Review Objectives

- To review different forms of equations of lines and how to write the specific equation given two points, point and the slope, etc;
- To review systems of linear equations with both two and three variables by using the technique of elimination by addition or by substitution;
- To review quadratic functions;
- To review exponential and logarithmic functions;
- To review techniques for solving logarithmic and exponential equations

Lines

Slope m is the ratio between vertical and horizontal change
This is an implicit relation between x and y; let us find the explicit relation (find y as a function of x)

$$
\begin{array}{r}
\frac{y-y_{1}}{x-x_{1}}=m \Rightarrow y-y_{1}=m\left(x-x_{1}\right) \\
\text { or } y=m\left(x-x_{1}\right)+y_{1}
\end{array}
$$

Example
For any point (x, y) on the line, the slope is same; therefore,

- $\frac{y-y_{1}}{x-x_{1}}=m$
$\left(x_{1}, y_{1}\right)$ $\left(x_{2}, y_{2}\right) \quad \frac{y_{2}-y_{1}}{x_{2}-x_{1}}=m$

$$
y=m x-m x_{1}+y_{1} \quad \text { If we introduce } \quad b=y_{1}-m x_{1}
$$

$$
y=m x+b \quad(* *)
$$

The form $(*)$ is the point-slope form: $y-y 1=m\left(x-x_{1}\right)$
The form $(* *)$ is the slope-intercept form: $y=m x+b$
In general, any line can be presented in the general form as $A x+B y+C=0$
If the line is $5 x+3 y+4=0$, can you find the slope-intercept form of it?
(Hint: express y as a function of x)

Lines

If the line is $5 x+3 y+4=0$, can you find the slope intercept form of it?

$$
\begin{aligned}
& 5 x+3 y+4=0 \\
& 3 y=-5 x-4 \\
& y=-\frac{5}{3} x-\frac{4}{3}
\end{aligned}
$$

The slope is negative

At which point does this line cross y axis?
(Hint: when the line crosses y, we know that $x=0$)
Approach 1: Use the original form of the line and find y for $x=0$

$$
\begin{aligned}
5 x+3 y+4=0 \Rightarrow \quad 5 \cdot 0+3 y & +4=0 \\
3 y & +4=0 \\
3 y & =-4 \\
y & =-\frac{4}{3}
\end{aligned}
$$

Approach 2: Use the slope-intercept form

$$
y=-\frac{5}{3} x-\frac{4}{3} \Rightarrow y=-\frac{5}{3} \cdot 0-\frac{4}{3}=-\frac{4}{3}
$$

The point is $x=0, y=-4 / 3$, or $(0,-4 / 3)$

Lines

$$
\begin{aligned}
& \begin{aligned}
& \Delta(\mathrm{x}, \mathrm{y}){ }_{0}^{\bullet\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)} \begin{array}{l}
\text { Vertical line } \mathrm{x}=\mathrm{a} \\
\bullet\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)
\end{array} \\
& \mathrm{a} \begin{array}{l}
\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=m
\end{array} \\
& \frac{y_{2}-y_{1}}{x_{1}-x_{1}}=\frac{y_{2}-y_{1}}{0}
\end{aligned} \\
& \text { Vertical line } x=a
\end{aligned}
$$

$$
\begin{aligned}
& \Delta \quad \frac{y_{2}-y_{1}}{x_{2}-x_{1}}=m \\
& m=0 \\
& \frac{y-y_{1}}{x-x_{1}}=0 \Rightarrow y=y_{1} \Rightarrow y=a \\
& y \text { does not depend on } x
\end{aligned}
$$

Lines summary

The point-slope form $\quad y-y 1=m\left(x-x_{1}\right)$

$$
\text { (Example } y-5=0.5(x-2) \text {) }
$$

The point-intercept form $\quad y=m x+b$

$$
\text { (Example } y=\frac{2}{3} x+2 \text {) }
$$

The general form

$$
A x+B y+C=0
$$

Horizontal line

$$
y=a
$$

Vertical line

$$
x=a
$$

(Example $2 x+\frac{2}{3} y+\frac{1}{4}=0$)
(Example $y=\frac{7}{5}$)
(Example $x=2.3$)

Two lines $y=m_{1} x+b_{1}$ and $y=m_{2} x+b_{2}$

- are parallel if they have the same slope ($m_{1}=m_{2}$).
- are mutually normal if $m_{1}=-\frac{1}{m_{2}}$

Special case:
Horizontal line ($m=0$), and vertical line ($m=$ ="infinite")

Problems

1. Find the line which has slope 2 and passes through $(-1,3)$.
2. What are the points where the line (1) crosses x and y axis?
3. Find where the line $3 x+5 y+4=7$ crosses x and y axis.
4. Find the slope of the line (3).
5. Find the line which is normal to the line $y=3$ and goes through the point $(2,2)$.

