
 Copyright 1993
Craig Michael Wittenbrink





Designing Optimal Parallel Volume Rendering

Algorithms

by

Craig Michael Wittenbrink

A dissertation submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

University of Washington

1993

Approved by_____________________________________________________________
(Chairperson of Supervisory Committee)

_____________________________________________________________

_____________________________________________________________

_____________________________________________________________

Program Authorized

to Offer Degree___________________________________________________________

Date____________________________________________________________________



Doctoral Dissertation

In presenting this dissertation in partial fulfillment of the requirements for the Doctoral de-
gree at the University of Washington, I agree that the Library shall make its copies freely
available for inspection. I further agree that extensive copying of this thesis is allowable
only for scholarly purposes, consistent with “fair use” as prescribed in the U.S. Copyright
Law. Requests for copying or reproduction of this dissertation may be referred to Univer-
sity Microfilms, 1490 Eisenhower Place, P.O. Box 975, Ann Arbor, MI 48106, to whom
the author has granted “the right to reproduce and sell (a) copies of the manuscript in mi-
croform and/or (b) printed copies of the manuscript made from microfilm.”

Signature____________________

Date________________________



i

ing

CT,
im-
each

ential
al al-

go-
hms
lgo-
ut-
ity
rallel-
University of Washington

Abstract

Designing Optimal Parallel Volume Rendering
Algorithms

by Craig Michael Wittenbrink

Chairperson of the Supervisory Committee:Professor Arun K. Soman
Department of Electrical Engineering

and Department of Computer Science and Engineer

Volume rendering is a method for visualizing volumes of sampled data such as
MRI, and finite element simulations. Visualization of medical and simulation data
proves understanding and interpretation, but volume rendering is expensive and
frame takes from minutes to hours to calculate. Parallel computers provide the pot
for interactive volume rendering, but parallel algorithms have not matched sequenti
gorithm’s features, nor have they provided the speedup possible.

I introduce a methodology to control the complexity in designing parallel al
rithms, and apply this methodology to volume rendering. The result is parallel algorit
with all of the features of sequential ones that deliver the promise of parallelism. My a
rithms are sufficiently general to run on single instruction multiple data (SIMD) comp
ers and multiple instruction multiple data (MIMD) computers. Through complex
analysis and performance measurements I show that volume rendering is ideally pa
izeable with linear speedup and low memory overhead.





Chapter I
Overview 11
Motivation 11

Overview of Dissertation 11

Volume Rendering 11

Problem Statement 12

Research Contributions 13

Computer Aided Research 14
Image Warping Algorithms 14
Volume Rendering Algorithms 15
Fourier Volume Rendering 16

Summary 17

Chapter I I
Framework 18
Background 18

Development of Applications 18
Promise and Reality of Parallel Computing 19

Speedup Through Slowdown 24

Bridging the PRAM to Real Machines 29
Slowdown Compiler Techniques 29
Existing System Software And Parallel Languages 32

Algorithm Design On Transition Graphs 34

Automated Choices In Transform Graphs 36

Digression on Optimal Algorithms 38

Summary and Discussion 39

Chapter I I I
Spatial Warping 40
Background 40

Possible Image Warping Approaches 41

Warping Filters 43

Error Derivation Of Filtering Approaches 48

Optimal RAM Image Warping Algorithm 51

Optimal PRAM Image Warping Algorithms 54

Optimal CREW PRAM Backwards Direct Warp Algorithm 55
Optimal EREW Forward Direct Warp Algorithm 56
Nonlinear Mapping Rules For Forward Algorithms 59
Sequences of Nonscaling Transforms 61
Optimal MCCM 3D Equiareal Algorithm 63
Comparison to Previous 3D Techniques 65

Scaling and Perspective 67

Virtualization 69



MasPar Performance Results 73

Initial Forward and Backward Algorithms 73
Interpolation and Overlapping Optimizations 76
Filter Complexity, Zero Order Hold 78
Optimization By Power of 2 Virtualization, and Register Optimization 80
Optimization Improvements 82
3D Rotation Performance and Implementation Results 84

Summary and Discussion 90

Chapter IV
Spatial Volume Rendering 93
Background 93

Volume Rendering Lighting and Shading Models 94
Surface Lighting Models 95
Particle Lighting Model 96

Algorithm Development Methodology and Existing Approaches 101

Backward Warping Algorithms-Ray Tracing 103
Forward Algorithms-Compositing 106
Surface Fitting 107
Reprojection and Fourier Volume Rendering 107
Existing Methods Performance Summary 107

Optimal RAM Volume Rendering Algorithm 111

Optimal PRAM Volume Rendering Algorithm 111

Permutation Warping For Parallel Volume Rendering 118

Data Parallel Virtualization 122
High Granularity Virtualization 125

MasPar and Proteus Performance Results 127

MasPar Implementation 134
Proteus Implementation 140
Comparison of Proteus With Existing Methods 142

