Please put a check mark next to each topic which you feel you understand.

- Displays
 - CRTs
 - LCDs
 - Pixel
 - Frame Buffer
 - Raster scan vs vector scan
 - Gamma, gamma correction

- Line-drawing, rasterization
 - Line equation
 - DDA
 - Bresenham’s Line Algorithm
 - Convex vs concave polygons
 - Testing convexity

- 2D Transformations
 - Vector representation of a point
 - Matrix translation, rotation, scaling
 - Homogeneous coordinates
 - Composing a string of transformations
 - Concept of changing coordinate systems

- 3D Transformation
 - 3D rotation around a line as RxRyRz
 - Matrix translation, rotation, scaling
 - Matrix stacks
 - Object coordinates vs world coordinates
 - ModelView matrix
 - Camera transform duality with object transform
 - Hierarchical transforms

- Viewing and Perspective
 - Pin-hole Camera
 - Orthographic vs perspective
 - World coordinates vs screen coordinates
 - View frustum
 - Near and far clipping planes
 - Oblique parallel projection
 - Oblique perspective projection
 - Viewing pipeline object/world/normalized/screen

- Visibility
 - Back face detection
 - Painter’s Algorithm
 - Z-buffer (Depth-buffer)
 - BSP trees
 - Screen space sort vs object space sort

- Color models
 - Electromagnetic spectrum
 - CIE chromaticity diagram
 - RGB space
 - CMYK space
 - HSV space

- Raytracing
 - Eye rays
 - Shadow rays
 - Reflected/refracted rays
 - Anti-aliasing by supersampling
 - Intersection tests
 - Distributed ray tracing for estimating integrals
 - Octrees

- Radiosity
 - Form factors
 - Radiosity equation
 - Solving radiosity equation

- Illumination, shading
 - OpenGL ambient+diffuse+specular lighting model
 - Phong specular reflection vs. Phong shading
 - Gouraud vs Phong shading
 - BRDFs
 - Vertex and fragment shaders

- Modeling
 - Polygonal meshes
 - Bezier Curves
 - B-Splines
 - NURBS

- Sampling theory
 - Point sampling
 - Area weighted sampling
 - Convolution
 - Duality of spatial and Fourier domain
 - Concept of low/high frequencies
 - Aliasing

- Image warping, textures
 - Concept of UV coordinates
 - Texture/object/screen space
 - Bump mapping
 - Environment mapping
 - Mipmaps
 - Summed-area-tables
 - Perlin noise
 - Anti-aliasing

- Compositing
 - Alpha as partial pixel cover
 - Pre-multiplied alpha
Please put a check mark next to each topic which you feel you understand.

- Displays
 - CRTs
 - LCDs
 - Pixel
 - FrameBuffer
 - Raster scan vs. vector scan
 - Gamma, gamma correction

- Raytracing
 - Eye rays
 - Shadow rays
 - Reflected/refracted rays
 - Anti-aliasing by supersampling
 - Intersection tests
 - Distributed ray tracing for estimating integrals
 - Oct-trees

- Radiosity
 - Form factors
 - Radiosity equation
 - Solving radiosity equation

- Illumination, shading
 - OpenGL ambient+diffuse+specular lighting model
 - Phong specular reflection vs. Phong shading
 - Gouraud vs Phong shading
 - BRDFs
 - Vertex and fragment shaders

- 3D Transformations
 - Vector representation of a point
 - Matrix translation, rotation, scaling
 - Homogeneous coordinates
 - Composing a string of transformations
 - Concept of changing coordinate systems

- Modeling
 - Polyhedral meshes
 - Bezier Curves
 - B-Splines
 - NURBS

- Viewing and Perspective
 - Pin-hole Camera
 - Orthographic vs perspective
 - World coordinates vs screen coordinates
 - View frustum
 - Near and far clipping planes
 - Oblique parallel projection
 - Oblique perspective projection
 - Viewing pipeline object/world/normalized/screen

- Visibility
 - Back face detection
 - Painter's Algorithm
 - Z-buffer (Depth-buffer)
 - BSP trees
 - Screen space sort vs object space sort

- Color models
 - Electromagnetic spectrum
 - CIE chromaticity diagram
 - RGB space
 - CMYK space
 - HSV space

- Sampling theory
 - Point sampling
 - Area weighted sampling
 - Convolution
 - Duality of spatial and Fourier domain
 - Concept of low/high frequencies
 - Aliasing

- Image warping, textures
 - Concept of UV coordinates
 - Texture/object/screen space
 - Bump mapping
 - Environment mapping
 - Mipmaps
 - Summed-area-tables
 - Perlin noise
 - Anti-aliasing

- Compositing
 - Alpha as partial pixel cover
 - Pre-multiplied alpha
Please put a check mark next to each topic which you feel you understand.

Displays
CRTs ✓
LCDs ✓
Pixel ✓
Framebuffer ✓
Raster scan vs. vector scan ✓
Gamma, gamma correction ✓

Raytracing
Eye rays
Shadow rays
Reflected/refracted rays
Anti-aliasing by supersampling
Intersection tests
Distributed ray tracing for estimating integrals
Oct-trees

Radiosity
Form factors
Radiosity equation
Solving radiosity equation

Illumination, shading
OpenGL ambient+diffuse+specular lighting model
Phong specular reflection vs. Phong shading
Gouraud vs Phong shading
BRDFs
Vertex and fragment shaders

Modeling
Polygonal meshes
Bezier Curves
B-Splines
NURBS

Sampling theory
Point sampling
Area weighted sampling
Convolution
Duality of spatial and Fourier domain
Concept of low/high frequencies
Aliasing

Image warping, textures
Concept of UV coordinates
Texture/object/screen space
Bump mapping
Environment mapping
Mipmaps
Summed-area-tables
Perlin noise
Anti-aliasing

Compositing
Alpha as partial pixel cover
Pre-multiplied alpha

2D Transformations
Vector representation of a point
Matrix translation, rotation, scaling
Homogeneous coordinates
Composing a string of transformations
Concept of changing coordinate systems

3D Transformation
3D rotation around a line as RxRyRz
Matrix translation, rotation, scaling
Matrix stacks
Object coordinates vs world coordinates
Modelview matrix
Camera transform duality with object transform
Hierarchical transforms

Viewing and Perspective
Pin-hole Camera
Orthographic vs perspective
World coordinates vs screen coordinates
View frustum
Near and far clipping planes
Oblique parallel projection
Oblique perspective projection
Viewing pipeline object/world/normalized/screen

Visibility
Back face detection
Painter's Algorithm
Z-buffer (Depth-buffer)
BSP trees
Screen space sort vs object space sort

Color models
Electromagnetic spectrum
CIE chromaticity diagram
RGB space
CMYK space
HSV space
Please put a check mark next to each topic which you feel you understand.

Displays
✓ CRTs
✓ LCDs
✓ Pixel
✓ FrameBuffer
✓ Raster scan vs. vector scan
Gamma, gamma correction

Line-drawing, rasterization
Line equation
DDA
Bresenham’s Line Algorithm
Convex vs concave polygons
Testing convexity

2D Transformations
✓ Vector representation of a point
✓ Matrix translation, rotation, scaling
✓ Homogeneous coordinates
✓ Composing a string of transformations
Concept of changing coordinate systems

3D Transformation
✓ 3D rotation around a line as RxRyRz
✓ Matrix translation, rotation, scaling
✓ Matrix stacks
Object coordinates vs world coordinates
Modelview matrix
Camera transform duality with object
✓ transform
Hierarchical transforms

Viewing and Perspective
✓ Pin-hole Camera
✓ Orthographic vs perspective
World coordinates vs screen coordinates
View frustum
✓ Near and far clipping planes
Oblique parallel projection
Oblique perspective projection
✓ Viewing pipeline object/world/normalized/screen

Visibility
✓ Back face detection
✓ Painter’s Algorithm
✓ Z-buffer (Depth-buffer)
✓ BSP trees
Screen space sort vs object space sort

Color models
✓ Electromagnetic spectrum
✓ CIE chromaticity diagram
✓ RGB space
✓ CMYK space
✓ HSV space

Raytracing
✓ Eye rays
✓ Shadow rays
✓ Reflected/refracted rays
✓ Anti-aliasing by supersampling
✓ Intersection tests
Distributed ray tracing for estimating integrals
OcI-trees

Radiosity
Form factors
Radiosity equation
Solving radiosity equation

Illumination, shading
✓ OpenGL ambient+diffuse+specular lighting model
✓ Phong specular reflection vs. Phong shading
✓ Gouraud vs Phong shading
BRDFs
✓ Vertex and fragment shaders

Modeling
Polyhedral meshes
✓ Bezier Curves
✓ B-Splines
✓ NURBS

Sampling theory
Point sampling
Area weighted sampling
Convolution
Duality of spatial and Fourier domain
Concept of low/high frequencies
Aliasing

Image warping, textures
✓ Concept of UV coordinates
Texture/object/screen space
✓ Bump mapping
Environment mapping
Mipmaps
Summed-area-tables
Perlin noise
Anti-aliasing

Compositing
Alpha as partial pixel cover
Pre-multiplied alpha
Please put a check mark next to each topic which you feel you understand.

Displays
CRTs
LCDs
Pixel
Framebuffer
Raster scan vs. vector scan
Gamma, gamma correction

Raytracing
Eye rays
Shadow rays
Reflected/refracted rays
Anti-aliasing by supersampling
Intersection tests
Distributed ray tracing for estimating integrals
Oct-trees

Line drawing, rasterization
Line equation
DDA
Bresenham’s Line Algorithm
Convex vs concave polygons
Testing convexity

Radiosity
Form factors
Radiosity equation
Solving radiosity equation

2D Transformations
Vector representation of a point
Matrix translation, rotation, scaling
Homogeneous coordinates
Combining a string of transformations
Concept of changing coordinate systems

Illumination, shading
OpenGL ambient+diffuse+specular lighting
Phong specular reflection vs. Phong shading
Gouraud vs Phong shading
BRDFs
Vertex and fragment shaders

3D Transformation
3D rotation around a line as RxRyRz
Matrix translation, rotation, scaling
Matrix stacks
Object coordinates vs world coordinates
ModelView matrix
Camera transform duality with object transform
Hierarchical transforms

Modeling
Polyhedral meshes
Bezier Curves
B-Splines
NURBS

Viewing and Perspective
Pin-hole Camera
Orthographic vs perspective
World coordinates vs screen coordinates
View frustum
Near and far clipping planes
Oblique parallel projection
Oblique perspective projection
Viewing pipeline object/world/normalized/screen

Sampling theory
Point sampling
Area weighted sampling
Convolution
Duality of spatial and Fourier domain
Concept of low/high frequencies
Aliasing

Visibility
Back face detection
Painter’s Algorithm
Z-buffer (Depth-buffer)
BSP trees
Screen space sort vs object space sort

Image warping, textures
Concept of UV coordinates
Texture/object/screen space
Bump mapping
Environment mapping
Mipmaps
Summed-area-tables
Perlin noise
Anti-aliasing

Color models
Electromagnetic spectrum
CIE chromaticity diagram
RGB space
CMYK space
HSV space

Compositing
Alpha as partial pixel cover
Pre-multiplied alpha
Please put a check mark next to each topic which you feel you understand.

Displays
- CRTs
- LCDs
- Pixel
- FrameBuffer
- Raster scan vs. vector scan
- Gamma, gamma correction

Raytracing
- Eye rays
- Shadow rays
- Reflected/refracted rays
- Anti-aliasing by supersampling
- Intersection tests
- Distributed ray tracing for estimating integrals
- Oct-trees

Line-drawing, rasterization
- Line equation
- DDA
- Bresenham's Line Algorithm
- Convex vs concave polygons
- Testing convexity

Radiosity
- Form factors
- Radiosity equation
- Solving radiosity equation

2D Transformations
- Vector representation of a point
- Matrix translation, rotation, scaling
- Homogeneous coordinates
- Composing a string of transformations
- Concept of changing coordinate systems

Illumination, shading
- OpenGL ambient+diffuse+specular lighting model
- Phong specular reflection vs. Phong shading
- Gouraud vs Phong shading
- BRDFs
- Vertex and fragment shaders

3D Transformation
- 3D rotation around a line as RxRyRz
- Matrix translation, rotation, scaling
- Matrix stacks
- Object coordinates vs world coordinates
- Modelview matrix
- Camera transform duality with object transform
- Hierarchical transforms

Modeling
- Polyhedral meshes
- Bezier Curves
- B-Splines
- NURBS

Viewing and Perspective
- Pin-hole Camera
- Orthographic vs perspective
- World coordinates vs screen coordinates
- View frustum
- Near and far clipping planes
- Oblique parallel projection
- Oblique perspective projection
- Viewing pipeline object/world/normalized screen

Sampling theory
- Point sampling
- Area weighted sampling
- Convolution
- Duality of spatial and Fourier domain
- Concept of low/high frequencies
- Aliasing

Visibility
- Back face detection
- Painter's Algorithm
- Z-buffer (Depth-buffer)
- BSP trees
- Screen space sort vs object space sort

Image warping, textures
- Concept of UV coordinates
- Texture/object/screen space
- Bump mapping
- Environment mapping
- Mipmaps
- Summed-area-tables
- Perlin noise
- Anti-aliasing

Compositing
- Alpha as partial pixel cover
- Pre-multiplied alpha

Color models
- Electromagnetic spectrum
- CIE chromaticity diagram
- RGB space
- CMYK space
- HSV space
Please put a check mark next to each topic which you feel you understand.

Displays
- CRTs
- LCDs
- Pixel
- FrameBuffer
- Raster scan vs. vector scan
- Gamma, gamma correction

Line-drawing, rasterization
- Line-equation
- DDA
- Bresenham's Line Algorithm
- Convex vs concave polygons
- Testing convexity

2D Transformations
- Vector representation of a point
- Matrix translation, rotation, scaling
- Homogeneous coordinates
- Composing a string of transformations
- Concept of changing coordinate systems

3D Transformations
- 3D rotation around a line as RxRyRz
- Matrix translation, rotation, scaling
- Matrix stacks
- Object coordinates vs world coordinates
- Modelview matrix
- Camera transform duality with object transform
- Hierarchical transforms

Viewing and Perspective
- Pin-hole Camera
- Orthographic vs perspective
- World coordinates vs screen coordinates
- View frustum
- Near and far clipping planes
- Oblique parallel projection
- Oblique perspective projection
- Viewing pipeline object/world/normalized/screen

Visibility
- Back face detection
- Painter's Algorithm
- Z-buffer (Depth-buffer)
- BSP trees
- Screen space sort vs object space sort

Color models
- Electromagnetic spectrum
- CIE chromaticity diagram
- RGB space
- CMYK space
- HSV space

Raytracing
- Eye rays
- Shadow rays
- Reflected/refracted rays
- Anti-aliasing by supersampling
- Intersection tests
- Distributed ray tracing for estimating integrals
- Oct-trees

Radiosity
- Form factors
- Radiosity equation
- Solving radiosity equation

Illumination, shading
- OpenGL ambient+diffuse+specular lighting model
- Phong specular reflection vs. Phong shading
- Gouraud vs Phong shading
- BRDFs
- Vertex and fragment shaders

Modeling
- Polygonal meshes
- Bezier Curves
- B-Splines
- NURBS

Sampling theory
- Point sampling
- Area weighted sampling
- Convolution
- Duality of spatial and Fourier domain
- Concept of low/high frequencies
- Aliasing

Image warping, textures
- Concept of UV coordinates
- Texture/object/screen space
- Bump mapping
- Environment mapping
- Mipmaps
- Summed-area-tables
- Perlin noise
- Anti-aliasing

Compositing
- Alpha as partial pixel cover
- Pre-multiplied alpha

I would like more on this.
Please put a check mark next to each topic which you feel you understand.

Displays
- CRTs ✓
- LCDs ✓
- Pixel ✓
- FrameBuffer ✓
- Raster scan vs. vector scan ✓
- Gamma, gamma correction ✓

Line-drawing, rasterization
- Line equation
- DDA
- Bresenham’s Line Algorithm
- Convex vs concave polygons
- Testing convexity

2D Transformations
- Vector representation of a point ✓
- Matrix translation, rotation, scaling ✓
- Homogeneous coordinates ✓
- Composing a string of transformations ✓
- Concept of changing coordinate systems ✓

3D Transformation
- 3D rotation around a line as RxRyRz ✓
- Matrix translation, rotation, scaling ✓
- Matrix stacks ✓
- Object coordinates vs world coordinates ✓
- Modelview matrix ✓
- Camera transform duality with object ✓
- transform ✓
- Hierarchical transforms ✓

Viewing and Perspective
- Pin-hole Camera
- Orthographic vs perspective
- World coordinates vs screen coordinates
- View frustum
- Near and far clipping planes ✓
- Oblique parallel projection
- Oblique perspective projection
- Viewing pipeline object/world/normalized/screen ✓

Visibility
- Back face detection ✓
- Painter’s Algorithm ✓
- Z-buffer (Depth-buffer) ✓
- BSP trees ✓
- Screen space sort vs object space sort ✓

Color models
- Electromagnetic spectrum
- CIE chromaticity diagram ✓
- RGB space ✓
- CMYK space ✓
- HSV space ✓

Raytracing
- Eye rays ✓
- Shadow rays ✓
- Reflected/refracted rays ✓
- Anti-aliasing by supersampling ✓
- Intersection tests ✓
- Distributed ray tracing for estimating integrals
- Oct-trees ✓

Radiosity
- Form factors
- Radiosity equation ✓
- Solving radiosity equation

Illumination, shading
- OpenGL ambient+diffuse+specular lighting ✓
- Phong specular reflection vs. Phong shading ✓
- Gouraud vs. Phong shading ✓
- BRDFs ✓
- Vertex and fragment shaders ✓

Modeling
- Polygonal meshes ✓
- Bezier Curves ✓
- B-Splines ✓
- NURBS ✓

Sampling theory
- Point sampling ✓
- Area weighted sampling
- Convolution
- Duality of spatial and Fourier domain
- Concept of low/high frequencies ✓
- Aliasing ✓

Image warping, textures
- Concept of UV coordinates ✓
- Texture/object/screen space ✓
- Bump mapping ✓
- Environment mapping ✓
- Mipmaps ✓
- Summed-area-tables ✓
- Perlin noise ✓
- Anti-aliasing ✓

Compositing
- Alpha as partial pixel cover ✓
- Pre-multiplied alpha
Please put a check mark next to each topic which you feel you understand.

Displays
- CRTs
- LCDs
- Pixel
- FrameBuffer
- Raster scan vs. vector scan
- Gamma, gamma correction

Line-drawing, rasterization
- Line equation
- DDA
- Bresenham's Line Algorithm
- Convex vs concave polygons
- Testing convexity

2D Transformations
- Vector representation of a point
- Matrix translation, rotation, scaling
- Homogeneous coordinates
- Composing a string of transformations
- Concept of changing coordinate systems

3D Transformation
- 3D rotation around a line as RxRyRz
- Matrix translation, rotation, scaling
- Matrix stacks
- Object coordinates vs world coordinates
- Modelview matrix
- Camera transform duality with object transform
- Hierarchical transforms

Viewing and Perspective
- Pin-hole Camera
- Orthographic vs perspective
- World coordinates vs screen coordinates
- View frustum
- Near and far clipping planes
- Oblique parallel projection
- Oblique perspective projection
- Viewing pipeline object/world/normalized/screen

Visibility
- Back face detection
- Painter's Algorithm
- Z-buffer (Depth-buffer)
- BSP trees
- Screen space sort vs object space sort

Color models
- Electromagnetic spectrum
- CIE chromaticity diagram
- RGB space
- CMYK space
- HSV space

Ray tracing
- Eye rays
- Shadow rays
- Reflected/refracted rays
- Anti-aliasing by supersampling
- Intersection tests
- Distributed ray tracing for estimating integrals
- Ocl-trees

Radiosity
- Form factors
- Radiosity equation
- Solving radiosity equation

Illumination, shading
- OpenGL ambient+diffuse+specular lighting
- Phong specular reflection vs. Phong shading
- Gouraud vs Phong shading
- BRDFs
- Vertex and fragment shaders

Modeling
- Polygonal meshes
- Bezier Curves
- B-Splines
- NURBS

Sampling theory
- Point sampling
- Area weighted sampling
- Convolution
- Duality of spatial and Fourier domain
- Concept of low/high frequencies
- Aliasing

Image warping, textures
- Concept of UV coordinates
- Texture/object/screen space
- Bump mapping
- Environment mapping
- Mipmaps
- Summed-area-tables
- Perlin noise
- Anti-aliasing

Compositing
- Alpha as partial pixel cover
- Pre-multiplied alpha
Please put a check mark next to each topic which you feel you understand.

Displays
- CRTs
- LCDs
- Pixel
- FrameBuffer
- Raster scan vs. vector scan
- Gamma, gamma correction

Line-drawing, rasterization
- Line equation
- DDA
- Bresenham’s Line Algorithm
- Convex vs concave polygons
- Testing convexity

2D Transformations
- Vector representation of a point
- Matrix translation, rotation, scaling
- Homogeneous coordinates
- Composing a string of transformations
- Concept of changing coordinate systems

3D Transformation
- 3D rotation around a line as RxRyRz
- Matrix translation, rotation, scaling
- Matrix stacks
- Object coordinates vs world coordinates
- ModelView matrix
- Camera transform duality with object transform
- Hierarchical transforms

Viewing and Perspective
- Pin-hole Camera
- Orthographic vs perspective
- World coordinates vs screen coordinates
- View frustum
- Near and far clipping planes
- Oblique parallel projection
- Oblique perspective projection
- Viewing pipeline object/world/normalized/screen

Visibility
- Back face detection
- Painter’s Algorithm
- Z-buffer (Depth-buffer)
- BSP trees
- Screen space sort vs object space sort

Color models
- Electromagnetic spectrum
- CIE chromaticity diagram
- RGB space
- CMYK space
- HSV space

Raytracing
- Eye rays
- Shadow rays
- Reflected/refracted rays
- Anti-aliasing by supersampling
- Intersection tests
- Distributed ray tracing for estimating integrals
- Oct-trees

Radiosity
- Form factors
- Radiosity equation
- Solving radiosity equation

Illumination, shading
- OpenGL ambient/diffuse/specular lighting
- Phong specular reflection vs. Phong shading
- Gouraud vs Phong shading
- BRDFs
- Vertex and fragment shaders

Modeling
- Polygonal meshes
- Bezier Curves
- B-Splines
- NURBS

Sampling theory
- Point sampling
- Area weighted sampling
- Convolution
- Duality of spatial and Fourier domain
- Concept of low/high frequencies
- Aliasing

Image warping, textures
- Concept of UV coordinates
- Texture/object/screen space
- Bump mapping
- Environment mapping
- Mipmaps
- Summed-area-tables
- Perlin noise
- Anti-aliasing

Compositing
- Alpha as partial pixel cover
- Pre-multiplied alpha
Please put a check mark next to each topic which you feel you understand.

Displays
- CRTs
- LCDs
- Pixel
- FrameBuffer
- Raster scan vs. vector scan
- Gamma, gamma correction

Raytracing
- Eye rays
- Shadow rays
- Reflected/refracted rays
- Anti-aliasing by supersampling
- Intersection tests
- Distributed ray tracing for estimating integrals
- Oct-trees

Line-drawing, rasterization
- Line equation
- DDA
- Bresenham’s Line Algorithm
- Convex vs concave polygons
- Testing convexity

Radiosity
- Form factors
- Radiosity equation
- Solving radiosity equation

2D Transformations
- Vector representation of a point
- Matrix translation, rotation, scaling
- Homogeneous coordinates
- Composing a string of transformations
- Concept of changing coordinate systems

Illumination, shading
- OpenGL ambient+diffuse+specular lighting model
- Phong specular reflection vs. Phong shading
- Gouraud vs Phong shading
- BRDFs
- Vertex and fragment shaders

3D Transformation
- 3D rotation around a line as RxRyRz
- Matrix translation, rotation, scaling
- Matrix stacks
- Object coordinates vs world coordinates
- Modelview matrix
- Camera transform duality with object transform
- Hierarchical transforms

Modeling
- Polygonal meshes
- Bezier Curves
- B-Splines
- NURBS

Viewing and Perspective
- Pin-hole Camera
- Orthographic vs perspective
- World coordinates vs screen coordinates
- View frustum
- Near and far clipping planes

Sampling theory
- Point sampling
- Area weighted sampling
- Convolution
- Duality of spatial and Fourier domain
- Concept of low/high frequencies
- Aliasing

Visibility
- Back face detection
- Painter’s Algorithm
- Z-buffer (Depth-buffer)
- BSP trees
- Screen space sort vs object space sort

Image warping, textures
- Concept of UV coordinates
- Texture/object/screen space
- Bump mapping
- Environment mapping
- Mipmaps
- Summed-area-tables
- Perlin noise
- Anti-aliasing

Compositing
- Alpha as partial pixel cover
- Pre-multiplied alpha

Color models
- Electromagnetic spectrum
- CIE chromaticity diagram
- RGB space
- CMYK space
- HSV space
Please put a check mark next to each topic which you feel you understand.

Displays
- CRTs
- LCDs
- Pixel
- FrameBuffer
- Raster scan vs. vector scan
- Gamma, gamma correction

Raytracing
- Eye rays
- Shadow rays
- Reflected/refracted rays
- Anti-aliasing by supersampling
- Intersection tests
- Distributed ray tracing for estimating integrals
- Oct-trees

Radiosity
- Form factors
- Radiosity equation
- Solving radiosity equation

Illumination, shading
- OpenGL ambient+diffuse+specular lighting model
- Phong specular reflection vs. Phong shading
- Gouraud vs Phong shading
- BRDFs
- Vertex and fragment shaders

Modeling
- Polygonal meshes
- Bezier Curves
- B-Splines
- NURBS

Sampling theory
- Point sampling
- Area weighted sampling
- Convolution
- Duality of spatial and Fourier domain
- Concept of low/high frequencies
- Aliasing

Image warping, textures
- Concept of UV coordinates
- Texture/object/screen space
- Bump mapping
- Environment mapping
- Mipmaps
- Summed-area-tables
- Perlin noise
- Anti-aliasing

Compositing
- Alpha as partial pixel cover
- Pre-multiplied alpha

Line drawing, rasterization
- Line equation
- DDA
- Bresenham's Line Algorithm
- Convex vs concave polygons
- Testing convexity

2D Transformations
- Vector representation of a point
- Matrix translation, rotation, scaling
- Homogeneous coordinates
- Composing a string of transformations
- Concept of changing coordinate systems

3D Transformation
- 3D rotation around a line as RxRyRz
- Matrix translation, rotation, scaling
- Matrix stacks
- Object coordinates vs world coordinates
- Modelview matrix
- Camera transform duality with object transform
- Hierarchical transforms

Viewing and Perspective
- Pin-hole Camera
- Orthographic vs perspective
- World coordinates vs screen coordinates
- View frustum
- Near and far clipping planes
- Oblique parallel projection
- Oblique perspective projection
- Viewing pipeline object/world/normalized/screen

Visibility
- Back face detection
- Painter's Algorithm
- Z-buffer (Depth-buffer)
- BSP trees
- Screen space sort vs object space sort

Color models
- Electromagnetic spectrum
- CIE chromaticity diagram
- RGB space
- CMYK space
- HSV space
Please put a check mark next to each topic which you feel you understand.

Displays
- CRTs
- LCDs
- Pixel
- FrameBuffer
- Raster scan vs. vector scan
- Gamma, gamma correction

Raytracing
- Eye rays
- Shadow rays
- Reflected/refracted rays
- Anti-aliasing by supersampling
- Intersection tests
- Distributed ray tracing for estimating integrals
- Oct-trees

Radiosity
- Form factors
- Radiosity equation
- Solving radiosity equation

Illumination, shading
- OpenGL ambient+diffuse+specular lighting model
- Phong specular reflection vs. Phong shading
- Gouraud vs Phong shading
- BRDFs
- Vertex and fragment shaders

Modeling
- Polygonal meshes
- Bezier Curves
- B-Splines
- NURBS

Sampling theory
- Point sampling
- Area weighted sampling
- Convolution
- Duality of spatial and Fourier domain
- Concept of low/high frequencies
- Aliasing

Image warping, textures
- Concept of UV coordinates
- Texture/object/screen space
- Bump mapping
- Environment mapping
- Mipmaps
- Summed-area-tables
- Perlin noise
- Anti-aliasing

Visibility
- Back face detection
- Painter's Algorithm
- Z-buffer (Depth-buffer)
- BSP trees
- Screen space sort vs object space sort

Compositing
- Alpha as partial pixel cover
- Pre-multiplied alpha

Color models
- Electromagnetic spectrum
- CIE chromaticity diagram
- RGB space
- CMYK space
- HSV space

2D Transformations
- Vector representation of a point
- Matrix translation, rotation, scaling
- Homogeneous coordinates
- Composing a string of transformations
- Concept of changing coordinate systems

3D Transformation
- 3D rotation around a line as RxRyRz
- Matrix translation, rotation, scaling
- Matrix stacks
- Object coordinates vs world coordinates
- Modelview matrix
- Camera transform duality with object transform
- Hierarchical transforms

Viewing and Perspective
- Pin-hole Camera
- Orthographic vs perspective
- World coordinates vs screen coordinates
- View frustum
- Near and far clipping planes
- Oblique parallel projection
- Oblique perspective projection
- Viewing pipeline object/world/normalized/screen

Color models
- Electromagnetic spectrum
- CIE chromaticity diagram
- RGB space
- CMYK space
- HSV space
Please put a check mark next to each topic which you feel you understand.

Displays
CRTs ✓
LCDs ✓
Pixel ✓
Framebuffer ✓
Raster scan vs. vector scan ✓
Gamma, gamma correction ✓

Raytracing
Eye rays ✓
Shadow rays ✓
Reflected/refracted rays ✓
Anti-aliasing by supersampling ✓
Intersection tests ✓
Distributed ray tracing for estimating integrals ✓
Oct-trees ✓

Line-drawing, rasterization
Line equation ✓
DDA ✓
Bresenham's Line Algorithm ✓
Convex vs concave polygons ✓
Testing convexity ✓

Radiosity
Form factors ✓
Radiosity equation ✓
Solving radiosity equation ✓

2D Transformations
Vector representation of a point ✓
Matrix translation, rotation, scaling ✓
Homogeneous coordinates ✓
Composing a string of transformations ✓
Concept of changing coordinate systems ✓

Illumination, shading
OpenGL ambient+diffuse+specular lighting ✓
Phong specular reflection vs. Phong ✓
Gouraud vs Phong shading ✓
BRDFs ✓
Vertex and fragment shaders ✓

3D Transformation
3D rotation around a line as RxRyRz ✓
Matrix translation, rotation, scaling ✓
Matrix stacks ✓
Object coordinates vs world coordinates ✓
Modelview matrix ✓
Camera transform duality with object transform ✓
Hierarchical transforms ✓

Modeling
Polygonal meshes ✓
Bezier Curves ✓
B-Splines ✓
NURBS ✓

Viewing and Perspective
Pin-hole Camera ✓
Orthographic vs perspective ✓
World coordinates vs screen coordinates ✓
View frustum ✓
Near and far clipping planes ✓
Oblique parallel projection ✓
Oblique perspective projection ✓
Viewing pipeline object/world/normalized/screen ✓

Sampling theory
Point sampling ✓
Area weighted sampling ✓
Convolution ✓
Duality of spatial and Fourier domain ✓
Concept of low/high frequencies ✓
Aliasing ✓

Visibility
Back face detection ✓
Painter's Algorithm ✓
Z-buffer (Depth-buffer) ✓
BSP trees ✓
Screen space sort vs object space sort ✓

Image warping, textures
Concept of UV coordinates ✓
Texture/object/screen space ✓
Bump mapping ✓
Environment mapping ✓
Mipmap ✓
Summed-area-tables ✓
Perlin noise ✓
Anti-aliasing ✓

Color models
Electromagnetic spectrum ✓
CIE chromaticity diagram ✓
RGB space ✓
CMYK space ✓
HSV space ✓

Compositing
Alpha as partial pixel cover ✓
Pre-multiplied alpha ✓
Please put a check mark next to each topic which you feel you understand.

