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PEDIGREE

The structure of the pedigree that we simulate, 
shown in Figure 1, was chosen in an attempt to have 
a gradient of difficulty of phasing problems, from 
the easy when an individual has one chromosome 
from one population and one from another, to the 
more difficult where the individual's chromosomes 
come from the same population. With this in mind I 
created a symmetrical pedigree with founding haplo-
types taken directly from the source populations, 
admixture between descendants of the different 
populations, and with exogamous individuals from the ancestral populations breeding into 
the descendant family.
FOUNDERS

 Haplotypes are chosen at random without replacement to make up founding members 
of the pedigree and subsequent exogamous individuals. Founders for the CEU side of the 
family are I-a and I-b and for the YRI side of the family, I-c and I-d. The subsequent exoga-
mous individuals in the CEU side are II-a and III-c and for the YRI side are II-f and III-h.
 A large pool of software with varying abilities has been released over the past decade, 
but there is no standard methodology for phasing and no clear gold standard algorithm at the 
moment.
 Following the simulation of genotype data, I test the major phasing software packages 
as to their abilities to resolve the simulated genotype data.
SOFTWARE

fastPHASE, published in 2006, was developed as a 
compromise between accuracy and speed. fast-
PHASE does this by omitting the MCMC scheme of 
PHASE in favor of a hidden Markov model (HMM). 
As the authors note, however, the price paid here is 
that the HMM incorporates no information about 
demographics, or evolutionary processes.
 Beagle, published in 2007, uses a directed 
acyclic graph (DAG) to model localized haplotype-
clusters and then an HMM to find the most likely 
haplotype pair, conditional on an individual's genotype. The algorithm allows the use of 
known haplotypes in a panel, which is used to populate the paths of the HMM in the local-
ized haplotype-cluster. The final step of the algorithm is to use the Viterbi algorithm to find 
the most-likely haplotype pair for each individual.
 2SNP, published in 2008, when presented with trio data (father, mother and child) uses 
a combination of approaches to phasing. It enforces simple patterns of Mendelian inheritance 
where possible, and elsewhere uses a graph structure approach and a maximum spanning tree 
based on the population genetic metrics of linkage disequilibrium (LD) and Hardy-Weinberg 
equilibrium (HWE) to assign haplotypes. Essentially, the algorithm constrains the problem 
based on the known demographic structure and focuses solely on complex positions.
SWITCH ERROR

In order to quantitively assess the performance of the algorithms I implemented the metric 
switch error, which is one minus the switch accuracy of Lin et al. (2004). Given the correct 
(True) phase for a particular segment of a chromosome, and a solution given by a phasing 
algorithm, the switch error is calculated to be the number of times the phase pattern of adja-
cent alleles is not the same in the test as in the True, divided by the total number of heterozy-
gous positions minus one. Switch error ranges from 1 to 0.
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f g h i jDiploid organisms have, by definition, homologous 
pairs of chromosomes. An individual's genotype is a 
combination of the individual's underlying genetic 
haplotypes, a haplotype being the sequence of alleles 
that are physically connected to one another along 
one chromosome. Without labor, and cost intensive 
methods (cloning and sequencing), haplotypes are 
not directly observable, and instead must by inferred 
through a process called phasing.
 Phasing has experienced a large increase in attention in recent years, likely due to the 
boom in single nucleotide polymorphism (SNP) microarray market penetration. SNP mi-
croarrays (SNP chips) allow for the observation of an individual's genotype at predefined 
loci. Unfortunately SNP genotypes contain no direct information about the sequence of the 
observed alleles, information which is crucial for disease, population genetic, and evolu-
tionary studies.
 Two endeavors rely on haplotype information: clinical assays and evolutionary 
reconstruction. In a clinical assay for a cis-acting genetic disease a clinician would like to 
determine what the chromosome-local pattern of inherited alleles is for a patient.
 For evolutionary reconstruction the goal of phasing genotype data into haplotypes is 
to understand and record the pattern of transmission of alleles through individuals over 
generations.
 These endeavors are not mutually exclusive, but complementary. For example, 
knowing the genetic ancestry of an individual could also help to inform the clinician about 
the potential efficacy of certain drugs. And knowing the underlying molecular genetics and 
epidemiological genetics of a particular region of the genome could be illuminating in 
reconstructing the evolutionary history of that region.