Summary and Discussion 143

Chapter V
Fourier Volume Rendering 145
Background 145

Possible Fourier Volume Rendering Approaches 147

Summary and Discussion 148

Chapter VI
Conclusions 149
Applying the Framework to Other Algorithms 149

Designing Parallel Warping Algorithms 149



Designing Parallel Volume Rendering Algorithms 150

Future Research 150

Bibl iography 152

Appendix A
Glossary 164

Appendix B
Derivation of Compositing Complexity 167
Background 167

Back To Front Compositing 168

Front To Back Compositing 169

Parallel Binary Tree Compositing 171

Front-To- Back Binary Tree Compositing 173

Sum of Attenuated Emittances Approach 175

Summary and Discussion 177



FIGURE  1 Mental Processes Used In Research. 18

FIGURE  2 Critical Processes 18

FIGURE  3 Cost Performance Comparison 20

FIGURE  4 Cost vs. Performance 22

FIGURE  5 Slowdown By Reducing Parallelism (Similar to

[HENN90]) 24

FIGURE  6 Classes of Algorithms 26

FIGURE  7 MCCM Mixed Cost Communication Machine 28

FIGURE  8 Compilation Process By Virtualization and

Communication Refinement 28

FIGURE  9 Multigrid Adaptation between Supersteps 31

FIGURE  10 Filtering Directed Graph Representation 34

FIGURE  11 Volume Rendering Transform Graph 36

FIGURE  12 Transform Graph 37

FIGURE  13 Spatial Image Warping 40

FIGURE  14 Image Warping Classification Tree, (*) with new

algorithms: Backwards, Forwards, and Overlapped

Forwards 41

FIGURE  15 nth order polynomial interpolation by Neville’s form of

Aitken’s algorithm 44

FIGURE  16 Tensor product 2D interpolation by Aitken’s

algorithm 45

FIGURE  17 Filter Quality Comparison (upper left: zero order hold,

upper right: first order hold, lower left: quadratic

interpolation, lower right: cubic interpolation) 46

FIGURE  18 Linear interpolation As Affine Combination 47

FIGURE  19 Bilinear interpolation done in horizontal direction first

and then vertical direction 47

FIGURE  20 Complete Image Processing System 48

FIGURE  21 Block Diagram of Operations In 2D Warping

Algorithm 48

FIGURE  22 Linearized 2D Warp Systems 49

FIGURE  23 3D Linearized Warp Systems 50

FIGURE  24 Simple to Code RAM Backwards Algorithm, , , (RAMB-

Simple) 52

FIGURE  25 Clipping To Upright Rectangle 52

FIGURE  26 Optimal RAM Backwards Algorithm, , , (RAMB) 54

FIGURE  27 Backwards Algorithm (CREWB= , MCCMB=  for  and

) 55

FIGURE  28 Nonlinear Mapping 57

FIGURE  29 Near Neighbors In Mesh 57

FIGURE  30 Forward Algorithm (EREWF= , MCCMF= ) 58

FIGURE  31 512x512 35  and 45  image rotation performed on the

MasPar MP-1. 58



FIGURE  32 Processor assignments in a 9x9 mesh to calculate 35 (left)

and 45  (right) rotation 59

FIGURE  33 Distance of Interpolation Point in  and . 61

FIGURE  34 Processor assignments in a 5x5x5 volume to calculate 25/

2, 25, 0 and 35/2,35,0 (x,y,z) rotations 65

FIGURE  35 3D Perspective Volume Distortion 67

FIGURE  36 Scaling Of Data 68

FIGURE  37 Trade-off curve of trading jobs versus

communication 68

FIGURE  38 Spreading To Distribute Data 69

FIGURE  39 Striped Allocation of Volume Warping Jobs 69

FIGURE  40 Virtualization Showing Overlapping Boundaries of

Subimages 70

FIGURE  41 Volume Virtualization Techniques on a 2D Mesh 71

FIGURE  42 3D Tile Notation 71

FIGURE  43 Nearly Constant Run Time Versus Angle For 2D Image

Rotations, Bilinear Filter, Forward and Backward All

Sizes 74

FIGURE  44 Run Time Linear In The Number of Pixels, 2D Rotation,

Bilinear Filter 75

FIGURE  45 Run Times for 2D Rotation, Bilinear Interpolation on

Unit Interval, with Backward, Forward, and Overlapped

Forward 78

FIGURE  46 2D Rotations with Zero Order Holds, and Rule (Me)