Displays
- CRTs ✓
- LCDs ✓
- Pixel ✓
- FrameBuffer
- Raster scan vs. vector scan ✓
- Gamma, gamma correction

Line-drawing, rasterization
- Line equation
- DDA
- Bresenham's Line Algorithm
- Convex vs concave polygons
- Testing convexity

2D Transformations
- Vector representation of a point ✓
- Matrix translation, rotation, scaling ✓
- Homogeneous coordinates
- Composing a string of transformations
- Concept of changing coordinate systems

3D Transformation
- 3D rotation around a line as RxRyRz
- Matrix translation, rotation, scaling
- Matrix stacks ✓
- Object coordinates vs world coordinates ✓
- Modelview matrix
- Camera transform duality with object transform
- Hierarchical transforms ✓

Viewing and Perspective
- Pin-hole Camera ✓
- Orthographic vs perspective ✓
- World coordinates vs screen coordinates ✓
- View frustum ✓
- Near and far clipping planes ✓
- Oblique parallel projection
- Oblique perspective projection
- Viewing pipeline object/world/normalized/screen

Visibility
- Back face detection
- Painter's Algorithm ✓
- Z-buffer (Depth-buffer)
- BSP trees
- Screen space sort vs object space sort

Color models
- Electromagnetic spectrum
- CIE chromaticity diagram
- RGB space
- CMYK space
- HSV space

Raytracing
- Eye rays
- Shadow rays
- Reflected/refracted rays
- Anti-aliasing by supersampling
- Intersection tests
- Distributed ray tracing for estimating integrals
- Oct-trees

Radiosity
- Form factors
- Radiosity equation
- Solving radiosity equation

Illumination, shading
- OpenGL ambient+difffuse+specular lighting ✓
- Phong specular reflection vs. Phong shading
- Gouraud vs Phong shading ✓
- BRDFs
- Vertex and fragment shaders ✓

Modeling
- Polygonal meshes
- Bezier Curves
- B-Splines
- NURBS

Sampling theory
- Point sampling
- Area weighted sampling
- Convolution
- Duality of spatial and Fourier domain
- Concept of low/high frequencies
- Aliasing

Image warping, textures
- Concept of UV coordinates
- Texture/object/screen space
- Bump mapping
- Environment mapping ✓
- Mipmaps
- Summed-area-tables
- Perlin noise
- Anti-aliasing

Compositing
- Alpha as partial pixel cover
- Pre-multiplied alpha
Please put a check mark next to each topic which you feel you understand.

Displays
- CRTs
* LCDs
* Pixel
* FrameBuffer
* Raster scan vs. vector scan
 Gamma, gamma correction

Line-drawing, rasterization
- Line equation
- DDA
- Bresenham's Line Algorithm
- Convex vs concave polygons
- Testing convexity

2D Transformations
* Vector representation of a point
* Matrix translation, rotation, scaling
 Homogeneous coordinates
* Composing a string of transformations
* Concept of changing coordinate systems

3D Transformation
* 3D rotation around a line as RxRyRz
* Matrix translation, rotation, scaling
* Matrix stacks
* Object coordinates vs world coordinates
* Modelview matrix
 Camera transform duality with object
 transform
 Hierarchical transforms

Viewing and Perspective
* Pin-hole Camera
* Orthographic vs perspective
 World coordinates vs screen coordinates
 View frustum
 Near and far clipping planes
 Oblique parallel projection
 Oblique perspective projection
 Viewing pipeline object/world/normalized
 screen

Visibility
* Back face detection
* Painter's Algorithm
* Z-buffer (Depth-buffer)
 BSP trees
 Screen space sort vs object space sort

Color models
* Electromagnetic spectrum
* CIE chromaticity diagram
* RGB space
 CMYK space
* HSV space

Raytracing
* Eye rays
* Shadow rays
* Reflected/refracted rays
 Anti-aliasing by supersampling
 Intersection tests
 Distributed ray tracing for estimating integrals

Oct-trees

Radiosity
* Form factors
* Radiosity equation
* Solving radiosity equation

Illumination, shading
* OpenGL ambient+diffuse+specular lighting model
* Phong specular reflection vs. Phong shading
 Gouraud vs Phong shading
* BRDFs
 Vertex and fragment shaders

Modeling
* Polygonal meshes
* Bezier Curves
* B-Splines
* NURBS

Sampling theory
* Point sampling
* Area weighted sampling
 Convolution
 Duality of spatial and Fourier domain
 Concept of low/high frequencies
 Aliasing

Image warping, textures
* Concept of UV coordinates
 Texture/object/screen space
 Bump mapping
 Environment mapping
 Mipmaps
 Summed-area-tables
 Perlin noise
 Anti-aliasing

Compositing
* Alpha as partial pixel cover
 Pre-multiplied alpha
Please put a check mark next to each topic which you feel you understand.

Displays
- CRTs
- LCDs
- Pixel
- FrameBuffer
- Raster scan vs. vector scan
- Gamma, gamma correction

Line-drawing, rasterization
- Line equation
- DDA
- Bresenham's Line Algorithm
- Convex vs concave polygons
- Testing convexity

2D Transformations
- Vector representation of a point
- Matrix translation, rotation, scaling
- Homogeneous coordinates
- Composing a string of transformations
- Concept of changing coordinate systems

3D Transformation
- 3D rotation around a line as RxRyRz
- Matrix translation, rotation, scaling
- Matrix stacks
- Object coordinates vs world coordinates
- Modelview matrix
- Camera transform duality with object transform
- Hierarchical transforms

Viewing and Perspective
- Pin-hole Camera
- Orthographic vs perspective
- World coordinates vs screen coordinates
- View frustum
- Near and far clipping planes
- Oblique parallel projection
- Oblique perspective projection
- Viewing pipeline object/world/normalized/screen

Visibility
- Back face detection
- Painter's Algorithm
- Z-buffer (Depth-buffer)
- BSP trees
- Screen space sort vs object space sort

Color models
- Electromagnetic spectrum
- CIE chromaticity diagram
- RGB space
- CMYK space
- HSV space

Raytracing
- Eye rays
- Shadow rays
- Reflected/refracted rays
- Anti-aliasing by supersampling
- Intersection tests
- Distributed ray tracing for estimating integrals
- Oct-trees

Radiosity
- Form factors
- Radiosity equation
- Solving radiosity equation

Illumination, shading
- OpenGL ambient+diffuse+specular lighting model
- Phong specular reflection vs. Phong shading
- Gouraud vs Phong shading
- BRDFs
- Vertex and fragment shaders

Modeling
- Polygonal meshes
- Bezier Curves
- B-Splines
- NURBS

Sampling theory
- Point sampling
- Area weighted sampling
- Convolution
- Duality of spatial and Fourier domain
- Concept of low/high frequencies
- Aliasing

Image warping, textures
- Concept of UV coordinates
- Texture/object/screen space
- Bump mapping
- Environment mapping
- Mipmaps
- Summed-area-tables
- Perlin noise
- Anti-aliasing

Compositing
- Alpha as partial pixel cover
- Pre-multiplied alpha
Please put a check mark next to each topic which you feel you understand.

Displays
- CRTs
- LCDs
- Pixel
- FrameBuffer
- Raster scan vs. vector scan
- Gamma, gamma correction

Line drawing, rasterization
- Line equation
- DDA
- Bresenham's Line Algorithm
- Convex vs concave polygons
- Testing convexity

2D Transformations
- Vector representation of a point
- Matrix translation, rotation, scaling
- Homogeneous coordinates
- Composing a string of transformations
- Concept of changing coordinate systems

3D Transformation
- 3D rotation around a line as RxRyRz
- Matrix translation, rotation, scaling
- Matrix stacks
- Object coordinates vs world coordinates
- Modelview matrix
- Camera transform duality with object transform
- Hierarchical transforms

Viewing and Perspective
- Pin-hole Camera
- Orthographic vs perspective
- World coordinates vs screen coordinates
- View frustum
- Near and far clipping planes
- Oblique parallel projection
- Oblique perspective projection
- Viewing pipeline object/world/normalized/screen

Visibility
- Back face detection
- Painter's Algorithm
- Z-buffer (Depth-buffer)
- BSP trees
- Screen space sort vs object space sort

Color models
- Electromagnetic spectrum
- CIE chromaticity diagram
- RGB space
- CMYK space
- HSV space

Raytracing
- Eye rays
- Shadow rays
- Reflected/refracted rays
- Anti-aliasing by supersampling
- Intersection tests
- Distributed ray tracing for estimating integrals
- Oct-trees

Radiosity
- Form factors
- Radiosity equation
- Solving radiosity equation

Illumination, shading
- OpenGL ambient+diffuse+specular lighting model
- Phong specular reflection vs. Phong shading
- Gouraud vs Phong shading
- BRDFs
- Vertex and fragment shaders

Modeling
- Polygonal meshes
- Bezier Curves
- B-Splines
- NURBS

Sampling theory
- Point sampling
- Area weighted sampling
- Convolution
- Duality of spatial and Fourier domain
- Concept of low/high frequencies
- Aliasing

Image warping, textures
- Concept of UV coordinates
- Texture/object/screen space
- Bump mapping
- Environment mapping
- Mipmaps
- Summed-area-tables
- Perlin noise
- Anti-aliasing

Compositing
- Alpha as partial pixel cover
- Pre-multiplied alpha
Please put a check mark next to each topic which you feel you understand.

<table>
<thead>
<tr>
<th>Displays</th>
<th>Raytracing</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRTs ✓</td>
<td>Eye rays ✓</td>
</tr>
<tr>
<td>LCDs ✓</td>
<td>Shadow rays ✓</td>
</tr>
<tr>
<td>Pixel ✓</td>
<td>Reflected/refracted rays ✓</td>
</tr>
<tr>
<td>FrameBuffer ✓</td>
<td>Anti-aliasing by supersampling ✓</td>
</tr>
<tr>
<td>Raster scan vs. vector scan ✓</td>
<td>Intersection tests ✓</td>
</tr>
<tr>
<td>Gamma, gamma correction ✓</td>
<td>Distributed ray tracing for estimating integrals ✓</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Line-drawing, rasterization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line equation ✓</td>
</tr>
<tr>
<td>DDA ✓</td>
</tr>
<tr>
<td>Bresenham's Line Algorithm ✓</td>
</tr>
<tr>
<td>Convex vs concave polygons ✓</td>
</tr>
<tr>
<td>Testing convexity ✓</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2D Transformations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vector representation of a point ✓</td>
</tr>
<tr>
<td>Matrix translation, rotation, scaling ✓</td>
</tr>
<tr>
<td>Homogeneous coordinates ✓</td>
</tr>
<tr>
<td>Composing a string of transformations ✓</td>
</tr>
<tr>
<td>Concept of changing coordinate systems ✓</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3D Transformation</th>
</tr>
</thead>
<tbody>
<tr>
<td>3D rotation around a line as RxRyRz ✓</td>
</tr>
<tr>
<td>Matrix translation, rotation, scaling ✓</td>
</tr>
<tr>
<td>Matrix stacks ✓</td>
</tr>
<tr>
<td>Object coordinates vs world coordinates ✓</td>
</tr>
<tr>
<td>Modelview matrix ✓</td>
</tr>
<tr>
<td>Camera transform duality with object transform ✓</td>
</tr>
<tr>
<td>Hierarchical transforms ✓</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Viewing and Perspective</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin-hole Camera ✓</td>
</tr>
<tr>
<td>Orthographic vs perspective ✓</td>
</tr>
<tr>
<td>World coordinates vs screen coordinates ✓</td>
</tr>
<tr>
<td>View frustum ✓</td>
</tr>
<tr>
<td>Near and far clipping planes ✓</td>
</tr>
<tr>
<td>Oblique parallel projection ✓</td>
</tr>
<tr>
<td>Oblique perspective projection ✓</td>
</tr>
<tr>
<td>Viewing pipeline object/world/normalized/screen ✓</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Visibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Back face detection ✓</td>
</tr>
<tr>
<td>Painter's Algorithm ✓</td>
</tr>
<tr>
<td>Z-buffer (Depth-buffer) ✓</td>
</tr>
<tr>
<td>BSP trees ✓</td>
</tr>
<tr>
<td>Screen space sort vs object space sort ✓</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Color models</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electromagnetic spectrum ✓</td>
</tr>
<tr>
<td>CIE chromaticity diagram ✓</td>
</tr>
<tr>
<td>RGB space ✓</td>
</tr>
<tr>
<td>CMYK space ✓</td>
</tr>
<tr>
<td>HSV space ✓</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Radiosity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Form factors ✓</td>
</tr>
<tr>
<td>Radiosity equation ✓</td>
</tr>
<tr>
<td>Solving radiosity equation ✓</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Illumination, shading</th>
</tr>
</thead>
<tbody>
<tr>
<td>OpenGL ambient+diffuse+specular lighting model ✓</td>
</tr>
<tr>
<td>Phong specular reflection vs. Phong shading ✓</td>
</tr>
<tr>
<td>Gouraud vs Phong shading ✓</td>
</tr>
<tr>
<td>BRDFs ✓</td>
</tr>
<tr>
<td>Vertex and fragment shaders ✓</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modeling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polygonal meshes ✓</td>
</tr>
<tr>
<td>Bezier Curves ✓</td>
</tr>
<tr>
<td>B-Splines ✓</td>
</tr>
<tr>
<td>NURBS ✓</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sampling theory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point sampling ✓</td>
</tr>
<tr>
<td>Area weighted sampling ✓</td>
</tr>
<tr>
<td>Convolution ✓</td>
</tr>
<tr>
<td>Duality of spatial and Fourier domain ✓</td>
</tr>
<tr>
<td>Concept of low/high frequencies ✓</td>
</tr>
<tr>
<td>Ailasing ✓</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Image warping, textures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concept of UV coordinates ✓</td>
</tr>
<tr>
<td>Texture/object/screen space ✓</td>
</tr>
<tr>
<td>Bump mapping ✓</td>
</tr>
<tr>
<td>Environment mapping ✓</td>
</tr>
<tr>
<td>Mipmaps ✓</td>
</tr>
<tr>
<td>Summed-area tables ✓</td>
</tr>
<tr>
<td>Perlin noise ✓</td>
</tr>
<tr>
<td>Anti-aliasing ✓</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Compositing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alpha as partial pixel cover ✓</td>
</tr>
<tr>
<td>Pre-multiplied alpha ✓</td>
</tr>
</tbody>
</table>
Please put a check mark next to each topic which you feel you understand.

Displays
CRTs ✓
LCDs ✓
Pixel ✓
Framebuffer ✓
Raster scan vs. vector scan ✓
Gamma, gamma correction ✓

Raytracing
Eye rays ✓
Shadow rays ✓
Reflected/refracted rays ✓
Anti-aliasing by supersampling ✓
Intersection tests ✓
Distributed ray tracing for estimating integrals ✓
Oct-trees ✓

Line-drawing, rasterization
Line equation ✓
DDA ✓
Bresenham's Line Algorithm ✓
Convex vs concave polygons ✓
Testing convexity ✓

Radiosity
Form factors ✓
Radiosity equation ✓
Solving radiosity equation ✓

2D Transformations
Vector representation of a point ✓
Matrix translation, rotation, scaling ✓
Homogeneous coordinates ✓
Composing a string of transformations ✓
Concept of changing coordinate systems ✓

Illumination, shading
OpenGL ambient+diffuse+specular lighting model ✓
Phong specular reflection vs. Phong shading ✓
Gouraud vs Phong shading ✓
BRDFs ✓
Vertex and fragment shaders ✓

3D Transformation
3D rotation around a line as RxRyRz ✓
Matrix translation, rotation, scaling ✓
Matrix stacks ✓
Object coordinates vs world coordinates ✓
Modelview matrix ✓
Camera transform duality with object transform ✓
Hierarchical transforms ✓

Modeling
Polygonal meshes ✓
Bezier Curves ✓
B-Splines ✓
NURBS ✓

Sampling theory
Point sampling ✓
Area weighted sampling ✓
Convolution ✓
Duality of spatial and Fourier domain ✓
Concept of low/high frequencies ✓
Aliasing ✓

Image warping, textures
Concept of UV coordinates ✓
Texture/object/screen space ✓
Bump mapping ✓
Environment mapping ✓
Mipmaps ✓
Summed-area-tables ✓
Perlin noise ✓
Anti-aliasing ✓

Visibility
Back face detection ✓
Painter's Algorithm ✓
Z-buffer (Depth-buffer) ✓
BSP trees ✓
Screen space sort vs object space sort ✓

Compositing
Alpha as partial pixel cover ✓
Pre-multiplied alpha ✓

Color models
Electromagnetic spectrum ✓
CIE chromaticity diagram ✓
RGB space ✓
CMYK space ✓
HSV space ✓
Please put a check mark next to each topic which you feel you understand.

Displays
- CRTs
- LCDs
- Pixel
- FrameBuffer
- Raster scan vs. vector scan
- Gamma, gamma correction

Raytracing
- Eye rays
- Shadow rays
- Reflected/refracted rays
- Anti-aliasing by supersampling
- Intersection tests
- Distributed ray tracing for estimating
- Integrals
- Oct-trees

Radiosity
- Form factors
- Radiosity equation
- Solving radiosity equation

Illumination, shading
- OpenGL ambient+diffuse+specular lighting model
- Phong specular reflection vs. Phong shading
- Gouraud vs Phong shading
- BRDFs
- Vertex and fragment shaders

Modeling
- Polygonal meshes
- Bezier Curves
- B-Splines
- NURBS

Sampling theory
- Point sampling
- Area weighted sampling
- Convolution
- Duality of spatial and Fourier domain
- Concept of low/high frequencies
- Aliasing

Image warping, textures
- Concept of UV coordinates
- Texture/object/screen space
- Bump mapping
- Environment mapping
- Mipmaps
- Summed-area-tables
- Perlin noise
- Anti-aliasing

Compositing
- Alpha as partial pixel cover
- Pre-multiplied alpha

Line-drawing, rasterization
- Line equation
- DDA
- Bresenham's Line Algorithm
- Convex vs concave polygons
- Testing convexity

2D Transformations
- Vector representation of a point
- Matrix translation, rotation, scaling
- Homogeneous coordinates
- Composing a string of transformations
- Concept of changing coordinate systems

3D Transformation
- 3D rotation around a line as RxRyRz
- Matrix translation, rotation, scaling
- Matrix stacks
- Object coordinates vs world coordinates
- Modelview matrix
- Camera transform duality with object transform
- Hierarchical transforms

Viewing and Perspective
- Pin-hole Camera
- Orthographic vs perspective
- World coordinates vs screen coordinates
- View frustum
- Near and far clipping planes
- Oblique parallel projection
- Oblique perspective projection
- Viewing pipeline object/world/normalized/screen

Visibility
- Back face detection
- Painter's Algorithm
- Z-buffer (Depth-buffer)
- BSP trees
 - Screen space sort vs object space sort

Color models
- Electromagnetic spectrum
- CIE chromaticity diagram
- RGB space
- CMYK space
- HSV space
Please put a check mark next to each topic which you feel you understand.

Displays ✓
CRTs ✓
LCDs ✓
Pixel ✓
FrameBuffer ✓
Raster scan vs. vector scan ✓
Gamma, gamma correction ✓

Raytracing ✓
Eye rays ✓
Shadow rays ✓
Reflected/refracted rays ✓
Anti-aliasing by supersampling ✓
Intersection tests ✓
Distributed ray tracing for estimating integrals ✓
Oct-trees ✓

Line-drawing, rasterization
Line equation
DDA
Bresenham's Line Algorithm
Convex vs concave polygons
Testing convexity

Radiosity ✓
Form factors ✓
Radiosity equation ✓
Solving radiosity equation ✓

2D Transformations ✓
Vector representation of a point ✓
Matrix translation, rotation, scaling ✓
Homogeneous coordinates ✓
Composing a string of transformations ✓
Concept of changing coordinate systems ✓

Illumination, shading ✓
OpenGL ambient+diffuse+specular lighting ✓
Phong specular reflection vs. Phong shading ✓
Gouraud vs Phong shading ✓
BRDF's ✓
Vertex and fragment shaders ✓

3D Transformations ✓
3D rotation around a line as RxRyRz ✓
Matrix translation, rotation, scaling ✓
Matrix stacks ✓
Object coordinates vs world coordinates ✓
Modelview matrix ✓
Camera transform duality with object transform ✓
Hierarchical transforms ✓

Modeling ✓
Polygonal meshes ✓
Bezier Curves ✓
B-Splines ✓
NURBS ✓

Viewing and Perspective ✓
Pin-hole Camera ✓
Orthographic vs perspective ✓
World coordinates vs screen coordinates ✓
View frustum ✓
Near and far clipping planes ✓
Oblique parallel projection ✓
Oblique perspective projection ✓
Viewing pipeline object/world/normalized/screen ✓

Visibility ✓
Back face detection ✓
Painter's Algorithm ✓
Z-buffer (Depth-buffer) ✓
BSP trees ✓
Screen space sort vs object space sort ✓

Image warping, textures ✓
Concept of UV coordinates ✓
Texture/object/screen space ✓
Bump mapping ✓
Environment mapping ✓
Mipmaps ✓
Summed-area-tables ✓
Perlin noise ✓
Anti-aliasing ✓

Compositing ✓
Alpha as partial pixel cover ✓
Pre-multiplied alpha ✓

Color models ✓
Electromagnetic spectrum ✓
CIE chromaticity diagram ✓
RGB space ✓
CMYK space ✓
HSV space ✓
Please put a check mark next to each topic which you feel you understand.

Displays
- CRTs
- LCDs
- Pixel
- FrameBuffer
- Raster scan vs. vector scan
- Gamma, gamma correction

Line-drawing, rasterization
- Line equation
- DBA
- Bresenham's Line Algorithm
- Convex vs concave polygons
- Testing convexity

2D Transformations
- Vector representation of a point
- Matrix translation, rotation, scaling
- Homogeneous coordinates
- Composing a string of transformations
- Concept of changing coordinate systems

3D Transformation
- 3D rotation around a line as RxRyRz
- Matrix translation, rotation, scaling
- Matrix stacks
- Object coordinates vs world coordinates
- Modelview matrix
- Camera transform duality with object transform
- Hierarchical transforms

Viewing and Perspective
- Pin-hole Camera
- Orthographic vs perspective
- World coordinates vs screen coordinates
- View frustum
- Near and far clipping planes
 - Oblique parallel projection
 - Oblique perspective projection
- Viewing pipeline object/world/normalized screen

Visibility
- Back face detection
- Painter's Algorithm
- Z-buffer (Depth-buffer)
- BSP trees
- Screen space sort vs object space sort

Color models
- Electromagnetic spectrum
- CIE chromaticity diagram
- RGB space
- CMYK space
- HSV space

Raytracing
- Eye rays
- Shadow rays
- Reflected/refracted rays
- Anti-aliasing by supersampling
- Intersection tests
- Distributed ray tracing for estimating integrals
 - Oct-trees

Radiosity
- Form factors
- Radiosity equation
- Solving radiosity equation

Illumination, shading
- OpenGL ambient+diffuse+specular lighting model
- Phong specular reflection vs. Phong shading
- Gouraud vs Phong shading
- BRDFs
- Vertex and fragment shaders

Modeling
- Polygonal meshes
- Bezier Curves
- B-Splines
- NURBS

Sampling theory
- Point sampling
- Area weighted sampling
- Convolution
 - Duality of spatial and Fourier domain
- Concept of low/high frequencies
 - Aliasing

Image warping, textures
- Concept of UV coordinates
- Texture/object/screen space
- Bump mapping
- Environment mapping
 - Mipmaps
 - Summed-area-tables
 - Perlin noise
 - Anti-aliasing

Compositing
- Alpha as partial pixel cover
- Pre-multiplied alpha
Please put a check mark next to each topic which you feel you understand.

Displays
✓ CRTs
✓ LCDs
✓ Pixel
✓ FrameBuffer
✓ Raster scan vs. vector scan
✓ Gamma, gamma correction

Raytracing
✓ Eye rays
✓ Shadow rays
✓ Reflected/refracted rays
✓ Anti-aliasing by supersampling
✓ Intersection tests
✓ Distributed ray tracing for estimating integrals
✓ Oct-trees

Radiosity
✓ Form factors
✓ Radiosity equation
✓ Solving radiosity equation

Illumination, shading
✓ OpenGL ambient+diffuse+specular lighting
✓ Phong specular reflection vs. Phong shading
✓ Gouraud vs Phong shading
✓ BRDFs
✓ Vertex and fragment shaders

Modeling
✓ Polygonal meshes
✓ Bezier Curves
✓ B-Splines
✓ NURBS

Sampling theory
✓ Point sampling
✓ Area weighted sampling
✓ Convolution
✓ Duality of spatial and Fourier domain
✓ Concept of low/high frequencies
✓ Aliasing

Image warping, textures
✓ Concept of UV coordinates
✓ Texture/object/screen space
✓ Bump mapping
✓ Environment mapping
✓ Mipmaps
✓ Summed-area-tables
✓ Perlin noise
✓ Anti-aliasing

Compositing
✓ Alpha as partial pixel cover
✓ Pre-multiplied alpha
Please put a check mark next to each topic which you feel you understand.

Displays
CRTs
LCDs
Pixel
Framebuffer
Raster scan vs. vector scan
Gamma, gamma correction

Line-drawing, rasterization
Line equation
DDA
Bresenham's Line Algorithm
Convex vs concave polygons
Testing convexity

2D Transformations
Vector representation of a point
Matrix translation, rotation, scaling
Homogeneous coordinates
Composing a string of transformations
Concept of changing coordinate systems

3D Transformation
3D rotation around a line as RxRyRz
Matrix translation, rotation, scaling
Matrix stacks
Object coordinates vs world coordinates
Modelview matrix
Camera transform duality with object transform
Hierarchical transforms

Viewing and Perspective
Pin-hole Camera
Orthographic vs perspective
World coordinates vs screen coordinates
View frustum
Near and far clipping planes
Oblique parallel projection
Oblique perspective projection
Viewing pipeline object/world/normalized/screen

Visibility
Back face detection
Painter's Algorithm
Z-buffer (Depth-buffer)
BSP trees
Screen space sort vs object space sort

Color models
Electromagnetic spectrum
CIE chromaticity diagram
RGB space
CMYK space
HSV space

Raytracing
Eye rays
Shadow rays
Reflected/refracted rays
Anti-aliasing by supersampling
Intersection tests
Distributed ray tracing for estimating integrals
Oct-trees

Radiosity
Form factors
Radiosity equation
Solving radiosity equation

Illumination, shading
OpenGL ambient+diffuse+specular lighting model
Phong specular reflection vs. Phong shading
Gouraud vs Phong shading
BRDFs
Vertex and fragment shaders

Modeling
Polygonal meshes
Bezier Curves
B-Splines
NURBS

Sampling theory
Point sampling
Area weighted sampling
Convolution
Duality of spatial and Fourier domain
Concept of low/high frequencies
Aliasing

Image warping, textures
Concept of UV coordinates
Texture/object/screen space
Bump mapping
Environment mapping
Mipmaps
Summed-area-tables
Perlin noise
Anti-aliasing

Compositing
Alpha as partial pixel cover
Pre-multiplied alpha
Please put a check mark next to each topic which you feel you understand.

Displays
CRTs ✓
LCDs ✓
Pixel ✓
Framebuffer ✓
Raster scan vs. vector scan ✓
Gamma, gamma correction

Raytracing
Eye rays ✓
Shadow rays ✓
Reflected/refracted rays ✓
Anti-aliasing by supersampling
Intersection tests ✓
Distributed ray tracing for estimating integrals ✓
Oct-trees

Line-drawing, rasterization
Line equation
DDA
Bresenham's Line Algorithm
Convex vs concave polygons
Testing convexity

Radiosity
Form factors
Radiosity equation
Solving radiosity equation

2D Transformations
Vector representation of a point ✓
Matrix translation, rotation, scaling ✓
Homogeneous coordinates ✓
Composing a string of transformations ✓
Concept of changing coordinate systems ✓

Illumination, shading
OpenGL ambient+diffuse+specular lighting ✓
Model
Phong specular reflection vs. Phong ✓
Shading
Gouraud vs Phong shading ✓
BRDFs
Vertex and fragment shaders ✓

3D Transformation
3D rotation around a line as RxRyRz ✓
Matrix translation, rotation, scaling ✓
Matrix stacks ✓
Object coordinates vs world coordinates ✓
Modelview matrix ✓
Camera transform duality with object transform ✓
Hierarchical transforms ✓

Modeling
Polygonal meshes
Bezier Curves
B-Splines
NURBS

Viewing and Perspective
Pin-hole Camera ✓
Orthographic vs perspective ✓
World coordinates vs screen coordinates ✓
View frustum ✓
Near and far clipping planes ✓
Oblique parallel projection
Oblique perspective projection
Viewing pipeline object/world/normalized/screen ✓

Sampling theory
Point sampling
Area weighted sampling
Convolution
Duality of spatial and Fourier domain
Concept of low/high frequencies ✓
Aliasing

Visibility
Back face detection ✓
Painter's Algorithm ✓
Z-buffer (Depth-buffer) ✓
BSP trees
Screen space sort vs object space sort

Image warping, textures
Concept of UV coordinates ✓
Texture/object/screen space ✓
Bump mapping ✓
Environment mapping
Mipmaps ✓
Summed-area-tables ✓
Perlin noise
Anti-aliasing

Compositing
Alpha as partial pixel cover ✓
Pre-multiplied alpha ✓

Color models
Electromagnetic spectrum
CIE chromaticity diagram
RGB space ✓
CMYK space ✓
HSV space ✓
Please put a check mark next to each topic which you feel you understand.

