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I. ABSTRACT

In today’s times, the number of images are growing expo-
nentially. Billions of images are shared everyday, and there’s
a need to search and sort through these images efficiently.
Traditional text based search falls short on many levels such
as linguistic barriers, different interpretations and the added
cost of annotation. Content based approach allows us to
use visual content of the images to retrieve similar images.
Research on Hybrid approach in Content Based Image Re-
trieval (CBIR) has so far shown promising results, providing
higher accuracy as compared to a global approach but at the
same time it comes with the high computational complexity
of the local approach. Our implementation of the hybrid
CBIR system has reduced complexity and better performance
than the original approach. Various methods used include
caching, parallelism, map-filter, approximation and reducing
comparisons. Our results indicate that the performance can
be improved by a huge margin without sacrificing accuracy.

Categories and Subject Descriptors

1.4 [IMAGE PROCESSING AND COMPUTER VI-
SION] Scene Analysis, Object Recognition, Shape,
Range Data, Applications

Keywords

Content based image retrieval; Wavelet transform;
Shape feature; Information Retrieval.

II. INTRODUCTION

Content Based Image Retrieval (CBIR) system by Yen
Do et al [1] uses both global features (Shape), and
local features (Contours). However there’s a major
drawback of such systems that they are very complex
computationally and performance is an issue. The
study notes “In the future work, we will improve the
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method to shorten the run time when the database has
high number of images.” Our system builds upon this
work by implementing these measures in parallel, and
optimizing the execution time and complexity.

CBIR has wide applications [2] including but not
limited to applications in Crime prevention, military,
intellectual property, architectural and engineering
design, fashion and interior design, journalism and ad-
vertising, medical diagnosis, geographical information
systems (GIS) and remote sensing, cultural heritage,
education and training, home entertainment, web
searching. Due to advances in data storage, retrieval,
and image acquisition technologies, huge datasets and
archives are now available for analysis. With billions of
new images, there’s a need to efficiently store, process,
and index images. While much effort has been spent on
optimizing the processing, data storage and retrieval
have largely been ignored. Storage, searching and
retrieval form the main bottlenecks in a CBIR system
as memory access is slow. Further storing images in
NOSQL databases is difficult and SQL databases are
not particularly suitable for similar image search.

We demonstrate a way to improve the storage, retrieval
and search performance of the system, while keeping
the accuracy intact.

III. ReLATED WORK

Kuldeep Yadav, et al worked using Nvidia CUDA pro-
gramming to improve the performance of the system by
making use of the inherent parallelism in the system[3].
In another approach using CUDA, Heidari uses color
to retrieve images in addition to shape [4]. While these
works speed up the processing part, the bottleneck re-
mains at the storage, retrieval, and searching functions.
Our work tries to improve this performance and can
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work in conjunction with these systems.

IV. METHODOLOGY

We identified 8 areas to improve and optimize the per-
formance of the system

1. Caching - MongoDB
. Reducing Loops.
. Parallel and multi-core processing.

. Optimizing loops.

. Junking lower and trivial values.

2
3
4
5. Reducing data size.
6
7. Reducing unnecessary computations.
8

. Map - Filter to optimize search.

I. Caching — MongoDB

MongoDB is a document based database. MongoDB
uses JSON for record storage and representation, and
allows MAP-FILTER-REDUCE operations[5], which
was the main motivation behind the choice.

The processed images are broken down into a descrip-
tor, with the following properties :

1. path — string

2. global feature — matrix

3. local feature — matrix

4. number of ones — integer

This allows for easy storage and retrieval with a unique
descriptor for each image. As image is not stored
database, it reduces the size of the database and allows
for quick parsing.

Recalculating these descriptors each time is redun-
dant and causes major delays. Our system checks the
database with available data and only updates the
database if there is a change in data.

Caching these descriptors offers a huge performance
boost, with processing time reduced to a fraction of the
original. This scales linearly for images - figure
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Figure 1: Original implementation vs Caching (Optimized)

The optimized implementation scales linearly — figure
even for a large number of images.
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Figure 2: Caching vs number of images

II. Reducing loops, Parallel processing, Op-
timizing loops and reducing data size

Use of Python allows for drastically reducing the com-
putation and making it parallel using Numpy. Numpy
makes matrix and array manipulation fast and easy.
Various routines available in numpy.linalg[6l]. This
reduces loops and optimizes the code for parallel pro-
cessing. The next step is to cast every value as an
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integer. While this results in a slight loss of precision,
the difference is negligible with respect to the system.
This allows subtraction in place of comparisons and
use of logic primitives to boost the performance.[7] Var-
ious Numpy operations further improve performance
in this scenario. [8]
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Figure 3: Reducing loops, Parallel processing, Optimizing loops
and reducing data size

III.  Junking lower values and reducing un-
necessary computations

While we get a huge array for singular values after
singular value decomposition (SVD)[9], not all values
are equal. Lower values of singular value vectors
don’t affect the accuracy but higher values make a
huge difference. This can be used to optimize the
performance by using a suitable 'k’ value to boost the
performance of the system, where we use the top k
values in descending orders and get rid of the rest.[10]

Another way to improve performance is to reduce un-
necessary computations. SVD results in two orthogo-
nal matrices U and V given by the formula A = USVT
where A is the current matrix and S is the array of sin-
gular values. Here we can skip over the computation
of matrices U and V. Scipy gives us an easy way to do
this.[11]

IV.  Map-Filter

For optimizing search operations, it is necessary to
reduce the amount of data through which the sys-
tem must search. The key challenge here is to reduce
the search set without reducing the accuracy of the
system. Map—-Reduce paradigm [12] can be used to
reduce the searching time to a fraction of the initial
value. Our approach uses the number of ones in the
global feature of the image as a criteria for Map-filter.
With a threshold +x the descriptors are mapped to a
value. While searching, the number of ones £x map
is searched. This drastically reduces the search time,
especially when the number of images is very large.
MongoDB allows an easy way to perform this [13] and
there’s a significant reduction in search time [
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Figure 4: Map-Filter-Reduce

V. CONCLUSION

Our implementation improves the performance of hy-
brid CBIR by a huge margin, reducing searching to less
than 1 second from more than 40 seconds. Processing
speed initially is halved as file writes are eliminated
and other optimizations speed up the processing. After
initial creation of database, processing speed is limited
just to the processing of newly added images to the
database, giving a massive boost to the performance.
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Figure 5: Implementation

VI. FutureE WoORk

While these results are encouraging, there are a lot of
optimizations that can be applied further to improve
the performance. The processing part of this system
can be integrated with the GPU programming work
done by Yadav et al.[3]. Currently this system uses a
naive pre-processing algorithm and work needs to be
done to improve that so that it can extract objects from
real world scenario. The system can use sophisticated
recognition[14] and tagging techniques such as Google
vision to improve Map-reduce accuracy.
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