Variant 79

FIGURE  47 2D Rotation, Power of 2 Addresses and Register

Optimization, Bilinear Interpolation Forward/Backward,

and Zero Order Hold Backward 81

FIGURE  48 Improvement of Each Program Variant for 512 x512

Image Rotation, Seconds Versus Optimization Step 82

FIGURE  49 All 2D Rotation Variants Over All Image Sizes 83

FIGURE  50 Column Virtualization on 1024 PE MP-1 Warping a

128x128x128 Volume 86

FIGURE  51 Slice and Dice Virtualization on 16,384 PE MP-1 warping

a 128x128x128 volume 87

FIGURE  52 16k MP-1 MasPar Performance on 128x128x128 Volume

Rotation, Slice and Dice compared to Column

Virtualization 89

FIGURE  53 Volume Visualization 95

FIGURE  54 Single Level Scattering Particle Model 96

FIGURE  55 Intensity calculation for one point in the volume 99

FIGURE  56 Volumetric compositing calculations 100

FIGURE  57 Data Parallel Volume Rendering Algorithm 102

FIGURE  58 Volume Rendering Transform Graph 103

FIGURE  59 Viewing Frustum For Ray Tracing 104

FIGURE  60 Octree Space and Graph Representation 105



FIGURE  61 Forward Mapping of Voxels into Pixels 106

FIGURE  62 speedup as the number of processors is increased from

to  for an  order interpolation, . 112

FIGURE  63 Fully Parallel Compositing 115

FIGURE  64 Halving of Frames During Parallel Product for

Compositing 116

FIGURE  65 Overall Volume Rendering Complexity 117

FIGURE  66 Permutation Warping Parallel Volume Rendering

Algorithm 118

FIGURE  67 Transformations and Communications in Permutation

Warping for a Single Voxel 119

FIGURE  68 Volume Transformations in Parallel 120

FIGURE  69 Transformation with OS and SS Merged 121

FIGURE  70 Three Dimensional Tiling To Calculate Processor

Identification and Subvolume Addresses from

Coordinates. 123

FIGURE  71 Spatial Volume Virtualization For a Variety of

Architectures 124

FIGURE  72 Steps of Virtual_Permutation_Volume_Render,

Virtualized SubVolumes to SubFrames to Final

Image 125

FIGURE  73 High Granularity Permutation Algorithm for , Image

order resampling storage . 126

FIGURE  74 High Granularity Rounds of Permutation Sends 127

FIGURE  75 Maximum Error in Reconstruction of Cube 129

FIGURE  76 Maximum Error in Reconstruction of Sphere 130

FIGURE  77 0MAX

Error for 45x45x45 rotations,

Top: Zero Order Hold, Middle: Multipass, Bottom

Trilinear 131

FIGURE  78 Data with Ramp to Show Noise 133

FIGURE  79 8X magnification, Zero Order Hold/ Trilinear 133

FIGURE  80 Nearly Constant Run Time Versus Angle 135

FIGURE  81 Run Times Versus Volume Size for the 16384 processor

MP-1 136

FIGURE  82 Spatial Volume Virtualization For Proteus 141

FIGURE  83 Run Time Versus Volume Size for Proteus and 16k

processor MP-1 141

FIGURE  84 Fourier Slice Theorem, projection top, spectra

bottom 145

FIGURE  85 Fourier Volume Rendering 146

FIGURE  86 Volume Rendering Transform Graph 147

FIGURE  87 Polar coordinates 148

FIGURE  88 Back-To-Front Compositing Tree 168

FIGURE  89 Back-To-Front Compositing Calculations 169



FIGURE  90 Front To Back Compositing Tree 170

FIGURE  91 Front-To-Back Compositing Calculations 170

FIGURE  92 Front-To-Back Compositing with Transparency 171

FIGURE  93 Binary Tree Compositing Associative Alternatives 172

FIGURE  94 Front-To-Back Parallel Compositing 173

FIGURE  95 Update Node Problem 174

FIGURE  96 Sum of Attenuated Emittances Sequential

Calculations 176

FIGURE  97 Sum of Attenuated Emittances Parallel Calculation 176

FIGURE  98 Compositing Methods 179



TABLE  1 Cost Performance Data for Peak Performance

[ZORP92][CYBE92][BELL92] 21

TABLE  2 2D Interpolation error and resolution error for separable

interpolation functions (Reproduced from

[PRAT78]) 51

TABLE  3 Sequential algorithm alternatives 53

TABLE  4 Terms Used in Algorithm Alternatives Table 53

TABLE  5 Algorithms Inner Loop Cost 54

TABLE  6 Performance Constants for Algorithms and filters with

restricted rotations 66

TABLE  7 MasPar 2D Rotations (times in seconds) with

interpolation not mapped to unit interval, Bilinear

Filter 74

TABLE  8 Overlapped Forward Rotation Subroutine Timings, 45

degree rotation 76

TABLE  9 % Improvement and Run Times 2D Rotations (Run times

in seconds) 77

TABLE  10 MasPar 2D Rotations (times in seconds) with Zero Order

Hold Filters and Rule (Me) Variant 79

TABLE  11 MasPar 2D Rotations (times in seconds) Power of 2 and

Register Optimized Versions 81

TABLE  12 Improvement of Each Program Variant for 512x512

Image Rotation, Seconds Versus Optimization Step 83

TABLE  13 Column Virtualization 3D Image Rotation 1k MP-1

Performance in Seconds 84

TABLE  14 16K Processor MP-1 Slice And Dice Timings For

Warping, Seconds 87

TABLE  15 Percent Improvement for 3D Slice and Dice Algorithms

on 16k Processor MP-1 88

TABLE  16 Rotation Only, From [VEZI92][SCHR91]

Milliseconds 89

TABLE  17 16k MP-1 Column Virtualization 3D Image Warping

Performance in Seconds 90

TABLE  18 Terms in algorithm 102

TABLE  19 Opaque Voxel Algorithm Architecture Performance 108

TABLE  20 Transparency Voxel Algorithm Architecture

Performance 109

TABLE  21 Mean of the Measured Absolute Summed Error over all

rays for 45 degree rotation about all axes. 128

TABLE  22 Absolute summed error on rays for 45, 45, 45 degree

rotation (See FIGURE 77) 132

TABLE  23 16k Processor MP-1 128x128x128 Volume Rendering

Times in Milliseconds 135

TABLE  24 16K Processor MP-1 Slice And Dice Timings For Warping

Only, Milliseconds. Reconstruction to align and resample

byte voxels with orthographic view. 137



TABLE  25 Rotation Only, From [VEZI92][SCHR91]

Milliseconds 138

TABLE  26 Percent Performance Improvement for Different filters

using Using Permutation Warping on 16k Processor MP-

1 138

TABLE  27 Volume Rendering Times For 1K MP-1, Seconds 139

TABLE  28 4K MP-2 Column Virtualization Timings for 128x128x128

Volume, Seconds 139

TABLE  29 Proteus Run Times, all output images are 256x256,

Seconds 139

TABLE  30 4K MP-2 Slice and Dice Timings for 128x128x128 Volume,

Seconds 140

TABLE  31 Speedup Versus for 32 Processors 142

TABLE  32 Initialization costs 177

TABLE  33 Number of Intensity Compositing Steps 177

TABLE  34 Compute Cost, Update Cost 177

TABLE  35 Number of Composites for Updates to transparency/

opacity 178

TABLE  36 Multiplications for All Methods 178

TABLE  37 Additions for All Methods 178



x

Acknowledgments

I thank Professor Arun K. Somani for his guidance and complete energy in assisting me. I
am grateful to my committee Professors Linda G. Shapiro, Robert M. Haralick, Anthony
DeRose, and Mark M. Ganter for their interest and help. I am indebted to Professor Steven
Tanimoto for his suggestions, inspiration, and example. I received immeasurable help
from others at the University of Washington including, Michael Harrington, Srinivas Tri-
dandapani, Chung-Ho Chen, Eric Koldinger, M. Y. Jaisimha, and Jonathan Unger. The
students and researchers of the GRAIL laboratory in the Department of Computer Science
and Engineering have always been helpful and insightful including Stephen Mann, Hu-
gues Hoppe, David Meyers, and Professor David Salesin. Support from the NASA gradu-
ate students researcher’s program as well as from the Navy through the Proteus project
was instrumental in allowing me to complete my research. Professors Arun K. Somani,
Robert M. Haralick, and Thomas Seliga provided me with the avenues to obtain research
funding.