Displays
✓ CRTs
✓ LCDs
✓ Pixel
✓ FrameBuffer
✓ Raster scan vs. vector scan
✓ Gamma, gamma correction

Raytracing
✓ Eye rays
✓ Shadow rays
✓ Reflected/refracted rays
✓ Anti-aliasing by supersampling
✓ Intersection tests
 Distributed ray tracing for estimating integrals
 Ocl-trees

Radiosity
✓ Form factors
✓ Radiosity equation
✓ Solving radiosity equation

Illumination, shading
✓ OpenGL ambient+diffuse+specular lighting model
✓ Phong specular reflection vs. Phong shading
✓ Gouraud vs Phong shading
✓ BRDFs
✓ Vertex and fragment shaders

Modeling
✓ Polygonal meshes
 Bezier Curves
 B-Splines
 NURBS

Sampling theory
✓ Point sampling
✓ Area weighted sampling
✓ Convolution
 Duality of spatial and Fourier domain
✓ Concept of low/high frequencies
 Aliasing

Image warping, textures
✓ Concept of UV coordinates
✓ Texture/object/screen space
✓ Bump mapping
✓ Environment mapping
 Mipmaps
 Summed-area-tables
 Perlin noise
✓ Anti-aliasing

Compositing
✓ Alpha as partial pixel cover
✓ Pre-multiplied alpha

2D Transformations
✓ Vector representation of a point
✓ Matrix translation, rotation, scaling
✓ Homogeneous coordinates
✓ Composing a string of transformations
✓ Concept of changing coordinate systems

3D Transformation
✓ 3D rotation around a line as RxRyRz
✓ Matrix translation, rotation, scaling
✓ Matrix stacks
✓ Object coordinates vs world coordinates
✓ ModelView matrix
 Camera transform duality with object transform
✓ Hierarchical transforms

Viewing and Perspective
✓ Pin-hole Camera
✓ Orthographic vs perspective
✓ World coordinates vs screen coordinates
✓ View frustum
✓ Near and far clipping planes
 Oblique parallel projection
 Oblique perspective projection
✓ Viewing pipeline object/world/normalized/screen

Visibility
✓ Back face detection
✓ Painter's Algorithm
✓ Z-buffer (Depth-buffer)
 BSP trees
 Screen space sort vs object space sort

Color models
✓ Electromagnetic spectrum
 CIE chromaticity diagram
✓ RGB space
✓ CMYK space
✓ HSV space
Please put a check mark next to each topic which you feel you understand.

Displays
- CRTs
- LCDs
- Pixel
- FrameBuffer
- Raster scan vs. vector scan
- Gamma, gamma correction

Raytracing
- Eye rays
- Shadow rays
- Reflected/refracted rays
- Anti-aliasing by supersampling
- Intersection tests
- Distributed ray tracing for estimating integrals
- Oct-trees

Line-drawing, rasterization
- Line equation
- DDA
- Bresenham's Line Algorithm
- Convex vs concave polygons
- Testing convexity

Radiosity
- Form factors
- Radiosity equation
- Solving radiosity equation

2D Transformations
- Vector representation of a point
- Matrix translation, rotation, scaling
- Homogeneous coordinates
- Composing a string of transformations
- Concept of changing coordinate systems

Illumination, shading
- OpenGL ambient+diffuse+specular lighting
- model
- Phong specular reflection vs. Phong
- shading
- Gouraud vs Phong shading
- BRDFs
- Vertex and fragment shaders

3D Transformation
- 3D rotation around a line as RxRyRz
- Matrix translation, rotation, scaling
- Matrix stacks
- Object coordinates vs world coordinates
- Modelview matrix
- Camera transform duality with object transform
- Hierarchical transforms

Modeling
- Polygonal meshes
- Bézier Curves
- B-Splines
- NURBS

Viewing and Perspective
- Pin-hole Camera
- Orthographic vs perspective
- World coordinates vs screen coordinates
- View frustum
- Near and far clipping planes
- Oblique parallel projection
- Oblique perspective projection
- Viewing pipeline object/world/normalized/screen

Sampling theory
- Point sampling
- Area weighted sampling
- Convolution
- Duality of spatial and Fourier domain
- Concept of low/high frequencies
- Aliasing

Visibility
- Back face detection
- Painter's Algorithm
- Z-buffer (Depth-buffer)
- BSP trees
- Screen space sort vs object space sort

Image warping, textures
- Concept of UV coordinates
- Texture/object/screen space
- Bump mapping
- Environment mapping
- Mipmaps
- Summed-area-tables
- Perlin noise
- Anti-aliasing

Compositing
- Alpha as partial pixel cover
- Pre-multiplied alpha

Color models
- Electromagnetic spectrum
- CIE chromaticity diagram
- RGB space
- CMYK space
- HSV space
I'm interested in whether you learned what you wanted to learn. This is almost always correlated with whether you enjoyed what you were learning. Thus when I ask whether you agree with something, I'm asking both whether you enjoyed the aspect of class, and whether it was helpful to your learning:

Written answers are way better than numbers, but numbers are easier if you're lazy. I'd love to have both.

For each statement rate how much you agree with the statement on a scale of 1-10, 1=completely wrong, 10=totally right.

1. Class time can come in a variety of flavors. I'd like to organize class the best way in the future. I tried several experiments this quarter, which did you like:

a) I like pure lecture from well organized powerpoint slides that flow from one to the next.
b) I like some amount of discussion where the professor asks the class questions as the lecture goes forward.
c) I liked the ray tracing class where the class designed a ray tracing algorithm with lots of interactive discussion.

2. Book or class, where do you learn?
 a) I learn from the book.
 b) I learn from class lecture.
 c) In this class the book was helpful to me.
 d) In this class the lecture was helpful to me.
 e) The lab was helpful to me.

3. Rate the overall amount that the following people contributed to your education in this class:

 a) James Davis – 9 (I learned a bit disorganized at times :)
 b) Bryan Harris – 10 (great job!)
 c) Chirag Dave –
 d) Indrani Chakravarty – 10
 e) Krystle de Mesa / Emme Lovell (mostly they were behind the scenes so N/A for most)

4. How was the homework?
 a) Graded homework is good
 b) Study questions but no homework would be good
 c) I don't care about sample questions at all

5-9) Moved to end of list!
10. Teams
(a) Worked ok for videos?
(b) Worked ok for the project?
c) I studied in a team other than the ones required
d) Study session with pizza good?

I feel I was lucky with the team I ended working with. (It can be a good idea to keep the option of working by one own, sometimes teams can be difficult to deal with.)

11) We spent a class talking about ‘after college’, was it useful to you and should I do this in the future?

That’s interesting to me.

12) Labs and assignments, which should we keep? which replace?

a) Painter
definitely I don’t like wiki submissions.
b) Animal
 browsing the web takes a lot of time
c) Terrain
to find something ‘really’ interesting.
d) GLSL Shaders
in addition with all the course work is
e) Ray Tracing
close to impossible to check the bans
f) Make a video
submitted by the fellow students.
g) Project

13) The wiki submissions were an experiment. Did you ever once go look at anyone else’s wiki submission. Was this helpful to you?

14) Adam Smith gave a couple guest lectures. Were these helpful to you?

Yes. Very interesting ones.

15) We spent a lot of class time watching the results of class effort. This was an experiment meant to be both enjoyable and motivational. Was it a good use of class time?

Definitely. It was fun and motivating.

16) Making a video was an experiment.

a) Did you learn anything making your own video? Compare this to how much you learned in an average lab.
b) Did you learn anything from other peoples videos?

Making the video was fun. However I don’t feel like I have learnt much from it, and it took a lot of time from the final project.
17) I find that rankings of 1-10 for classes always come out as 7, no matter how good or bad the class is. Instead, write down the classes you took in the last 3 qtrs, ranked in order of how much you learned. Start with the class you learned the most in. I assume you took about 9 classes over three qtrs, and yes I know its hard to compare. So just a list like:
(most) [Math10, Phys24, Soc12, Math37, CMPS80J, CMPS1, X, X, X] (least)

18). Same question, but now rank the classes by which class you enjoyed the most. Start with the class you enjoyed the most. (I care about enjoyment because its correlated with long term chances you care about this topic in 10 years.)

5. Suggestions for improving any aspect of class?
 getting more complete and more organized slides would be very very helpful.

6. What is the single best thing about this class in terms or either current learning or your enthusiasm to learn more about this topic on your own in the future?
 labs and final project (real work!)

7. What is the single biggest waste of time in this class? (or actually damaging to your desire to learn)
 wiki

8. Topic you wish was discussed but wasn’t?

9. Topic you wish was dropped?
I'm interested in whether you learned what you wanted to learn. This is almost always correlated with whether you enjoyed what you were learning. Thus when I ask whether you agree with something, I’m asking both whether you enjoyed the aspect of class, and whether it was helpful to your learning:

Written answers are way better than numbers, but numbers are easier if you’re lazy. I’d love to have both.

For each statement rate how much you agree with the statement on a scale of 1-10, 1=completely wrong, 10=totally right.

1. Class time can come in a variety of flavors. I’d like to organize class the best way in the future. I tried several experiments this quarter, which did you like:

 a) I like pure lecture from well organized powerpoint slides that flow from one to the next.
 b) I like some amount of discussion where the professor asks the class questions as the lecture goes forward.
 c) I liked the ray tracing class where the class designed a ray tracing algorithm with lots of interactive discussion. I enjoyed this mainly for the novelty. I do not believe this is a replacement for lecture.

2. Book or class, where do you learn?
 a) I learn from the book. Depends on the quality of the lecture.
 b) I learn from class lecture.
 c) In this class the book was helpful to me.
 d) In this class the lecture was helpful to me.
 e) The lab was helpful to me.

3. Rate the overall amount that the following people contributed to your education in this class:
 a) James Davis –
 b) Bryan Harris –
 c) Chirag Dave –
 d) Indrani Chakravarty –
 e) Krystle de Mesa / Emme Lovell (mostly they were behind the scenes so N/A for most)

4. How was the homework?
 a) Graded homework is good
 b) Study questions but no homework would be good
 c) I don’t care about sample questions at all

5-9) Moved to end of list!
10. Teams

a) Worked ok for videos?

b) Worked ok for the project?

c) I studied in a team other than the ones required?

d) Study session with pizza good?

11) We spent a class talking about ‘after college’, was it useful to you and should I do this in the future?

12) Labs and assignments, which should we keep? which replace?

 a) Painter
 b) Animal
 c) Terrain
 d) GLSL Shaders - Replace, or fix for windows machines
 e) Ray Tracing
 f) Make a video - Replace
 g) Project - Replace
 h) Written homeworks
 i) Wiki submissions - Eliminate

13) The wiki submissions were an experiment. Did you ever once go look at anyone else’s wiki submission. Was this helpful to you?

14) Adam Smith gave a couple of guest lectures. Were these helpful to you?

15) We spent a lot of class time watching the results of class effort. This was an experiment meant to be both enjoyable and motivational. Was it a good use of class time?

16) Making a video was an experiment.

 a) Did you learn anything making your own video? Compare this to how much you learned in an average lab.

 b) Did you learn anything from other peoples videos?
17) I find that rankings of 1-10 for classes always come out as 7, no matter how good or bad the class is. Instead, write down the classes you took in the last 3 qtrs, ranked in order of *how much you learned*. Start with the class you learned the most in. I assume you took about 9 classes over three qtrs, and yes I know its hard to compare. So just a list like:

(most) [Math10, Phys24, Soc12, Math37, CMPS80J, CMPS1, X, X, X] (least)

most: CMPS142, AMS27, CMPS160, CMPS114, MVSC80X, CMPS140, CMPS154

18). Same question, but now rank the classes by *which class you enjoyed the most*. Start with the class you enjoyed the most. (I care about enjoyment because its correlated with long term chances you care about this topic in 10 years.)

CS142, CS160, MVSC80X, CS140, X, X, AMS27, CS146

5. Suggestions for improving any aspect of class?

- Better lab support for windows.

6. What is the single best thing about this class in terms or either current learning or your enthusiasm to learn more about this topic on your own in the future?

- I chose radiosity as the subject of both of my final projects and I still don't hate it.

7. What is the single biggest waste of time in this class? (or actually damaging to your desire to learn)

- I spent a lot of time trying to get the shaders assignment working on my windows machine. Better windows support would have made this more motivating about the whole class.

8. Topic you wish was discussed but wasn’t?

- Compositing seemed both obvious and dull.
I'm interested in whether you learned what you wanted to learn. This is almost always correlated with whether you enjoyed what you were learning. Thus when I ask whether you agree with something, I'm asking both whether you enjoyed the aspect of class, and whether it was helpful to your learning:

Written answers are way better than numbers, but numbers are easier if you're lazy. I'd love to have both.

For each statement rate how much you agree with the statement on a scale of 1-10, 1=completely wrong, 10=totally right.

1. Class time can come in a variety of flavors. I'd like to organize class the best way in the future. I tried several experiments this quarter, which did you like:

7) a) I like pure lecture from well organized powerpoint slides that flow from one to the next.
9) b) I like some amount of discussion where the professor asks the class questions as the lecture goes forward.
6) c) I liked the ray tracing class where the class designed a ray tracing algorithm with lots of interactive discussion.

2. Book or class, where do you learn?

5) a) I learn from the book.
9) b) I learn from class lecture.
7) c) In this class the book was helpful to me.
8) d) In this class the lecture was helpful to me.
9) e) The lab was helpful to me.

In most classes, I learn almost exclusively from class lectures, using the book as an additional reference. Lab times are not usually a significant source of learning for me. This course was an exception - Bryan was awesome!

3. Rate the overall amount that the following people contributed to your education in this class:

8) a) James Davis - Primary source of learning in this course
10) b) Bryan Harris - Excellent information and easily accessible in lab. His contribution to my education in the lab cannot be measured.
8) c) Chirag Dave - Did not interact with Chirag.
6) d) Indrani Chakravarty - Moderately helpful, but not as approachable as Bryan. Still, she was a good source of information.
8) e) Krystle de Mesa / Emme Lovell (mostly they were behind the scenes so N/A for most)

Minimal contact with Krystle; none with Emme.

4. How was the homework?

5) a) Graded homework is good
8) b) Study questions but no homework would be good
1) c) I don't care about sample questions at all

Study questions are extremely useful. I wish all classes had sample questions. Graded homework encourages completion of work outside of class time but seems less needed in a programming course.

5-9) Moved to end of list!
10. Teams

a) Worked ok for videos?
b) Worked ok for the project?
c) I studied in a team other than the ones required
d) Study session with pizza good?

Videos would be difficult to complete solo, and considering the time constraints given, our team worked out ok. Project team did not work well (team was assigned and disintegrated). Study sessions with pizza are great — if a natural leader steps up and leads the session and is willing to field questions and consider differing opinions.

11) We spent a class talking about ‘after college’, was it useful to you and should I do this in the future?

Yes! Not enough discussion occurs as to how what we learn in school applies in industry, nor is there enough discussion about what to do after college.

12) Labs and assignments, which should we keep? which replace?

a) Painter
b) Animal
c) Terrain
d) GLSL Shaders
e) Ray Tracing
f) Make a video

g) Project
h) Written homeworks
i) Wiki submissions

Each of the labs was appropriate for the time it was presented. The flow from one lab to the next was good and each lab highlighted important features of OpenGL.

Keep them all — in this order:

Video project is interesting but will only be useful for its greater purpose after several iterations of the class have been able to compile a complete library of topics.

Final project was very appropriate for the class and should not be changed.

Written homework was a take it or leave it proposition. If kept, solutions should be available source. Wiki submissions make for interesting research, but I am curious how many people actually viewed posted content. Wikis are only useful if they are placed.

13) The wiki submissions were an experiment. Did you ever once go look at anyone else’s wiki submission. Was this helpful to you?

I looked at a few, but avoided the obvious (such as links to Wikipedia articles). When researching links to post, I tried to find interesting and useful articles, and I hope others found interesting. Still, in the end, wiki

14) Adam Smith gave a couple guest lectures. Were these helpful to you? They were only somewhat “helpful”.

I missed Adam’s lecture on things not usually talked about in CS classes (although I would have liked to have seen it). The lecture I did see was well-presented, but James never really followed up the information.

15) We spent a lot of class time watching the results of class effort. This was an experiment meant to be both enjoyable and motivational. Was it a good use of class time?

Enjoyable: Yes

Motivational: No

Watching others’ results was interesting since the assignments were generally open-ended. However, since some class members’ skills and time were well beyond the scope of the class, I felt outclassed and unmotivated to excel at assignments.

16) Making a video was an experiment.

a) Did you learn anything making your own video? Compare this to how much you learned in an average lab.

Little was learned from making videos.

b) Did you learn anything from other peoples’ videos?

Little was learned from watching other peoples’ videos (except to see how humorous class members were)

Exception: “Professor” video had educational value and humor.
17) I find that rankings of 1-10 for classes always come out as 7, no matter how good or bad the class is. Instead, write down the classes you took in the last 3 qtrs, ranked in order of how much you learned. Start with the class you learned the most in. I assume you took about 9 classes over three qtrs, and yes I know its hard to compare. So just a list like:
(most) [Math10, Phys24, Soc12, Math37, CMPS80J, CMPS1, X, X, X] (least)

comps 140, comps 130, comps 20a, comps 102, ans 27

18). Same question, but now rank the classes by which class you enjoyed the most. Start with the class you enjoyed the most. (I care about enjoyment because its correlated with long term chances you care about this topic in 10 years.)

comps 20a, comps 140, comps 130, ans 27, comps 102

5. Suggestions for improving any aspect of class?

 Competitions: Have judging in multiple categories so that results are not dominated by a select few
 Review Sessions: Led by TA, not a free-for-all with arbitrary leader

6. What is the single best thing about this class in terms or either current learning or your enthusiasm to learn more about this topic on your own in the future?

 Freedom to select project and lab content

7. What is the single biggest waste of time in this class? (or actually damaging to your desire to learn)

 Video assignment

8. Topic you wish was discussed but wasn’t?

 Modeling packages (Maya, 3D Studio Max, Xsight, etc.)

9. Topic you wish was dropped?
I’m interested in whether you learned what you wanted to learn. This is almost always correlated with whether you enjoyed what you were learning. Thus when I ask whether you agree with something, I’m asking both whether you enjoyed the aspect of class, and whether it was helpful to your learning:

Written answers are way better than numbers, but numbers are easier if you’re lazy. I’d love to have both.

For each statement rate how much you agree with the statement on a scale of 1-10, 1=completely wrong, 10=totally right.

1. Class time can come in a variety of flavors. I’d like to organize class the best way in the future. I tried several experiments this quarter, which did you like:

 a) I like pure lecture from well organized powerpoint slides that flow from one to the next. 4
 b) I like some amount of discussion where the professor asks the class questions as the lecture goes forward. 6
 c) I liked the ray tracing class where the class designed a ray tracing algorithm with lots of interactive discussion. 8

 Ray tracing class had a good balance of lecture/discussion.

2. Book or class, where do you learn?

 a) I learn from the book. 7
 b) I learn from class lecture. 6
 c) In this class the book was helpful to me. 7
 d) In this class the lecture was helpful to me. 6
 e) The lab was helpful to me. 9

 Study group was helpful too.

3. Rate the overall amount that the following people contributed to your education in this class:

 a) James Davis – 7
 b) Bryan Harris – 6
 c) Chirag Dave – 8
 d) Indrani Chakravarty – 9
 e) Krystle de Mesa / Emme Lovell (mostly they were behind the scenes so N/A for most) N/A

4. How was the homework?

 a) Graded homework is good 8
 b) Study questions but no homework would be good 3
 c) I don’t care about sample questions at all 1

5-9) Moved to end of list!
10. Teams

a) Worked ok for videos?
b) Worked ok for the project?
c) I studied in a team other than the ones required
d) Study session with pizza good?

11) We spent a class talking about ‘after college’, was it useful to you and should I do this in the future?

7: it was useful

12) Labs and assignments, which should we keep? which replace?

a) Painter keep
b) Animal keep
c) Terrain keep
d) GLSL Shaders keep
 e) Ray Tracing keep
f) Make a video replace
 g) Project keep: it lets more time can be spent
 h) Written homeworks replace
 i) Wiki submissions

13) The wiki submissions were an experiment. Did you ever once go look at anyone elses wiki submission. Was this helpful to you?

No, not very helpful

14) Adam Smith gave a couple guest lectures. Were these helpful to you?

Not necessarily helpful but very interesting

15) We spent a lot of class time watching the results of class effort. This was an experiment meant to be both enjoyable and motivational. Was it a good use of class time?

Interesting, and somewhat helpful.

16) Making a video was an experiment.

a) Did you learn anything making your own video? Compare this to how much you learned in an average lab.
b) Did you learn anything from other peoples videos?

Not particularly, fun but not too helpful, I learned much more doing regular labs
17) I find that rankings of 1-10 for classes always come out as 7, no matter how good or bad the class is. Instead, write down the classes you took in the last 3 qtrs, ranked in order of how much you learned. Start with the class you learned the most in. I assume you took about 9 classes over three qtrs, and yes I know its hard to compare. So just a list like:

(most) [Math10, Phys24, Soc12, Math37, CMPS80J, CMPS1, X, X, X] (least)

CS100, CS104A, BLH, AMS27, AMS31, CE110, Physics 5B, CS101, Math 23A

CS 104A, CS 160, AMS 27, Math 23A, CS101, Physics 5B, CE110, Pol 17, AMS 131

18). Same question, but now rank the classes by which class you enjoyed the most. Start with the class you enjoyed the most. (I care about enjoyment because its correlated with long term chances you care about this topic in 10 years.)

CS 104A, Math 23A, AMS 27, Pol 17, Physics 5B, CS 160, CS101, CE 110, AMS 131

5. Suggestions for improving any aspect of class?

I feel like given the time we had to do the final project, I would have had to neglect every other class to do well.

6. What is the single best thing about this class in terms or either current learning or your enthusiasm to learn more about this topic on your own in the future?

James seems really enthusiastic about the material, which made the classes fun.

7. What is the single biggest waste of time in this class? (or actually damaging to your desire to learn)

8. Topic you wish was discussed but wasn’t?

9. Topic you wish was dropped?

Note: The scores for this class are probably lower than they would be if I had taken this survey at any other time, because I just put a ton of time into the final project and feel like it looks terrible.
I'm interested in whether you learned what you wanted to learn. This is almost always correlated with whether you enjoyed what you were learning. Thus when I ask whether you agree with something, I'm asking both whether you enjoyed the aspect of class, and whether it was helpful to your learning:

Written answers are way better than numbers, but numbers are easier if you're lazy. I'd love to have both.

For each statement rate how much you agree with the statement on a scale of 1-10, 1=completely wrong, 10= totally right.

1. Class time can come in a variety of flavors. I'd like to organize class the best way in the future. I tried several experiments this quarter, which did you like:

 2. a) I like pure lecture from well organized powerpoint slides that flow from one to the next.
 b) I like some amount of discussion where the professor asks the class questions as the lecture goes forward.
 c) I liked the ray tracing class where the class designed a ray tracing algorithm with lots of interactive discussion.

2. Book or class, where do you learn?

 4 a) I learn from the book.
 b) I learn from class lecture.
 c) In this class the book was helpful to me.
 d) In this class the lecture was helpful to me.
 e) The lab was helpful to me.

3. Rate the overall amount that the following people contributed to your education in this class:

 \[r_{\text{in}} \] (1 - 10)

 a) James Davis - 10
 b) Bryan Harris - 6
 c) Chirag Dave - 3
 d) Indrani Chakravarty - 6
 e) Krystie de Mesa / Emme Lovell (mostly they were behind the scenes so N/A for most) 1

 How was the homework?

 Graded homework is good
 Study questions but no homework would be good
 I don't care about sample questions at all

) Moved to end of list!
10. Teams

(0) a) Worked ok for videos?
(0) b) Worked ok for the project?
(1) c) I studied in a team other than the ones required
(0) d) Study session with pizza good?

11) We spent a class talking about ‘after college’, was it useful to you and should I do this in the future? Yes I loved that. It got me thinking a lot about starting my own company.

12) Labs and assignments, which should we keep? which replace?

a) Painter
b) Animal
\[\text{Merge}\]
c) Terrain
d) GLSL Shaders
e) Ray Tracing
f) Make a video
g) Project
h) Written homeworks
i) Wiki submissions

- Would make the whole thing shine

13) The wiki submissions were an experiment. Did you ever once go look at anyone else's wiki submission. Was this helpful to you?

14) Adam Smith gave a couple guest lectures. Were these helpful to you?

15) We spent a lot of class time watching the results of class effort. This was an experiment meant to be both enjoyable and motivational. Was it a good use of class time?

16) Making a video was an experiment.

a) Did you learn anything making your own video? Compare this to how much you learned in an average lab. Yes I loved the experience

b) Did you learn anything from other peoples videos?

Yes I did learn.

It was fun watching and making one.
I’m interested in whether you learned what you wanted to learn. This is almost always correlated with whether you enjoyed what you were learning. Thus when I ask whether you agree with something, I’m asking both whether you enjoyed the aspect of class, and whether it was helpful to your learning.

Written answers are way better than numbers, but numbers are easier if you’re lazy. I’d love to have both.

For each statement rate how much you agree with the statement on a scale of 1-10, 1=completely wrong, 10=totally right.

__

1. Class time can come in a variety of flavors. I’d like to organize class the best way in the future. I tried several experiments this quarter, which did you like:

a) I like pure lecture from well organized powerpoint slides that flow from one to the next. 5
b) I like some amount of discussion where the professor asks the class questions as the lecture goes forward. 10

c) I liked the ray tracing class where the class designed a ray tracing algorithm with lots of interactive discussion. 5

2. Book or class, where do you learn?

a) I learn from the book. 1
b) I learn from class lecture. 10
c) In this class the book was helpful to me. 2
d) In this class the lecture was helpful to me. 10
e) The lab was helpful to me. 10

3. Rate the overall amount that the following people contributed to your education in this class:

a) James Davis – 10
b) Bryan Harris – 10 [these two were awesome, very helpful.]

(c) Chirag Dave – 10
(d) Indrani Chakravarty – 8

(e) Krystle de Mesa / Emme Lovell (mostly they were behind the scenes so N/A for most) N/A

4. How was the homework?

a) Graded homework is good 9
b) Study questions but no homework would be good 1
c) I don’t care about sample questions at all 1

5-9) Moved to end of list!
10. Teams

a) Worked ok for videos? 8
b) Worked ok for the project? 9
c) I studied in a team other than the ones required 10
d) Study session with pizza good? 10

11) We spent a class talking about ‘after college’, was it useful to you and should I do this in the future? 10
 This really helped me understand my options & gave me Ideas for the future.

12) Labs and assignments, which should we keep? which replace?
 a) Painter 9
 b) Animal 10
 c) Terrain 10
 d) GLSL Shaders 10
 e) Ray Tracing 10
 f) Make a video 10
 g) Project 10
 h) Written homeworks 9
 i) Wiki submissions 5

13) The wiki submissions were an experiment. Did you ever once go look at anyone elses wiki submission. Was this helpful to you? 7
 Looked a few times, maybe 3 or 4, not especially helpful

14) Adam Smith gave a couple guest lectures. Were these helpful to you? 10
 Yes these were awesome.

15) We spent a lot of class time watching the results of class effort. This was an experiment meant to be both enjoyable and motivational. Was it a good use of class time? 5
 I wish this could have been done faster, but it was usually enjoyable, for the Ray tracing lab it was mostly pointless.

16) Making a video was an experiment.
 a) Did you learn anything making your own video? Compare this to how much you learned in an average lab? 5
 Learned much more in labs.
 b) Did you learn anything from other peoples videos?
 Not really, other then people's names.
17) I find that rankings of 1-10 for classes always come out as 7, no matter how good or bad the class is. Instead, write down the classes you took in the last 3 qtrs, ranked in order of how much you learned. Start with the class you learned the most in. I assume you took about 9 classes over three qtrs, and yes I know its hard to compare. So just a list like:

(most) [Math10, Phys24, Soc12, Math37, CMPS80J, CMPS1, X, X, X] (least)

18) Same question, but now rank the classes by which class you enjoyed the most. Start with the class you enjoyed the most. (I care about enjoyment because its correlated with long term chances you care about this topic in 10 years.)

CS160, Psych Children & War, PSY 181, Math 23A, CS101, ... (most) [CS160, Psych Children & War, PSY 181, Math 23A, CS101] (least)

5. Suggestions for improving any aspect of class?

Labs could be a bit more organized with at least a solid starting set of directions.

6. What is the single best thing about this class in terms of either current learning or your enthusiasm to learn more about this topic on your own in the future?

Labs were fun & educational.

Lectures were generally solid, but occasionally sleepy.

7. What is the single biggest waste of time in this class? (or actually damaging to your desire to learn)

Witt submissions.

8. Topic you wish was discussed but wasn’t?

Use of Blender &/or Maya.

9. Topic you wish was dropped?

Java

Thanks for an awesome class!

Great classes like this are the reason I'm in CS.
I'm interested in whether you learned what you wanted to learn. This is almost always correlated with whether you enjoyed what you were learning. Thus when I ask whether you agree with something, I'm asking both whether you enjoyed the aspect of class, and whether it was helpful to your learning:

Written answers are way better than numbers, but numbers are easier if you're lazy. I'd love to have both.

For each statement rate how much you agree with the statement on a scale of 1-10, 1=completely wrong, 10= totally right.

1. Class time can come in a variety of flavors. I'd like to organize class the best way in the future. I tried several experiments this quarter, which did you like:

a) I like pure lecture from well organized powerpoint slides that flow from one to the next.
b) I like some amount of discussion where the professor asks the class questions as the lecture goes forward.
c) I liked the ray tracing class where the class designed a ray tracing algorithm with lots of interactive discussion. Each format is good for certain material. A mix of all three would be ideal.

2. Book or class, where do you learn?
 a) I learn from the book.
 10 b) I learn from class lecture.
 2 c) In this class the book was helpful to me.
 10 d) In this class the lecture was helpful to me.
 10 e) The lab was helpful to me.

3. Rate the overall amount that the following people contributed to your education in this class:

 a) James Davis — 10
 b) Bryan Harris — 6
 c) Chirag Dave — 3
 d) Indrani Chakravarty — 3
 e) Krystle de Mesa / Emmie Lovell (mostly they were behind the scenes so N/A for most) — 3

4. How was the homework?

 a) Graded homework is good
 b) Study questions but no homework would be good
 c) I don't care about sample questions at all
 Sample questions are good!

5-9) Moved to end of list!
10. Teams

a) Worked ok for videos? 10
b) Worked ok for the project? 9
c) I studied in a team other than the ones required 1
d) Study session with pizza good? 5

11) We spent a class talking about ‘after college’, was it useful to you and should I do this in the future? Missed this lecture, but I definitely believe it’s worth spending class time on this topic.

12) Labs and assignments, which should we keep? which replace?

