
Dongwook Lee
Applied Mathematics & Statistics

University of California, Santa Cruz

High Performance,
Massively Parallel Computing with

FLASH

AMS 209, Fall, 2015

FLASH Simulation of a 3D Core-collapse Supernova
Courtesy of S. Couch

MIRA, BG/Q, Argonne National Lab
49,152 nodes, 786,432 cores OMEGA Laser (US)

Parallel Computing in1917

Richardson (1881-1953) introduced a principle of parallel computation using
men power in order to conduct weather predictions

“High-
Performance”

Scientific
Computation

=

HPC in 21st Century

‣ Goal: To solve large problems in science, engineering, or business using multi

physics, multi scale simulations on large scale computing platforms

‣Hardware: Currently petaflops/s (going to exaflops/s), heterogeneous

architectures, inter-node and intra-node parallelism

‣Software: MPI, OpenMP (fine vs. coarse grained), discretizers, partitioners,

solvers and integrators, grid mesh, grid adaptivity, load balancing, UQ, data

compression, config system, compilers, debuggers, profilers, translators,

performance optimizers, I/O, workflow controllers, visualization systems, etc…

‣Hardware & software: concurrent programming models, co-Design, fault

monitoring, etc…

Flop/s Rate Increase since 1988

‣ACM Gordon Bell Prize

‣ 1 Gigaflop/s — structural simulation, 1988

‣ 1 Teraflop/s — compressible turbulence, 1998

‣ 1 Petaflop/s — molecular dynamics simulation, 2008

‣ Total of 6 orders of magnitude of improvements for individual
cores over the two decades:

‣ computer engineering (only two orders of magnitude)

‣ concurrency (the rest four orders of magnitude)

High Performance Computing (HPC)

‣This tension between computation & memory brings a

paradigm shift in numerical algorithms for HPC

‣To enable scientific computing on HPC architectures:

▪ efficient parallel computing, (e.g., data parallelism, task

parallelism, MPI, multi-threading, GPU accelerator, etc.)

▪ better numerical algorithms for HPC

Astrophysics Application

Gravitationally Confined Detonation of Ia SN:
Calder et al (2003); Calder & Lamb (2004); Townsley et al (2007); Plewa (2007); Plewa and Kasen

(2007); Jordan et al (2008); Meakin et al (2009); Jordan et al (2012)

https://vimeo.com/40696524

https://vimeo.com/40696524

Astrophysics Application

Large-scale FLASH simulations of Buoyancy-driven Turbulent Nuclear Combustion

https://vimeo.com/40691923

https://vimeo.com/40691923

In collaboration with
the research teams in

U of Chicago & Oxford Univ.

Laboratory Astrophysics: HEDP

3D Simulation

Aerodynamics: Supersonic Airflow

Theory

Experiment

Simulation

Theory

Experiment Scientific
Computation

validation

verification

Cyclic Relationship

Scientific Computing Tasks

Science Problem
(IC, BC, ODE/PDE)

Simulator
(code, computer)

Results
(Validation, verification,

analysis)

Roles of Scientific Computing

‣Scientific simulations of multi physics, multi scale

phenomena have enabled us to enhance our scientific

understanding via

‣ advances in modeling and algorithms

‣ growth of computing resources

Challenges in HPC

‣ Maximizing the scientific outcome of simulations,

especially on high-performance computing (HPC)

resources, requires many trade-offs

‣ Scientists, engineers, & software developers are often

challenged to explore previously unexplored regimes in

both physics and computing to maximally gain scientific

utilization of large HPC

Today’s Topics

‣ I am going to present a case study with the FLASH

code on the following topics:

‣ Code architecture

‣ parallelization (MPI & threading)

‣ optimization (algorithm tweaking & improvements)

‣ FLASH performance on HPC

FLASH Code

‣FLASH is is free, open source code for astrophysics and HEDP
(http://flash.uchicago.edu)

▪ modular, multi-physics, adaptive mesh refinement (AMR), parallel
(MPI & OpenMP), finite-volume Eulerian compressible code for
solving hydrodynamics and MHD

▪ professionally software engineered and maintained (daily
regression test suite, code verification/validation), inline/online
documentation

