
Markowetz et al., 2005; Gardner et al., 2003; Pe’er et al., 2001;
Cooper and Yoo, 1999). All these methods model the joint distri-
bution of gene-expression levels as a graphical model. This requires
the expression levels of modeled genes to change from one array to
another. Interactions are modeled on the transcriptional level, the
non-transcriptional level is blinded out.
Some approaches use hidden variables to capture non-

transcriptional effects (Nachman et al., 2004; Rangel et al.,
2001, 2004). None of them makes use of interventional data. To
keep model selection feasible they have to introduce a number of
simplifying assumptions: either the hidden nodes do not regulate
each other, or the hidden structure is not identifiable. In both cases,
the models do not allow inference of non-transcriptional pathways.
Another class of algorithms searches for topologies which are

consistent with observed downstream effects of interventions
(Yeang et al., 2004). Although these algorithms are not confined
to the transcriptional level of regulation, they require that most
signaling genes show effects when perturbing others.
In summary, none of the methods designed to infer transcriptional

networks can be applied to reconstruct non-transcriptional path-
ways. The major problem is that these algorithms require direct
observations of expression changes of signaling genes, which are
not fully available in datasets such as those of Boutros et al. (2002).
Our general objective is similar to epistasis analysis with global

transcriptional phenotypes (Driessche et al., 2005). Nevertheless,
there are several important difference. First, we model whole path-
ways and not only single gene–gene interactions. Second, we treat
an expression profile not as one global phenotype but as a collection
of single-gene phenotypes.
Overview of our approach. In this paper, we present a compu-

tational framework for the systematic reconstruction of pathway
features from expression profiles relating to external interventions.
Our approach is based on the nested structure of affected down-
stream genes, which are themselves not a part of the model. Here we
give a short overview of our method before presenting it in all
details in Section 2.
We distinguish two kinds of genes: the candidate pathway genes,

which are silenced by RNAi, and the genes, which show effects of
such interventions in expression profiles. We call the first ones
S-genes (S for ‘silenced’ or ‘signaling’) and the second ones
E-genes (E for ‘effects’). Since large parts of signaling pathways
are non-transcriptional, there will be little or no overlap between
S-genes and E-genes. Elucidating relationships between S-genes
is the focus of our analysis, the E-genes are only needed as report-
ers for signal flow in the pathway. E-genes can be considered as
transcriptional phenotypes. S-genes have to be chosen depending
on the specific question and pathway of interest. E-genes are iden-
tified by comparing measurements of the stimulated and non-
stimulated pathway: genes with a high-expression change are
taken as E-genes.
Our approach models how interventions interrupt the information

flow through the pathway. Thus, S-genes are silenced, while the
pathway is stimulated to see which E-genes are still reached by the
signal. Optimally, the gene-expression experiments are replicated
several times. This results in a dataset representing every signaling
gene by one or more microarrays. These requirements are the same
as in epistasis analysis (Avery and Wasserman, 1992), but they are
not satisfied in all datasets monitoring intervention effects (Hughes
et al., 2000).

The main contribution of this paper is a scoring function, which
measures how well hypotheses about pathway topology are suppor-
ted by experimental data. Input to our algorithm is a list of hypo-
theses about the candidate pathway genes. A hypothesis is
characterized by (1) a directed graph with S-genes as nodes and
(2) the possibly many entry points of signal into the pathway. This
setting is summarized in Figure 1. Our model is based on the
expected response of an intervention given a candidate topology
of S-genes and the position of the intervention in the topology.
Pathways with different topology can show the same downstream
response to interventions. We identify all pathways, which make the
same predictions of intervention effects on downstream genes, by
one so-called silencing scheme. Sorting silencing schemes by our
score shows how well candidate pathways agree with experimental
data. Output of the algorithm is a strongly reduced list of candidate
pathways. The algorithm is a filter, which helps to direct further
research.
Applications beyond RNAi. Our motivation to develop this

algorithm results from the novel challenges the RNAi technology
poses to bioinformatics. At present, RNAi appears to be the most
efficient technology for producing large-scale gene-intervention
data. However, our framework is flexible and any type of external
interventions can be used, which reduces information flow in the
pathway. This includes traditional knock-out experiments and spe-
cific protein inhibiting drugs. An important requirement for any
perturbation technique used is high specificity. Off-target effects
impair our method since intervention effects can no longer be
uniquely predicted.

In the next section we develop our model in detail. Then we test it
in simulation studies (Section 3.1) and demonstrate its use on real
data (Section 3.2).

2 METHODS

First, we describe our model for signaling pathways with transcriptional

phenotypes. Predictions from pathway hypotheses are summarized in a

silencing scheme. In the main part of the section, we develop a Bayesian
method to estimate a silencing scheme from data.

2.1 Signaling pathway model

Core topology on S-genes. The set of E-genes is denoted by E ¼ {E1, . . .,
Em}, and the set of S-genes by S ¼ {S1, . . ., Sn}. As a pathway model, we

assume a directed graph T on vertex set S. The structure of T is not further

SSS S S
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Fig. 1. A schematic summary of our model. The dashed box indicates one

hypothesis: it contains a directed graph T on genes contributing to a signaling
pathway (S-genes). A signal enters the pathway at one (or possibly more than

one) specified position. Interventions at S-genes interrupt signal flow through

the pathway. S-genes regulate E-genes on the second level. Together the S-
and E-genes form an extended topology T0. We observe noisy measurements
of expression states of E-genes. The objective is to reconstruct relationships

between S-genes from observations of E-genes in silencing experiments.
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