 1 = Replace 10 = Keep

 a) Painter -10
 b) Animal -10
 c) Terrain -10
 d) GLSL Shaders -10
 e) Ray Tracing -10
 f) Make a video -4 (Good project, but just too much of a time suck that close to end of quarter. In the future, assign at beginning of quarter)
 g) Project -9
 h) Written homeworks 5 (make due one month before final)
 i) Wiki submissions 3

 I got little out of the wiki. I never looked at anyone else’s, and only skimmed my own submissions.

13) The wiki submissions were an experiment. Did you ever once go look at anyone else’s wiki submission. Was this helpful to you?

 Oh... see above

14) Adam Smith gave a couple guest lectures. Were these helpful to you?

 Not “helpful”, per se, but interesting certainly.

15) We spent a lot of class time watching the results of class effort. This was an experiment meant to be both enjoyable and motivational. Was it a good use of class time?

 Yes... it was fun and very motivational (at least for those of us that like sharing off)

16) Making a video was an experiment.

 a) Did you learn anything making your own video? Compare this to how much you learned in an average lab. Learned more from labs. My teammates who knew more about
 b) Did you learn anything from other peoples videos? video going in, did more of the video work.

 No, but might’ve learned a bit if I’d seen then before the lectures on the corresponding subjects.
17) I find that rankings of 1-10 for classes always come out as 7, no matter how good or bad the class is. Instead, write down the classes you took in the last 3 qtrs, ranked in order of how much you learned. Start with the class you learned the most in. I assume you took about 9 classes over three qtrs, and yes I know its hard to compare. So just a list like: (most) [Math10, Phys24, Soc12, Math37, CMPS80I, CMPS1, X, X, X] (least) I don't remember course numbers. But the only other course I've learned this much in was Adv. OS, and this was a much better course than OS, and more fun.

18). Same question, but now rank the classes by which class you enjoyed the most. Start with the class you enjoyed the most. (I care about enjoyment because its correlated with long term chances you care about this topic in 10 years.) This class is by far the most fun learning experience I've had in years.

5. Suggestions for improving any aspect of class?
 Better overall organization, which I expect will come naturally with future iterations.

6. What is the single best thing about this class in terms or either current learning or your enthusiasm to learn more about this topic on your own in the future?
 I want to keep working on my raytracer 😊

7. What is the single biggest waste of time in this class? (or actually damaging to your desire to learn) Wiki submissions

8. Topic you wish was discussed but wasn't?

9. Topic you wish was dropped? Content is fine as is.
I'm interested in whether you learned what you wanted to learn. This is almost always correlated with whether you enjoyed what you were learning. Thus when I ask whether you agree with something, I'm asking both whether you enjoyed the aspect of class, and whether it was helpful to your learning:

Written answers are way better than numbers, but numbers are easier if you’re lazy. I’d love to have both.

For each statement rate how much you agree with the statement on a scale of 1-10, 1=completely wrong, 10= totally right.

1. Class time can come in a variety of flavors. I’d like to organize class the best way in the future. I tried several experiments this quarter, which did you like:

 a) I like pure lecture from well organized powerpoint slides that flow from one to the next. 4
 b) I like some amount of discussion where the professor asks the class questions as the lecture goes forward. 6
 c) I liked the ray tracing class where the class designed a ray tracing algorithm with lots of interactive discussion. 10

2. Book or class, where do you learn?
 a) I learn from the book. 3
 b) I learn from class lecture. 3
 c) In this class the book was helpful to me. 5
 d) In this class the lecture was helpful to me. 7
 e) The lab was helpful to me. 8

3. Rate the overall amount that the following people contributed to your education in this class:
 a) James Davis — supportive and informative
 b) Bryan Harris — knowledgeable and helpful
 c) Chirag Dave — good and supportive
 d) Indrani Chakravarty — kind and good learning
 e) Krystle de Mesa / Emme Lovell (mostly they were behind the scenes so N/A for most)

4. How was the homework?
 a) Graded homework is good 8
 b) Study questions but no homework would be good 2
 c) I don’t care about sample questions at all

5-9) Moved to end of list!
10. Teams

a) Worked ok for videos? Yes
b) Worked ok for the project? Yes

c) I studied in a team other than the ones required No

d) Study session with pizza good? Yes

11) We spent a class talking about ‘after college’, was it useful to you and should I do this in the future? No, too few people were there, and deadlines were looming.

12) Labs and assignments, which should we keep? which replace?

- Painter: Keep
- Animal: Keep
- Terrain: Keep
- GLSL Shaders: Replace
- Ray Tracing: Needed more time
- Make a video: Needed better examples
- Project: Not obvious at first
- Written homeworks: How to accomplish task?
- Wiki submissions: Keep

13) The wiki submissions were an experiment. Did you ever once go look at anyone else’s wiki submission. Was this helpful to you? Yes, it was helpful.

14) Adam Smith gave a couple guest lectures. Were these helpful to you? Not for class, but for extracurricular projects.

15) We spent a lot of class time watching the results of class effort. This was an experiment meant to be both enjoyable and motivational. Was it a good use of class time? Yes

16) Making a video was an experiment.

a) Did you learn anything making your own video? Compare this to how much you learned in an average lab. Practical applications

b) Did you learn anything from other peoples videos? Yes, and they were funny.
17) I find that rankings of 1-10 for classes always come out as 7, no matter how good or bad the class is. Instead, write down the classes you took in the last 3 qtrs, ranked in order of how much you learned. Start with the class you learned the most in. I assume you took about 9 classes over three qtrs, and yes I know its hard to compare. So just a list like:
(most) [Math10, Phys24, Soc12, Math37, CMPS80J, CMPS1, X, X, X] (least)
PHIL22, CS160, JAPNI, MUSCI11B, TA10, ECON1

18). Same question, but now rank the classes by which class you enjoyed the most. Start with the class you enjoyed the most. (I care about enjoyment because its correlated with long term chances you care about this topic in 10 years.)
JAPNI, PHIL22, CS160, MUSCI11B, ECON, TA10

5. Suggestions for improving any aspect of class?
More participation live in class from peers.

6. What is the single best thing about this class in terms or either current learning or your enthusiasm to learn more about this topic on your own in the future?
The books recommended.

7. What is the single biggest waste of time in this class? (or actually damaging to your desire to learn) HW with no feedback other than a grade.

8. Topic you wish was discussed but wasn’t?
more 2D stuff + manipulation for games.

9. Topic you wish was dropped?
BSP trees.
I’m interested in whether you learned what you wanted to learn. This is almost always correlated with whether you enjoyed what you were learning. Thus when I ask whether you agree with something, I’m asking both whether you enjoyed the aspect of class, and whether it was helpful to your learning:

Written answers are way better than numbers, but numbers are easier if you’re lazy. I’d love to have both.

For each statement rate how much you agree with the statement on a scale of 1-10, 1=completely wrong, 10=totally right.

1. Class time can come in a variety of flavors. I’d like to organize class the best way in the future. I tried several experiments this quarter, which did you like:

 a) I like pure lecture from well organized powerpoint slides that flow from one to the next. 3
 b) I like some amount of discussion where the professor asks the class questions as the lecture goes forward. 5 — I like class involvement but I personally don’t like talking in class or being picked. m.
 c) I liked the ray tracing class where the class designed a ray tracing algorithm with lots of interactive discussion. 8

2. Book or class, where do you learn?
 a) I learn from the book. 6
 b) I learn from class lecture. 6
 c) In this class the book was helpful to me. 5
 d) In this class the lecture was helpful to me. 5
 e) The lab was helpful to me. 9; I did most of my learning here

3. Rate the overall amount that the following people contributed to your education in this class:

 a) James Davis — 4
 b) Bryan Harris — 7
 c) Chirag Dave — 7
 d) Indrani Chakravarty — 2
 e) Krystle de Mesa / Emme Lovell (mostly they were behind the scenes so N/A for most) N/A

4. How was the homework?

 a) Graded homework is good 5
 b) Study questions but no homework would be good 7
 c) I don’t care about sample questions at all 1

5-9) Moved to end of list!
10. Teams

a) Worked ok for videos? 10
b) Worked ok for the project? 10
c) I studied in a team other than the ones required 10. It was extremely helpful.
d) Study session with pizza good? 9, not w/o a TA or facilitator. When Bryan wasn't there it was very disorganized & sometimes violent/uninviting.

11) We spent a class talking about 'after college', was it useful to you and should I do this in the future? 10, yes, I would like to also see a list of possible jobs too.

12) Labs and assignments, which should we keep? which replace?

a) Painter 5
b) Animal 10, very fun and educational!
c) Terrain 8, hard but I learned a lot
d) GLSL Shaders 9, great ed. tool but it was hard to start the lab w/o instructions.
e) Ray Tracing 10, make sure it's doable!
f) Make a video 5, a lot of stress during Thanks every break.
g) Project 8, give us more time.
h) Written homeworks 7
i) Wiki submissions 7

13) The wiki submissions were an experiment. Did you ever once go look at anyone else's wiki submission. Was this helpful to you?
 Yes I did and sometimes it was helpful! I liked the java applets.

14) Adam Smith gave a couple guest lectures. Were these helpful to you?
 Yes, educational and entertaining.

15) We spent a lot of class time watching the results of class effort. This was an experiment meant to be both enjoyable and motivational. Was it a good use of class time?
 I like your concern and I believe getting feedback from the class was a good use of class time.

16) Making a video was an experiment.

a) Did you learn anything making your own video? Compare this to how much you learned in an average lab. I did learn more about my Subject, I felt I learned more than an average lab
b) Did you learn anything from other peoples videos?
 Yes, some were pretty informative
17) I find that rankings of 1-10 for classes always come out as 7, no matter how good or bad the class is. Instead, write down the classes you took in the last 3 qtrs., ranked in order of how much you learned. Start with the class you learned the most in. I assume you took about 9 classes over three qtrs., and yes I know its hard to compare. So just a list like:

(most) [Math10, Phys24, Soc12, Math37, CMPS80J, CMPS1, X, X, X] (least)

18) Same question, but now rank the classes by which class you enjoyed the most. Start with the class you enjoyed the most. (I care about enjoyment because its correlated with long term chances you care about this topic in 10 years.)

(most) [CS109, Math21, Econ1] (least)

5. Suggestions for improving any aspect of class?
 Lecture about programming too.

6. What is the single best thing about this class in terms or either current learning or your enthusiasm to learn more about this topic on your own in the future?
 The possibility of creating really awesome realistic graphics

7. What is the single biggest waste of time in this class? (or actually damaging to your desire to learn)
 Stolen power points

8. Topic you wish was discussed but wasn’t?

9. Topic you wish was dropped?
 Convolution
I'm interested in whether you learned what you wanted to learn. This is almost always correlated with whether you enjoyed what you were learning. Thus when I ask whether you agree with something, I'm asking both whether you enjoyed the aspect of class, and whether it was helpful to your learning:

Written answers are way better than numbers, but numbers are easier if you're lazy. I'd love to have both.

For each statement rate how much you agree with the statement on a scale of 1-10, 1=completely wrong, 10=totally right.

1. Class time can come in a variety of flavors. I'd like to organize class the best way in the future. I tried several experiments this quarter, which did you like:

- [] a) I like pure lecture from well organized powerpoint slides that flow from one to the next. 7
- [] b) I like some amount of discussion where the professor asks the class questions as the lecture goes forward. 5
- [] c) I liked the ray tracing class where the class designed a ray tracing algorithm with lots of interactive discussion. N/A

2. Book or class, where do you learn?
 - [] a) I learn from the book.
 - [] b) I learn from class lecture.
 - [] c) In this class the book was helpful to me.
 - [] d) In this class the lecture was helpful to me.
 - [] e) The lab was helpful to me.

3. Rate the overall amount that the following people contributed to your education in this class:

 - [] a) James Davis – 7
 - [] b) Bryan Harris – 7
 - [] c) Chirag Dave – 0
 - [] d) Indrani Chakravarty – 0
 - [] e) Krystle de Mesa / Emme Lovell (mostly they were behind the scenes so N/A for most) 0

4. How was the homework?

 - [] a) Graded homework is good
 - [] b) Study questions but no homework would be good.
 - [] c) I don't care about sample questions at all

5-9) Moved to end of list!
10. Teams

a) Worked ok for videos?
b) Worked ok for the project?
c) I studied in a team other than the ones required
N/A
d) Study session with pizza good?

11) We spent a class talking about ‘after college’, was it useful to you and should I do this in the future? Sure it was useful, but the last half of class had very little material, so I'd rather you had done that.

12) Labs and assignments, which should we keep? which replace?

Keep a) Painter
Keep b) Animal
Keep c) Terrain
Keep d) GLSL Shaders
Keep e) Ray Tracing
 f) Make a video
 g) Project
Keep h) Written homeworks
 i) Wiki submissions

13) The wiki submissions were an experiment. Did you ever once go look at anyone elses wiki submission. Was this helpful to you?
NO

14) Adam Smith gave a couple guest lectures. Were these helpful to you?
YES

15) We spent a lot of class time watching the results of class effort. This was an experiment meant to be both enjoyable and motivational. Was it a good use of class time?
NOT really, we did it too much.

16) Making a video was an experiment.

a) Did you learn anything making your own video? Compare this to how much you learned in an average lab.
S
b) Did you learn anything from other peoples videos?
17) I find that rankings of 1-10 for classes always come out as 7, no matter how good or bad the class is. Instead, write down the classes you took in the last 3 qtrs, ranked in order of how much you learned. Start with the class you learned the most in. I assume you took about 9 classes over three qtrs, and yes I know its hard to compare. So just a list like:
(most) [Math10, Phys24, Soc12, Math37, CMPS80J, CMPS1, X, X, X] (least)

CS111, CS120, CS130, CS109, CS160, econ, jap, pop, cult.

18) Same question, but now rank the classes by which class you enjoyed the most. Start with the class you enjoyed the most. (I care about enjoyment because its correlated with long term chances you care about this topic in 10 years.)

CS111, CS109, CS160, CS180, CS130, econ, pop, cult.

5. Suggestions for improving any aspect of class?

Cover more material, organize lectures more better, cover m more detail.

6. What is the single best thing about this class in terms or either current learning or your enthusiasm to learn more about this topic on your own in the future?

Ray tracing lab.

7. What is the single biggest waste of time in this class? (or actually damaging to your desire to learn)

All the lab in reviews, TOO MUCH TIME spent on logistics for the course.

8. Topic you wish was discussed but wasn't?

Directx, other graphics APIs

9. Topic you wish was dropped?

None.
I’m interested in whether you learned what you wanted to learn. This is almost always correlated with whether you enjoyed what you were learning. Thus when I ask whether you agree with something, I’m asking both whether you enjoyed the aspect of class, and whether it was helpful to your learning.

Written answers are way better than numbers, but numbers are easier if you’re lazy. I’d love to have both.

For each statement rate how much you agree with the statement on a scale of 1-10, 1=completely wrong, 10=totally right.

1. Class time can come in a variety of flavors. I’d like to organize class the best way in the future. I tried several experiments this quarter, which did you like:

a) I like pure lecture from well organized powerpoint slides that flow from one to the next.

b) I like some amount of discussion where the professor asks the class questions as the lecture goes forward.

c) I liked the ray tracing class where the class designed a ray tracing algorithm with lots of interactive discussion.

2. Book or class, where do you learn?

a) I learn from the book.

b) I learn from class lecture.

c) In this class the book was helpful to me.

d) In this class the lecture was helpful to me.

e) The lab was helpful to me.

3. Rate the overall amount that the following people contributed to your education in this class:

a) James Davis

b) Bryan Harris

c) Chirag Dave

d) Indrani Chakravarty

e) Krystle de Mesa / Emme Lovell (mostly they were behind the scenes so N/A for most)

4. How was the homework?

a) Graded homework is good

b) Study questions but no homework would be good

c) I don’t care about sample questions at all

5-9) Moved to end of list!
10. Teams

a) Worked ok for videos?

b) Worked ok for the project?

c) I studied in a team other than the ones required?

d) Study session with pizza good?

11) We spent a class talking about ‘after college’, was it useful to you and should I do this in the future?

12) Labs and assignments, which should we keep? which replace?

a) Painter

b) Animal

c) Terrain

d) GLSL Shaders

e) Ray Tracing

f) Make a video

g) Project

h) Written homeworks

i) Wiki submissions

13) The wiki submissions were an experiment. Did you ever once go look at anyone elses wiki submission. Was this helpful to you?

Never once looked.

14) Adam Smith gave a couple guest lectures. Were these helpful to you?

Mildly, though I imagine James could have done them better.

15) We spent a lot of class time watching the results of class effort. This was an experiment meant to be both enjoyable and motivational. Was it a good use of class time?

The latter ones were what it went faster.

16) Making a video was an experiment.

a) Did you learn anything making your own video? Compare this to how much you learned in an average lab.

No I knew video stuff before.

b) Did you learn anything from other peoples videos?

They were already covered subjects
17) I find that rankings of 1-10 for classes always come out as 7, no matter how good or bad the class is. Instead, write down the classes you took in the last 3 qtrs, ranked in order of how much you learned. Start with the class you learned the most in. I assume you took about 9 classes over three qtrs, and yes I know it's hard to compare. So just a list like:
(most) [Math10, Phys24, Soc12, Math37, CMPS80J, CMPS11, X, X, X] (least)

 CS101 CS12b Film 20 Independent 90F

18). Same question, but now rank the classes by which class you enjoyed the most. Start with the class you enjoyed the most. (I care about enjoyment because it's correlated with long term chances you care about this topic in 10 years.)

 CS12b CS101 Film 20

5. Suggestions for improving any aspect of class?
 More dynamic lectures, better spacing of projects.
 More rigid so that things don't get continually pushed back.

6. What is the single best thing about this class in terms of either current learning or your enthusiasm to learn more about this topic on your own in the future?

 The shaders lab.

7. What is the single biggest waste of time in this class? (or actually damaging to your desire to learn)
 The video and how the final project was rendered useless.

8. Topic you wish was discussed but wasn't?

 The video.

9. Topic you wish was dropped?

 The video.
I'm interested in whether you learned what you wanted to learn. This is almost always correlated with whether you enjoyed what you were learning. Thus when I ask whether you agree with something, I'm asking both whether you enjoyed the aspect of class, and whether it was helpful to your learning:

Written answers are way better than numbers, but numbers are easier if you're lazy. I'd love to have both.

For each statement rate how much you agree with the statement on a scale of 1-10, 1=completely wrong, 10=totally right.

1. Class time can come in a variety of flavors. I’d like to organize class the best way in the future. I tried several experiments this quarter, which did you like:

5 a) I like pure lecture from well organized powerpoint slides that flow from one to the next.
7 b) I like some amount of discussion where the professor asks the class questions as the lecture goes forward.
5 c) I liked the ray tracing class where the class designed a ray tracing algorithm with lots of interactive discussion.

2. Book or class, where do you learn?
1 a) I learn from the book.
5 b) I learn from class lecture.
1 c) In this class the book was helpful to me.
5 d) In this class the lecture was helpful to me.
5 e) The lab was helpful to me.

3. Rate the overall amount that the following people contributed to your education in this class:

7 a) James Davis –
5 b) Bryan Harris –
4 c) Chirag Dave –
4 d) Indrani Chakravarty –
e) Krystle de Mesa / Emme Lovell (mostly they were behind the scenes so N/A for most)

4. How was the homework?

2 a) Graded homework is good
2 b) Study questions but no homework would be good
7 c) I don’t care about sample questions at all

5-9) Moved to end of list!
10. Teams

a) Worked ok for videos?
b) Worked ok for the project?
c) I studied in a team other than the ones required
d) Study session with pizza good?

11) We spent a class talking about ‘after college’, was it useful to you and should I do this in the future? *Sure, it gave me time to work on homework for other classes.*

12) Labs and assignments, which should we keep? which replace?

a) Painter
b) Animal
c) Terrain
d) GLSL Shaders
e) Ray Tracing
f) Make a video
g) Project
h) Written homeworks
i) Wiki submissions

13) The wiki submissions were an experiment. Did you ever once go look at anyone else’s wiki submission. Was this helpful to you?

Nope

14) Adam Smith gave a couple guest lectures. Were these helpful to you?

Yes, they were awesome.

15) We spent a lot of class time watching the results of class effort. This was an experiment meant to be both enjoyable and motivational. Was it a good use of class time?

No opinion.

16) Making a video was an experiment.

a) Did you learn anything making your own video? Compare this to how much you learned in an average lab.
b) Did you learn anything from other peoples videos?
17) I find that rankings of 1-10 for classes always come out as 7, no matter how good or bad the class is. Instead, write down the classes you took in the last 3 qtrs, ranked in order of how much you learned. Start with the class you learned the most in. I assume you took about 9 classes over three qtrs, and yes I know its hard to compare. So just a list like:

(most) [Math10, Phys24, Soc12, Math37, CMPS80J, CMPS1, X, X, X] (least)

1 Linear Algebra
2 Japanese 1
3 CS101
4 CS164
5 CS170
6 CS160
7 [Everything else]
8 CE80E

18). Same question, but now rank the classes by which class you enjoyed the most. Start with the class you enjoyed the most. (I care about enjoyment because its correlated with long term chances you care about this topic in 10 years.)

1 Japanese 1
2 CS170
3 [everything else]

5. Suggestions for improving any aspect of class?

No video project.

6. What is the single best thing about this class in terms of either current learning or your enthusiasm to learn more about this topic on your own in the future?

Lab contests

7. What is the single biggest waste of time in this class? (or actually damaging to your desire to learn) Video project.

8. Topic you wish was discussed but wasn't?

Shadow volumes, or shadow maps

9. Topic you wish was dropped?

Signal processing.
I'm interested in whether you learned what you wanted to learn. This is almost always correlated with whether you enjoyed what you were learning. Thus when I ask whether you agree with something, I'm asking both whether you enjoyed the aspect of class, and whether it was helpful to your learning:

Written answers are way better than numbers, but numbers are easier if you're lazy. I'd love to have both.

For each statement rate how much you agree with the statement on a scale of 1-10, 1=completely wrong, 10= totally right.

1. Class time can come in a variety of flavors. I'd like to organize class the best way in the future. I tried several experiments this quarter, which did you like:
 a) I like pure lecture from well organized powerpoint slides that flow from one to the next. 8
 b) I like some amount of discussion where the professor asks the class questions as the lecture goes forward. 9
 c) I liked the ray tracing class where the class designed a ray tracing algorithm with lots of interactive discussion. 9
 d) But they need to be a bit less abstract and vague. But they need to be a bit less abstract and vague.

2. Book or class, where do you learn?
 a) I learn from the book. 3
 b) I learn from class lecture. 8
 c) In this class the book was helpful to me. 1
 d) In this class the lecture was helpful to me. 5
 e) The lab was helpful to me. 10

3. Rate the overall amount that the following people contributed to your education in this class:
 a) James Davis –
 b) Bryan Harris –
 c) Chirag Dave –
 d) Indrani Chakravarty –
 e) Krystle de Mesa / Emme Lovell (mostly they were behind the scenes so N/A for most)

4. How was the homework?
 a) Graded homework is good 10 – yes, at right difficulty & length
 b) Study questions but no homework would be good 5
 c) I don’t care about sample questions at all 0

5-9) Moved to end of list!
17) I find that rankings of 1-10 for classes always come out as 7, no matter how good or bad the class is. Instead, write down the classes you took in the last 3 qtrs, ranked in order of **how much you learned**. Start with the class you learned the most in. I assume you took about 9 classes over three qtrs, and yes I know its hard to compare. So just a list like:

(most) [Math10, Phys24, Soc12, Math37, CMPS80J, CMPS1, X, X, X] (least)

(least) [CMPS12B, LING55, CMPS16O, AMS 27, CMPS101, MUSIC80P, CMPS16A, AMS 131 (least]

18). Same question, but now rank the classes by **which class you enjoyed the most**. Start with the class you enjoyed the most. (I care about enjoyment because its correlated with long term chances you care about this topic in 10 years.)

(least) [LING55, CMPS12B, CMPS16O, AMS 27, MUSIC80P, CMPS101, AMS 131] (least]

5. Suggestions for improving any aspect of class?

- give answers for midterms + final practices! we are not children, we know how to study. if we want to screw ourselves + just look @ the answers, that's our fault. otherwise, solutions are really really useful for studying.

- class felt really unorganized. Many times no one knew what was going on, and you seemed to be giving excuse.

6. What is the single best thing about this class in terms or either current learning or your enthusiasm to learn more about this topic on your own in the future?

also they're cool, and you learn the most.

7. What is the single biggest waste of time in this class? (or actually damaging to your desire to learn)

8. Topic you wish was discussed but wasn't?

Radiology

9. Topic you wish was dropped?

Sampling theory. Given what I understood of the lecture, or it, you could have just explained it in 5 mins.

... everyone should get his email, and he should be on top of his stuff.

* SP s were often hard to follow, and felt abstract at times.
I'm interested in whether you learned what you wanted to learn. This is almost always correlated with whether you enjoyed what you were learning. Thus when I ask whether you agree with something, I'm asking both whether you enjoyed the aspect of class, and whether it was helpful to your learning:

Written answers are way better than numbers, but numbers are easier if you're lazy. I'd love to have both.

For each statement rate how much you agree with the statement on a scale of 1-10, 1=completely wrong, 10=totally right.

1. Class time can come in a variety of flavors. I'd like to organize class the best way in the future. I tried several experiments this quarter, which did you like:

 5 a) I like pure lecture from well organized powerpoint slides that flow from one to the next.

 4 b) I like some amount of discussion where the professor asks the class questions as the lecture goes forward.

 10 c) I liked the ray tracing class where the class designed a ray tracing algorithm with lots of interactive discussion.

2. Book or class, where do you learn?

 4 a) I learn from the book.

 5 b) I learn from class lecture.

 3 c) In this class the book was helpful to me.

 9 d) In this class the lecture was helpful to me.

 1 e) The lab was helpful to me.

3. Rate the overall amount that the following people contributed to your education in this class:

 a) James Davis - 10

 b) Bryan Harris - 10

 c) Chirag Dave - 9, 5

 d) Indrani Chakravarty - 10

 e) Krystle de Mesa / Emme Lovell (mostly they were behind the scenes so N/A for most)

4. How was the homework?

 9 a) Graded homework is good

 5 b) Study questions but no homework would be good

 9 c) I don't care about sample questions at all

5-9) Moved to end of list!
10. Teams

Qa) Worked ok for videos?
Qb) Worked ok for the project?
Qc) I studied in a team other than the ones required
Qd) Study session with pizza good?

11) We spent a class talking about 'after college', was it useful to you and should I do this in the future? It was very useful, I ended up being able to consider things that I thought I definitely wouldn't do like grad school. Before the class I wasn't planning on it at all.

12) Labs and assignments, which should we keep? which replace?

a) Painter - 8
b) Animal - 8
c) Terrain - 10
d) GLSL Shaders - 10
e) Ray Tracing - 10
f) Make a video - 10
g) Project - 7
h) Written homeworks - 7
i) Wiki submissions - 3

13) The wiki submissions were an experiment. Did you ever once go look at anyone else's wiki submission. Was this helpful to you? I think I looked at wiki submissions once, maybe twice.

14) Adam Smith gave a couple guest lectures. Were these helpful to you? They were very interesting, although the things lectured on weren't on the tests if I can remember although I did learn a lot.

15) We spent a lot of class time watching the results of class effort. This was an experiment meant to be both enjoyable and motivational. Was it a good use of class time? It was good for most lab except the ray-tracer and shader lab, because there didn't leave as much room for creativity.

16) Making a video was an experiment.

a) Did you learn anything making your own video? Compare this to how much you learned in an average lab. 10
b) Did you learn anything from other peoples videos? 8
17) I find that rankings of 1-10 for classes always come out as 7, no matter how good or bad the class is. Instead, write down the classes you took in the last 3 qtrs, ranked in order of how much you learned. Start with the class you learned the most in, I assume you took about 9 classes over three qtrs, and yes I know its hard to compare. So just a list like:

(most) [Math10, Phys24, Soc12, Math37, CMPS80J, CMPS1, X, X, X] (least)

CE 12, CS160, CS101, Film 20c, CE110, Mus 11A,
Phys 6A, Econ 1, CE 80K

18). Same question, but now rank the classes by which class you enjoyed the most. Start with the class you enjoyed the most. (I care about enjoyment because its correlated with long term chances you care about this topic in 10 years.)

Phys 6A, CS160, Film 20c, CE12, Mus 11A, CS101, CE 80K,
Econ 1, CE 110

5. Suggestions for improving any aspect of class?

My only suggestion is to plan better so all the projects & final aren't stacked up all at the end.

6. What is the single best thing about this class in terms or either current learning or your enthusiasm to learn more about this topic on your own in the future?

The best thing is that I don't see it as impossible any more to make very realistic looking things in computer graphics.

7. What is the single biggest waste of time in this class? (or actually damaging to your desire to learn)

Wiki submissions

8. Topic you wish was discussed but wasn't?

Use of graphics studios/mesh generators is blender, 3D studio max

9. Topic you wish was dropped?

Nothing
I'm interested in whether you learned what you wanted to learn. This is almost always correlated with whether you enjoyed what you were learning. Thus when I ask whether you agree with something, I’m asking both whether you enjoyed the aspect of class, and whether it was helpful to your learning.

Written answers are way better than numbers, but numbers are easier if you’re lazy. I’d love to have both.

For each statement rate how much you agree with the statement on a scale of 1-10, 1=completely wrong, 10=totally right.

1. Class time can come in a variety of flavors. I’d like to organize class the best way in the future. I tried several experiments this quarter, which did you like:
 6 a) I like pure lecture from well organized powerpoint slides that flow from one to the next.
 10 b) I like some amount of discussion where the professor asks the class questions as the lecture goes forward.
 6 c) I liked the ray tracing class where the class designed a ray tracing algorithm with lots of interactive discussion.

2. Book or class, where do you learn?
 8 a) I learn from the book.
 2 b) I learn from class lecture.
 8 c) In this class the book was helpful to me.
 8 d) In this class the lecture was helpful to me.
 7 e) The lab was helpful to me.

3. Rate the overall amount that the following people contributed to your education in this class:
 8 a) James Davis –
 6 b) Bryan Harris –
 8 c) Chirag Dave –
 5 d) Indrani Chakravarty –
 2 e) Krystle de Mesa / Emme Lovell (mostly they were behind the scenes so N/A for most)

4. How was the homework?
 5 a) Graded homework is good
 8 b) Study questions but no homework would be good
 0 c) I don’t care about sample questions at all

5-9) Moved to end of list!
10. Teams

a) Worked ok for videos?
b) Worked ok for the project?
c) I studied in a team other than the ones required
d) Study session with pizza good?

More focus would be better. Chaos but order + learning emerged.

11) We spent a class talking about ‘after college’, was it useful to you and should I do this in the future?

1 class. I felt the last third of the course was fluff.