6 . Find the line which is parallel to the line $y=3$ and goes through the point $(5,4)$.
7. Find the intersection of these two lines $x+2 y-8=0$ and $3 x+4 y+4=0$
8. Write the slope-intercept form for the line in the figure

Systems of Linear Equations

Elimination by substitution

$$
\begin{aligned}
& x+2 y-8=0 \\
& 3 x+4 y+4=0 \\
& x=-2 y+8 \\
& 3 x+4 y+4=0 \\
& x=-2 y+8 \\
& 3(-2 y+8)+4 y+4=0 \\
& x=-2 y+8 \\
& -6 y+24+4 y+4=0 \\
& x=-2 y+8 \\
& -2 y=-28 \\
& x=-2 y+8 \\
& y=14 \\
& x=-28+8=-20 \\
& y=14
\end{aligned}
$$

The solution is $x=-20, y=14$

Elimination by substitution

$$
\begin{aligned}
& x+2 y-8=0 \\
& 2 x+4 y+4=0 \\
& x=-2 y+8 \\
& 2 x+4 y+4=0 \\
& x=-2 y+8 \\
& 2(-2 y+8)+4 y+4=0 \\
& x=-2 y+8 \\
& -4 y+16+4 y+4=0 \\
& x=-2 y+8 \\
& 20=0
\end{aligned}
$$

There is no solution. Why ?
(Hint: check the slopes)

Lines have the same slope (they are parallel); therefore, there is no point that belongs to both of them.
(10.0.

$$
x+2 y-8=0 \Leftrightarrow y=-\frac{1}{2} x+8
$$

$x+2 y-8=0 \Leftrightarrow y=-\frac{1}{2} x+8$

$$
2 x+4 y+4=0 \Leftrightarrow y=-\frac{1}{2} x-2
$$

$2 x+4 y+4=0 \Leftrightarrow y=-\frac{1}{2} x-2$

Elimination by addition

$$
\begin{gathered}
x+2 y-8=0 \\
3 x+4 y+4=0 \\
\hline-3 x-6 y+24=0 \\
3 x+4 y+4=0 \\
\hline-2 y+28=0 \Leftrightarrow y=14 \\
x+2 \cdot 14-8=0 \Leftrightarrow x=-20
\end{gathered}
$$

Systems of Linear Equations

Infinitely many solutions

$$
\begin{aligned}
& x+5 y=2 \\
& \frac{1}{2} x+\frac{5}{2} y=1 \\
& x+5 y=2 \\
& x+5 y=2
\end{aligned}
$$

The same equation

$$
x+5 y=2
$$

$$
y=r
$$

$$
x=-5 r+2
$$

Three variables

$$
\begin{aligned}
& 2 x+y+z=3 \\
& -x+2 y+2 z=1 \\
& x-y-3 z=-6 \\
& \hline 5 y+5 z=5 \quad \text { From Eq.(1)+2Eq.(2) } \\
& y-z=-5 \quad \text { From Eq.(2)+Eq.(3) } \\
& \hline y+z=1 \\
& y-z=-5 \\
& \hline 2 y=-4 \Rightarrow y=-2 \\
& \Rightarrow z=3 \\
& x-y-3 z=-6 \\
& x-(-2)-9=-6 \Rightarrow x=7-6=1
\end{aligned}
$$

Book page 154, solution by the substitution method

In the case of three variables, we can have a solution, no solution, or infinitely many solutions. In the case of infinitely many solutions, we may need one, or two free variables

$$
\begin{array}{c|l}
x-2 y-z=0 & \text { Eq.(1), Eq(2) and Eq(3) are equivalent to Eq(1). } \\
2 x-4 y-2 z=0 & x-2 y-z=0 \\
-x+2 y+z=0 & \text { The solution is } x=2 y+z, y=r, z=s, \text {,ie., } x=2 r+s, y=r, z=s
\end{array}
$$