I was lucky to have contact (mostly e-mail) with many researchers in my field
including Professor Marc Levoy, Rachael Brady, Jonathan Becher, Professor Arie
Kaufman, Professor Jane Wilhems, Dr. Donald J. Meagher, Professor Bill Lorensen,
Claudio Silva, Bill VanZandt, Professor Roni Yagel, Professor Ira Kalet, P. Schroeder, and
Tom Malzbender. By both providing references and feedback these graphics researchers
have improved my work. I hope to continue my interaction and collaboration with them.

Most importantly of all I thank my wife, Debra, for her support and
encouragement.



ere is
logy
auto-
d im-
e are
ren-
en-
ives
d in
ion are
raised

llel al-
algo-
ing
the
is a
g al-

vol-
thms
con-
to oth-

lica-
tore-
oint
e ap-

ren-
ing
Chapter I
Overview

1.1 Motivation

Researchers developing parallel applications encounter many difficulties, because th
greater flexibility and complexity than in sequential applications. I propose a methodo
to simplify and assist parallel algorithm research. Parts of the methodology can be
mated for computer aided research. My initial experiments in the area of graphics an
age processing show that not only are there paradigms for algorithms, but ther
paradigms for algorithm development. In this dissertation I develop parallel volume
dering algorithms with the methodology. My contribution is superior parallel volume r
dering algorithms and a framework for parallel algorithm development. This chapter g
a brief overview of the dissertation in Section 1.1.1. Volume Rendering is introduce
Section 1.2. Then in Section 1.3 the research questions addressed in this dissertat
enumerated and explained. My research contributions, and answers to the questions
are highlighted in Section 1.4.

1.1.1 Overview of Dissertation

Chapter II covers the scientific research process, reviews the state of the art in para
gorithm and application development, and then develops a framework for parallel
rithm design. Parallel models of computation are introduced, including my bridg
model, the mixed cost communication machine (MCCM). Examples of applying
framework are given. Chapter III covers spatial warping algorithms. Spatial warping
geometric transform of an image important in volume rendering and image processin
gorithms. I present my parallel warping algorithms in Chapter III. Chapter IV covers
ume rendering algorithms. Both a survey of existing methods and my parallel algori
are discussed. Chapter V covers Fourier volume rendering algorithms. Chapter VI
cludes the dissertation and addresses future work and generalization of the research
er algorithms and applications.

1.2 Volume Rendering

Volume rendering is an algorithm to visualize sampled three dimensional data. App
tions that create sampled data include medical imaging, finite element modelling, pho
alistic graphics, molecular microscopy, and nondestructive testing. A collection of p
samples is called a scalar field, volumetric data, or voxels (for volume elements). Th
propriate visualization technique depends on the application, and surface fitting and
dering is often adequate [FOLE90]. The rendering fidelity is lower when us



12

f direct

imary
e and
er sur-
voxels,
8x128
ul
ints,
ual-
een

e next

 par-

pothe-
isser-
ring.

lel al-

ata
cial
D85]

mma-
an-

P
ters
nd
data
intermediate surface representations; therefore, researchers have argued in favor o
methods that do not convert to surfaces [LEVO90][WEST91].

I call the direct methods transparency volume rendering
[BLIN82][KAJI86][LEVO90][SABE88]. The physical interaction of light is solved by
evaluating particle transport equations, a computationally expensive process. The pr
disadvantage of transparency volume rendering is the large amount of computer tim
memory required. Using transparency at least doubles the memory requirements ov
face methods. The largest volumes that can be processed are about 512x512x512
and the highest performance is several (1-3) frames a second (on smaller 128x12
volumes) [KAUF88][SCHR90][YOO91][NIEH92]. Volume rendering will be more usef
with interactive update rates (10-30 frames/second). Animation by changing viewpo
data, and lighting allows steering simulations [MARS90] and creating internalized vis
izations [LAUB90]. Recently, many parallel volume rendering implementations have b
published, but they have left open important research questions which I discuss in th
section.

1.3 Problem Statement

There are four primary questions addressed in this dissertation:

1 What is the best algorithm for parallel volume rendering?

2 What is the best architecture for parallel volume rendering?

3 How can trade-offs be made between resources, quality, and time?

4 How can questions 1, 2 and 3 be determined for other parallel algorithms and
allel machines?

These questions embody many hypotheses. I have investigated several resulting hy
seis and answered them. Section 1.4 gives an outline of my results. The goal of the d
tation is to determine the best algorithms and architectures for parallel volume rende
A companion goal is to understand and improve the methods used to develop paral
gorithms.