12) Labs and assignments, which should we keep? which replace?

a) Painter
b) Animal
c) Terrain
d) GLSL Shaders
e) Ray Tracing
f) Make a video
g) Project
h) Written homeworks
i) Wiki submissions

13) The wiki submissions were an experiment. Did you ever once go look at anyone else's wiki submission? Was this helpful to you?

If theHW was released before the wikis were due, I'd naturally produce it.

14) Adam Smith gave a couple guest lectures. Were these helpful to you?

Find links while solving HW problems.

15) We spent a lot of class time watching the results of class effort. This was an experiment meant to be both enjoyable and motivational. Was it a good use of class time?

16) Making a video was an experiment.

a) Did you learn anything making your own video? Compare this to how much you learned in an average lab.
b) Did you learn anything from other peoples videos?

I almost solely used videos as final exam study material! That is a good sign of their effectiveness.
17) I find that rankings of 1-10 for classes always come out as 7, no matter how good or bad the class is. Instead, write down the classes you took in the last 3 qtrs, ranked in order of how much you learned. Start with the class you learned the most in. I assume you took about 9 classes over three qtrs, and yes I know its hard to compare. So just a list like:

(most) [Math10, Phys24, Soc12, Math37, CMPS80J, CMPS1, X, X, X] (least)

9 5 8 7 8 10 7
CS101 CE107 AMS27.27L CS132 CE140 CS104 CS160

18). Same question, but now rank the classes by which class you enjoyed the most. Start with the class you enjoyed the most. (I care about enjoyment because its correlated with long term chances you care about this topic in 10 years.)

CS160, CS101, CE110, ...

5. Suggestions for improving any aspect of class?

More specific open gl intro from you in lecture.

6. What is the single best thing about this class in terms or either current learning or your enthusiasm to learn more about this topic on your own in the future?

More experience coding in C/C++

7. What is the single biggest waste of time in this class? (or actually damaging to your desire to learn)

Lack of lectures the last part of the quarter.

8. Topic you wish was discussed but wasn't?

More on radiosity, BSP trees ...

9. Topic you wish was dropped?
interested in whether you learned what you wanted to learn. This is almost always correlated with whether you enjoyed what you were learning. Thus when I ask whether you agree with something, I’m asking both whether you enjoyed the aspect of class, and whether it was helpful to your learning:

Written answers are way better than numbers, but numbers are easier if you’re lazy. I’d love to have both.

For each statement rate how much you agree with the statement on a scale of 1-10, 1=completely wrong, 10=totally right.

1. Class time can come in a variety of flavors. I’d like to organize class the best way in the future. I tried several experiments this quarter, which did you like:

a) I like pure lecture from well organized powerpoint slides that flow from one to the next. b) I like some amount of discussion where the professor asks the class questions as the lecture goes forward.

b) I like the ray tracing class where the class designed a ray tracing algorithm with lots of interactive discussion.

c) I liked the ray tracing class where the class designed a ray tracing algorithm with lots of interactive discussion.

d) In this class the book was helpful to me.

e) In this class the lecture was helpful to me.

2. Book or class, where do you learn?

2. Book or class, where do you learn?

b) I learn from class lecture.

c) In this class the book was helpful to me.

d) In this class the lecture was helpful to me.

e) The lab was helpful to me.

3. Rate the overall amount that the following people contributed to your education in this class:

a) James Davis – 6/10

b) Bryan Harris – 8/10

c) Chirag Dave –

d) Indrani Chakravarty –

e) Krystle de Mesa / Emme Lovell (mostly they were behind the scenes so N/A for most)

4. How was the homework?

a) Graded homework is good

b) Study questions but no homework would be good

c) I don’t care about sample questions at all

5-9) Moved to end of list!
10. Teams

a) Worked ok for videos? yes
b) Worked ok for the project? yes
c) I studied in a team other than the ones required yes
d) Study session with pizza good? yes

11) We spent a class talking about ‘after college’, was it useful to you and should I do this in the future? depends, it’s good for some, not for all.

12) Labs and assignments, which should we keep? which replace?

a) Painter keep
b) Animal keep
c) Terrain keep
d) GLSL Shaders keep
e) Ray Tracing keep
f) Make a video get rid of the video, give more time to final project
g) Project keep
h) Written homeworks keep
i) Wiki submissions loose (don’t throw it away entirely, just don’t score wiki stuff)

13) The wiki submissions were an experiment. Did you ever once go look at anyone else’s wiki submission. Was this helpful to you?

I made edits to the wiki that had nothing to do with points. (I added a section on SEO screen tech) Wiki are good to gather info, but bad for points.

14) Adam Smith gave a couple guest lectures. Were these helpful to you?

Smart guy, good stuff

15) We spent a lot of class time watching the results of class effort. This was an experiment meant to be both enjoyable and motivational. Was it a good use of class time?

Yes, it shows what is possible with what we have learned

16) Making a video was an experiment.

a) Did you learn anything making your own video? Compare this to how much you learned in an average lab.
b) Did you learn anything from other people’s videos?

This isn’t a film class, there were other thing I felt were more important than the videos, not to say that the final results weren’t enjoyable.
17) I find that rankings of 1-10 for classes always come out as 7, no matter how good or bad the class is. Instead, write down the classes you took in the last 3 qtrs, ranked in order of how much you learned. Start with the class you learned the most in. I assume you took about 9 classes over three qtrs, and yes I know its hard to compare. So just a list like:

(most) [Math10, Phys24, Soc12, Math37, CMPS80J, CMPS1, X, X, X] (least)

CS101, Math191B, Math21, CS160, Art80A

18). Same question, but now rank the classes by which class you enjoyed the most. Start with the class you enjoyed the most. (I care about enjoyment because its correlated with long term chances you care about this topic in 10 years.)

5. Suggestions for improving any aspect of class?

6. What is the single best thing about this class in terms or either current learning or your enthusiasm to learn more about this topic on your own in the future?

7. What is the single biggest waste of time in this class? (or actually damaging to your desire to learn)

videos (sorry, but they did annoy me) 😞

8. Topic you wish was discussed but wasn’t?

9. Topic you wish was dropped?
I'm interested in whether you learned what you wanted to learn. This is almost always correlated with whether you enjoyed what you were learning. Thus when I ask whether you agree with something, I'm asking both whether you enjoyed the aspect of class, and whether it was helpful to your learning:

Written answers are way better than numbers, but numbers are easier if you're lazy. I'd love to have both.

For each statement rate how much you agree with the statement on a scale of 1-10, 1=completely wrong, 10= totalmente right.

1. Class time can come in a variety of flavors. I'd like to organize class the best way in the future. I tried several experiments this quarter, which did you like:
 a) I like pure lecture from well organized powerpoint slides that flow from one to the next. 10
 b) I like some amount of discussion where the professor asks the class questions as the lecture goes forward.
 c) I liked the ray tracing class where the class designed a ray tracing algorithm with lots of interactive discussion.

2. Book or class, where do you learn?
 a) I learn from the book. 0
 b) I learn from class lecture. 2
 c) In this class the book was helpful to me. 7
 d) In this class the lecture was helpful to me. 7
 e) The lab was helpful to me. 7

3. Rate the overall amount that the following people contributed to your education in this class:
 a) James Davis - 1
 b) Bryan Harris - 10
 c) Chirag Dave - 10
 d) Indrani Chakravarty - 7
 e) Krystle de Mesa / Emme Lovell (mostly they were behind the scenes so N/A for most) N/A

4. How was the homework?
 a) Graded homework is good 10
 b) Study questions but no homework would be good 1
 c) I don't care about sample questions at all 1

5-9) Moved to end of list!
10. Teams

a) Worked ok for videos?

b) Worked ok for the project?

c) I studied in a team other than the ones required

d) Study session with pizza good?

11) We spent a class talking about ‘after college’, was it useful to you and should I do this in the future?

 Very useful, you must do this again.

12) Labs and assignments, which should we keep? which replace?

 a) Painter
 b) Animal
 c) Terrain
 d) GLSL Shaders
 e) Ray Tracing
 f) Make a video
 g) Project
 h) Written homeworks
 i) Wiki submissions

13) The wiki submissions were an experiment. Did you ever once go look at anyone elses wiki submission. Was this helpful to you?

 No I didn't

14) Adam Smith gave a couple guest lectures. Were these helpful to you?

 Yes, it was very interesting learning about the games he made for CS 20

15) We spent a lot of class time watching the results of class effort. This was an experiment meant to be both enjoyable and motivational. Was it a good use of class time?

 It was nice but all the good ones just made me feel bad about what I did.

16) Making a video was an experiment.

 a) Did you learn anything making your own video? Compare this to how much you learned in an average lab.

 b) Did you learn anything from other peoples videos?
17) I find that rankings of 1-10 for classes always come out as 7, no matter how good or bad the class is. Instead, write down the classes you took in the last 3 qtrs, ranked in order of how much you learned. Start with the class you learned the most in. I assume you took about 9 classes over three qtrs, and yes I know its hard to compare. So just a list like:

(most) [Math10, Phys24, Soc12, Math37, CMPS80J, CMPS1, X, X, X] (least)

CS12A, CS12B, WRIT-2, MUSC-80Q, AMS-27, MATH-23A, PSYC-1, CS101

18). Same question, but now rank the classes by which class you enjoyed the most. Start with the class you enjoyed the most. (I care about enjoyment because its correlated with long term chances you care about this topic in 10 years.)

MUSC-80Q, WRIT-2, PSYC-1, CS12B, AMS-27, CS12A, MATH-23A

5. Suggestions for improving any aspect of class?

TA must host the review session. And actual homework examples should be run through in class.

6. What is the single best thing about this class in terms or either current learning or your enthusiasm to learn more about this topic on your own in the future?

The fact that I'm doing graphics is motivation but I need direction!

7. What is the single biggest waste of time in this class? (or actually damaging to your desire to learn) lecture. I need a hands on approach.

8. Topic you wish was discussed but wasn’t?

N/A

9. Topic you wish was dropped?

The videos. N/A
17) I find that rankings of 1-10 for classes always come out as 7, no matter how good or bad the class is. Instead, write down the classes you took in the last 3 qtrs, ranked in order of how much you learned. Start with the class you learned the most in. I assume you took about 9 classes over three qtrs, and yes I know its hard to compare. So just a list like:

(most) [Math10, Phys24, Soc12, Math37, CMPS80J, CMPS1, X, X, X] (least)

Multivariable calculus

18). Same question, but now rank the classes by which class you enjoyed the most. Start with the class you enjoyed the most. (I care about enjoyment because its correlated with long term chances you care about this topic in 10 years.)

(most) [Math, CS111, CS101, CS102, CS104, CS111] (least)

5. Suggestions for improving any aspect of class?

6. What is the single best thing about this class in terms of either current learning or your enthusiasm to learn more about this topic on your own in the future?

Informality of how it was taught.

7. What is the single biggest waste of time in this class? (or actually damaging to your desire to learn) Video.

8. Topic you wish was discussed but wasn’t?

Radiocity

9. Topic you wish was dropped?
I'm interested in whether you learned what you wanted to learn. This is almost always correlated with whether you enjoyed what you were learning. Thus when I ask whether you agree with something, I'm asking both whether you enjoyed the aspect of class, and whether it was helpful to your learning:

Written answers are way better than numbers, but numbers are easier if you're lazy. I'd love to have both.

For each statement rate how much you agree with the statement on a scale of 1-10, 1=completely wrong, 10=totally right.

1. Class time can come in a variety of flavors. I'd like to organize class the best way in the future. I tried several experiments this quarter, which did you like:

 a) I like pure lecture from well organized powerpoint slides that flow from one to the next. 10
 b) I like some amount of discussion where the professor asks the class questions as the lecture goes forward. 5
 c) I liked the ray tracing class where the class designed a ray tracing algorithm with lots of interactive discussion. 6

2. Book or class, where do you learn?
 a) I learn from the book. 7
 b) I learn from class lecture. 10
 c) In this class the book was helpful to me. 5
 d) In this class the lecture was helpful to me. 7
 e) The lab was helpful to me. 6

3. Rate the overall amount that the following people contributed to your education in this class:

 a) James Davis – 10
 b) Bryan Harris – 10
 c) Chirag Dave – N/A
 d) Indrani Chakravarty – 9
 e) Krystle de Mesa / Emme Lovell (mostly they were behind the scenes so N/A for most)

4. How was the homework? Good, enjoyed the way we had it. Didn't like Wiki because I never remembered to do it.

 a) Graded homework is good
 b) Study questions but no homework would be good
 c) I don't care about sample questions at all

5-9) Moved to end of list!
10. Teams

Didn't work in teams.

a) Worked ok for videos?
b) Worked ok for the project?
c) I studied in a team other than the ones required
d) Study session with pizza good?

11) We spent a class talking about ‘after college’, was it useful to you and should I do this in the future?

Yes.

12) Labs and assignments, which should we keep? which replace?

a) Painter keep
b) Animal keep, definitely
c) Terrain keep
d) GLSL Shaders keep
e) Ray Tracing keep.
f) Make a video replace
g) Project maybe add something to it; while interesting, something more interactive would be nice.
h) Written homeworks keep
i) Wiki submissions replace

13) The wiki submissions were an experiment. Did you ever once go look at anyone elses wiki submission. Was this helpful to you?

Never had the chance. Remembered they were there.

14) Adam Smith gave a couple guest lectures. Were these helpful to you?

They were very interesting.

15) We spent a lot of class time watching the results of class effort. This was an experiment meant to be both enjoyable and motivational. Was it a good use of class time?

Yes, but I feel like movies can be much shorter and still show how interesting the lab is.

16) Making a video was an experiment.

a) Did you learn anything making your own video? Compare this to how much you learned in an average lab.

No, I spent most of the time moving the video, not doing research.
b) Did you learn anything from other peoples videos?
I'm interested in whether you learned what you wanted to learn. This is almost always correlated with whether you enjoyed what you were learning. Thus when I ask whether you agree with something, I'm asking both whether you enjoyed the aspect of class, and whether it was helpful to your learning:

Written answers are way better than numbers, but numbers are easier if you're lazy. I'd love to have both.

For each statement rate how much you agree with the statement on a scale of 1-10, 1=completely wrong, 10=totally right.

1. Class time can come in a variety of flavors. I'd like to organize class the best way in the future. I tried several experiments this quarter, which did you like:
 a) I like pure lecture from well organized powerpoint slides that flow from one to the next. 2
 b) I like some amount of discussion where the professor asks the class questions as the lecture goes forward. 4
 c) I liked the ray tracing class where the class designed a ray tracing algorithm with lots of interactive discussion. 9

2. Book or class, where do you learn?
 a) I learn from the book. 1
 b) I learn from class lecture. 10
 c) In this class the book was helpful to me. 1
 d) In this class the lecture was helpful to me. 1
 e) The lab was helpful to me. 7

3. Rate the overall amount that the following people contributed to your education in this class:
 a) James Davis 5
 b) Bryan Harris 6
 c) Chirag Dave 7
 d) Indrani Chakravarty N/A
 e) Krystle de Mesa / Emme Lovell (mostly they were behind the scenes so N/A for most) N/A

4. How was the homework?
 a) Graded homework is good 8
 b) Study questions but no homework would be good 8
 c) I don't care about sample questions at all 3

5-9) Moved to end of list!
10. Teams

a) Worked ok for videos? 8
b) Worked ok for the project? 8
c) I studied in a team other than the ones required N/A
d) Study session with pizza good? N/A

11) We spent a class talking about 'after college', was it useful to you and should I do this in the future? N/A

12) Labs and assignments, which should we keep? which replace?

a) Painter 5
b) Animal 10
c) Terrain 3
d) GLSL Shaders 8
e) Ray Tracing 5
f) Make a video 6
g) Project 9
h) Written homeworks 9
i) Wiki submissions 1

13) The wiki submissions were an experiment. Did you ever once go look at anyone else's wiki submission. Was this helpful to you? 1

14) Adam Smith gave a couple guest lectures. Were these helpful to you? 7

15) We spent a lot of class time watching the results of class effort. This was an experiment meant to be both enjoyable and motivational. Was it a good use of class time? Too much time

16) Making a video was an experiment.

a) Did you learn anything making your own video? Compare this to how much you learned in an average lab. about the same
b) Did you learn anything from other people's videos? not really
17) I find that rankings of 1-10 for classes always come out as 7, no matter how good or bad the class is. Instead, write down the classes you took in the last 3 qtrs, ranked in order of how much you learned. Start with the class you learned the most in. I assume you took about 9 classes over three qtrs, and yes I know its hard to compare. So just a list like:

(most) [Math10, Phys24, Soc12, Math37, CMPS80J, CMPS1, X, X, X] (least)

- 9) Film 20c
- 8) BME 806
- 7) Ling 20
- 6) Econ 1
- 5) NUSC80R
- 4) AMS 27
- 3) AMS 162
- 2) CS101
- 1) AMS 162

18). Same question, but now rank the classes by which class you enjoyed the most. Start with the class you enjoyed the most. (I care about enjoyment because its correlated with long term chances you care about this topic in 10 years.)

AMS 162, NUSC80R, Ling 20, Econ 1, AMS 27, CS101, CE12, BME 806, Film 20c

5. Suggestions for improving any aspect of class?

Lecturing need to be more engaging. It looks better if you make your own slides.

6. What is the single best thing about this class in terms or either current learning or your enthusiasm to learn more about this topic on your own in the future?

Getting through w/ friends.

7. What is the single biggest waste of time in this class? (or actually damaging to your desire to learn)

Trying to figure out how to labs online

8. Topic you wish was discussed but wasn’t?

Uses in other programs (i.e. Maya), OpenGL examples.

9. Topic you wish was dropped?
I'm interested in whether you learned what you wanted to learn. This is almost always correlated with whether you enjoyed what you were learning. Thus when I ask whether you agree with something, I'm asking both whether you enjoyed the aspect of class, and whether it was helpful to your learning:

Written answers are way better than numbers, but numbers are easier if you're lazy. I'd love to have both.

For each statement rate how much you agree with the statement on a scale of 1-10, 1=completely wrong, 10= totally right.

1. Class time can come in a variety of flavors. I'd like to organize class the best way in the future. I tried several experiments this quarter, which did you like:

 a) I like pure lecture from well organized powerpoint slides that flow from one to the next. 8
 b) I like some amount of discussion where the professor asks the class questions as the lecture goes forward. 3
 c) I liked the ray tracing class where the class designed a ray tracing algorithm with lots of interactive discussion. 3

2. Book or class, where do you learn?
 a) I learn from the book. 1
 b) I learn from class lecture. 1
 c) In this class the book was helpful to me. 3
 d) In this class the lecture was helpful to me. 2
 e) The lab was helpful to me. 5

3. Rate the overall amount that the following people contributed to your education in this class:

 a) James Davis – 1
 b) Bryan Harris – 1
 c) Chirag Dave – 2
 d) Indrani Chakravarty – 1
 e) Krystle de Mesa / Emmie Lovell (mostly they were behind the scenes so N/A for most)

4. How was the homework?

 a) Graded homework is good if we learn application in class then there is no point wasting hours on google trying to figure out how to do it. 4
 b) Study questions but no homework would be good 1
 c) I don't care about sample questions at all 7

5-9) Moved to end of list!
10. Teams

a) Worked ok for videos? 5
b) Worked ok for the project? 4
c) I studied in a team other than the ones required 7
d) Study session with pizza good? 8 I prefer review sessions led by a TA

11) We spent a class talking about ‘after college’, was it useful to you and should I do this in the future? 1

12) Labs and assignments, which should we keep? which replace?

a) Painter
b) Animal Keep
(c) Terrain
d) GLSL Shaders
e) Ray Tracing
f) Make a video
g) Project
h) Written homeworks
i) Wiki submissions - replace

13) The wiki submissions were an experiment. Did you ever once go look at anyone elses wiki submission. Was this helpful to you?
 I maybe looked once, overall they were not

14) Adam Smith gave a couple guest lectures. Were these helpful to you?
 Yes

15) We spent a lot of class time watching the results of class effort. This was an experiment meant to be both enjoyable and motivational. Was it a good use of class time?
 Yes

16) Making a video was an experiment.

a) Did you learn anything making your own video? Compare this to how much you learned in an average lab. I learned some
b) Did you learn anything from other peoples videos? Not really
17) I find that rankings of 1-10 for classes always come out as 7, no matter how good or bad the class is. Instead, write down the classes you took in the last 3 qtrs, ranked in order of how much you learned. Start with the class you learned the most in. I assume you took about 9 classes over three qtrs, and yes I know its hard to compare. So just a list like: (most) [Math10, Phys24, Soc12, Math37, CMPS80J, CMPS1, X, X, X] (least)

10 = best
9 = good
8 = neutral
7 = poor
6 = bad
5 = worst

EE70-9 CMPS100-10 CMPS101

CMPS100 CMPS101 CMPS107

PHYS5B 4

CMPS107 S

CMPS108 S

CMPS107 3

18). Same question, but now rank the classes by which class you enjoyed the most. Start with the class you enjoyed the most. (I care about enjoyment because its correlated with long term chances you care about this topic in 10 years.)

10 = best 9 = good 8 = neutral 7 = poor 6 = bad 5 = worst

CMPE 100-10 CMPS 101-6 PHYS 5B-P

CMPS 100 CMPS 107-5

CMPS 107 3

CMPS 108 S

CMPS 107 3

5. Suggestions for improving any aspect of class?

Go over similar problems to HW questions so we have an idea on how to apply the theory

6. What is the single best thing about this class in terms or either current learning or your enthusiasm to learn more about this topic on your own in the future?

Robot animal

7. What is the single biggest waste of time in this class? (or actually damaging to your desire to learn)

Terrain Rendering lab

8. Topic you wish was discussed but wasn’t?

No preference

9. Topic you wish was dropped?

No preference
I'm interested in whether you learned what you wanted to learn. This is almost always correlated with whether you enjoyed what you were learning. Thus when I ask whether you agree with something, I'm asking both whether you enjoyed the aspect of class, and whether it was helpful to your learning.

Written answers are way better than numbers, but numbers are easier if you're lazy. I'd love to have both.

For each statement rate how much you agree with the statement on a scale of 1-10, 1=completely wrong, 10= totally right.

1. Class time can come in a variety of flavors. I'd like to organize class the best way in the future. I tried several experiments this quarter, which did you like:
 a) I like pure lecture from well organized powerpoint slides that flow from one to the next.
 b) I like some amount of discussion where the professor asks the class questions as the lecture goes forward.
 c) I liked the ray tracing class where the class designed a ray tracing algorithm with lots of interactive discussion.

2. Book or class, where do you learn?
 a) I learn from the book.
 b) I learn from class lecture.
 c) In this class the book was helpful to me.
 d) In this class the lecture was helpful to me.
 e) The lab was helpful to me.

3. Rate the overall amount that the following people contributed to your education in this class:
 a) James Davis
 b) Bryan Harris
 c) Chirag Dave
 d) Indrani Chakravarty
 e) Krystle de Mesa / Emmie Lovell (mostly they were behind the scenes so N/A for most)

4. How was the homework?
 a) Graded homework is good
 b) Study questions but no homework would be good
 c) I don't care about sample questions at all

5-9) Moved to end of list!
17) I find that rankings of 1-10 for classes always come out as 7, no matter how good or bad the class is. Instead, write down the classes you took in the last 3 qtrs, ranked in order of how much you learned. Start with the class you learned the most in. I assume you took about 9 classes over three qtrs, and yes I know its hard to compare. So just a list like:

(most) [Math10, Phys24, Soc12, Math37, CMPS80J, CMPS1, X, X, X] (least)

CMPS 111 - A lot
CMPS 125 - A lot
CMPS 101 - A lot

Phys5A - A lot+
Phys5C - A lot+
Math15A - A little

CMPS 110 - A little
CMPS 160 - A lot

18). Same question, but now rank the classes by which class you enjoyed the most. Start with the class you enjoyed the most. (I care about enjoyment because its correlated with long term chances you care about this topic in 10 years.)

CMPS 111 - A lot, CMPS 160 - A lot++, CMPS 101 - A lot+, CMPE 100 - A lot

5. Suggestions for improving any aspect of class?

I dunno

6. What is the single best thing about this class in terms or either current learning or your enthusiasm to learn more about this topic on your own in the future?

The subject material

7. What is the single biggest waste of time in this class? (or actually damaging to your desire to learn)

The group video

8. Topic you wish was discussed but wasn’t?

I dunno

9. Topic you wish was dropped?

NONE
10. Teams
 a) Worked ok for videos?
 b) Worked ok for the project?
 c) I studied in a team other than the ones required
 d) Study session with pizza good?

11) We spent a class talking about ‘after college’, was it useful to you and should I do this in the future?

 Yes. It made me think about it.

12) Labs and assignments, which should we keep? which replace?

 a) Painter keep
 b) Animal keep
 c) Terrain keep
 d) GLSL Shaders keep
 e) Ray Tracing keep
 f) Make a video replace
 g) Project keep
 h) Written homeworks keep
 i) Wiki submissions replace

13) The wiki submissions were an experiment. Did you ever once go look at anyone else's wiki submission. Was this helpful to you?

 Just 1 time

14) Adam Smith gave a couple guest lectures. Were these helpful to you?

 Nope, just watched entertaining videos

15) We spent a lot of class time watching the results of class effort. This was an experiment meant to be both enjoyable and motivational. Was it a good use of class time?

 Not really, only a few people had something to show off.

16) Making a video was an experiment.

 a) Did you learn anything making your own video? Compare this to how much you learned in an average lab.

 Nothing learned in video, not learned in lab

 b) Did you learn anything from other peoples videos?

 Yes, in some of them (only a few)
10. Teams

a) Worked ok for videos?
b) Worked ok for the project?
c) I studied in a team other than the ones required
d) Study session with pizza good? Yes &

11) We spent a class talking about ‘after college’, was it useful to you and should I do this in the future? Yes

12) Labs and assignments, which should we keep? which replace?
Teach more about labs before we do labs
Otherwise alright labs

a) Painter
b) Animal
c) Terrain
d) GLSL Shaders
e) Ray Tracing
f) Make a video
g) Project
h) Written homeworks
i) Wiki submissions

13) The wiki submissions were an experiment. Did you ever once go look at anyone else's wiki submission. Was this helpful to you? Not really

14) Adam Smith gave a couple guest lectures. Were these helpful to you?
No

15) We spent a lot of class time watching the results of class effort. This was an experiment meant to be both enjoyable and motivational. Was it a good use of class time?
No, waste of time - show only Top 5 maybe

16) Making a video was an experiment. Not that good of one

a) Did you learn anything making your own video? Compare this to how much you learned in an average lab. No
b) Did you learn anything from other people's videos? No
17) I find that rankings of 1-10 for classes always come out as 7, no matter how good or bad the class is. Instead, write down the classes you took in the last 3 qtrs, ranked in order of how much you learned. Start with the class you learned the most in. I assume you took about 9 classes over three qtrs, and yes I know its hard to compare. So just a list like:

(most) [Math10, Phys24, Soc12, Math37, CMPS80J, CMPS1, X, X, X] (least)

Programming end
Classes design

18). Same question, but now rank the classes by which class you enjoyed the most. Start with the class you enjoyed the most. (I care about enjoyment because its correlated with long term chances you care about this topic in 10 years.)

5. Suggestions for improving any aspect of class?

* Don’t waste so much class time

6. What is the single best thing about this class in terms or either current learning or your enthusiasm to learn more about this topic on your own in the future?

7. What is the single biggest waste of time in this class? (or actually damaging to your desire to learn)

* Class time

8. Topic you wish was discussed but wasn’t?

9. Topic you wish was dropped?
I'm interested in whether you learned what you wanted to learn. This is almost always correlated with whether you enjoyed what you were learning. Thus when I ask whether you agree with something, I'm asking both whether you enjoyed the aspect of class, and whether it was helpful to your learning:

Written answers are way better than numbers, but numbers are easier if you're lazy. I'd love to have both.

For each statement rate how much you agree with the statement on a scale of 1-10, 1=completely wrong, 10=totally right.

1. Class time can come in a variety of flavors. I'd like to organize class the best way in the future. I tried several experiments this quarter, which did you like:

a) I like pure lecture from well organized powerpoint slides that flow from one to the next. ☒
b) I like some amount of discussion where the professor asks the class questions as the lecture goes forward. ☐
c) I liked the ray tracing class where the class designed a ray tracing algorithm with lots of interactive discussion. ☐

2. Book or class, where do you learn?
 a) I learn from the book. ☐
 b) I learn from class lecture. ☒
 c) In this class the book was helpful to me. ☐
 d) In this class the lecture was helpful to me. ☒
 e) The lab was helpful to me. ☒

3. Rate the overall amount that the following people contributed to your education in this class:

 a) James Davis ☐
 b) Bryan Harris ☒
 c) Chirag Dave ☐
 d) Indrani Chakraverty ☒
 e) Krystle de Mesa / Emme Lovell (mostly they were behind the scenes so N/A for most) ☐

4. How was the homework?

 a) Graded homework is good ☒
 b) Study questions but no homework would be good
 c) I don't care about sample questions at all

5-9) Moved to end of list!
I'm interested in whether you learned what you wanted to learn. This is almost always correlated with whether you enjoyed what you were learning. Thus when I ask whether you agree with something, I'm asking both whether you enjoyed the aspect of class, and whether it was helpful to your learning.

Written answers are way better than numbers, but numbers are easier if you're lazy. I'd love to have both.

For each statement rate how much you agree with the statement on a scale of 1-10,
1=completely wrong, 10=totally right.

1. Class time can come in a variety of flavors. I'd like to organize class the best way in the future. I tried several experiments this quarter, which did you like:
 a) I like pure lecture from well organized powerpoint slides that flow from one to the next. 5
 b) I like some amount of discussion where the professor asks the class questions as the lecture goes forward. 7
 c) I liked the ray tracing class where the class designed a ray tracing algorithm with lots of interactive discussion. 7

2. Book or class, where do you learn?
 a) I learn from the book. 7 if the class is good otherwise 10
 b) I learn from class lecture. 10 -if the teacher is good otherwise 3
 c) In this class the book was helpful to me. 3
 d) In this class the lecture was helpful to me. 7
 e) The lab was helpful to me. 8

3. Rate the overall amount that the following people contributed to your education in this class:
 a) James Davis - 8
 b) Bryan Harris - 8
 c) Chirag Dave - 8
 d) Indrani Chakravarty - 8
 e) Krystle de Mesa / Emme Lovell (mostly they were behind the scenes so N/A for most) N/A

4. How was the homework? Good to have around. Non obtrusive.
 a) Graded homework is good. Getting answers back is good. Grading for accuracy bad.
 b) Study questions but no homework would be good. Kinka like how homework is now.
 c) I don't care about sample questions at all. 2

5-9) Moved to end of list!
10. Teams

a) Worked ok for videos?
b) Worked ok for the project?
c) I studied in a team other than the ones required
d) Study session with pizza good?