Quadratic function

A function f is quadratic if and only if $f(x)$ can be written in the form $f(x)=a x^{2}+b x+c$, where a, b and c are constants and $a \neq 0$

Examples:

$$
\text { Note: If } a=0 \quad f(x)=0 \cdot x^{2}+b x+c
$$

$$
\begin{aligned}
& y(x)=x^{2}-3 x+2, \text { or } y=x^{2}-3 x+2 \\
& F(t)=-3 t^{2}
\end{aligned}
$$

$$
f(x)=b x+c, \text { which is line }
$$

$$
f(s)=c(s-a)(s-b)=c\left(s^{2}-(a+b) s+a b\right)=c s^{2}-c(a+b) s+c a b \quad \text { if } c \neq 0
$$

Find the point at which the quadratic function $f(x)=a x^{2}+b x+c$ crosses y axis.

When the line crosses y, we know that $x=0$

$$
f(0)=a \cdot 0^{2}+b \cdot 0+c=c
$$

The point is $(0, c)$
Example: If $y=2 x^{2}+5 x+3$
at the point at which the quadratic function crosses y axis, $x=0$ $y=2 \cdot 0^{2}+5 \cdot 0+3=3$

The point at which the quadratic function crosses y axis is $(0,3)$

Quadratic function

Find points at which $f(x)=a x^{2}+b x+c=0$
i.e., the points where the quadratic function crosses x axis

In the figures, there are two points $f(x)=0$ and we can compute them as

$$
x_{1}=\frac{-b-\sqrt{b^{2}-4 a c}}{2 \mathrm{a}}, \quad x_{2}=\frac{-b+\sqrt{b^{2}-4 a c}}{2 \mathrm{a}}
$$

$f(x)=a x^{2}+b x+c$
$a>0$

If $b^{2}-4 \mathrm{ac}<0$, then the quadratic function does not cross x axis, i.e., there is no point $f(x)=0$
It is because the square root of negative value is undefined
If $b^{2}-4 \mathrm{ac}=0$, then $x_{1}=x_{2}=-\frac{b}{2 \mathrm{a}}$
In any case, the x position of the vertex is $x_{v}=-\frac{b}{2 a}$ which is formally $x_{v}=\frac{x_{1}+x_{2}}{2}$
Q: What is $f\left(x_{v}\right)$?
A: $f\left(x_{v}\right)=a x_{v}^{2}+b x_{v}+c$
The vertex is at $\left(x_{v}, f\left(x_{v}\right)\right)$

Quadratic function

Very important: If $b^{2}-4 a c \geq 0$, every expression $a x^{2}+b x+c$
can be represented as $a\left(x-x_{1}\right)\left(x-x_{2}\right) \quad x_{1,2}=\frac{-b \pm \sqrt{b^{2}-4 \mathrm{ac}}}{2 \mathrm{a}}$,
Simplify

$$
\frac{2 x^{2}-10 x+12}{x^{2}-11 x+24} \quad \text { assuming } x^{2}-11 x+24 \neq 0
$$

$$
2 x^{2}-10 x+12: \quad b^{2}-4 a c=100-4 \cdot 2 \cdot 12=100-96=4
$$

$$
\begin{aligned}
& x_{1,2}=\frac{10 \pm \sqrt{4}}{2 \cdot 2}=\frac{10 \pm 2}{4} \Rightarrow x_{1}=12 / 4=3, x_{2}=8 / 4=2 \\
& 2 x^{2}-10 x+12=2(x-3)(x-2)
\end{aligned}
$$

$$
x^{2}-11 x+24: \quad b^{2}-4 a c=121-4 \cdot 1 \cdot 24=121-96=25
$$

$$
\begin{aligned}
& x_{1,2}=\frac{11 \pm \sqrt{25}}{2 \cdot 1}=\frac{11 \pm 5}{2} \Rightarrow x_{1}=16 / 2=8, x_{2}=6 / 2=3 \\
& x^{2}-11 x+24=(x-8)(x-3)
\end{aligned}
$$

$$
\frac{2 x^{2}-10 x+12}{3 x^{2}-18 x+24}=\frac{2(x-3)(x-2)}{(x-8)(x-3)}=\frac{2(x-2)}{x-8}
$$

