂x

u(x+ ∆x, t)− u(x, t)

∆x
(25)

≈ u(x+ ∆x, t)− 2u(x, t) + u(x−∆x, t)

∆x2
. (26)

5.3. The CFL condition

As mentioned, the CFL condition provides a necessary condition for choosing
the length of ∆t depending on the PDE under consideration. The CFL condition
amounts to say, if we let Ca to be the CFL number that satisfy 0 < Ca ≤ 1, Ca

becomes, for the advection case,

Ca = max
p
|ap|

∆t

∆x
, (27)

and for the diffusion case,

Ca = max
p
κp

2∆t

∆x2
, (28)

where p is the number of all available wave speeds ap or the diffusion coefficients
κp, respectively. Note that p = 1 for a linear ‘scalar’ equation, which is the
current case.

It is important to note that the CFL condition is only a necessary condition
for stability (and hence convergence). It is not always sufficient to guarantee
stability, and a numerical method satisfying the CFL condition can become un-
stable.

Note that the above CFL conditions in Eqs. (19) and (23) for choosing
∆tadvect and ∆tdiff , respectively, need to be combined together for a linear
advection-diffusion equation:

∆t = Ca min
(∆x

|a|
,
∆x2

2κ

)
, (29)

for 0 < Ca ≤ 1.

6. A List of Finite Difference Methods for the Linear Problem

There are a couple of finite difference (FD) methods for solving the advection
part of PDE, ut + aux = 0. We assume a > 0 for Beam-Warming and Fromm’s
methods. One can easily get appropriate forms for these two methods for a < 0.

• Upwind for a > 0 (FTBS – Forward Time Backward Space)

un+1
i = uni −

a∆t

∆x

(
uni − uni−1

)
(30)
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• Downwind for a > 0 (FTFS – Forward Time Forward Space)

un+1
i = uni −

a∆t

∆x

(
uni+1 − uni

)
(31)

• Centered for any a (FTCS – Forward Time Centered Space)

un+1
i = uni −

a∆t

2∆x

(
uni+1 − uni−1

)
(32)

• Leapfrog for any a

un+1
i = un−1

i − a∆t

2∆x

(
uni+1 − uni−1

)
(33)

• Lax-Friedrichs (LF) for any a

un+1
i =

1

2

(
uni+1 + uni−1

)
− a∆t

2∆x

(
uni+1 − uni−1

)
(34)

• Lax-Wendroff (LW) for any a

un+1
i = uni −

a∆t

2∆x

(
uni+1 − uni−1

)
+

1

2

(a∆t

∆x

)2(
uni+1 − 2uni + uni−1

)
(35)

• Beam-Warming (BW) for a > 0

un+1
i = uni −

a∆t

2∆x

(
3uni −4uni−1+uni−2

)
+

1

2

(a∆t

∆x

)2(
uni −2uni−1+uni−2

)
(36)

• Fromm’s method for a > 0

un+1
i = uni −

a∆t

∆x

(
uni − uni−1

)
− 1

4

a∆t

∆x

(
1− a∆t

∆x

)(
uni+1 − uni

)
+

1

4

a∆t

∆x

(
1− a∆t

∆x

)(
uni−1 − uni−2

)
(37)

Note: On the contrary, there is not so much to do with discretizing the diffusion
part of PDE. This is because the physical process described by parabolic PDEs
is diffusive and smooth, thereby it does not require those numerical attentions
that are needed in resolving more complicated advective processes governed by
tracing the wave information in advection hyperbolic PDEs.

7. Examples of advection: continuous and discontinuous

In Fig. 2 we display five different numerical solutions to two different types of
initial conditions. The panels on the left column shows the smooth sin(2πx) wave
initialized on x ∈ [0, 1]. The sine wave is solved numerically with – from top to
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Figure 2. Numerical (red circles) and exact (black solid curves) solutions
to the scalar advection equation ut + aux = 0, a > 0 with two different ini-
tial conditions: Left column: sinusoidal wave, Right column: discontinuous
Riemann problem. Five different schemes are shown from top to bottom:
(1) Upwind, (2) Lax-Friedrichs, (3) Lax-Wendroff, (4) Beam-Warming, (5)
Fromm’s method.

bottom – (1) Upwind method, (2) Lax-Friedrichs, (3) Lax-Wendroff, (4) Beam-
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Warming, and (5) Fromm’s method. On the right column, the same methods
are applied – in the same order – to solve the initially discontinuous Riemann
problem,

u0(x) =

{
1 for x < 0.5
−1 for x > 0.5.

(38)

All numerical methods solve the sine wave until the wave completes the first
cycle on a periodic domain which is resolved on 64 grid cells, N = 64. The
same number of grid cells is used for the discontinuous case where the solutions
have been integrated on a domain with outflow boundary condition until the
location of the shock reaches to x = 0.8 which is 0.3 distance away from its
initial location x = 0.5.

There are two first-order methods (upwind and Lax-Friedrichs) and three
second-order methods (Lax-Wendroff, Beam-Warming, and Fromm’s method).
We note that all methods behave equally well on the smooth flow. On the
contrary, there are two distinctive solution characteristics – dissipation and os-
cillations – on the discontinuous flow, particularly near the discontinuity: the
first-order methods give very smeared solutions, while the second-order meth-
ods give oscillations. Understanding these types of behaviors is a key topic in
modeling numerical methods in computational fluid dynamics.