11) We spent a class talking about ‘after college’, was it useful to you and should I do this in the future?
I thought it was nice, but it’s sort of a shame we lost a graphics lecture for it. Undecided.

12) Labs and assignments, which should we keep? which replace?

a) Painter - Could go either way.
b) Animal - Keep
c) Terrain - Keep
d) GLSL Shaders - Kind of a mediocre lab. Like the concept, rethink the goal.
e) Ray Tracing - Keep
f) Make a video - Move before midterm. (sort it like a midterm project to the final project)
g) Project - Keep
h) Written homeworks - Keep
i) Wiki submissions - I never used these. I made them thought

13) The wiki submissions were an experiment. Did you ever once go look at anyone else's wiki submission. Was this helpful to you? To be honest, I often just posted the 5th or so hit on the topic from google. I dislike wikis.

14) Adam Smith gave a couple guest lectures. Were these helpful to you?
I missed that one. The other one I remember was just videos.

15) We spent a lot of class time watching the results of class effort. This was an experiment meant to be both enjoyable and motivational. Was it a good use of class time?
I think so.

16) Making a video was an experiment.

a) Did you learn anything making your own video? Compare this to how much you learned in an average lab.
b) Did you learn anything from other peoples videos?

a) Yes. About the same. Depends on the topic. Adds a level of mastery.
b) Yes.
17) I find that rankings of 1-10 for classes always come out as 7, no matter how good or bad the class is. Instead, write down the classes you took in the last 3 qtrs, ranked in order of how much you learned. Start with the class you learned the most in. I assume you took about 9 classes over three qtrs, and yes I know its hard to compare. So just a list like:

(most) [Math10, Phys24, Soc12, Math37, CMPS80J, CMPS1, X, X, X] (least)

CMPS104 CS101 CMPS160 AMS27 ENVS80 ECON X

18). Same question, but now rank the classes by which class you enjoyed the most. Start with the class you enjoyed the most. (I care about enjoyment because its correlated with long term chances you care about this topic in 10 years.)

CS160 CS104 CS101 ENVS80 AMS27 ECON X

5. Suggestions for improving any aspect of class?
 More organization.

6. What is the single best thing about this class in terms or either current learning or your enthusiasm to learn more about this topic on your own in the future?
 I think the labs are the best.

7. What is the single biggest waste of time in this class? (or actually damaging to your desire to learn)
 Sometimes the class pacing was a bit off. The video hurt our final project.

8. Topic you wish was discussed but wasn't?
 I wish we had more time for Compositing/Radiosity/Curves.

9. Topic you wish was dropped?
 N/A
I'm interested in whether you learned what you wanted to learn. This is almost always correlated with whether you enjoyed what you were learning. Thus when I ask whether you agree with something, I'm asking both whether you enjoyed the aspect of class, and whether it was helpful to your learning:

Written answers are way better than numbers, but numbers are easier if you're lazy. I'd love to have both.

For each statement rate how much you agree with the statement on a scale of 1-10, 1=completely wrong, 10=totally right.

1. Class time can come in a variety of flavors. I'd like to organize class the best way in the future. I tried several experiments this quarter, which did you like:
 - a) I like pure lecture from well organized powerpoint slides that flow from one to the next.
 - b) I like some amount of discussion where the professor asks the class questions as the lecture goes forward.
 - c) I liked the ray tracing class where the class designed a ray tracing algorithm with lots of interactive discussion.

2. Book or class, where do you learn?
 - a) I learn from the book.
 - b) I learn from class lecture.
 - c) In this class the book was helpful to me.
 - d) In this class the lecture was helpful to me.
 - e) The lab was helpful to me.

3. Rate the overall amount that the following people contributed to your education in this class:
 - a) James Davis – 7
 - b) Bryan Harris – 10
 - c) Chirag Dave – 6
 - d) Indrani Chakravarty – 6
 - e) Krystle de Mesa / Emme Lovell (mostly they were behind the scenes so N/A for most) N/A

4. How was the homework?
 - a) Graded homework is good
 - b) Study questions but no homework would be good
 - c) I don't care about sample questions at all

5-9) Moved to end of list!
10. Teams

a) Worked ok for videos? I did individual project
b) Worked ok for the project? Individual project

11) We spent a class talking about ‘after college’, was it useful to you and should I do this in the future? Did it go but it was nice to have the day before Thanksgiving

12) Labs and assignments, which should we keep? which replace?

a) Painter keep
b) Animal keep
c) Terrain keep
d) GLSL Shaders Awesome

e) Ray Tracing rework and keep
f) Make a video throw away
g) Project change a bit
h) Written homeworks make it about basics
i) Wiki submissions throw away

13) The wiki submissions were an experiment. Did you ever once go look at anyone elses wiki submission. Was this helpful to you?

Like twice and it wasn’t helpful

14) Adam Smith gave a couple guest lectures. Were these helpful to you?

Kinda but They are awesome

15) We spent a lot of class time watching the results of class effort. This was an experiment meant to be both enjoyable and motivational. Was it a good use of class time?

It was fun but maybe only show when the work is different

16) Making a video was an experiment.

a) Did you learn anything making your own video? Compare this to how much you learned in an average lab. No
b) Did you learn anything from other peoples videos? No
17) I find that rankings of 1-10 for classes always come out as 7, no matter how good or bad the class is. Instead, write down the classes you took in the last 3 qtrs, ranked in order of how much you learned. Start with the class you learned the most in. I assume you took about 9 classes over three qtrs, and yes I know its hard to compare. So just a list like:
(most) [Math10, Phys24, Soc12, Math37, CMPS80J, CMPS1, X, X, X] (least)

CS 101(9) CS 128(10) PSCY 1(8) FILM 20C (6)
CS 80B(8) CS 192(7) MATH 21(7) PHYSICS 1 (8)

18). Same question, but now rank the classes by which class you enjoyed the most. Start with the class you enjoyed the most. (I care about enjoyment because its correlated with long term chances you care about this topic in 10 years.)

CS 101 (8) CS 128(9) PSCY 1 (8) FILM 20C (5)
CS 80B (8) CS 192(6) MATH 21(6) PHYSICS (8)

5. Suggestions for improving any aspect of class?

More organization; Tell people what to expect and actually do it

6. What is the single best thing about this class in terms of either current learning or your enthusiasm to learn more about this topic on your own in the future?

Shaders!

7. What is the single biggest waste of time in this class? (or actually damaging to your desire to learn)

Videos

8. Topic you wish was discussed but wasn’t?

Non-realistic graphics

9. Topic you wish was dropped?

Videos
I'm interested in whether you learned what you wanted to learn. This is almost always correlated with whether you enjoyed what you were learning. Thus when I ask whether you agree with something, I'm asking both whether you enjoyed the aspect of class, and whether it was helpful to your learning:

Written answers are way better than numbers, but numbers are easier if you’re lazy. I’d love to have both.

For each statement rate how much you agree with the statement on a scale of 1-10, 1=completely wrong, 10=totally right.

__

1. Class time can come in a variety of flavors. I’d like to organize class the best way in the future. I tried several experiments this quarter, which did you like:

a) I like pure lecture from well organized powerpoint slides that flow from one to the next.
b) I like some amount of discussion where the professor asks the class questions as the lecture goes forward.
c) I liked the ray tracing class where the class designed a ray tracing algorithm with lots of interactive discussion.

2. Book or class, where do you learn?
 a) I learn from the book.
 b) I learn from class lecture.
 c) In this class the book was helpful to me.
 d) In this class the lecture was helpful to me.
 e) The lab was helpful to me.

3. Rate the overall amount that the following people contributed to your education in this class:

a) James Davis –
 b) Bryan Harris –
 c) Chirag Dave –
 d) Indrani Chakravarty –
 e) Krystle de Mesa / Emme Lovell (mostly they were behind the scenes so N/A for most)

4. How was the homework?
 a) Graded homework is good
 b) Study questions but no homework would be good
 c) I don’t care about sample questions at all

5-9) Moved to end of list!
10. Teams

a) Worked ok for videos?
b) Worked ok for the project?
c) I studied in a team other than the ones required
d) Study session with pizza good?

11) We spent a class talking about ‘after college’, was it useful to you and should I do this in the future?

 No, really useless.

12) Labs and assignments, which should we keep? which replace?

 a) Painter
 b) Animal
 c) Terrain
 d) GLSL Shaders
 e) Ray Tracing
 f) Make a video
 g) Project
 h) Written homeworks
 i) Wiki submissions

13) The wiki submissions were an experiment. Did you ever once go look at anyone else’s wiki submission. Was this helpful to you?

 No

14) Adam Smith gave a couple guest lectures. Were these helpful to you?

 Not really

15) We spent a lot of class time watching the results of class effort. This was an experiment meant to be both enjoyable and motivational. Was it a good use of class time?

 Kinda

16) Making a video was an experiment.

 a) Did you learn anything making your own video? Compare this to how much you learned in an average lab.

 b) Did you learn anything from other peoples videos?
17) I find that rankings of 1-10 for classes always come out as 7, no matter how good or bad the class is. Instead, write down the classes you took in the last 3 qtrs, ranked in order of how much you learned. Start with the class you learned the most in. I assume you took about 9 classes over three qtrs, and yes I know its hard to compare. So just a list like: (most) [Math10, Phys24, Soc12, Math37, CMPS80J, CMPS1, X, X, X] (least)

CS 160 9 CS 180 8 CS 130 7
CS 170 10 CS 104 9

18). Same question, but now rank the classes by which class you enjoyed the most. Start with the class you enjoyed the most. (I care about enjoyment because its correlated with long term chances you care about this topic in 10 years.)

CS 170, CS 160, CS 104, CS 180, CS 130

5. Suggestions for improving any aspect of class?

6. What is the single best thing about this class in terms or either current learning or your enthusiasm to learn more about this topic on your own in the future?

Shaders

7. What is the single biggest waste of time in this class? (or actually damaging to your desire to learn)

The video

8. Topic you wish was discussed but wasn’t?

9. Topic you wish was dropped?
I'm interested in whether you learned what you wanted to learn. This is almost always correlated with whether you enjoyed what you were learning. Thus when I ask whether you agree with something, I'm asking both whether you enjoyed the aspect of class, and whether it was helpful to your learning:

Written answers are way better than numbers, but numbers are easier if you're lazy. I'd love to have both.

For each statement rate how much you agree with the statement on a scale of 1-10, 1=completely wrong, 10= totally right.

1. Class time can come in a variety of flavors. I'd like to organize class the best way in the future. I tried several experiments this quarter, which did you like:
 a) I like pure lecture from well organized powerpoint slides that flow from one to the next.
 b) I like some amount of discussion where the professor asks the class questions as the lecture goes forward.
 c) I liked the ray tracing class where the class designed a ray tracing algorithm with lots of interactive discussion. *don't remember it*

2. Book or class, where do you learn?
 a) I learn from the book. 8
 b) I learn from class lecture.
 c) In this class the book was helpful to me. 6
 d) In this class the lecture was helpful to me. 2
 e) The lab was helpful to me. 2

3. Rate the overall amount that the following people contributed to your education in this class:
 a) James Davis 3
 b) Bryan Harris 3
 c) Chirag Dave 2
 d) Indrani Chakravarty 3
 e) Krystle de Mesa / Emme Lovell (mostly they were behind the scenes so N/A for most)

4. How was the homework?
 a) Graded homework is good 8
 b) Study questions but no homework would be good 2
 c) I don't care about sample questions at all 0

5-9) Moved to end of list!
10. Teams

a) Worked ok for videos?
b) Worked ok for the project?
c) I studied in a team other than the ones required
d) Study session with pizza good?

I never had a project team
and I couldn't attend the pizza sessions

11) We spent a class talking about ‘after college’, was it useful to you and should I do this in the future?

Yes but cover more areas of C8?

12) Labs and assignments, which should we keep? which replace?

a) Painter \textit{keep}
b) Animal \textit{keep}
c) Terrain \textit{keep}
d) GLSL Shaders \textit{keep}
e) Ray Tracing \textit{keep}
f) Make a video \textit{remove}
g) Project \textit{keep}
h) Written homeworks \textit{keep}
i) Wiki submissions \textit{remove} (this assignment is about a 5-min google search)

13) The wiki submissions were an experiment. Did you ever once go look at anyone else’s wiki submission. Was this helpful to you?

\textit{No; no.}

14) Adam Smith gave a couple guest lectures. Were these helpful to you?

\textit{Skipped them.}

15) We spent a lot of class time watching the results of class effort. This was an experiment meant to be both enjoyable and motivational. Was it a good use of class time?

\textit{It was nice.}

16) Making a video was an experiment.

a) Did you learn anything making your own video? Compare this to how much you learned in an average lab.
b) Did you learn anything from other people’s videos?

a) Not really, but a little related to my topic. Learned very little compared to a lab.

b) Very little.
17) I find that rankings of 1-10 for classes always come out as 7, no matter how good or bad the class is. Instead, write down the classes you took in the last 3 qtrs, ranked in order of how much you learned. Start with the class you learned the most in. I assume you took about 9 classes over three qtrs, and yes I know its hard to compare. So just a list like:

(most) [Math10, Phys24, Soc12, Math37, CMPS80J, CMPS1, X, X, X] (least)

Japanese 1, Math 21, Art 80A, CS 160, CS 80K, CS 101, Phys 6A, CE 16, Film 20C

18) Same question, but now rank the classes by which class you enjoyed the most. Start with the class you enjoyed the most. (I care about enjoyment because its correlated with long term chances you care about this topic in 10 years.)

CS 80K, Japanese 1, Art 80A, Phys 6A, CS 160, Math 21, CS 101, Film 20C, CE 16

5. Suggestions for improving any aspect of class?

More application/examples in lecture focus more on topics we need to apply in labs/assignments.

6. What is the single best thing about this class in terms or either current learning or your enthusiasm to learn more about this topic on your own in the future?

Demystifying OpenGL

7. What is the single biggest waste of time in this class? (or actually damaging to your desire to learn)

lecture

8. Topic you wish was discussed but wasn’t?

9. Topic you wish was dropped?
17) I find that rankings of 1-10 for classes always come out as 7, no matter how good or bad the class is. Instead, write down the classes you took in the last 3 qtrs, ranked in order of how much you learned. Start with the class you learned the most in. I assume you took about 9 classes over three qtrs, and yes I know its hard to compare. So just a list like:

(most) [Math10, Phys24, Soc12, Math37, CMPS80J, CMPS1, X, X, X] (least)

Most of my classes have been Bio this four so I'll skip 17 & 18.

(I am a CS/Marine Bio Double Major)

18). Same question, but now rank the classes by which class you enjoyed the most. Start with the class you enjoyed the most. (I care about enjoyment because its correlated with long term chances you care about this topic in 10 years.)

5. Suggestions for improving any aspect of class?

A bit more structure & communication down the Prof. & TA's

6. What is the single best thing about this class in terms of either current learning or your enthusiasm to learn more about this topic on your own in the future?

I liked group work

7. What is the single biggest waste of time in this class? (or actually damaging to your desire to learn)

Lots of down time

8. Topic you wish was discussed but wasn’t?

9. Topic you wish was dropped?
10. Teams

a) Worked ok for videos? 10
b) Worked ok for the project? 10
c) I studied in a team other than the ones required 10
d) Study session with pizza good? 10

11) We spent a class talking about ‘after college’, was it useful to you and should I do this in the future? I missed it

12) Labs and assignments, which should we keep? which replace?
 a) Painter 8
 b) Animal 8
 c) Terrain 8
 d) GLSL Shaders I liked this one
 e) Ray Tracing CHANGE BUT KEEP
 f) Make a video 8
 g) Project REPLACE!
 h) Written homeworks 6
 i) Wiki submissions 6

13) The wiki submissions were an experiment. Did you ever once go look at anyone elses wiki submission. Was this helpful to you?
 Not really

14) Adam Smith gave a couple guest lectures. Were these helpful to you?
 Missed it

15) We spent a lot of class time watching the results of class effort. This was an experiment meant to be both enjoyable and motivational. Was it a good use of class time?
 Sometimes. Later labs had little variation in final result.

16) Making a video was an experiment.
 a) Did you learn anything making your own video? Compare this to how much you learned in an average lab. It was a good learning experience & fun
 b) Did you learn anything from other peoples videos?

 Yes
 but they are not so good for understanding
I’m interested in whether you learned what you wanted to learn. This is almost always correlated with whether you enjoyed what you were learning. Thus when I ask whether you agree with something, I’m asking both whether you enjoyed the aspect of class, and whether it was helpful to your learning:

Written answers are way better than numbers, but numbers are easier if you’re lazy. I’d love to have both.

For each statement rate how much you agree with the statement on a scale of 1-10, 1=completely wrong, 10=totally right.

1. Class time can come in a variety of flavors. I’d like to organize class the best way in the future. I tried several experiments this quarter, which did you like:

 a) I like pure lecture from well organized powerpoint slides that flow from one to the next.
 b) I like some amount of discussion where the professor asks the class questions as the lecture goes forward.
 c) I liked the ray tracing class where the class designed a ray tracing algorithm with lots of interactive discussion.

2. Book or class, where do you learn?
 a) I learn from the book.
 b) I learn from class lecture.
 c) In this class the book was helpful to me.
 d) In this class the lecture was helpful to me.
 e) The lab was helpful to me.

3. Rate the overall amount that the following people contributed to your education in this class:

 a) James Davis
 b) Bryan Harris
 c) Chirag Dave
 d) Indrani Chakravarty
 e) Krystle de Mesa / Emmie Lovell (mostly they were behind the scenes so N/A for most)

4. How was the homework?

 a) Graded homework is good
 b) Study questions but no homework would be good
 c) I don’t care about sample questions at all

5-9) Moved to end of list!
I'm interested in whether you learned what you wanted to learn. This is almost always correlated with whether you enjoyed what you were learning. Thus when I ask whether you agree with something, I'm asking both whether you enjoyed the aspect of class, and whether it was helpful to your learning:

Written answers are way better than numbers, but numbers are easier if you're lazy. I'd love to have both.

For each statement rate how much you agree with the statement on a scale of 1-10, 1=completely wrong, 10=totally right.

1. Class time can come in a variety of flavors. I'd like to organize class the best way in the future. I tried several experiments this quarter, which did you like:

a) I like pure lecture from well organized powerpoint slides that flow from one to the next. 10
b) I like some amount of discussion where the professor asks the class questions as the lecture goes forward. 10
c) I liked the ray tracing class where the class designed a ray tracing algorithm with lots of interactive discussion. 10 More of this would be great.

2. Book or class, where do you learn?
 a) I learn from the book. 1
 b) I learn from class lecture. 1
 c) In this class the book was helpful to me. 2
 d) In this class the lecture was helpful to me. 9
 e) The lab was helpful to me. 7

3. Rate the overall amount that the following people contributed to your education in this class:

 a) James Davis – 1
 b) Bryan Harris – 7
 c) Chirag Dave – 3
 d) Indrani Chakravarty – 6
 e) Krystle de Mesa / Emme Lovell (mostly they were behind the scenes so N/A for most) 7

4. How was the homework?

 a) Graded homework is good 7
 b) Study questions but no homework would be good 7
 c) I don’t care about sample questions at all 1

5-9) Moved to end of list!
10. Teams
a) Worked ok for videos? N/A
b) Worked ok for the project?

c) I studied in a team other than the ones required N/A
d) Study session with pizza good? ()

Necessary!

11) We spent a class talking about ‘after college’, was it useful to you and should I do this in the future?

 Didn’t Attend

12) Labs and assignments, which should we keep? which replace?

a) Painter
b) Animal

\[\text{Keep} \]
c) Terrain
d) GLSL Shaders

e) Ray Tracing
f) Make a video \text{Consider Replacing}
g) Project
h) Written homeworks \text{Keep}
i) Wiki submissions \text{Not Important}

13) The wiki submissions were an experiment. Did you ever once go look at anyone elses wiki submission. Was this helpful to you?

 No, so it was not helpful

14) Adam Smith gave a couple guest lectures. Were these helpful to you?

 They were entertaining but not helpful

15) We spent a lot of class time watching the results of class effort. This was an experiment meant to be both enjoyable and motivational. Was it a good use of class time?

 I think that way too much class time was wasted on this.

 It would be better to keep it, but let it take less time.

16) Making a video was an experiment.

a) Did you learn anything making your own video? Compare this to how much you learned in an average lab. I learned far less on the video than the labs.

b) Did you learn anything from other peoples videos?

Other peoples videos were interesting, fun, and informative.
17) I find that rankings of 1-10 for classes always come out as 7, no matter how good or bad the class is. Instead, write down the classes you took in the last 3 qtrs, ranked in order of how much you learned. Start with the class you learned the most in. I assume you took about 9 classes over three qtrs, and yes I know its hard to compare. So just a list like:

(most) [Math10, Phys24, Soc12, Math37, CMPS80J, CMPS11, X, X, X] (least)

Sorry, but I took time off in between and there is no way I could remember

18). Same question, but now rank the classes by which class you enjoyed the most. Start with the class you enjoyed the most. (I care about enjoyment because its correlated with long term chances you care about this topic in 10 years.)

N/A

5. Suggestions for improving any aspect of class?
 Time should be considered more valuable, less time should be wasted, and more information should be imparted. The math should be treated more seriously.

6. What is the single best thing about this class in terms of either current learning or your enthusiasm to learn more about this topic on your own in the future?
 The feeling of empowerment yielded by success in lab work.

7. What is the single biggest waste of time in this class? (or actually damaging to your desire to learn)
 Reviewing the labs where everyone has the same result (in class).

8. Topic you wish was discussed but wasn’t?
 Alternatives to OpenGL: Pros and Cons

9. Topic you wish was dropped?
 Fundamentals: CRT's, LCD's, Pixel
I'm interested in whether you learned what you wanted to learn. This is almost always correlated with whether you enjoyed what you were learning. Thus when I ask whether you agree with something, I'm asking both whether you enjoyed the aspect of class, and whether it was helpful to your learning:

Written answers are way better than numbers, but numbers are easier if you're lazy. I'd love to have both.

For each statement rate how much you agree with the statement on a scale of 1-10, 1=completely wrong, 10=totally right.

1. Class time can come in a variety of flavors. I'd like to organize class the best way in the future. I tried several experiments this quarter, which did you like:

 a) I like pure lecture from well organized powerpoint slides that flow from one to the next. 5
 b) I like some amount of discussion where the professor asks the class questions as the lecture goes forward. 8
 c) I liked the ray tracing class where the class designed a ray tracing algorithm with lots of interactive discussion. 5

2. Book or class, where do you learn?
 a) I learn from the book. 5
 b) I learn from class lecture. 5
 c) In this class the book was helpful to me. 2
 d) In this class the lecture was helpful to me. 4
 e) The lab was helpful to me. 1

3. Rate the overall amount that the following people contributed to your education in this class:

 a) James Davis 5
 b) Bryan Harris 9
 c) Chirag Dave 1
 d) Indrani Chakravarty 7
 e) Krystle de Mesa / Emme Lovell (mostly they were behind the scenes so N/A for most) 0

4. How was the homework?
 a) Graded homework is good 6
 b) Study questions but no homework would be good 2
 c) I don't care about sample questions at all 0

5-9) Moved to end of list!
10. Teams

a) Worked ok for videos? ☑
b) Worked ok for the project? ☑
c) I studied in a team other than the ones required ☑
d) Study session with pizza good? ☑

11) We spent a class talking about ‘after college’, was it useful to you and should I do this in the future? N/A

12) Labs and assignments, which should we keep? which replace?

a) Painter ☑
b) Animal ☑
c) Terrain ☑
d) GLSL Shaders ☑
e) Ray Tracing ☑
f) Make a video ☑
g) Project ☑
h) Written homeworks ☑
i) Wiki submissions ☑

13) The wiki submissions were an experiment. Did you ever once go look at anyone else’s wiki submission. Was this helpful to you? NO NO.

14) Adam Smith gave a couple guest lectures. Were these helpful to you? Yes, interesting.

15) We spent a lot of class time watching the results of class effort. This was an experiment meant to be both enjoyable and motivational. Was it a good use of class time? Yes.

16) Making a video was an experiment. Wasn’t necessary but could be good if we were assigned topics at random

a) Did you learn anything making your own video? Compare this to how much you learned in an average lab. Yes, because what we did wasn’t really covered in lab.
b) Did you learn anything from other people’s videos? Nothing, I already knew.
17) I find that rankings of 1-10 for classes always come out as 7, no matter how good or bad the class is. Instead, write down the classes you took in the last 3 qtrs, ranked in order of how much you learned. Start with the class you learned the most in. I assume you took about 9 classes over three qtrs, and yes I know its hard to compare. So just a list like:

(most) [Math10, Phys24, Soc12, Math37, CMPS80J, CMPS11, X, X, X] (least)

1) Math 106A - 10 3) Math 103 - 9 5) Ams 5 - 7
2) CMPS 160 - 10 4) Math 24 - 10 6) CMPS 128 - 7
8) Physics 5D - 0 % 0 7) HAVE 80m - 10

18) Same question, but now rank the classes by which class you enjoyed the most. Start with the class you enjoyed the most. (I care about enjoyment because its correlated with long term chances you care about this topic in 10 years.)

1) Math 24 - same teach as math 106A 4) HAVE 80m - art history = fun
2) Math 106A - great teacher/tests 5) Ams 5 - hot teacher
3) Math 103 - easy tests/teacher 6) physics 5D - way boring

5. Suggestions for improving any aspect of class:

Teach us more about programming the graphics.

6. What is the single best thing about this class in terms or either current learning or your enthusiasm to learn more about this topic on your own in the future?

I realized I like computer art, now I want to be an architect. Really!

7. What is the single biggest waste of time in this class? (or actually damaging to your desire to learn)

Not programming = not producing. Less theory, more "How-to"!

8. Topic you wish was discussed but wasn't?

Particle systems.

9. Topic you wish was dropped?

Signals.

The terrain map was the coolest project, and very applicable to the real world.

Maybe next time students could construct a building!
I'm interested in whether you learned what you wanted to learn. This is almost always correlated with whether you enjoyed what you were learning. Thus when I ask whether you agree with something, I'm asking both whether you enjoyed the aspect of class, and whether it was helpful to your learning:

Written answers are way better than numbers, but numbers are easier if you're lazy. I'd love to have both.

For each statement rate how much you agree with the statement on a scale of 1-10, 1=completely wrong, 10=totally right.

1. Class time can come in a variety of flavors. I'd like to organize class the best way in the future. I tried several experiments this quarter, which did you like:
 a) I like pure lecture from well organized powerpoint slides that flow from one to the next.
 b) I like some amount of discussion where the professor asks the class questions as the lecture goes forward.
 c) I liked the ray tracing class where the class designed a ray tracing algorithm with lots of interactive discussion.

2. Book or class, where do you learn?
 a) I learn from the book.
 b) I learn from class lecture.
 c) In this class the book was helpful to me.
 d) In this class the lecture was helpful to me.
 e) The lab was helpful to me.

3. Rate the overall amount that the following people contributed to your education in this class:
 a) James Davis –
 b) Bryan Harris –
 c) Chirag Dave –
 d) Indrani Chakravarty –
 e) Krystle de Mesa / Emme Lovell (mostly they were behind the scenes so N/A for most)

4. How was the homework?
 a) Graded homework is good
 b) Study questions but no homework would be good

5-9) Moved to end of list!
10. Teams

a) Worked ok for videos? Yes
b) Worked ok for the project? Yes
 Include a TA "blind leading the blind..."
c) I studied in a team other than the ones required
 Yes

d) Study session with pizza good?

11) We spent a class talking about ‘after college’, was it useful to you and should I do this in the future?
 It’s always helpful, I skipped though.

12) Labs and assignments, which should we keep? which replace?

 a) Painter
 b) Animal
 c) Terrain
 d) GLSL Shaders
 e) Ray Tracing
 f) Make a video
 g) Project
 h) Written homeworks
 i) Wiki submissions

13) The wiki submissions were an experiment. Did you ever once go look at anyone elses wiki submission. Was this helpful to you?
 No, no

14) Adam Smith gave a couple guest lectures. Were these helpful to you?
 Skipped

15) We spent a lot of class time watching the results of class effort. This was an experiment meant to be both enjoyable and motivational. Was it a good use of class time?
 No, but fun.

16) Making a video was an experiment.

 a) Did you learn anything making your own video? Compare this to how much you learned in an average lab. Not really.
 b) Did you learn anything from other peoples videos?
 A little bit.
17) I find that rankings of 1-10 for classes always come out as 7, no matter how good or bad the class is. Instead, write down the classes you took in the last 3 qtrs, ranked in order of how much you learned. Start with the class you learned the most in. I assume you took about 9 classes over three qtrs, and yes I know its hard to compare. So just a list like:
(most) [Math10, Phys24, Soc12, Math37, CMPS80J, CMPS1, X, X, X] (least)

18). Same question, but now rank the classes by which class you enjoyed the most. Start with the class you enjoyed the most. (I care about enjoyment because its correlated with long term chances you care about this topic in 10 years.)

5. Suggestions for improving any aspect of class?
Chalk board, based on lecture alone I would have failed

6. What is the single best thing about this class in terms or either current learning or your enthusiasm to learn more about this topic on your own in the future?
General idea on how graphics work

7. What is the single biggest waste of time in this class? (or actually damaging to your desire to learn)
Sample Theory

8. Topic you wish was discussed but wasn’t?

9. Topic you wish was dropped?
Sample Theory
This report summarizes students’ responses to the points on side one of the UCSC Instructor Evaluation Form. Students were instructed to leave points blank if not applicable.