System of Linear and Quadratic Equations

Solve: $\quad x^{2}-2 x+y-7=0$

$$
3 x-y+1=0
$$

$$
\begin{aligned}
& y=3 x+1 \\
& x^{2}-2 x+3 x+1-7=0 \\
& x^{2}+x-6=0 \\
& x_{12}=\frac{-1 \pm \sqrt{1+24}}{2}=\frac{-1 \pm 5}{2} \Rightarrow x_{1}=2, x_{2}=-3
\end{aligned}
$$

Consequently, y has two solutions:
$y_{1}=3 x_{1}+1=7$
$y_{2}=3 x_{2}+1=-8$
There are two solutions, (2,7) and (-3,-8).

Always remember:

$$
\begin{aligned}
& (a+b)^{2}=a^{2}+2 a b+b^{2} \\
& (a-b)^{2}=a^{2}-2 a b+b^{2} \\
& (a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3} \\
& (a-b)^{3}=a^{3}-3 a^{2} b+3 a b^{2}-b^{3} \\
& a^{2}-b^{2}=(a-b)(a+b) \\
& a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right) \\
& a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)
\end{aligned}
$$

Exponential Functions

The function f defined by $f(x)=b^{x}$, where $b>0, b \neq 1$, and the exponent x is any real number, is called an exponential function with the base b.
Properties:

1. $b^{x} b^{y}=b^{x+y}$
2. $\frac{b^{x}}{b^{y}}=b^{x-y}$
3. $(b c)^{x}=b^{x} c^{x}$
4. $b^{-x}=\frac{1}{b^{x}}$
5. $\left(b^{x}\right)^{y}=b^{x y}$
6. $\left(\frac{b}{c}\right)^{x}=\frac{b^{x}}{c^{x}}$
7. $b^{1}=b$
8. $b^{0}=1$
$f(x)=b^{x}, b>1 \quad f(x)=b^{x}, 0<b<1$
9. $b^{\frac{x}{y}}=\sqrt[y]{b^{x}}=(\sqrt[y]{b})^{x}$

(a)

(b)
10. The domain of any exponential function is $(-\infty, \infty)$ The range of any exponential function is $(0, \infty)$
11. The graph has y-intercept $(0,1)$. There is no x-intercept.
12. If $b>1$, the graph rises from left to right. If $0<b<1$, the graph falls from left to right.
13. If $b>1$, the graph approaches 0 for negative x. If $0<b<1$, the graph approaches 0 for positive x.

Examples:

$$
\begin{aligned}
2^{-\frac{3}{2}}=\frac{1}{2^{\frac{3}{2}}} & =\frac{1}{\sqrt[2]{2^{3}}}=\frac{1}{\sqrt[2]{8}}=\frac{1}{\sqrt[2]{2 \cdot 4}}=\frac{1}{\sqrt[2]{2} \cdot \sqrt[2]{4}}=\frac{1}{2 \sqrt{2}} \\
& =\frac{1}{2 \sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}}=\frac{\sqrt{2}}{4}
\end{aligned}
$$

$$
\frac{1}{\sqrt{3}-\sqrt{2}}=\frac{1}{\sqrt{3}-\sqrt{2}} \frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}+\sqrt{2}}=\frac{\sqrt{3}+\sqrt{2}}{3-2}=\frac{\sqrt{3}+\sqrt{2}}{1}=\sqrt{3}+\sqrt{2}
$$

$$
\begin{aligned}
\frac{3^{\frac{3}{8}}}{9^{\frac{2}{3}}} & =\frac{3^{\frac{3}{8}}}{\left(3^{2}\right)^{\frac{2}{3}}}=\frac{3^{\frac{3}{8}}}{3^{2 \cdot \frac{2}{3}}}=\frac{3^{\frac{3}{8}}}{3^{\frac{4}{3}}}=3^{\frac{3}{8}-\frac{4}{3}}=3^{\frac{3 \cdot 3}{24}-\frac{4 \cdot 8}{24}}=3^{\frac{9-32}{24}}=3^{-\frac{21}{24}}=3^{-\frac{7}{8}} \\
& =\frac{1}{3^{\frac{7}{8}}}=\frac{1}{\sqrt[8]{3^{7}}}
\end{aligned}
$$

Logarithmic Functions

The functions inverse to the exponential functions are called the logarithmic functions.