We presented here the results of 10 independent simulations of a pedigree of 24 individuals over four 
generations, tracking 120,000 SNPs over chromosome 1.
 The most exciting results from this study are the instances of near perfect haplotype reconstruc-
tion carried out by Beagle, and the apparent increase in phasing accuracy in all software when analyz-
ing individuals more related to the data set than individuals less related to the data set. It was unex-
pected that any of the software tested would be able to solve the phasing correctly, but Beagle returned 
at leaste one perfect phasing under all subsets of its library that were tested.
 The increased accuracy relative to relatedness effect appears to have some impact on 2SNP, 
which is unexpected because 2SNP does not consider the entire data set at once but instead runs on 
trios (mother father child). A more likely explanation for the slight increase in accuracy seen in 2SNP 
with the increase of relatedness is that the individuals with the greatest relatedness values are the ones 
in the center of the pedigree with parents from two different ancestral populations. Without further 
testing it seems compelling that the slight increase in accuracy for for 2SNP is due to the extreme dif-
ference between the mother and father haplotypes for these individuals. To test for this a second experi-
ment would need to be run with an altered pedigree in which an individual was mated into the family 
from the opposite ancestral population (e.g. a new coupling between a CEU individual and III-j, or a 
YRI individual and III-b).
 The strong downward trend of Beagle and fastPHASE with increasing relatedness seems to be 
best explained by the fact that both models rely on HMMs and both use the entire data set to aid in 
phasing individuals. Thus, more closely related individuals would have access to better templates for 
finding the best solution. The increased accuracy in Beagle relative to fastPHASE seems best explained 
by its incorporation of the haplotype library, as evidenced by the order of magnitude increase in accu-
racy when the original founder haplotypes are included in the haplotype library. We note that difference 
in switch error between the uneven and even sized library is negligible.

 Another unexpected result was the sheer speed of 2SNP. The program phased the children of the 
trio subsets in only 134 seconds. This raw speed seems to be achieved by parsing the trios by simple 
Mendelian determinism (which could be implemented through boolean logic) and then to applying a 
maximum spanning tree to whatever is left over. This second part of the algorithm is likely the source 
of 2SNP's errors, and is would be an area worth exploring competing methodologies. 2SNP had a 
switch error ranging from 0.086 to 0.14, meaning it made mistakes on up to 14% of the data. Despite 
the raw speed of the algorithm, this error rate is quite high.

 fastPHASE performed quite well. The program had switch errors ranging from 4.9e-04 to 4.8e-
02, with the lowest number of errors occurring in the admixed offspring and the largest errors occurring 
in the founding individuals. The program took seven and a half hours to run on average, which was the 
longest amount of time.

TESTS

All algorithms were run on the same server powered by dual, quad-core processors (eight cores total, 
Intel Xeon 2.83GHz) with 16 gigs of RAM.

FASTPHASE
fastPHASE showed consistently good performance, with switch errors ranging between 4.927e-04 and 
4.76e-02. While the authors claim the software can make use of a panel of known haplotypes to im-
prove phasing I was unable to get the feature to work without crashing due to memory allocation issues 
(segmentation faults). Running without panel information the algorithm took approximately seven and 
a half hours for each replicate to run and performed very well, easily besting the switch error scores of 
the 200 times faster 2SNP.
I note here that the large number of markers in the present study (approximately 120,000) does not 
seem to have adversely affected fastPHASE. The small individual sample size, 24, could also work 
against the algorithm, as it uses the presented data set in part as a template for finding the phasing solu-
tions. However, fastPHASE performed well even with the large number of markers and relatively small 
number of individuals.

BEAGLE

Beagle had the best performance of the algorithms, solving a few haplotypes with no errors (perfect 
phasing) and generally running switch errors below 1 in 10,000 to 1 in 1,000 range. Beagle does not 
take in any information about the pedigree and the success it enjoyed in this data set is likely due to the 
prevalence of similar haplotypes to the founder haplotypes being in the panel. Beagle took approxi-
mately an hour and a half to run.
BEAGLE SUBSETS

In order to determine how much of a role Beagle’s library played in its performance, I tested three 
library types: uneven, where the library was made up of 168 CEU haplotypes and 192 YRI haplotypes; 
even, where the library was made up of 168 CEU haplotypes and 168 (randomly chosen) YRI haplo-
types; and with founders, where the libarry was made up of 176 CEU and 200 YRI haplotypes, includ-
ing the founding haplotypes (the correct solutions).