I. Instructor Appraisal

Students rated the quality of the following from poor to excellent:

<table>
<thead>
<tr>
<th>Course preparation and organization.</th>
<th>Poor</th>
<th>Fair</th>
<th>Satisfactory</th>
<th>Very Good</th>
<th>Excellent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of students respon 20</td>
<td></td>
<td></td>
<td></td>
<td>20%</td>
<td>15%</td>
</tr>
<tr>
<td></td>
<td>5%</td>
<td>25%</td>
<td>35%</td>
<td>20%</td>
<td>15%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Use of class time.</th>
<th>Poor</th>
<th>Fair</th>
<th>Satisfactory</th>
<th>Very Good</th>
<th>Excellent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of students respon 20</td>
<td></td>
<td></td>
<td></td>
<td>20%</td>
<td>25%</td>
</tr>
<tr>
<td></td>
<td>0%</td>
<td>10%</td>
<td>45%</td>
<td>20%</td>
<td>25%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clarity and understandability.</th>
<th>Poor</th>
<th>Fair</th>
<th>Satisfactory</th>
<th>Very Good</th>
<th>Excellent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of students respon 20</td>
<td></td>
<td></td>
<td></td>
<td>30%</td>
<td>30%</td>
</tr>
<tr>
<td></td>
<td>0%</td>
<td>0%</td>
<td>30%</td>
<td>40%</td>
<td>30%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Enthusiasm for subject and for teaching.</th>
<th>Poor</th>
<th>Fair</th>
<th>Satisfactory</th>
<th>Very Good</th>
<th>Excellent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of students respon 20</td>
<td></td>
<td></td>
<td></td>
<td>65%</td>
<td>30%</td>
</tr>
<tr>
<td></td>
<td>0%</td>
<td>5%</td>
<td>0%</td>
<td>30%</td>
<td>65%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Respect for students; sensitivity to and concern with their progress.</th>
<th>Poor</th>
<th>Fair</th>
<th>Satisfactory</th>
<th>Very Good</th>
<th>Excellent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of students respon 20</td>
<td></td>
<td></td>
<td></td>
<td>70%</td>
<td>25%</td>
</tr>
<tr>
<td></td>
<td>0%</td>
<td>0%</td>
<td>5%</td>
<td>25%</td>
<td>70%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Availability and helpfulness.</th>
<th>Poor</th>
<th>Fair</th>
<th>Satisfactory</th>
<th>Very Good</th>
<th>Excellent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of students respon 18</td>
<td></td>
<td></td>
<td></td>
<td>28%</td>
<td>44%</td>
</tr>
<tr>
<td></td>
<td>0%</td>
<td>11%</td>
<td>17%</td>
<td>44%</td>
<td>28%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fairness in evaluating students.</th>
<th>Poor</th>
<th>Fair</th>
<th>Satisfactory</th>
<th>Very Good</th>
<th>Excellent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of students respon 20</td>
<td></td>
<td></td>
<td></td>
<td>40%</td>
<td>45%</td>
</tr>
<tr>
<td></td>
<td>0%</td>
<td>8%</td>
<td>10%</td>
<td>45%</td>
<td>40%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Quality of feedback on submitted work.</th>
<th>Poor</th>
<th>Fair</th>
<th>Satisfactory</th>
<th>Very Good</th>
<th>Excellent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of students respon 20</td>
<td></td>
<td></td>
<td></td>
<td>5%</td>
<td>35%</td>
</tr>
<tr>
<td></td>
<td>5%</td>
<td>25%</td>
<td>30%</td>
<td>35%</td>
<td>5%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Instructor's overall effectiveness as a teacher.</th>
<th>Poor</th>
<th>Fair</th>
<th>Satisfactory</th>
<th>Very Good</th>
<th>Excellent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of students respon 20</td>
<td></td>
<td></td>
<td></td>
<td>20%</td>
<td>45%</td>
</tr>
<tr>
<td></td>
<td>0%</td>
<td>15%</td>
<td>20%</td>
<td>45%</td>
<td>20%</td>
</tr>
</tbody>
</table>

II. Course Appraisal

Students rated the quality of the following from poor to excellent:

<table>
<thead>
<tr>
<th>Syllabus and handouts.</th>
<th>Poor</th>
<th>Fair</th>
<th>Satisfactory</th>
<th>Very Good</th>
<th>Excellent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of students respon 19</td>
<td>0%</td>
<td>16%</td>
<td>26%</td>
<td>32%</td>
<td>26%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Examinations.</th>
<th>Poor</th>
<th>Fair</th>
<th>Satisfactory</th>
<th>Very Good</th>
<th>Excellent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of students respon 19</td>
<td>0%</td>
<td>5%</td>
<td>37%</td>
<td>47%</td>
<td>11%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Assignments.</th>
<th>Poor</th>
<th>Fair</th>
<th>Satisfactory</th>
<th>Very Good</th>
<th>Excellent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of students respon 20</td>
<td>0%</td>
<td>5%</td>
<td>25%</td>
<td>35%</td>
<td>35%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Required reading.</th>
<th>Poor</th>
<th>Fair</th>
<th>Satisfactory</th>
<th>Very Good</th>
<th>Excellent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of students respon 20</td>
<td>0%</td>
<td>25%</td>
<td>30%</td>
<td>30%</td>
<td>15%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Supplementary materials</th>
<th>Poor</th>
<th>Fair</th>
<th>Satisfactory</th>
<th>Very Good</th>
<th>Excellent</th>
</tr>
</thead>
<tbody>
<tr>
<td>(films, slides, videos, guest lectu</td>
<td>0%</td>
<td>16%</td>
<td>21%</td>
<td>32%</td>
<td>32%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course overall as a learning experience.</th>
<th>Poor</th>
<th>Fair</th>
<th>Satisfactory</th>
<th>Very Good</th>
<th>Excellent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of students respon 20</td>
<td>10%</td>
<td>5%</td>
<td>15%</td>
<td>35%</td>
<td>35%</td>
</tr>
</tbody>
</table>
IMPORTANT:
A separate Cover Sheet must be submitted with the completed Scantrons for each class. Each Cover Sheet needs to reflect the course number, instructor, quarter, and year of the class in order to be processed accurately. Please make copies of this Cover Sheet as needed; CTE will not provide multiple copies.

Please provide CTE the following class information:

Quarter/Year: Fall 2007 Department: Engineering
Course Number: CMPS-160-01
Course Title: Intro Comp Graphics
Instructor: Davis

Number of forms submitted: 21
Total enrolled: 32
☐ Check if Section IV Department Specific Issues is used. Please include a copy of the questions.

Date results are needed: ________________ (minimum one week turnaround required)

Department Contact to receive Scantron forms and summary report
Name: ______Vanessa Schlegel________
Extension: x9-5745 Email: facserv@soe.ucsc.edu
Campus Mail Address: ___________MS: SOE3____

Instructors and Students: Please Return forms to the Department Contact listed above.

Department Contacts only! - Return this form with completed Scantrons to:
Center for Teaching Excellence
133B Kerr Hall

CTE Use Only
Date
Received: 12/11/07

File CMPS-160-01
UCSC INSTRUCTOR EVALUATION FORM

Directions: This side of the form is processed by computer. Please select a response for each item and fill in the corresponding bubble below. Leave blank if not applicable. Please make written comments on the back.

USE A NO. 2 PENCIL OR BLUE OR BLACK INK PEN ONLY

I. Instructor Appraisal

Rate the quality of the following from poor to excellent.

<table>
<thead>
<tr>
<th>Course preparation and organization</th>
<th>Poor</th>
<th>Fair</th>
<th>Satisfactory</th>
<th>Very Good</th>
<th>Excellent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use of class time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clarity and understandability</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enthusiasm for subject and for teaching</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Respect for students; sensitivity to and concern with their progress</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Availability and helpfulness</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fairness in evaluating students</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quality of feedback on submitted work</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instructor's overall effectiveness as a teacher</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

II. Course Appraisal

Rate the quality of the following from poor to excellent. Leave blank if not applicable.

<table>
<thead>
<tr>
<th>Syllabus and handouts</th>
<th>Poor</th>
<th>Fair</th>
<th>Satisfactory</th>
<th>Very Good</th>
<th>Excellent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examinations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assignments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Required reading</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supplementary materials (films, slides, videos, guest lectures)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course overall as a learning experience</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

III. Student Profile

Rate your level of agreement with these statements from strongly disagree to strongly agree.

<table>
<thead>
<tr>
<th>I had a strong desire to take this course.</th>
<th>Strongly Disagree</th>
<th>Somewhat Disagree</th>
<th>Neutral</th>
<th>Somewhat Agree</th>
<th>Strongly Agree</th>
</tr>
</thead>
<tbody>
<tr>
<td>This course is in my major field of study.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I attended class regularly.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I put considerable effort into this course.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I gained a good understanding of the course content.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IV. Department Specific Issues

In completing this section, refer to the points on the board, handout, or overhead and follow your instructor's directions.

1. 1 2 3 4 5
2. 1 2 3 4 5
3. 1 2 3 4 5
4. 1 2 3 4 5
5. 1 2 3 4 5

(Continued on the other side)
UCSC INSTRUCTOR EVALUATION FORM

Directions: This side of the form is processed by computer. Please select a response for each item and fill in the corresponding bubble below. Leave blank if not applicable. Please make written comments on the back.

I. Instructor Appraisal

Rate the quality of the following from poor to excellent.

<table>
<thead>
<tr>
<th></th>
<th>Poor</th>
<th>Fair</th>
<th>Satisfactory</th>
<th>Very Good</th>
<th>Excellent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course preparation and organization</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use of class time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clarity and understandability</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enthusiasm for subject and for teaching</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Respect for students; sensitivity to and concern with their progress</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Availability and helpfulness</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fairness in evaluating students</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quality of feedback on submitted work</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instructor's overall effectiveness as a teacher</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

II. Course Appraisal

Rate the quality of the following from poor to excellent. Leave blank if not applicable.

<table>
<thead>
<tr>
<th></th>
<th>Poor</th>
<th>Fair</th>
<th>Satisfactory</th>
<th>Very Good</th>
<th>Excellent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syllabus and handouts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Examinations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assignments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Required reading</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supplementary materials (films, slides, videos, guest lectures)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course overall as a learning experience</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

III. Student Profile

Rate your level of agreement with these statements from strongly disagree to strongly agree.

<table>
<thead>
<tr>
<th></th>
<th>Strongly Disagree</th>
<th>Somewhat Disagree</th>
<th>Neutral</th>
<th>Somewhat Agree</th>
<th>Strongly Agree</th>
</tr>
</thead>
<tbody>
<tr>
<td>I had a strong desire to take this course.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>This course is in my major field of study.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I attended class regularly.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I put considerable effort into this course.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I gained a good understanding of the course content</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IV. Department Specific Issues

In completing this section, refer to the points on the board, handout, or overhead and follow your instructor's directions.

1. ... 2. ...
2. ... 3. ...
3. ... 4. ...
4. ... 5. ...
(Continued on the other side)
UCSC INSTRUCTOR EVALUATION FORM

Directions: This side of the form is processed by computer. Please select a response for each item and fill in the corresponding bubble below. Leave blank if not applicable. Please make written comments on the back.

I. Instructor Appraisal

Rate the quality of the following from poor to excellent.

<table>
<thead>
<tr>
<th>Course preparation and organization</th>
<th>Poor</th>
<th>Fair</th>
<th>Satisfactory</th>
<th>Very Good</th>
<th>Excellent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use of class time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clarity and understandability</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enthusiasm for subject and for teaching</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Respect for students; sensitivity to and concern with their progress</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Availability and helpfulness</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fairness in evaluating students</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quality of feedback on submitted work</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instructor’s overall effectiveness as a teacher</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

II. Course Appraisal

Rate the quality of the following from poor to excellent. Leave blank if not applicable.

<table>
<thead>
<tr>
<th>Syllabus and handouts</th>
<th>Poor</th>
<th>Fair</th>
<th>Satisfactory</th>
<th>Very Good</th>
<th>Excellent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examinations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assignments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Required reading</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supplementary materials (films, slides, videos, guest lectures)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course overall as a learning experience</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

III. Student Profile

Rate your level of agreement with these statements from strongly disagree to strongly agree.

<table>
<thead>
<tr>
<th>I had a strong desire to take this course.</th>
<th>Strongly Disagree</th>
<th>Somewhat Disagree</th>
<th>Neutral</th>
<th>Somewhat Agree</th>
<th>Strongly Agree</th>
</tr>
</thead>
<tbody>
<tr>
<td>This course is in my major field of study.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I attended class regularly.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I put considerable effort into this course.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I gained a good understanding of the course content.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IV. Department Specific Issues

In completing this section, refer to the points on the board, handout, or overhead and follow your instructor’s directions.

1. .. 1 2 ⑤ ④ ③ ② ①
2. .. 1 ② ③ ④ ⑤
3. .. 1 ① ② ③ ④ ⑤
4. .. 1 ① ② ③ ④ ⑤
5. .. 1 ① ② ③ ④ ⑤

(Continued on the other side)
UCSC INSTRUCTOR EVALUATION FORM

Directions: This side of the form is processed by computer. Please select a response for each item and fill in the corresponding bubble below. Leave blank if not applicable. Please make written comments on the back.

USE A NO. 2 PENCIL OR BLUE OR BLACK INK PEN ONLY

I. Instructor Appraisal

Rate the quality of the following from poor to excellent.

<table>
<thead>
<tr>
<th>Course preparation and organization</th>
<th>Poor</th>
<th>Fair</th>
<th>Satisfactory</th>
<th>Very Good</th>
<th>Excellent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use of class time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clarity and understandability</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enthusiasm for subject and for teaching</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Respect for students; sensitivity to and concern with their progress</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Availability and helpfulness</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fairness in evaluating students</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quality of feedback on submitted work</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instructor's overall effectiveness as a teacher</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

II. Course Appraisal

Rate the quality of the following from poor to excellent. Leave blank if not applicable.

<table>
<thead>
<tr>
<th>Syllabus and handouts</th>
<th>Poor</th>
<th>Fair</th>
<th>Satisfactory</th>
<th>Very Good</th>
<th>Excellent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examinations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assignments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Required reading</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supplementary materials (films, slides, videos, guest lectures)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course overall as a learning experience</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

III. Student Profile

Rate your level of agreement with these statements from strongly disagree to strongly agree.

<table>
<thead>
<tr>
<th>I had a strong desire to take this course</th>
<th>Strongly Disagree</th>
<th>Somewhat Disagree</th>
<th>Neutral</th>
<th>Somewhat Agree</th>
<th>Strongly Agree</th>
</tr>
</thead>
<tbody>
<tr>
<td>This course is in my major field of study</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I attended class regularly</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I put considerable effort into this course</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I gained a good understanding of the course content</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IV. Department Specific Issues

In completing this section, refer to the points on the board, handout, or overhead and follow your instructor's directions.

1. ...
2. ...
3. ...
4. ...
5. ...

(Continued on the other side)
UCSC INSTRUCTOR EVALUATION FORM

Directions: This side of the form is processed by computer. Please select a response for each item and fill in the corresponding bubble below. Leave blank if not applicable. Please make written comments on the back.

I. Instructor Appraisal

Rate the quality of the following from poor to excellent.

<table>
<thead>
<tr>
<th>Course preparation and organization</th>
<th>Poor</th>
<th>Fair</th>
<th>Satisfactory</th>
<th>Very Good</th>
<th>Excellent</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Use of class time</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Clarity and understandability</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Enthusiasm for subject and for teaching</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Respect for students; sensitivity to and concern with their progress</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Availability and helpfulness</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fairness in evaluating students</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Quality of feedback on submitted work</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Instructor's overall effectiveness as a teacher</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

II. Course Appraisal

Rate the quality of the following from poor to excellent. **Leave blank if not applicable.**

<table>
<thead>
<tr>
<th>Syllabus and handouts</th>
<th>Poor</th>
<th>Fair</th>
<th>Satisfactory</th>
<th>Very Good</th>
<th>Excellent</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Examinations</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Assignments</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Required reading</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Supplementary materials (films, slides, videos, guest lectures)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Course overall as a learning experience</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

III. Student Profile

Rate your level of agreement with these statements from strongly disagree to strongly agree.

<table>
<thead>
<tr>
<th>I had a strong desire to take this course.</th>
<th>Strongly Disagree</th>
<th>Somewhat Disagree</th>
<th>Neutral</th>
<th>Somewhat Agree</th>
<th>Strongly Agree</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>This course is in my major field of study.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I attended class regularly.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I put considerable effort into this course.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I gained a good understanding of the course content.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

IV. Department Specific Issues

In completing this section, refer to the points on the board, handout, or overhead and follow your instructor's directions.

1.
2.
3.
4.
5.

(Continued on the other side)
I. Instructor Appraisal

Rate the quality of the following from poor to excellent.

<table>
<thead>
<tr>
<th>Course preparation and organization</th>
<th>Poor</th>
<th>Fair</th>
<th>Satisfactory</th>
<th>Very Good</th>
<th>Excellent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use of class time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clarity and understandability</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enthusiasm for subject and for teaching</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Respect for students; sensitivity to and concern with their progress</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Availability and helpfulness</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fairness in evaluating students</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quality of feedback on submitted work</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instructor’s overall effectiveness as a teacher</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

II. Course Appraisal

Rate the quality of the following from poor to excellent. Leave blank if not applicable.

<table>
<thead>
<tr>
<th>Syllabus and handouts</th>
<th>Poor</th>
<th>Fair</th>
<th>Satisfactory</th>
<th>Very Good</th>
<th>Excellent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examinations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assignments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Required reading</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supplementary materials (films, slides, videos, guest lectures)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course overall as a learning experience</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

III. Student Profile

Rate your level of agreement with these statements from strongly disagree to strongly agree.

<table>
<thead>
<tr>
<th>I had a strong desire to take this course</th>
<th>Strongly Disagree</th>
<th>Somewhat Disagree</th>
<th>Neutral</th>
<th>Somewhat Agree</th>
<th>Strongly Agree</th>
</tr>
</thead>
<tbody>
<tr>
<td>This course is in my major field of study</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I attended class regularly</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I put considerable effort into this course</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I gained a good understanding of the course content</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IV. Department Specific Issues

In completing this section, refer to the points on the board, handout, or overhead and follow your instructor’s directions.

1. ... ① ② ③ ④ ⑤
2. ... ① ② ③ ④ ⑤
3. ... ① ② ③ ④ ⑤
4. ... ① ② ③ ④ ⑤
5. ... ① ② ③ ④ ⑤

(Continued on the other side)
UCSC Instructor Evaluation Form

Directions: This side of the form is processed by computer. Please select a response for each item and fill in the corresponding bubble below. Leave blank if not applicable. Please make written comments on the back.

I. Instructor Appraisal
Rate the quality of the following from poor to excellent.

<table>
<thead>
<tr>
<th>Item</th>
<th>Poor</th>
<th>Fair</th>
<th>Satisfactory</th>
<th>Very Good</th>
<th>Excellent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course preparation and organization</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use of class time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clarity and understandability</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enthusiasm for subject and for teaching</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Respect for students; sensitivity to and concern with their progress</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Availability and helpfulness</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fairness in evaluating students</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quality of feedback on submitted work</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instructor's overall effectiveness as a teacher</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

II. Course Appraisal
Rate the quality of the following from poor to excellent. Leave blank if not applicable.

<table>
<thead>
<tr>
<th>Item</th>
<th>Poor</th>
<th>Fair</th>
<th>Satisfactory</th>
<th>Very Good</th>
<th>Excellent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syllabus and handouts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Examinations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assignments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Required reading</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supplementary materials (films, slides, videos, guest lectures)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course overall as a learning experience</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

III. Student Profile
Rate your level of agreement with these statements from strongly disagree to strongly agree.

<table>
<thead>
<tr>
<th>Statement</th>
<th>Strongly Disagree</th>
<th>Somewhat Disagree</th>
<th>Neutral</th>
<th>Somewhat Agree</th>
<th>Strongly Agree</th>
</tr>
</thead>
<tbody>
<tr>
<td>I had a strong desire to take this course.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>This course is in my major field of study.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I attended class regularly.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I put considerable effort into this course.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I gained a good understanding of the course content.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IV. Department Specific Issues
In completing this section, refer to the points on the board, handout, or overhead and follow your instructor's directions.

1. | 1 | 2 | 3 | 4 | 5 |
2. | 1 | 2 | 3 | 4 | 5 |
3. | 1 | 2 | 3 | 4 | 5 |
4. | 1 | 2 | 3 | 4 | 5 |
5. | 1 | 2 | 3 | 4 | 5 |

(Continued on the other side)
I. Instructor Appraisal

Rate the quality of the following from poor to excellent.

<table>
<thead>
<tr>
<th>Course preparation and organization</th>
<th>Poor</th>
<th>Fair</th>
<th>Satisfactory</th>
<th>Very Good</th>
<th>Excellent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use of class time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clarity and understandability</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enthusiasm for subject and for teaching</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Respect for students; sensitivity to and concern with their progress</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Availability and helpfulness</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fairness in evaluating students</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quality of feedback on submitted work</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instructor's overall effectiveness as a teacher</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

II. Course Appraisal

Rate the quality of the following from poor to excellent. Leave blank if not applicable.

<table>
<thead>
<tr>
<th>Syllabus and handouts</th>
<th>Poor</th>
<th>Fair</th>
<th>Satisfactory</th>
<th>Very Good</th>
<th>Excellent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examinations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assignments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Required reading</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supplementary materials (films, slides, videos, guest lectures)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course overall as a learning experience</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

III. Student Profile

Rate your level of agreement with these statements from strongly disagree to strongly agree.

<table>
<thead>
<tr>
<th>I had a strong desire to take this course.</th>
<th>Strongly Disagree</th>
<th>Somewhat Disagree</th>
<th>Neutral</th>
<th>Somewhat Agree</th>
<th>Strongly Agree</th>
</tr>
</thead>
<tbody>
<tr>
<td>This course is in my major field of study.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I attended class regularly</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I put considerable effort into this course.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I gained a good understanding of the course content.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IV. Department Specific Issues

In completing this section, refer to the points on the board, handout, or overhead and follow your instructor's directions.

1. .. 1 2 3 4 5
2. .. 1 2 3 4 5
3. .. 1 2 3 4 5
4. .. 1 2 3 4 5
5. .. 1 2 3 4 5

(Continued on the other side)
UCSC INSTRUCTOR EVALUATION FORM

Directions: This side of the form is processed by computer. Please select a response for each item and fill in the corresponding bubble below. Leave blank if not applicable. Please make written comments on the back.

USE A NO. 2 PENCIL OR **BLUE OR BLACK INK PEN ONLY**

I. Instructor Appraisal

Rate the quality of the following from poor to excellent.

<table>
<thead>
<tr>
<th>Category</th>
<th>Poor</th>
<th>Fair</th>
<th>Satisfactory</th>
<th>Very Good</th>
<th>Excellent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course preparation and organization</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use of class time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clarity and understandability</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enthusiasm for subject and for teaching</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Respect for students; sensitivity to and concern with their progress</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Availability and helpfulness</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fairness in evaluating students</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quality of feedback on submitted work</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instructor's overall effectiveness as a teacher</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

II. Course Appraisal

Rate the quality of the following from poor to excellent. Leave blank if not applicable.

<table>
<thead>
<tr>
<th>Category</th>
<th>Poor</th>
<th>Fair</th>
<th>Satisfactory</th>
<th>Very Good</th>
<th>Excellent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syllabus and handouts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Examinations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assignments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Required reading</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supplementary materials (films, slides, videos, guest lectures)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course overall as a learning experience</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

III. Student Profile

Rate your level of agreement with these statements from strongly disagree to strongly agree.

<table>
<thead>
<tr>
<th>Statement</th>
<th>Strongly Disagree</th>
<th>Somewhat Disagree</th>
<th>Neutral</th>
<th>Somewhat Agree</th>
<th>Strongly Agree</th>
</tr>
</thead>
<tbody>
<tr>
<td>I had a strong desire to take this course.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>This course is in my major field of study.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I attended class regularly.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I put considerable effort into this course.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I gained a good understanding of the course content.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IV. Department Specific Issues

In completing this section, refer to the points on the board, handout, or overhead and follow your instructor's directions.

1. | 1 | 2 | 3 | 4 | 5 |
2. | 1 | 2 | 3 | 4 | 5 |
3. | | | | | |
4. | | | | | |
5. | | | | | |

(Continued on the other side)
UCSC INSTRUCTOR EVALUATION FORM

Directions: This side of the form is processed by computer. Please select a response for each item and fill in the corresponding bubble below. Leave blank if not applicable. Please make written comments on the back.

I. Instructor Appraisal
Rate the quality of the following from poor to excellent.

<table>
<thead>
<tr>
<th>Course preparation and organization</th>
<th>Poor</th>
<th>Fair</th>
<th>Satisfactory</th>
<th>Very Good</th>
<th>Excellent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use of class time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clarity and understandability</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enthusiasm for subject and for teaching</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Respect for students; sensitivity to and concern with their progress</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Availability and helpfulness</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fairness in evaluating students</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quality of feedback on submitted work</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instructor’s overall effectiveness as a teacher</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

II. Course Appraisal
Rate the quality of the following from poor to excellent. Leave blank if not applicable.

<table>
<thead>
<tr>
<th>Syllabus and handouts</th>
<th>Poor</th>
<th>Fair</th>
<th>Satisfactory</th>
<th>Very Good</th>
<th>Excellent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examinations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assignments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Required reading</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supplementary materials (films, slides, videos, guest lectures)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course overall as a learning experience</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

III. Student Profile
Rate your level of agreement with these statements from strongly disagree to strongly agree.

<table>
<thead>
<tr>
<th>I had a strong desire to take this course</th>
<th>Strongly Disagree</th>
<th>Somewhat Disagree</th>
<th>Neutral</th>
<th>Somewhat Agree</th>
<th>Strongly Agree</th>
</tr>
</thead>
<tbody>
<tr>
<td>This course is in my major field of study</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I attended class regularly</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I put considerable effort into this course</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I gained a good understanding of the course content</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IV. Department Specific Issues
In completing this section, refer to the points on the board, handout, or overhead and follow your instructor’s directions.

1. .. 1 2 3 4 5 6
2. .. 1 2 3 4 5 6
3. .. 1 2 3 4 5 6
4. .. 1 2 3 4 5 6
5. .. 1 2 3 4 5 6

(Continued on the other side)
UCSC INSTRUCTOR EVALUATION FORM

Directions: This side of the form is processed by computer. Please select a response for each item and fill in the corresponding bubble below. Leave blank if not applicable. Please make written comments on the back.

USE A NO. 2 PENCIL OR **BLUE OR BLACK INK PEN ONLY**

I. Instructor Appraisal

Rate the quality of the following from poor to excellent.

<table>
<thead>
<tr>
<th>Course preparation and organization</th>
<th>Poor</th>
<th>Fair</th>
<th>Satisfactory</th>
<th>Very Good</th>
<th>Excellent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use of class time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clarity and understandability</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enthusiasm for subject and for teaching</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Respect for students; sensitivity to and concern with their progress</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Availability and helpfulness</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fairness in evaluating students</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quality of feedback on submitted work</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instructor's overall effectiveness as a teacher</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

II. Course Appraisal

Rate the quality of the following from poor to excellent. Leave blank if not applicable.

<table>
<thead>
<tr>
<th>Syllabus and handouts</th>
<th>Poor</th>
<th>Fair</th>
<th>Satisfactory</th>
<th>Very Good</th>
<th>Excellent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examinations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assignments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Required reading.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supplementary materials (films, slides, videos, guest lectures)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course overall as a learning experience</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

III. Student Profile

Rate your level of agreement with these statements from strongly disagree to strongly agree.

<table>
<thead>
<tr>
<th>I had a strong desire to take this course.</th>
<th>Strongly Disagree</th>
<th>Somewhat Disagree</th>
<th>Neutral</th>
<th>Somewhat Agree</th>
<th>Strongly Agree</th>
</tr>
</thead>
<tbody>
<tr>
<td>This course is in my major field of study.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I attended class regularly.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I put considerable effort into this course.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I gained a good understanding of the course content.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IV. Department Specific Issues

In completing this section, refer to the points on the board, handout, or overhead and follow your instructor’s directions.

1.
2.
3.
4.
5.

(Continued on the other side)
UCSC INSTRUCTOR EVALUATION FORM

Directions: This side of the form is processed by computer. Please select a response for each item and fill in the corresponding bubble below. Leave blank if not applicable. Please make written comments on the back.

I. Instructor Appraisal

Rate the quality of the following from poor to excellent.

<table>
<thead>
<tr>
<th>Course preparation and organization</th>
<th>Poor</th>
<th>Fair</th>
<th>Satisfactory</th>
<th>Very Good</th>
<th>Excellent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use of class time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clarity and understandability</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enthusiasm for subject and for teaching</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Respect for students; sensitivity to and concern with their progress</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Availability and helpfulness</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fairness in evaluating students</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quality of feedback on submitted work</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instructor’s overall effectiveness as a teacher</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

II. Course Appraisal

Rate the quality of the following from poor to excellent. Leave blank if not applicable.

<table>
<thead>
<tr>
<th>Syllabus and handouts</th>
<th>Poor</th>
<th>Fair</th>
<th>Satisfactory</th>
<th>Very Good</th>
<th>Excellent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examinations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assignments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Required reading</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supplementary materials (films, slides, videos, guest lectures)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course overall as a learning experience</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

III. Student Profile

Rate your level of agreement with these statements from strongly disagree to strongly agree.

<table>
<thead>
<tr>
<th>I had a strong desire to take this course.</th>
<th>Strongly Disagree</th>
<th>Somewhat Disagree</th>
<th>Neutral</th>
<th>Somewhat Agree</th>
<th>Strongly Agree</th>
</tr>
</thead>
<tbody>
<tr>
<td>This course is in my major field of study.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I attended class regularly.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I put considerable effort into this course.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I gained a good understanding of the course content.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IV. Department Specific Issues

In completing this section, refer to the points on the board, handout, or overhead and follow your instructor’s directions.

1. ... 1 2 3 4 5
2. ... 1 2 3 4 5
3. ... 1 2 3 4 5
4. ... 1 2 3 4 5
5. ... 1 2 3 4 5

(Continued on the other side)
UCSC INSTRUCTOR EVALUATION FORM

Directions: This side of the form is processed by computer. Please select a response for each item and fill in the corresponding bubble below. Leave blank if not applicable. Please make written comments on the back.

1. **USE A NO. 2 PENCIL** OR **BLUE OR BLACK INK PEN ONLY**

I. Instructor Appraisal

Rate the quality of the following from poor to excellent.

<table>
<thead>
<tr>
<th>Course preparation and organization</th>
<th>Poor</th>
<th>Fair</th>
<th>Satisfactory</th>
<th>Very Good</th>
<th>Excellent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use of class time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clarity and understandability</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enthusiasm for subject and for teaching</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Respect for students; sensitivity to and concern with their progress</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Availability and helpfulness</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fairness in evaluating students</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quality of feedback on submitted work</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instructor's overall effectiveness as a teacher</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

II. Course Appraisal

Rate the quality of the following from poor to excellent. *Leave blank if not applicable.*

<table>
<thead>
<tr>
<th>Syllabus and handouts</th>
<th>Poor</th>
<th>Fair</th>
<th>Satisfactory</th>
<th>Very Good</th>
<th>Excellent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examinations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assignments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Required reading</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supplementary materials (films, slides, videos, guest lectures)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course overall as a learning experience</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

III. Student Profile

Rate your level of agreement with these statements from strongly disagree to strongly agree.

<table>
<thead>
<tr>
<th>I had a strong desire to take this course</th>
<th>Strongly Disagree</th>
<th>Somewhat Disagree</th>
<th>Neutral</th>
<th>Somewhat Agree</th>
<th>Strongly Agree</th>
</tr>
</thead>
<tbody>
<tr>
<td>This course is in my major field of study</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I attended class regularly</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I put considerable effort into this course</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I gained a good understanding of the course content</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IV. Department Specific Issues

In completing this section, refer to the points on the board, handout, or overhead and follow your instructor's directions.

1. | | | | | |
2. | | | | | |
3. | | | | | |
4. | | | | | |
5. | | | | | |

(Continued on the other side)
UCSC INSTRUCTOR EVALUATION FORM

Directions: This side of the form is processed by computer. Please select a response for each item and fill in the corresponding bubble below. Leave blank if not applicable. Please make written comments on the back.