I investigated techniques for general parallelism: single instruction multiple d
(SIMD) and multiple instruction multiple data (MIMD). This approach contrasts spe
purpose architecture research. Systems for volume rendering have proliferated [GOL
[JACK88] [KAUF88] [GEME90] [KAUF90] [KAUF91b] [MALZ90] [MEAG91]
[MOLN92], but are eclipsed by general parallel computers in speed, cost, and progra
bility. Special purpose architectures such as the Pixar [LEVI84][DREB88], Kaufm

Cube [KAUF88], LMO-2 [MEAG91], PARCUM, Voxel Processor, SCOPE, and 3D4

[OHAS85][KAUF90] achieve only limited improvements over general supercompu
such as the Connection Machine [SCHR90][THIN89], MasPar MP-1 [BLAN90], a
MP-2. Also, the adaptability of special purpose architectures to different algorithms,



13

up-
sim-

anced
using
hines
s
or-
lim-

s:

dels

pute

ap-

erent
ppro-
tal re-
ry tools
tial

confi-
age
to oth-

s in
ms
ar-
. My
, and
ures
em-

wing
iven
sets, and modelling is limited. For example, the Kaufman-Cube [KAUF88] achieves
date rates of 16-35 frames/second but uses binary voxel classification, an algorithm
pler than transparency volume rendering. The Kaufman-Cube can not use more adv
shading algorithms such as compositing or numerical integration, and scientists are
ever more advanced visualization techniques. Special purpose graphics mac
[KAUF90] (Stellar GS, Ardent Titan, AT&T Pixel Machine [POTM89], Silicon Graphic
4D, HP Turbo SRX, SUN TAAC-1, Pixar, Pixel Planes-5 [FUCH89]) show good perf
mance with heterogeneous (SIMD and multiple types of MIMD) processors, but have
ited availability and lag general computing technology.

From each question, 1 through 4, I have investigated the following hypothese

Hypothesis 1 There is an optimal algorithm for parallel volume rendering.

Hypothesis 2 There are optimal parallel volume rendering algorithms on weak mo
of computation, such as SIMD.

Hypothesis 3 There is a continuum of choices between image quality and com
time.

Hypothesis 4 The optimal parallel volume rendering algorithms and architecture m
pings are adaptable to similar image and graphics applications.

These hypotheses are statements that ask: does SIMD or MIMD have an inh
advantage for volume rendering, and what are the different algorithms that are most a
priate for each? To investigate the hypotheses I used both analytical and experimen
sults. For example, complexity analysis and performance measurement are necessa
for comparing algorithms. I was careful to correlate my complexity analysis with ini
performance measurements, so that subsequent choices in algorithms could be more
dently evaluated. After validation, only algorithms with a clear complexity advant
were implemented. Performance measurements were used to validate and compare
er researcher’s results.

1.4 Research Contributions

My research contributions are a new methodology for developing parallel algorithm
Chapter II, new algorithms for parallel image warping in Chapter III, and new algorith
for parallel volume rendering in Chapters IV and V. My methodology for developing p
allel algorithms can be automated to simplify and accelerate parallel algorithm design
algorithms are general and adaptable to shared memory, distributed memory, SIMD
MIMD machines. They are also efficient in their space and run time complexity. Feat
and limitations of these algorithms are briefly described in Sections 1.4.2 to 1.4.4. My
pirical measurements support these efficiency claims and allow comparison to follo
work on parallel image warping and volume rendering. Timing and filter results are g
in Chapters III and IV, with notable performance results.



14

logy,
rma-
or as-
form
lso in-
rithm
nder-

ted as
ex) to
source
space
y be
graph
I de-
ve the

cost
dom
n costs

appli-
s, and
s, and

lcu-
ith

the fil-
easily

ich

sla-
has
the
1.4.1 Computer Aided Research

Many algorithms exhibit similar characteristics. For example, I have studied morpho
warping, volume rendering, and free-form deformations that all use geometric transfo
tions. Geometric transform based algorithms can be calculated with multiple process
signments and transform directions. Using a classification of possible trans
approaches helps an algorithm designer understand the many possibilities. I have a
vestigated the use of a dependency flow graph for knowledge representation in algo
design. I have developed classifications and applied them to warping and volume re
ing.

The graph representation allows search methods to optimize algorithms. Sta
a shortest paths problem, the most efficient algorithm altering a representation (vert
another representation by subroutines (edges) is selected by calculating the single
shortest paths. Because arcs are missing, the knowledge of the minimum time and
complexity bounds is used to conjecture that the algorithm is optimal or another ma
found. I have taken such an approach, and shown how to build the dependency flow
representation for morphology, warping, and volume rendering. The algorithms that
veloped are new arcs which were likely to exist because previous arcs did not achie
optimal bounds.

An important part of the methodology is use of an abstract machine, the mixed
communication machine (MCCM), that I developed. This machine is a parallel ran
access machine (PRAM) that assigns costs to memory accesses. The communicatio
help compare algorithms from different PRAMs to determine their relative efficiency.

This methodology can be extended to other image processing and graphics
cations, and perhaps to more general domains as well. The algorithm representation
the algorithm design process have helped me to understand how I create algorithm
kept me from ignoring important alternatives.

1.4.2 Image Warping Algorithms

An invertible warp is one where the transform has an inverse. A simple algorithm to ca
late invertible warps is on the concurrent-read exclusive-write (CREW) PRAM w
optimal storage efficiency. I assume there is a processor for each sample point, and
ter evaluation cost is constant. Because of the concurrent read capability the data is
accessed, but concurrent reads are hard to emulate in real hardware.

A restricted transform domain allowed me to develop a permutation warp wh

calculates equiareal warps1 [MESE83], such as shears, rotations, reflections, and tran
tions, on the exclusive-read exclusive-write (EREW) PRAM. My permutation warp
run time complexity assuming constant filter complexity, and , where is

O 1( )

O 1( ) P S= P



15

algo-
paral-
and

m
first
REW

8%
with

neral
works
(Intel
emory
higher

s run
xity
p,
lexi-
ve
an
For

lin-
linear

than
ten-

other

opti-
have
run

ea-
number of processors and is the number of sample points. The EREW and CREW
rithms have linear speedup when there are fewer processors than sample points. The
lel run time on processors is therefore where is the sequential run time

.