(a)

(b)

1. The domain is $(0, \infty)$

The range is $(-\infty, \infty)$
2. The graph has x-intercept $(1,0)$.

There is no y-intercept
3. If $b>1$, the graph rises from left to right. If $0<b<1$, the graph falls from left to right.

Property of logarithms

$$
\begin{array}{lll}
\text { 1. } \log _{b}(m n)=\log _{b} m+\log _{b} n & \text { 4. } \log _{b}\left(\frac{1}{m}\right)=-\log _{b} m & \text { 7. } \log _{b} b^{r}=r \\
\text { 2. } \log _{b}\left(\frac{m}{n}\right)=\log _{b} m-\log _{b} n & \text { 5. } \log _{b} 1=0 & \text { 8. } b^{\log _{b} m}=m \\
\text { 3. } \log _{b} m^{r}=r \log _{b} m & \text { 6. } \log _{b} b=1 & \text { 9. } \log _{b} m=\frac{\log _{a} m}{\log _{a} b} \\
\log _{10} x=\log x & \\
\log _{e} x=\ln x \quad e=2.71828182845 \ldots &
\end{array}
$$

Examples:

$$
\text { Find } \log _{36} 6 ? \quad \log _{36} 6=\frac{\log 6}{\log 36}=\frac{\log 6}{\log 6^{2}}=\frac{\log 6}{2 \log 6}=\frac{1}{2}
$$

Find x in: $\log _{x}(2 x-3)=1 \Rightarrow(2 x-3)=x^{1} \Rightarrow x=3$
Find x in: $\log _{x}\left(16-4 x-x^{2}\right)=2 \Rightarrow 16-4 x-x^{2}=x^{2} \Rightarrow 2 x^{2}+4 x-16=0$

$$
\begin{array}{ll}
x^{2}+2 x-8=0 \Rightarrow & x_{1}=\frac{-2-\sqrt{36}}{2}=-4 \\
& x_{2}=\frac{-2+\sqrt{36}}{2}=2
\end{array}
$$

x_{1} cannot be the solution because it is the logarithm basis, and the basis must be positive

Examples:

Find x in: $\quad \log _{2} x=5-\log _{2}(x+4)$

$$
\begin{gathered}
\log _{2} x+\log _{2}(x+4)=5 \\
\log _{2} x(x+4)=5 \Rightarrow \quad x^{2}+4 x-32=0 \Rightarrow
\end{gathered} \begin{aligned}
& x_{1}=\frac{-4+\sqrt{16+128}}{2}=\frac{-4+\sqrt{144}}{2}=4 \\
& x_{2}=\frac{-4-\sqrt{16+128}}{2}=\frac{-4-\sqrt{144}}{2}=-8
\end{aligned}
$$

x_{2} cannot be the solution because on the right side of the original equation x must be positive

If $p=12^{1-0.1 q}$, express q as a function of p
$\log p=(1-0.1 q) \log 12$

$$
\begin{aligned}
& \frac{\log p}{\log 12}=1-0.1 q \\
& 0.1 q=1-\frac{\log p}{\log 12} \\
& q=10\left(1-\frac{\log p}{\log 12}\right)
\end{aligned}
$$

Radioactive decay half-time (T)

$$
\begin{aligned}
N(t)=N_{0} e^{-\lambda t} \frac{N_{0}}{2} & =N_{0} e^{-\lambda T} \\
\frac{1}{2} & =e^{-\lambda T} \\
-\ln 2 & =-\lambda T \\
T & =\frac{\ln 2}{\lambda}
\end{aligned}
$$

Radioactive decay

N_{0} the amount of the element present at $t=0$
λ the decay constant
$N(t)$ the amount of the element present at t

$$
N(t)=N_{0} e^{-\lambda t}
$$

$$
\frac{N_{0}}{2}=N_{0} e^{-\lambda T}
$$

T is the half-life time and by this definition the following applies

$$
N_{0} e^{-\lambda(t+T)}=N_{0} e^{-\lambda T} e^{-\lambda t}=\frac{N_{0}}{2} e^{-\lambda t}=\frac{1}{2} N(t)
$$

