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Parallel Computing in1917

Richardson (1881-1953) introduced a principle of parallel computation using 
men power in order to conduct weather predictions
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Scientific
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HPC in 21st Century

‣ Goal: To solve large problems in science, engineering, or business using multi 

physics, multi scale simulations on large scale computing platforms

‣Hardware: Currently petaflops/s (going to exaflops/s), heterogeneous 

architectures, inter-node and intra-node parallelism

‣Software: MPI, OpenMP (fine vs. coarse grained), discretizers, partitioners, 

solvers and integrators, grid mesh, grid adaptivity, load balancing, UQ, data 

compression, config system, compilers, debuggers, profilers, translators, 

performance optimizers, I/O, workflow controllers, visualization systems, etc…

‣Hardware & software: concurrent programming models, co-Design, fault 

monitoring, etc…



Flop/s Rate Increase since 1988

‣ACM Gordon Bell Prize

‣ 1 Gigaflop/s — structural simulation, 1988

‣ 1 Teraflop/s — compressible turbulence, 1998

‣ 1 Petaflop/s — molecular dynamics simulation, 2008

‣ Total of 6 orders of magnitude of improvements for individual 
cores over the two decades:

‣ computer engineering (only two orders of magnitude)

‣ concurrency (the rest four orders of magnitude)



High Performance Computing (HPC)

‣This tension between computation & memory brings a 

paradigm shift in numerical algorithms for HPC

‣To enable scientific computing on HPC architectures:

▪ efficient parallel computing, (e.g., data parallelism, task 

parallelism, MPI, multi-threading, GPU accelerator, etc.)

▪ better numerical algorithms for HPC



Astrophysics Application

Gravitationally Confined Detonation of Ia SN:
Calder et al (2003); Calder & Lamb (2004); Townsley et al (2007); Plewa (2007); Plewa and Kasen 

(2007); Jordan et al (2008); Meakin et al (2009); Jordan et al (2012)

https://vimeo.com/40696524

https://vimeo.com/40696524


Astrophysics Application

Large-scale FLASH simulations of Buoyancy-driven Turbulent Nuclear Combustion

https://vimeo.com/40691923

https://vimeo.com/40691923


In collaboration with 
the research teams in 

U of Chicago & Oxford Univ.

Laboratory Astrophysics: HEDP

3D Simulation



Aerodynamics: Supersonic Airflow
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Scientific Computing Tasks

Science Problem
(IC, BC, ODE/PDE)

Simulator 
(code, computer)

Results
(Validation, verification, 

analysis)



Roles of Scientific Computing

‣Scientific simulations of multi physics, multi scale 

phenomena have enabled us to enhance our scientific 

understanding via 

‣ advances in modeling and algorithms

‣ growth of computing resources



Challenges in HPC

‣ Maximizing the scientific outcome of simulations, 

especially on high-performance computing (HPC) 

resources, requires many trade-offs

‣ Scientists, engineers, & software developers are often 

challenged to explore previously unexplored regimes in 

both physics and computing to maximally gain scientific 

utilization of large HPC



Today’s Topics

‣ I am going to present a case study with the FLASH 

code on the following topics:

‣ Code architecture

‣ parallelization (MPI & threading)

‣ optimization (algorithm tweaking & improvements)

‣ FLASH performance on HPC



FLASH Code

‣FLASH is is free, open source code for astrophysics and HEDP 
(http://flash.uchicago.edu) 

▪ modular, multi-physics, adaptive mesh refinement (AMR), parallel 
(MPI & OpenMP), finite-volume Eulerian compressible code for 
solving hydrodynamics and MHD 

▪ professionally software engineered and maintained (daily 
regression test suite, code verification/validation), inline/online 
documentation 

▪ FLASH can run on various platforms from laptops to 
supercomputing (peta-scale) systems such as IBM BG/P and BG/Q 
with great scaling over a hundred thousands processors

http://flash.uchicago.edu
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FLASH around the World

Canada 

US 

Germany Italy 

Canada 

Germany 

Monthly Notices of the Royal Astronomical Society 
Volume 355 Issue 3 Page 995  - December 2004 
doi:10.1111/j.1365-2966.2004.08381.x 
 

Quenching cluster cooling flows with recurrent hot plasma bubbles 
Claudio Dalla Vecchia1, Richard G. Bower1, Tom Theuns1,2, Michael L. 
Balogh1, Pasquale Mazzotta3 and Carlos S. Frenk1 

UK 

Netherlands 



Papers using FLASH

year count
2000 10
2001 7
2002 11
2003 21
2004 46
2005 48
2006 68
2007 72
2008 93
2009 98
2010 93
2011 103
2012 122
2013 12
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downloads > 8500; authors > 1500; papers > 1000



Research Applications

‣Major Research Applications

‣thermonuclear flashes

‣high energy density physics (HEDP) - B field amplification

‣fluid-structure interaction

‣star formation

‣star-star & star-planets interactions

‣cosmology

‣galaxy & galaxy cluster simulations

‣turbulence

‣…



Scientific Simulations using FLASH

cosmological 
cluster formation supersonic MHD 

turbulence

Type Ia SN

RT

CCSN

ram pressure stripping

laser slab

rigid body 
structure

Accretion Torus

LULI/Vulcan experiments: B-field 
generation/amplification



History

‣1997: Founding of ASCI (Accelerated Strategy Computing 
Initiative) FLASH Center 

‣ thermonuclear flashes at neutron stars and WD surfaces

‣2000: first FLASH code release

‣ Fryxell, Olson, Ricker, Timmes, Zingale, Lamb, MacNeice, Rosner, 
Tururan, Tufo (The FLASH Paper, ApJS)