On my bridging model of computation, the MCCM, the EREW PRAM algorith
is superior to the CREW PRAM algorithm because of network congestion when using
order or larger filters. Performance measurements on the MasPar MP-1 show that C
algorithm is superior for zero order filters, but the EREW PRAM algorithm is up to 5
faster for two dimensional warps and up to 100% faster for three dimensional warps
first order filters. The gap widens for higher order filters. The MCCM assumes a ge
interconnection network, so that these algorithm results generalize to hypercube net
(iPSC Cube), hypercubic networks (butterfly, benes, etc.), reconfigurable meshes
Paragon), and shared memory machines. The use of exclusive reads on shared m
machines such as the Sequent Symmetry S-81 reduces shared bus congestion for
performance.

1.4.3 Volume Rendering Algorithms

Spatial volume rendering using parallel product and general viewing transforms ha
time complexity for sample points along a view ray and storage comple

, , on the CREW PRAM. Using my new permutation war
volume rendering algorithms using equiareal viewing transforms have run time comp
ty and storage complexity on the EREW PRAM. I show how to achie
optimal speedup for both the CREW and EREW algorithms with fewer th

processors for samples maintaining the same storage efficiency.
additional speedup is achieved but efficiency falls off. Optimal speedup is

ear speedup, and machines with fewer processors than the stated bound achieve
speedup using my volume rendering algorithm. For example, any machine with fewer

processors rendering a volume achieves linear speedup. Ex
sions to more general viewing transforms are straight forward, more efficient than
methods, but are not optimal.

I have proven Hypothesis 1, because my EREW and CREW algorithms are
mal for processors bounded to . Because available parallel machines
few processors relative to input sizes, volume rendering is ideally parallelizeable with
time  on  processors. This significant result is discussed in Chapter IV.

1. The set of affine transformations that preserve the numerical values of the m
sures of triangles, and the determinant is equal to .1±

S

P Θ ts P⁄( ) tS

P S<

O Wlog( ) W

O S( ) S rows cols slices××=

O Wlog( ) O S( )

P O S Slog⁄( )= S

S Slog⁄ P<

3 025 551, , 256 256 256××( )

P O S Slog⁄( )=

Θ ts P⁄( ) P



16

ring
eed-
as-

ut are
iew-
ver-
tage.
ma-

will
pos-

actor
balanc-
end-

ter
algo-
ause
for
effi-

ithout
xten-
visu-

o be
el-
ren-

ime
ge
ich
lso
but I
nal
Using both the EREW and CREW algorithms I have developed volume rende
algorithms for high and low granularity. Performance measurements exhibit linear sp
up in the problem size, supporting Hypothesis 1. The SIMD implementations on the M
Par MP-1 proves Hypothesis 2. The algorithms require general interconnections, b
efficient on SIMD machines. Weaker interconnection structures require restricting v
ing transforms and filter quality. Linear speedup is achieved without communication o
head on SIMD or MIMD computers. And neither architecture has an inherent advan
In fact, dynamic load balancing techniques can be used on both SIMD and MIMD
chines.

The future bottleneck for parallel volume rendering is compositing. Machines
reach this bottleneck only when there are millions of processors, and at that time com
iting can be implemented in the interconnection network. In all machines, constant f
speedups can be achieved using data dependent optimizations and dynamic load
ing. I did not implement these techniques as they will only gain constant amounts dep
ing on the data. Data optimizations and load balancing are interesting future work.

I have proven Hypothesis 3 for filter quality. I show that by changing the fil
quality you can vary the run time, and the same quality filters used in sequential
rithms can be used in my parallel algorithms without communication congestion. Bec
the communication and resampling by my techniques in Chapters III and IV solve
multiple order filters, more involved shading models or data preprocessing can be
ciently added. My techniques allow shading and preprocessing to be changed w
communication congestion making general purpose parallel machines efficient and e
sible for volume rendering. As faster machines become available more sophisticated
alizations will be interactive.

1.4.4 Fourier Volume Rendering

Parallel Fourier volume rendering has complexity so its complexity appears t
similar to the spatial volume rendering algorithms, but the fact that it works with data
ements to calculate a projection, gives it a significant advantage over spatial volume
dering. The time for processors for spatial volume rendering is while the t
for Fourier volume rendering is showing immediately the advanta
( ). I have looked into developing a polar coordinate Fourier transform wh
would allow picking arbitrary viewing directions without spectral resampling. I a
looked into developing ways to incorporate shading into Fourier volume rendering,
have not solved this problem. Levoy [LEVO92] recently published Fourier directio
shading that partially works, but is expensive and may likely be improved.

O Rlog( )
R

P O S P⁄( )
O R Rlog P⁄( )

S R Rlog>



17

ren-
thms
ithm,
clear
del-
ace
evel-
esis
1.5 Summary

In this dissertation I present a methodology for developing efficient parallel volume
dering algorithms. I present the spatial warping and spatial volume rendering algori
and implementations that show: there is an optimal parallel volume rendering algor
that there are no inherent advantages for SIMD or MIMD, and also that there are
quality/time trade-offs that can be made. Applying permutation warping to solid mo
ling through Free-Form-Deformations (FFD’s) [SEDE86], or to ray tracing of surf
scenes [GLAS89], seems possible. This dissertation will enable others to apply the d
opment methodology to other applications as I show in Chapter II supporting Hypoth
4.



e ana-
sses
nter

stest
eal a
king
his oc-
ool in
nd im-
Chapter II
Framework

2.1 Background

2.1.1 Development of Applications

Consider research at the highest level. Ideas are intuitively generated and then ar
lyzed by critical thought to further develop, validate, or falsify them. The mental proce
occurring are shown in FIGURE 1 [STOC85]. As shown in FIGURE 2 creative ideas e
our minds, and we must form hypotheses to test them.