▪ FLASH can run on various platforms from laptops to
supercomputing (peta-scale) systems such as IBM BG/P and BG/Q
with great scaling over a hundred thousands processors

http://flash.uchicago.edu

FLASH Code

‣FLASH is is free, open source code for astrophysics and HEDP
(http://flash.uchicago.edu)

▪ modular, multi-physics, adaptive mesh refinement (AMR), parallel
(MPI & OpenMP), finite-volume Eulerian compressible code for
solving hydrodynamics and MHD

▪ professionally software engineered and maintained (daily
regression test suite, code verification/validation), inline/online
documentation

▪ FLASH can run on various platforms from laptops to
supercomputing (peta-scale) systems such as IBM BG/P and BG/Q
with great scaling over a hundred thousands processors

• Over 1.2 million lines of code (Fortran, C, pyton)

• 25% are comments

• Extensive code docs in user’s manual (~ 500 pages)

• Great scaling ~ 100,000 procs

http://flash.uchicago.edu

FLASH around the World

Canada

US

Germany Italy

Canada

Germany

Monthly Notices of the Royal Astronomical Society
Volume 355 Issue 3 Page 995 - December 2004
doi:10.1111/j.1365-2966.2004.08381.x

Quenching cluster cooling flows with recurrent hot plasma bubbles
Claudio Dalla Vecchia1, Richard G. Bower1, Tom Theuns1,2, Michael L.
Balogh1, Pasquale Mazzotta3 and Carlos S. Frenk1

UK

Netherlands

Papers using FLASH

year count
2000 10
2001 7
2002 11
2003 21
2004 46
2005 48
2006 68
2007 72
2008 93
2009 98
2010 93
2011 103
2012 122
2013 12

804

0

20

40

60

80

100

120

140

co
un

t

Year

Number of Papers

downloads > 8500; authors > 1500; papers > 1000

Research Applications

‣Major Research Applications

‣thermonuclear flashes

‣high energy density physics (HEDP) - B field amplification

‣fluid-structure interaction

‣star formation

‣star-star & star-planets interactions

‣cosmology

‣galaxy & galaxy cluster simulations

‣turbulence

‣…

Scientific Simulations using FLASH

cosmological
cluster formation supersonic MHD

turbulence

Type Ia SN

RT

CCSN

ram pressure stripping

laser slab

rigid body
structure

Accretion Torus

LULI/Vulcan experiments: B-field
generation/amplification

History

‣1997: Founding of ASCI (Accelerated Strategy Computing
Initiative) FLASH Center

‣ thermonuclear flashes at neutron stars and WD surfaces

‣2000: first FLASH code release

‣ Fryxell, Olson, Ricker, Timmes, Zingale, Lamb, MacNeice, Rosner,
Tururan, Tufo (The FLASH Paper, ApJS)

‣PPM hydro FVM code, no MHD

‣no-self gravity

‣AMR using PARAMESH

History

‣2002: Major revision updated to 2.3

‣MHD solver based on the 8-wave scheme: directionally split,
FVM (Powell, Roe, Linde, Gombosi, De Zeeuw, 1999)

‣self-gravity/Poisson solver (Ricker)

‣tracer particle

‣cosmology

‣HDF5 I/O

History

‣2008: completely restructured version 3

‣unsplit HD & USM-MHD solvers (Dongwook, JCP 2009; 2013)

‣more flexible grid structures (UG & AMR)

‣decentralized “database” structure

‣reorganized directory structure

‣2011: Version 4 (Last released ver. 4.2.2, 2014)

‣full 3D AMR for MHD

‣many new physical modules

‣e.g., implicit diffusion solver for thermal conduction, energy
deposition via laser, 3-temperature for HEDP, solid-boundary
interface

Out-of-Box Examples

Domain Decomposition

‣ Adaptive Mesh Refinement (w/ Paramesh)

▪ conventional parallelism via

MPI (Message Passing Interface)

▪ domain decomposition distributed over

multiple processor units

▪ distributed memory (cf. shared memory)

uniform grid oct-tree-based
block AMR

patch-based AMR

Single block

FLASH Grid Structures

‣Two ways to setup

‣AMR using PARAMESH
(MacNiece et al, 2000)

‣block structured, oct-tree
based AMR

‣alternative CHOMBO
(Colella et al.) library is under
development

‣UG without AMR overhead

FLASH AMR Grid Structures

‣Oct-tree structure where each
branch of tree produces leaf
blocks

‣FLASH evolves only on the leaf
blocks

‣Ref ratio is a factor of 2

‣Mesh can be refined or de-
refined adaptively (customizable)