FIGURE 4.13 Radioactive decay.

$$
\begin{aligned}
\frac{N_{0}}{2} & =N_{0} e^{-\lambda T} \\
\frac{1}{2} & =e^{-\lambda T} \\
-\ln 2 & =-\lambda T \\
T & =\frac{\ln 2}{\lambda}
\end{aligned}
$$

Transformations of Exponential Functions

FIGURE 4.4 Graph of $y=2^{x}-3$.

FIGURE 4.5 Graph of $y=\left(\frac{1}{2}\right)^{x-4}$.

x	0	1	2
y	1	3	81

FIGURE 4.6 Graph of $y=3^{x^{2}}$.

Always have in mind the following rules + algebra:

$$
\begin{aligned}
& (a+b)^{2}=a^{2}+2 a b+b^{2} \\
& (a-b)^{2}=a^{2}-2 a b+b^{2} \\
& (a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3} \\
& (a-b)^{3}=a^{3}-3 a^{2} b+3 a^{2}-b^{3} \\
& a^{2}-b^{2}=(a-b)(a+b) \\
& a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right) \\
& a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)
\end{aligned}
$$

$$
\begin{array}{ll}
\text { 1. } b^{x} b^{y}=b^{x+y} & \text { 5. }\left(\frac{b}{c}\right)^{x}=\frac{b^{x}}{c^{x}} \\
\text { 2. } \frac{b^{x}}{b^{y}}=b^{x-y} & \text { 6. } b^{-x}=\frac{1}{b^{x}} \\
\text { 3. }\left(b^{x}\right)^{y}=b^{x y} & \text { 7. } b^{1}=b \\
\text { 4. }(b c)^{x}=b^{x} c^{x} & \text { 8. } b^{0}=1 \quad \text { 9. } b^{\frac{x}{y}}=\sqrt[y]{b^{x}}=(\sqrt[y]{b})^{x}
\end{array}
$$

1. $\log _{b}(m n)=\log _{b} m+\log _{b} n$
2. $\log _{b}\left(\frac{1}{m}\right)=$
3. $\log _{b} 1=0$
4. $\log _{b} b^{r}=r$
$2 . \log _{b}\left(\frac{m}{n}\right)=\log _{b} m-\log _{b} n$
5. $b^{\log _{b} m}=m$
6. $\log _{b} m^{r}=r \log _{b} m$
7. $\log _{b} b=1$
8. $\log _{b} m=\frac{\log _{a} m}{\log _{a} b}$
$\log _{10} x=\log x$
$\log _{e} x=\ln x \quad e=2.71828182845 \ldots$

Example:

$$
\log _{\sqrt{2}} 8=\frac{\ln 8}{\ln \sqrt{2}}=\frac{3 \ln 2}{\frac{1}{2} \ln 2}=\frac{3}{\frac{1}{2}}=6
$$

Obviously based on the logarithm definition

$$
\begin{aligned}
& (\sqrt{2})^{6}=8 \\
& \operatorname{check}(\sqrt{2})^{6}=2^{\frac{6}{2}}=2^{3}=8
\end{aligned}
$$

To derive this relation, we could also use log

$$
\log _{\sqrt{2}} 8=\frac{\log 8}{\log \sqrt{2}}=\frac{3 \log 2}{\frac{1}{2} \log 2}=\frac{3}{\frac{1}{2}}=6
$$

Reminder:

$\frac{\frac{a}{b}}{\frac{c}{d}}=\frac{a \cdot d}{b \cdot c} \Leftrightarrow \frac{a}{b}: \frac{c}{d}=\frac{a}{b} \cdot \frac{d}{c}=\frac{a \cdot d}{b \cdot c}$
$\frac{a}{\frac{b}{c}}=\frac{\frac{a}{1}}{\frac{b}{c}}=\frac{a \cdot c}{b}$
$\frac{\frac{a}{b}}{c}=\frac{\frac{a}{b}}{\frac{c}{1}}=\frac{a}{c \dot{b}}$