FIGURE  1 Mental Processes Used In Research.

For example, creative idea: projection of volumetric data may be done fa
through direct resampling; hypothesis, a comparison of existing techniques may rev
superior approach. The hypothesis is further and further quantified as critical thin
progresses, and ideas may be thrown out or deemed useful for some other area. T
curs in the validate/test thought process. Computer applications are an important t
evaluating hypotheses, and form much of the research done in computer graphics a
age processing.

FIGURE  2 Critical Processes

Imaginative
Discovery

Intuition

Critical
Validation/Falsification

Reason or Logic

Aim

Key Mental
Process:

Creative
Idea Hypothesis Develop Application

Validate/Test

Analyze results to hypothesisCriticalIntuitive

(where computers can help)



19

used
t da-

medi-
ation,

lexity
nce to
n ap-
aluate

ctness
her to
rk as
diffi-
lyti-
type

steps
olu-
fine-

ency,
thesis

cta-
rallel-
p and
g and
on-
lica-
blem
d my
e dif-
lop-

in the
cause
f ap-
took
In research, application development has several purposes. Applications are
to calculate intermediate forms of scientifically collected data, make decisions on tha
ta, and control external devices. In my example, volume rendering may be used by
cal researchers to interpret tissues. Volume rendering is one part of a larger applic
and hypotheses about direct resampling affect the whole application.

A performance study of volume rendering approaches can be done by comp
analysis alone, but application development and measurement give empirical evide
help support any conclusions from the analysis. If a researcher wishes to try such a
proach they need to develop software for each step, integrate each module, and ev
the performance. The performance can vary due to user input, quality, and the corre
of the approach. Any factors that can be automatically calculated allow the researc
focus on unproven aspects of the application. The goal is to have applications wo
quickly as possible and then investigate the performance. Application development
culties delay important feedback, and if the effort is too great for implementation, ana
cal analysis is done rather than building a functional system. Any insight from a proto
system is lost.

The process of developing an application has several steps and goals. The
are: (1) problem formulation, (2) specification of a solution, (3) means to achieve a s
tion, (4) development of system, (5) testing and analysis of results, and (6) further re
ments or restart in new directions. The goals often used are accuracy, effici
correctness, understanding, speed, alternative viewpoints, and validation or hypo
testing.

Parallel computers provide more potential for demanding and previously intra
ble calculations, but have also added to the complexity of the development phase. Pa
ism requires more sophisticated techniques than sequential computing to develo
analyze applications. If one takes a step back from the research in parallel computin
looks at the goal, it is utilization of parallelism in applications. Parallel control, partiti
ing, scheduling, and communication are building blocks for developing parallel app
tions. At a higher level, above the parallelism, application research is done. Pro
formulation, theorizing, and system prototyping are what computers are used for, an
proposed framework can assist in application development on parallel computers. Th
ficulty in using parallelism demands developing tools for parallel application deve
ment, as I will show in the next section.

2.1.2 Promise and Reality of Parallel Computing

Parallelism has given a 1000 fold increase in performance over single processors
last 10 years, but the scientific community has not completely adopted parallelism be
of the difficulty in harnessing it. Parallelism has not been widely successful. Scores o
plications have been developed for parallel computers, but they are not portable and



20

ro-
void-

ssing,
e im-
nica-

of
A-
not
considerable effort to develop [HATC91]. The primary differences in single and multip
cessor development are synchronization, partitioning, communication, deadlock a
ance, standards, and availability.

Parallelism has a lower cost to peak-performance ratio than sequential proce
and its use is the next logical step for high end applications. But, the cost performanc
provement is for tuned applications. Because of overhead (synchronization, commu
tion, and scheduling) the peak performance is very difficult to attain, and 1% to 25%
peak is typical [CYBE92]. Today’s cost performance ratio is in flux. FIGURE 3 and T
BLE 1 [BELL92][CYBE92][ZORP92] show that the cost to peak-performance ratio is
monotonic.

FIGURE  3 Cost Performance Comparison

0

200

400

600

800

1000

1200

1400

1600

1800

2000

100 1000 10000 100000

D
o
l
l
a
r
 
p
e
r
 
M
e
g
a
 
F
l
o
p

Mega Flops

Industry Data



21

s in
ssors.
pro-

-1 and
more

as the
wer-
In FIGURE 4 the cost versus peak performance is shown for all of the system
TABLE 1. The added peak processing power is achieved through using more proce
See for example the jump from the NEC SX3 (4 processors) to the Intel Paragon (512
cessors). The improvement from new processors is seen in the gap between the KSR
the CM-5. This cost performance survey shows that machines are not gaining much
parallelism by using off the shelf processors in specialized networks. Machines such
KSR-1, CM-5, Intel Touchstone, etc. are gaining more performance by using more po

TABLE  1 Cost Performance Data for Peak Performance
[ZORP92][CYBE92][BELL92]

#Computer proc. MFlops
cost dollar

$
Flop/$ $/MFlop

SparcClassic 1 21 4295 4889.4 204.52

SunSparLX 1 40 7995 5003.1 199.875

HP715/33 1 45 5695 7901 126.55

HP725/50 1 72.1 17895 4029 248.1969

Decalpha 1 125.1 41195 3036.7 328.285

HP735___ 1 150.6 37395 4027.2 248.3

SunSparc10 2 142.8 40000 3570.0 280.11

SunSparc10 4 285.6 80000 3570.0 280.11

MP-1 16k 1200 2000000 600 1666.6

Proteus 16 1280 200000 6400 156.25

MasPar_MP-2 4096 1600 500000 3200 312.5

Cray_C90 16 16000 30000000 533.33 1875

NEC_SX3 4 25600 25000000 1024 976

Intel_Paragon 512 40960 40000000 1024 976

KSR_1 1088 43500 30000000 1450 689

TMC_CM5 1024 128000 30000000 4266.6 234.375



22

ly that

, a fa-
high
w and

,

pro-
hile

lgo-
res.
ful processors. But one cannot use peak power for accurate comparisons. I note on
parallelism remains modest with ever increasing costs.