‣Morton space-filling curve
(Warren and Salmon, 1993) for
load balancing

2d

FLASH AMR Grid Structures

‣Oct-tree structure where each
branch of tree produces leaf
blocks

‣FLASH evolves only on the leaf
blocks

‣Ref ratio is a factor of 2

‣Mesh can be refined or de-
refined adaptively (customizable)

‣Morton space-filling curve
(Warren and Salmon, 1993) for
load balancing

2d

Various Tested Supports

‣FLASH has been tested on various machines, platforms,
compilers, OS, etc.

…

computer alias names

prototype makefiles:
linux, Mac OS X, …

FLASH Directory Structures

‣Most of the code in Fortran 90

‣highly modular with some set of coding rules

‣e.g., API, name conventions, de-centralized database, etc.

‣configuration via setup python script

FLASH Directory Structures

FLASH Directory Structures

FLASH Directory Structures

Libraries/Softwares

‣Additional libraries/softwares required for FLASH:

‣fortran, C compilers with openMP

‣MPI

‣HYPRE for implicit diffusion

‣HDF5

FLASH Parallelizations

‣Two types of parallelizations:

‣ inter-node parallelism: domain decomposition with MPI
(distributed memory)

‣Paramesh or Chombo

‣ intra-node parallelism with OpenMP (shared memory)

‣thread block list

‣thread within block

‣More parallelization…

‣Parallel I/O with HDF5

FLASH Strong vs. Weak Scalings

BG/P to BG/Q transition

‣Intrepid BG/P

‣4 cores/node, 2GB/node, 40,960 nodes

‣FLASH has been run on Intrepid for the last several years

‣scales to the whole machine

‣MPI-only is sufficient

‣Mira BG/Q

‣4 hw threads/core, 16 cores/node, 16GB/node, 152 nodes

‣MPI-only approach not suitable for BG/Q

‣OpenMP directives have been recently added to FLASH to
take advantages of the additional intra-node parallelism

BG/Q

16 cores/node

16 GB/node

4 threads/core

FLASH Threading

‣Blocks 12~17 being assigned to
a single MPI rank

‣6 total blocks

‣5 leaf & 1 parent (#13)

‣Mesh is divided into blocks of
fixed size

‣Oct-tree hierarchy

‣Blocks are assigned to MPI
ranks

FLASH Threading

‣FLASH solvers update the
solution only on local leaf blocks

‣FLASH uses multiple threads
to speed up the solution update

Threading Strategy 1

‣Assign different blocks to
different threads

‣Assuming 2 threads per MPI
rank

‣thread 0 (blue) updates 3 full
blocks — 72 cells

‣thread 1 (yellow) updates 2
full blocks — 48 cells

‣‘thread block list’ — coarse
grained threading

Threading Strategy 2

‣Assign different cells from the
same block to different threads

‣Assuming 2 threads per MPI
rank

‣thread 0 (blue) updates 5
partial blocks — 60 cells

‣thread 1 (yellow) updates 5
partial blocks — 60 cells

‣‘thread within block’ - fine
grained threading

Strong Scaling of RT Flame

Strong Scaling Results

‣Good strong scaling for both multithreading strategies

‣Only 3 blocks of 16^3 cells on some MPI ranks for the 4096
MPI rank calculation (256 nodes)

‣Coarse-grained threading: list of blocks >> # of threads to
avoid load imbalance

‣Finer-grained threading performs slightly better

‣Better load balancing within an MPI rank

‣Performance advantage increases as work becomes more finely
distributed

Further Optimizations

‣For instance, reordering arrays in kernels reduced to time to
solution from 184 sec to 156 sec

Before: 4.79 sec

After: 0.37 sec

Further Optimizations

‣FLASH re-gridding optimization in Paramesh

Conclusion

‣It is challenging to modify large software like FLASH to contain
AMR and multiple physics modules for the next generation of
many-core architecture

‣ FLASH’s successful approach is to add OpenMP directives to
deliver a large, highly-capable piece of software to run efficiently
on the BG/Q platforms

‣coarse grained and fine grained threading strategies have been
explored and tested

‣fine grained threading performs better

‣Extra optimizations can speedup the code performance