‣PPM hydro FVM code, no MHD

‣no-self gravity

‣AMR using PARAMESH 



History

‣2002: Major revision updated to 2.3

‣MHD solver based on the 8-wave scheme: directionally split, 
FVM (Powell, Roe, Linde, Gombosi, De Zeeuw, 1999)

‣self-gravity/Poisson solver (Ricker)

‣tracer particle

‣cosmology

‣HDF5 I/O



History

‣2008: completely restructured version 3

‣unsplit HD & USM-MHD solvers (Dongwook, JCP 2009; 2013)

‣more flexible grid structures (UG & AMR)

‣decentralized “database” structure

‣reorganized directory structure

‣2011: Version 4 (Last released ver. 4.2.2, 2014)

‣full 3D AMR for MHD

‣many new physical modules

‣e.g., implicit diffusion solver for thermal conduction, energy 
deposition via laser, 3-temperature for HEDP, solid-boundary 
interface



Out-of-Box Examples



Domain Decomposition

‣ Adaptive Mesh Refinement (w/ Paramesh)

▪ conventional parallelism via                  

MPI (Message Passing Interface) 

▪ domain decomposition distributed over 

multiple processor units

▪ distributed memory (cf. shared memory)

uniform grid oct-tree-based
block AMR

patch-based AMR

Single block



FLASH Grid Structures

‣Two ways to setup

‣AMR using PARAMESH 
(MacNiece et al, 2000)

‣block structured, oct-tree 
based AMR

‣alternative CHOMBO 
(Colella et al.) library is under 
development

‣UG without AMR overhead



FLASH AMR Grid Structures

‣Oct-tree structure where each 
branch of tree produces       leaf 
blocks

‣FLASH evolves only on the leaf 
blocks

‣Ref ratio is a factor of 2

‣Mesh can be refined or de-
refined adaptively (customizable)

‣Morton space-filling curve 
(Warren and Salmon, 1993) for 
load balancing

2d
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Various Tested Supports

‣FLASH has been tested on various machines, platforms, 
compilers, OS, etc.

…

computer alias names

prototype makefiles: 
linux, Mac OS X, …



FLASH Directory Structures

‣Most of the code in Fortran 90

‣highly modular with some set of coding rules

‣e.g., API, name conventions, de-centralized database, etc.

‣configuration via setup python script



FLASH Directory Structures



FLASH Directory Structures



FLASH Directory Structures



Libraries/Softwares

‣Additional libraries/softwares required for FLASH:

‣fortran, C compilers with openMP

‣MPI

‣HYPRE for implicit diffusion

‣HDF5



FLASH Parallelizations

‣Two types of parallelizations:

‣ inter-node parallelism: domain decomposition with MPI 
(distributed memory)

‣Paramesh or Chombo

‣ intra-node parallelism with OpenMP (shared memory)

‣thread block list

‣thread within block

‣More parallelization…

‣Parallel I/O with HDF5



FLASH Strong vs. Weak Scalings



BG/P to BG/Q transition

‣Intrepid BG/P

‣4 cores/node, 2GB/node, 40,960 nodes

‣FLASH has been run on Intrepid for the last several years

‣scales to the whole machine

‣MPI-only is sufficient

‣Mira BG/Q

‣4 hw threads/core, 16 cores/node, 16GB/node, 152 nodes

‣MPI-only approach not suitable for BG/Q

‣OpenMP directives have been recently added to FLASH to 
take advantages of the additional intra-node parallelism



BG/Q

16 cores/node

16 GB/node

4 threads/core



FLASH Threading

‣Blocks 12~17 being assigned to 
a single MPI rank

‣6 total blocks

‣5 leaf & 1 parent (#13)

‣Mesh is divided into blocks of 
fixed size

‣Oct-tree hierarchy

‣Blocks are assigned to MPI 
ranks



FLASH Threading

‣FLASH solvers update the 
solution only on local leaf blocks

‣FLASH uses multiple threads 
to speed up the solution update



Threading Strategy 1

‣Assign different blocks to 
different threads

‣Assuming 2 threads per MPI 
rank

‣thread 0 (blue) updates 3 full 
blocks — 72 cells

‣thread 1 (yellow) updates 2 
full blocks — 48 cells

‣‘thread block list’ — coarse 
grained threading



Threading Strategy 2

‣Assign different cells from the 
same block to different threads

‣Assuming 2 threads per MPI 
rank

‣thread 0 (blue) updates 5 
partial blocks — 60 cells

‣thread 1 (yellow) updates 5 
partial blocks — 60 cells

‣‘thread within block’ - fine 
grained threading



Strong Scaling of RT Flame



Strong Scaling Results

‣Good strong scaling for both multithreading strategies

‣Only 3 blocks of 16^3 cells on some MPI ranks for the 4096 
MPI rank calculation (256 nodes)

‣Coarse-grained threading: list of blocks >> # of threads to 
avoid load imbalance

‣Finer-grained threading performs slightly better

‣Better load balancing within an MPI rank

‣Performance advantage increases as work becomes more finely 
distributed



Further Optimizations

‣For instance, reordering arrays in kernels reduced to time to 
solution from 184 sec to 156 sec

Before: 4.79 sec

After: 0.37 sec



Further Optimizations

‣FLASH re-gridding optimization in Paramesh



Conclusion

‣It is challenging to modify large software like FLASH to contain 
AMR and multiple physics modules for the next generation of 
many-core architecture

‣ FLASH’s successful approach is to add OpenMP directives to 
deliver a large, highly-capable piece of software to run efficiently 
on the BG/Q platforms

‣coarse grained and fine grained threading strategies have been 
explored and tested

‣fine grained threading performs better 

‣Extra optimizations can speedup the code performance