1. **Instructor Appraisal**

 Rate the quality of the following from poor to excellent.

<table>
<thead>
<tr>
<th>Poor</th>
<th>Fair</th>
<th>Satisfactory</th>
<th>Very Good</th>
<th>Excellent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course preparation and organization.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use of class time.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clarity and understandability</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enthusiasm for subject and for teaching</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Respect for students; sensitivity to and concern with their progress</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Availability and helpfulness</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fairness in evaluating students</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quality of feedback on submitted work</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instructor's overall effectiveness as a teacher</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. **Course Appraisal**

 Rate the quality of the following from poor to excellent. Leave blank if not applicable.

<table>
<thead>
<tr>
<th>Poor</th>
<th>Fair</th>
<th>Satisfactory</th>
<th>Very Good</th>
<th>Excellent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syllabus and handouts</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Examinations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assignments</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Required reading</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supplementary materials (films, slides, videos, guest lectures)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course overall as a learning experience</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. **Student Profile**

 Rate your level of agreement with these statements from strongly disagree to strongly agree.

<table>
<thead>
<tr>
<th>Strongly Disagree</th>
<th>Somewhat Disagree</th>
<th>Neutral</th>
<th>Somewhat Agree</th>
<th>Strongly Agree</th>
</tr>
</thead>
<tbody>
<tr>
<td>I had a strong desire to take this course.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>This course is in my major field of study.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I attended class regularly</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I put considerable effort into this course</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I gained a good understanding of the course content</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. **Department Specific Issues**

 In completing this section, refer to the points on the board, handout, or overhead and follow your instructor's directions.

 1. 2. 3. 4. 5.

 (Continued on the other side)
I. Instructor Appraisal

Rate the quality of the following from poor to excellent.

<table>
<thead>
<tr>
<th>Quality</th>
<th>Poor</th>
<th>Fair</th>
<th>Satisfactory</th>
<th>Very Good</th>
<th>Excellent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course preparation and organization</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use of class time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clarity and understandability</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enthusiasm for subject and for teaching</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Respect for students; sensitivity to and concern with their progress</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Availability and helpfulness</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fairness in evaluating students</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quality of feedback on submitted work</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instructor's overall effectiveness as a teacher</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

II. Course Appraisal

Rate the quality of the following from poor to excellent. Leave blank if not applicable.

<table>
<thead>
<tr>
<th>Quality</th>
<th>Poor</th>
<th>Fair</th>
<th>Satisfactory</th>
<th>Very Good</th>
<th>Excellent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syllabus and handouts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Examinations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assignments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Required reading</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supplementary materials (films, slides, videos, guest lectures)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course overall as a learning experience</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

III. Student Profile

Rate your level of agreement with these statements from strongly disagree to strongly agree.

<table>
<thead>
<tr>
<th>Statement</th>
<th>Strongly Disagree</th>
<th>Somewhat Disagree</th>
<th>Neutral</th>
<th>Somewhat Agree</th>
<th>Strongly Agree</th>
</tr>
</thead>
<tbody>
<tr>
<td>I had a strong desire to take this course.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>This course is in my major field of study.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I attended class regularly.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I put considerable effort into this course.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I gained a good understanding of the course content.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IV. Department Specific Issues

In completing this section, refer to the points on the board, handout, or overhead and follow your instructor's directions.

1. ① ② ③ ④ ⑤
2. ① ② ③ ④ ⑤
3. ① ② ③ ④ ⑤
4. ① ② ③ ④ ⑤
5. ① ② ③ ④ ⑤

(Continued on the other side)
I. Instructor Appraisal

Rate the quality of the following from poor to excellent.

<table>
<thead>
<tr>
<th>Rating</th>
<th>Course preparation and organization</th>
<th>Use of class time</th>
<th>Clarity and understandability</th>
<th>Enthusiasm for subject and for teaching</th>
<th>Respect for students; sensitivity to and concern with their progress</th>
<th>Availability and helpfulness</th>
<th>Fairness in evaluating students</th>
<th>Quality of feedback on submitted work</th>
<th>Instructor’s overall effectiveness as a teacher</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poor</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fair</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Satisfactory</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Very Good</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Excellent</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

II. Course Appraisal

Rate the quality of the following from poor to excellent. Leave blank if not applicable.

<table>
<thead>
<tr>
<th>Rating</th>
<th>Syllabus and handouts</th>
<th>Examinations</th>
<th>Assignments</th>
<th>Required reading</th>
<th>Supplementary materials (films, slides, videos, guest lectures)</th>
<th>Course overall as a learning experience</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poor</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fair</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Satisfactory</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Very Good</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Excellent</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

III. Student Profile

Rate your level of agreement with these statements from strongly disagree to strongly agree.

<table>
<thead>
<tr>
<th>Statement</th>
<th>Strongly Disagree</th>
<th>Somewhat Disagree</th>
<th>Neutral</th>
<th>Somewhat Agree</th>
<th>Strongly Agree</th>
</tr>
</thead>
<tbody>
<tr>
<td>I had a strong desire to take this course.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>This course is in my major field of study.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>I attended class regularly.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>I put considerable effort into this course.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>I gained a good understanding of the course content.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

IV. Department Specific Issues

In completing this section, refer to the points on the board, handout, or overhead and follow your instructor's directions.

1. ... 1 2 3 4 5
2. ... 1 2 3 4 5
3. ... 1 2 3 4 5
4. ... 1 2 3 4 5
5. ... 1 2 3 4 5

(Continued on the other side)
UCSC INSTRUCTOR EVALUATION FORM

Directions: This side of the form is processed by computer. Please select a response for each item and fill in the corresponding bubble below. Leave blank if not applicable. Please make written comments on the back.

I. Instructor Appraisal

Rate the quality of the following from poor to excellent.

<table>
<thead>
<tr>
<th>Course preparation and organization</th>
<th>Poor</th>
<th>Fair</th>
<th>Satisfactory</th>
<th>Very Good</th>
<th>Excellent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use of class time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clarity and understandability</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enthusiasm for subject and for teaching</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Respect for students; sensitivity to and concern with their progress</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Availability and helpfulness</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fairness in evaluating students</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quality of feedback on submitted work</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instructor’s overall effectiveness as a teacher</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

II. Course Appraisal

Rate the quality of the following from poor to excellent. Leave blank if not applicable.

<table>
<thead>
<tr>
<th>Syllabus and handouts</th>
<th>Poor</th>
<th>Fair</th>
<th>Satisfactory</th>
<th>Very Good</th>
<th>Excellent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examinations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assignments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Required reading</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supplementary materials (films, slides, videos, guest lectures)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course overall as a learning experience</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

III. Student Profile

Rate your level of agreement with these statements from strongly disagree to strongly agree.

<table>
<thead>
<tr>
<th>I had a strong desire to take this course.</th>
<th>Strongly Disagree</th>
<th>Somewhat Disagree</th>
<th>Neutral</th>
<th>Somewhat Agree</th>
<th>Strongly Agree</th>
</tr>
</thead>
<tbody>
<tr>
<td>This course is in my major field of study</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I attended class regularly</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I put considerable effort into this course</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I gained a good understanding of the course content</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IV. Department Specific Issues

In completing this section, refer to the points on the board, handout, or overhead and follow your instructor’s directions.

1. ... 1 2 3 4 5
2. ... 1 2 3
3. ... 1 2 3
4. ... 1 2 3
5. ... 1 2 3

(Continued on the other side)
I. Instructor Appraisal

Rate the quality of the following from poor to excellent.

<table>
<thead>
<tr>
<th>Course preparation and organization</th>
<th>Poor</th>
<th>Fair</th>
<th>Satisfactory</th>
<th>Very Good</th>
<th>Excellent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use of class time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clarity and understandability</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enthusiasm for subject and for teaching</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Respect for students; sensitivity to and concern with their progress</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Availability and helpfulness</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fairness in evaluating students</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quality of feedback on submitted work</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instructor's overall effectiveness as a teacher</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

II. Course Appraisal

Rate the quality of the following from poor to excellent. Leave blank if not applicable.

<table>
<thead>
<tr>
<th>Syllabus and handouts</th>
<th>Poor</th>
<th>Fair</th>
<th>Satisfactory</th>
<th>Very Good</th>
<th>Excellent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examinations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assignments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Required reading</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supplementary materials (films, slides, videos, guest lectures)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course overall as a learning experience</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

III. Student Profile

Rate your level of agreement with these statements from strongly disagree to strongly agree.

<table>
<thead>
<tr>
<th>I had a strong desire to take this course.</th>
<th>Strongly Disagree</th>
<th>Somewhat Disagree</th>
<th>Neutral</th>
<th>Somewhat Agree</th>
<th>Strongly Agree</th>
</tr>
</thead>
<tbody>
<tr>
<td>This course is in my major field of study.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I attended class regularly.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I put considerable effort into this course.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I gained a good understanding of the course content.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IV. Department Specific Issues

In completing this section, refer to the points on the board, handout, or overhead and follow your instructor's directions.

1. .. ① ② ③ ④ ⑤
2. .. ① ② ③ ④ ⑤
3. .. ② ③ ④ ⑤ ⑥
4. .. ① ② ③ ④ ⑤
5. .. ① ② ③ ④ ⑤

(Continued on the other side)
UCSC INSTRUCTOR EVALUATION FORM

Directions: This side of the form is processed by computer. Please select a response for each item and fill in the corresponding bubble below. Leave blank if not applicable. Please make written comments on the back.

I. Instructor Appraisal
Rate the quality of the following from poor to excellent.

<table>
<thead>
<tr>
<th>Poor</th>
<th>Fair</th>
<th>Satisfactory</th>
<th>Very Good</th>
<th>Excellent</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

II. Course Appraisal
Rate the quality of the following from poor to excellent. Leave blank if not applicable.

<table>
<thead>
<tr>
<th>Poor</th>
<th>Fair</th>
<th>Satisfactory</th>
<th>Very Good</th>
<th>Excellent</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

III. Student Profile
Rate your level of agreement with these statements from strongly disagree to strongly agree.

<table>
<thead>
<tr>
<th>Strongly Disagree</th>
<th>Somewhat Disagree</th>
<th>Neutral</th>
<th>Somewhat Agree</th>
<th>Strongly Agree</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

IV. Department Specific Issues
In completing this section, refer to the points on the board, handout, or overhead and follow your instructor's directions.

1. .. 1 2 3 4 5
2. .. 1 2 3 4 5
3. .. 1 2 3 4 5
4. .. 1 2 3 4 5
5. .. 1 2 3 4 5

(Continued on the other side)
UCSC INSTRUCTOR EVALUATION FORM

Directions: This side of the form is processed by computer. Please select a response for each item and fill in the corresponding bubble below. Leave blank if not applicable. Please make written comments on the back.

USE A NO. 2 PENCIL OR **BLUE OR BLACK INK PEN ONLY**

I. Instructor Appraisal

Rate the quality of the following from poor to excellent.

<table>
<thead>
<tr>
<th>Item</th>
<th>Poor</th>
<th>Fair</th>
<th>Satisfactory</th>
<th>Very Good</th>
<th>Excellent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course preparation and organization</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use of class time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clarity and understandability</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enthusiasm for subject and for teaching</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Respect for students; sensitivity to and concern with their progress</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Availability and helpfulness</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fairness in evaluating students</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quality of feedback on submitted work</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instructor's overall effectiveness as a teacher</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

II. Course Appraisal

Rate the quality of the following from poor to excellent. Leave blank if not applicable.

<table>
<thead>
<tr>
<th>Item</th>
<th>Poor</th>
<th>Fair</th>
<th>Satisfactory</th>
<th>Very Good</th>
<th>Excellent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syllabus and handouts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Examinations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assignments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Required reading</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supplementary reading (films, slides, videos, guest lectures)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course overall as a learning experience</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

III. Student Profile

Rate your level of agreement with these statements from strongly disagree to strongly agree.

<table>
<thead>
<tr>
<th>Statement</th>
<th>Strongly Disagree</th>
<th>Somewhat Disagree</th>
<th>Neutral</th>
<th>Somewhat Agree</th>
<th>Strongly Agree</th>
</tr>
</thead>
<tbody>
<tr>
<td>I had a strong desire to take this course.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>This course is in my major field of study.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I attended class regularly.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I put considerable effort into this course.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I gained a good understanding of the course content.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IV. Department Specific Issues

In completing this section, refer to the points on the board, handout, or overhead and follow your instructor's directions.

1.
2.
3.
4.
5.

(Continued on the other side)
UCSC INSTRUCTOR EVALUATION FORM

Directions: This side of the form is processed by computer. Please select a response for each item and fill in the corresponding bubble below. Leave blank if not applicable. Please make written comments on the back.

I. Instructor Appraisal

Rate the quality of the following from poor to excellent.

<table>
<thead>
<tr>
<th>Course preparation and organization</th>
<th>Poor</th>
<th>Fair</th>
<th>Satisfactory</th>
<th>Very Good</th>
<th>Excellent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use of class time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clarity and understandability</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enthusiasm for subject and for teaching</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Respect for students; sensitivity to and concern with their progress</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Availability and helpfulness</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fairness in evaluating students</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quality of feedback on submitted work</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instructor’s overall effectiveness as a teacher</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

II. Course Appraisal

Rate the quality of the following from poor to excellent. *Leave blank if not applicable.*

<table>
<thead>
<tr>
<th>Syllabus and handouts</th>
<th>Poor</th>
<th>Fair</th>
<th>Satisfactory</th>
<th>Very Good</th>
<th>Excellent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examinations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assignments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Required reading</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supplementary materials (films, slides, videos, guest lectures)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course overall as a learning experience</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

III. Student Profile

Rate your level of agreement with these statements from strongly disagree to strongly agree.

<table>
<thead>
<tr>
<th>I had a strong desire to take this course.</th>
<th>Strongly Disagree</th>
<th>Somewhat Disagree</th>
<th>Neutral</th>
<th>Somewhat Agree</th>
<th>Strongly Agree</th>
</tr>
</thead>
<tbody>
<tr>
<td>This course is in my major field of study</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I attended class regularly</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I put considerable effort into this course</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I gained a good understanding of the course content</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IV. Department Specific Issues

In completing this section, refer to the points on the board, handout, or overhead and follow your instructor’s directions.

1. ...
2. ...
3. ...
4. ...
5. ...

(Continued on the other side)
UCSC INSTRUCTOR EVALUATION FORM

Instructor's name: Davis
Your major: CS
Your year: 4

Course name and number: CS 160

Quarter and year of offering: Fall 2007

Instructions:
Please give serious thought to your comments. This evaluation will become part of the faculty member's personnel file to be reviewed by colleagues and administration when considering the instructor's reappointment, promotion, and salary increases. Your comments will be studied by the professor after the grade and performance evaluation of your work have been submitted and may be used to improve future offerings of the course.

Please comment on how the instructor's teaching helped your learning in this course:
ENTUSIASM for SUBJECT

Please suggest how the instructor's teaching might improve:
 Didn't seem to put much effort into teaching the course. Lectures were disorganized and topics were the test was detailed. It was too obvious that someone else was running all the logistics. This meant we were discussing logistics at the basic end of the quarter.

Other Comments:

(Continued on the other side)
UCSC INSTRUCTOR EVALUATION FORM

Instructor's name: James Davis Your major: CS Your year: Grad

Course name and number: CMPS 160 Computer Graphics

Quarter and year of offering: Fall 2007

Instructions:
Please give serious thought to your comments. This evaluation will become part of the faculty member's personnel file to be reviewed by colleagues and administration when considering the instructor's reappointment, promotion, and salary increases. Your comments will be studied by the professor after the grade and performance evaluation of your work have been submitted and may be used to improve future offerings of the course.

Please comment on how the instructor's teaching helped your learning in this course:

Prof Davis has a remarkable enthusiasm for both the material and teaching in general. Lectures were fun and interesting. Assignments were diverse, challenging, and greatly enhanced learning. This is the best course I've had at UCSC, and Davis is the best teacher.

Please suggest how the instructor's teaching might improve:

The course still seems to be under construction, and so some parts were disorganized. I expect this will improve in future versions.

Other Comments:

Labs were lots of fun.

(Continued on the other side)
UCSC INSTRUCTOR EVALUATION FORM

Instructor's name: James Davis
Your major: CS
Your year: 2008

Course name and number: CMP 160 - Graphics

Quarter and year of offering: Fall 07

Instructions:
Please give serious thought to your comments. This evaluation will become part of the faculty member's personnel file to be reviewed by colleagues and administration when considering the instructor's reappointment, promotion, and salary increases. Your comments will be studied by the professor after the grade and performance evaluation of your work have been submitted and may be used to improve future offerings of the course.

Please comment on how the instructor's teaching helped your learning in this course:

Please suggest how the instructor's teaching might improve:

Other Comments:

(Continued on the other side)
Please comment on how the instructor's teaching helped your learning in this course:
The course was great.

Please suggest how the instructor's teaching might improve:
Generally, the instructor seemed to delegate most of the work for preparing the course to the TA's. The website, in particular, was poorly maintained.

Other Comments:

(Continued on the other side)
Instructor's name: James Davis
Your major: Computer Science
Your year: Senior

Course name and number: CS 168

Quarter and year of offering: Fall 07

Instructions:
Please give serious thought to your comments. This evaluation will become part of the faculty member's personnel file to be reviewed by colleagues and administration when considering the instructor's reappointment, promotion, and salary increases. Your comments will be studied by the professor after the grade and performance evaluation of your work have been submitted and may be used to improve future offerings of the course.

Please comment on how the instructor's teaching helped your learning in this course:
Enthusiasm for subject definitely shines through and made the

Please suggest how the instructor's teaching might improve:
The class definitely became more disorganized as the midterm passe).

Other Comments:

(Continued on the other side)
Please comment on how the instructor's teaching helped your learning in this course:

If not, he didn't, I had to look up everything on the internet.

Please suggest how the instructor's teaching might improve:

I wish he would do more actual midterm and homework examples in class.

Other Comments:

This is key!

And he should have TA's at the recriner sections for the exams.

(Continued on the other side)
Instructor's name: James Davis Your major: CS:CGI Your year: '09
Course name and number: CMPS 160: Intro to Computer Graphics
Quarter and year of offering: Fall 2007

Instructions:
Please give serious thought to your comments. This evaluation will become part of the faculty member's personnel file to be reviewed by colleagues and administration when considering the instructor's reappointment, promotion, and salary increases. Your comments will be studied by the professor after the grade and performance evaluation of your work have been submitted and may be used to improve future offerings of the course.

Please comment on how the instructor's teaching helped your learning in this course:

He answered questions pretty well.

Please suggest how the instructor's teaching might improve:

Devot more time to preparation.

Other Comments:
UCSC INSTRUCTOR EVALUATION FORM

Instructor's name: James Davis Your major: Comp Game Design Your year: 3rd year
Course name and number: Intro to Computer Graphics CMPS 160
Quarter and year of offering: Fall 2007

Instructions:
Please give serious thought to your comments. This evaluation will become part of the faculty member's personnel file to be reviewed by colleagues and administration when considering the instructor's reappointment, promotion, and salary increases. Your comments will be studied by the professor after the grade and performance evaluation of your work have been submitted and may be used to improve future offerings of the course.

Please comment on how the instructor's teaching helped your learning in this course:

Very considerate & concerned w/ students progress. Knew info, which is always a good thing.

Please suggest how the instructor's teaching might improve:

Be more organized w/ the schedule. Don't just take others' slides & lecture off that. If using powerpoint, make summaries of these slides (not bullet pts) & use the other slides as example. Easier to look back & review. Also, make sure you relate some of it to the lab. More direction (instructions) on lab.

Other Comments:

Very good personality.

(Continued on the other side)
Instructions:

Please give serious thought to your comments. This evaluation will become part of the faculty member's personnel file to be reviewed by colleagues and administration when considering the instructor's reappointment, promotion, and salary increases. Your comments will be studied by the professor after the grade and performance evaluation of your work have been submitted and may be used to improve future offerings of the course.

Please comment on how the instructor's teaching helped your learning in this course:

I think he did a good job and is an enthusiastic teacher.

Please suggest how the instructor's teaching might improve:

More organization. Too much time was wasted on administrative stuff.

Other Comments:

(Continued on the other side)
Instructor's name: James Davies
Your major: CMSC 47
Your year: 3rd

Course name and number: CMPS160

Quarter and year of offering: Fall 07

Instructions:
Please give serious thought to your comments. This evaluation will become part of the faculty member's personnel file to be reviewed by colleagues and administration when considering the instructor's reappointment, promotion, and salary increases. Your comments will be studied by the professor after the grade and performance evaluation of your work have been submitted and may be used to improve future offerings of the course.

Please comment on how the instructor's teaching helped your learning in this course:
He was really enthusiastic and always had positive energy.

Please suggest how the instructor's teaching might improve:
Don't steal slides from other professors. It makes learning difficult when slides are skipped or shown in random order. Homework problems are tough and sometimes weren't relevant to what we were learning. Class lectures had too much abstract information to absorb.
Include example code of open GL programs in slides! It'll help.

Other Comments:
I don't feel like I learned much in this class. A majority of it was memorizing old exams and making a lot of friends in lab to share information on the assignments.

(Continued on the other side)
UCSC INSTRUCTOR EVALUATION FORM

Instructor's name: James Davis Your major: CS Your year: 4
Course name and number: CS 166
Quarter and year of offering: Fall 2007

Instructions:
Please give serious thought to your comments. This evaluation will become part of the faculty member's personnel file to be reviewed by colleagues and administration when considering the instructor's reappointment, promotion, and salary increases. Your comments will be studied by the professor after the grade and performance evaluation of your work have been submitted and may be used to improve future offerings of the course.

Please comment on how the instructor's teaching helped your learning in this course:

MADE ME VERY INTERESTED
IN THE SUBJECT

Please suggest how the instructor's teaching might improve:

A LITTLE BIT MORE ORGANIZATION
THE CLASS SHOULD HAVE FOLLOWED THE SCHEDULE
MORE TIGHTLY.

Other Comments:

(Continued on the other side)
Please comment on how the instructor's teaching helped your learning in this course:

James has a very "real" style that brings the course content home. Use of technology research videos, fair lab assignments, and honest communication were refreshing. James also used slides and material from other universities which helped bolster the level of content.

Please suggest how the instructor's teaching might improve:

Some topics were slightly rushed. While contests for labs were a positive reinforcement tool, the actions of some students overshadowed the ability of students who completed the assignment but were inherently outclassed and were immediate non-competers.

Other Comments:

Overall, James did a very good job instructing the course and demonstrates empathy for the well-being of the students.
Instructions:
Please give serious thought to your comments. This evaluation will become part of the faculty member’s personnel file to be reviewed by colleagues and administration when considering the instructor’s reappointment, promotion, and salary increases. Your comments will be studied by the professor after the grade and performance evaluation of your work have been submitted and may be used to improve future offerings of the course.

Please comment on how the instructor’s teaching helped your learning in this course:
very good feedback on work; very enjoyable assignments; pizza for review session is awesome.

Please suggest how the instructor’s teaching might improve:
don’t forget to buy pizza when students expect it.

Other Comments:

(Continued on the other side)
Instructor's name: James Davis Your major: CS Your year: 3rd
Course name and number: CS 160 Intro to comp Graphics
Quarter and year of offering: Fall 07

Instructions:
Please give serious thought to your comments. This evaluation will become part of the faculty member's personnel file to be reviewed by colleagues and administration when considering the instructor's reappointment, promotion, and salary increases. Your comments will be studied by the professor after the grade and performance evaluation of your work have been submitted and may be used to improve future offerings of the course.

Please comment on how the instructor's teaching helped your learning in this course:

Lots of knowledge about subject and info about interesting graphics that aren't involved in class.

Please suggest how the instructor's teaching might improve:

Make you own slides
Stay to the schedule

Other Comments:
Great enthusiasm and knowledge in subject matter.

(Continued on the other side)
Instructor's name: James Davis Your major: CS, Math Your year: Fifth
Course name and number: CMPS 160: Introduction to Computer Graphics
Quarter and year of offering: Fall 2007

Instructions:
Please give serious thought to your comments. This evaluation will become part of the faculty member's personnel file to be reviewed by colleagues and administration when considering the instructor's reappointment, promotion, and salary increases. Your comments will be studied by the professor after the grade and performance evaluation of your work have been submitted and may be used to improve future offerings of the course.

Please comment on how the instructor's teaching helped your learning in this course:
James was very, very amiable and approachable.

Please suggest how the instructor's teaching might improve:
I think that James should spend more time on the mathematics behind the theory. By glossing over the math, he makes the students less engaged with it.

Other Comments:

(Continued on the other side)
Instructor's name: James Davis Your major: Comp Sci Your year: 5th
Course name and number: COMP 160
Quarter and year of offering: Fall 2007

Instructions:
Please give serious thought to your comments. This evaluation will become part of the faculty member's personnel file to be reviewed by colleagues and administration when considering the instructor's reappointment, promotion, and salary increases. Your comments will be studied by the professor after the grade and performance evaluation of your work have been submitted and may be used to improve future offerings of the course.

Please comment on how the instructor's teaching helped your learning in this course:
Professor Davis was good at asking for class input on assignments and the pace of the course.

Please suggest how the instructor's teaching might improve:
Professor Davis was sometimes out of the loop on what was going on with labs/assignments/projects. Perhaps more contact w/ TAs would help.

Other Comments:

(Continued on the other side)
Please suggest how the instructor's teaching might improve:

By working through example problems in class so we can learn how to apply information. By teaching about code applicable to assigned lab algorithms.

Other Comments:

I did not feel like I learned how to apply the information from this class. What I learned in class rarely helped me with the homework or labs. If the class was a pre-req for any of my future classes I would be in trouble.

(Continued on the other side)
Instructor's name: James Davis Your major: CS: Game Design Your year: Senior 2008
Course name and number: CS 168
Quarter and year of offering: Fall 07

Instructions:
Please give serious thought to your comments. This evaluation will become part of the faculty member's personnel file to be reviewed by colleagues and administration when considering the instructor's reappointment, promotion, and salary increases. Your comments will be studied by the professor after the grade and performance evaluation of your work have been submitted and may be used to improve future offerings of the course.

Please comment on how the instructor's teaching helped your learning in this course:
James was very enthusiastic and obviously very interested in the material he was teaching. I learned a lot about graphics as well as a lot about the computer science industry/work force in general.

Please suggest how the instructor's teaching might improve:
A little less powerpoint would be nice but powerpoint still gets the job done well.

Other Comments:

(Continued on the other side)
Instructions:
Please give serious thought to your comments. This evaluation will become part of the faculty member's personnel file to be reviewed by colleagues and administration when considering the instructor's reappointment, promotion, and salary increases. Your comments will be studied by the professor after the grade and performance evaluation of your work have been submitted and may be used to improve future offerings of the course.

Please comment on how the instructor's teaching helped your learning in this course:
Exclent lectures, solid & useful labs.
Resources available & outside class were excellent.
James is a fantastic human being, always nice, friendly & responsive to students.

Please suggest how the instructor's teaching might improve:
Tests were a bit inconsistent in difficulty & expected knowledge. Some problems were easy, others were extremely challenging.

Other Comments:

Thanks James!
I HATE POWER POINT LECTURE!!!
UCSC INSTRUCTOR EVALUATION FORM

Instructor's name: James Davis Your major: CS:60 Your year: 3rd
Course name and number: CMPS 160 - Intro to Comp. Graphics
Quarter and year of offering: Fall '07

Instructions:
Please give serious thought to your comments. This evaluation will become part of the faculty member's personnel file to be reviewed by colleagues and administration when considering the instructor's reappointment, promotion, and salary increases. Your comments will be studied by the professor after the grade and performance evaluation of your work have been submitted and may be used to improve future offerings of the course.

Please comment on how the instructor's teaching helped your learning in this course:
He was very personable and made going to class enjoyable. He was fair in his grading and supportive of students sympathetic to the class. I liked going to class and doing labs.

Please suggest how the instructor's teaching might improve:
He should know more about the topics at the end; his frequent response was, "I have no idea. LOL". He should also keep a notebook of questions he can't answer and report back when he finds a solution. That would help.

Other Comments:
He doesn't care about math, which makes it annoying when I can't remember formulae because of it. He genuinely cares about the overall well-being of the class.

(Continued on the other side)
III. Student Profile

Students rated their level of agreement from strongly disagree to strongly agree.

I had a strong desire to take this course.

<table>
<thead>
<tr>
<th></th>
<th>Strongly Disagree</th>
<th>Disagree</th>
<th>Neutral</th>
<th>Somewhat Agree</th>
<th>Strongly Agree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of students</td>
<td>0%</td>
<td>0%</td>
<td>10%</td>
<td>30%</td>
<td>60%</td>
</tr>
</tbody>
</table>

This course is in my major field of study.

<table>
<thead>
<tr>
<th></th>
<th>Strongly Disagree</th>
<th>Disagree</th>
<th>Neutral</th>
<th>Somewhat Agree</th>
<th>Strongly Agree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of students</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>45%</td>
<td>55%</td>
</tr>
</tbody>
</table>

I attended class regularly.

<table>
<thead>
<tr>
<th></th>
<th>Strongly Disagree</th>
<th>Disagree</th>
<th>Neutral</th>
<th>Somewhat Agree</th>
<th>Strongly Agree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of students</td>
<td>0%</td>
<td>0%</td>
<td>10%</td>
<td>25%</td>
<td>65%</td>
</tr>
</tbody>
</table>

I put considerable effort into this course.

<table>
<thead>
<tr>
<th></th>
<th>Strongly Disagree</th>
<th>Disagree</th>
<th>Neutral</th>
<th>Somewhat Agree</th>
<th>Strongly Agree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of students</td>
<td>0%</td>
<td>0%</td>
<td>5%</td>
<td>35%</td>
<td>60%</td>
</tr>
</tbody>
</table>

IV. Department Specific Issues

Pace of course:

<table>
<thead>
<tr>
<th></th>
<th>Too Fast</th>
<th>-</th>
<th>-</th>
<th>Too Slow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of students</td>
<td>0%</td>
<td>10%</td>
<td>84%</td>
<td>0%</td>
</tr>
</tbody>
</table>

Hours spent on course per week outside of class:

<table>
<thead>
<tr>
<th></th>
<th>(0-5)</th>
<th>(6-9)</th>
<th>(10-13)</th>
<th>(14-17)</th>
<th>(18+)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of students</td>
<td>0%</td>
<td>26%</td>
<td>53%</td>
<td>16%</td>
<td>5%</td>
</tr>
</tbody>
</table>

Your Major is:

<table>
<thead>
<tr>
<th></th>
<th>CE or CS</th>
<th>BINF</th>
<th>EE</th>
<th>ISTM</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of students</td>
<td>95%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>5%</td>
</tr>
</tbody>
</table>

Custom 4

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of students</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Custom 5

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of students</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This report was generated by the Center for Teaching Excellence. For more information, call x92351.