2SNP
2SNP, arguably the simplest package evaluated in this study was also the poorest performer with 
switch errors consistently in the range of 1 in 10. 2SNP is limited in that it does not attempt to predict 
the true phase of the parents in a trio but will simply predict the transmitted and un-transmitted chro-
mosomes to the child. This is why there are missing data in the 2SNP column in Table switchError. 
2SNP was remarkably efficient in terms of time taken, completing work after an average of 130 sec-
onds.
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Here we report the results of a simulation study of three genotype phasing 
software packages. The three were tested on ten simulated data sets built 
using an identical pedigree structure, a high resolution recombination map, 
and real genotypes taken from HapMap III data for two populations: Utah 
residents with ancestry from northern and western Europe (CEU, 88 indi-
viduals) and Yoruba in Ibadan, Nigerian (YRI, 100 individuals).
 The most surprising result shown here is that though none of the meth-
ods tested were provided with information on the underlying pedigree that 
gave rise to the data, they were all affected indirectly by the structure: the 
algorithms performed better on individuals that were more related to every-
one else in the data set (their expected number of identical genotypes in the 
data was large).

 Pedigree showing experimental design. 
Colored clouds represent source popula-
tions and colored curves are indicative of 
founding individuals in the pedigree. 
Generation number is shown in roman 
numerals on the left. Individuals are 
referred to as in III-a, or IV-c. 

FIGURE 1

Scatter plot of log of switch error for the 
three di�erent software packages tested, 
shown as a function of individual. Individuals 
are coded as in the pedigree in Figure 1. 
Beneath the scatter plot is a histogram of the 
sum of pairwise relatedness of each indi-
vidual to the data set. Beagle is shown with 
three di�erent settings.

FIGURE 5

Scatter plot of log of switch error for the 
three di�erent software packages tested, 
shown as a function of the individual’s 
sum of pairwise relatedness to the data 
set. Beneath the scatter plot is a histogram 
showing the relative frequency of perfect 
phasings (switch error = 0) for the three 
di�erent Beagle settings.
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Ten simulated pedigrees. Each individual is com-
prised of a pair of stacked colored sausage shapes 
(each representing a copy of chromosome 1 with 
120,000 SNPs). Di�erent colors represent di�erent 
haplotype blocks with warm colors (reds, oranges) 
indicating YRI population haplotypes and cool colors 
(blues, purples) indicating CEU population haplo-
types. O�spring of matings recieve one recombined 
chromosme from each parent. The �rst simulation is 
shown at larger size for detail.
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b

Mb

Comparison between simulated gametes and empiri-
cal data from the literature. Part (a) shows the relative 
frequency of recombination events along chromo-
some 1 for 1,000 simulated gametes. Part (b) shows 
Figure 2 from Kong et al. 2002, empirically measured 
recombination rates in centiMorgans per megabase 
(cM/Mb) for males and females.
 That the simulated data appears similar to the 
data from the literature is indicative of the accuracy of 
the recombination rate data used in the simulation.

FIGURE 3
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fastPHASE

2SNP

Haplotype line plots representing the true and inferred 
states of a simulated individual’s genotype (individual 
III-e from the �rst sumilation shown in Figure 2). Each 
line shows the status of 37,000 SNPs covering a physi-

37,000 SNPs, 66.7Mb (151,495,399 — 218,218,267)

chromosome 1

0 (Mb) 120 148 250

FIGURE 4 cal region of 67 megabases (Mb). The small ideogram to 
the right shows where on the chromosome the repre-
sented data originates.
 Each line is made up of cyan lines above and 
blue lines below a central gray line. These colored lines 

indicate heterozygous SNPs and their placement 
on the top (cyan) or bottom (blue) area corre-
sponds to their origin on the maternal or paternal 
chromosome. Homozygous positions are not 
drawn because they add no information to the 
plot. A “switch error” occurs when a mistake is 
made as to which chromosome the allele is placed 
on. Switch errors are marked by red circles.
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