FIGURE  4 Cost vs. Performance

Existing approaches have been expressed as the road to Eldorado [HENN90]
bled city of riches. Either one opts for millions of simple processors, known as the
road, or one uses thousands of more complex processors, the low road. In both the lo
high roads sequential programs are turned into parallel ones.

The speedup of an application is the sequential time  over the parallel time

. (EQ 1)

The parallel time is a function of the number of processors and how much work per
cessor. If an algorithm can be virtualized arbitrarily the relationship of run time w
varying the number of processors is,

. (EQ 2)

is defined as the run time of a virtual processor’s work on the algorithm . For a
rithms/applications of this type the speedup can be compared on different architectu

0.001

0.01

0.1

1

10

100

100 1000 10000 100000

M
i
l
l
i
o
n
 
D
o
l
l
a
r
s

Mega Flops

Industry Data

T1 TP

Speedup
T1 A1( )
TP AP( )
------------------=

TP Av( ) v P⁄( )Tv Av( )=

Tv Av



23

Ma-

num-
up

re pair

nding
iently

-2’s

more

men-
nce.
arallel
ro-
-

rm.
s im-

y im-
s. I
dom

-

r
ing it
n time

ner
and
As an extreme example consider using the Cray Y-MP and the Connection
chine CM-2. The time for a virtual processor’s work on each processor is different,

, (EQ 3)

related to the performance per processor (MFLOPS, MIPS). There are also different
bers of processors, , . If the application can be ideally speeded
on both architectures, then the most speedup is attained by the algorithm-architectu
that minimizes the parallel run time,

. (EQ 4)

So the machine’s run times are in a greater or less than relation to each other depe
upon the number of processors , the power per processor , and the ability to effic
virtualize (EQ 2),

? . (EQ 5)

In this example the CM-2 achieves greater speedup for , or the CM

processors can be 8K times slower than the Y-MP’s processors and still achieve
speedup.

In practice peak performance and linear speedup are difficult to achieve. As
tioned earlier, most parallel applications achieve only 1% to 25% of peak performa
Existing approaches to achieve speedup are new programming styles (data p
[HATC91] and functional) and parallelizing compilers (convert sequential to parallel p
grams) [GELE90][WOLF89][CANN92][BELL92]. The low road allows automated com
piling of existing code while the high road requires rewriting applications in parallel fo
But those approaches are the paths to El Dorado. Given that parallel hardware ha
proved while the acceptance of parallelism has not, how can software technolog
prove? I believe that efficient parallel applications adapt to parallel architecture
conjecture that reversing the road to Eldorado will provide greater portability and free
from these lower level issues.

I call the approachspeedup through slowdown, which means developing applica
tions with as much parallelism as possible. See FIGURE 5.

Definition 1: Speedup through slowdown. A program with fully specified parallelism fo
processors can be modified to run on processors by grouping work and slow
down by emulating processors with Processors. The speedup attained is the ru
of the  processors over a single processor (EQ 1).

Using higher level algorithm representations allows not only an algorithm desig
to crystallize the important information, but provides hooks for automating the design

TvCM-2
Av( ) TvY MP–

Av( )>

PCM-2 65536= PY-MP 8=

Tpγ
Av( ) min

v
Pγ
-----Tvγ

Av( ) 
  ,= γ machines∈

p Tv

v
PCM-2
-------------TvCM-2

Av( ) v
PY-MP
--------------TvY-MP

Av( )

TvCM-2
8192TvY-MP

<

v

P v<
v P

P



24

tion
ess of

m to
lyz-

hen
s.

ors
l ( )
listic.

is the
urce.
hes

high
pre-

lity
compilation of algorithms. Use of slowdown compilers, bridging machines, my transi
graph design approach, and transition graph optimizations may help further the succ
parallel processing.

FIGURE  5 Slowdown By Reducing Parallelism (Similar to
[HENN90])

In the next section I review efficient parallel algorithm classes and relate the
slowdown compilers. My bridging model, the MCCM, is introduced as a tool for ana
ing parallel algorithms. The techniques useful in slow down compilers are reviewed. T
I present a paradigm for transform based algorithms with several important example

2.2 Speedup Through Slowdown

The key difference in speedup through slowdown is to ignore the number of process
of existing machines, and concentrate on developing algorithms with as many virtua
processors as needed. is bounded to be polynomial in the problem size to be rea
FIGURE 5 shows algorithm traveling the reverse road to three architectures. This
opposite approach from [HENN90]. For an introduction to speedup refer to that so
Valiant and others have discussed similar approac
[CANN92][GIBB88][VALI90][VALI90b]. By using explicit parallelism in the algorithm,
subsequent transforms of the algorithm maximize parallelism. Whether one takes the
road or the low road back, the difficulty of creating parallelism is gone. Compilers can
serve the efficiency. Slowdown creates portable parallel algorithms.

Hypothesis 5: Slowdown is the methodology that will create parallel program portabi
and efficiency necessary for the success of parallel processing.

Av

Cray Y-MP

CM-2

P
ro

ce
ss

or
s

Performance per processors (MFLOPS)

1000000

1000

10001.001

1

v

Sequent
Symmetry

“El Dorado”
Road 1

Road 2

Road 3

P

v

v n

Av



25

great
tions
wer
bility
cessor
early

.

deal
map-
ble.
pro-
n. On
ma-

achine
AM)

AM
ory ele-
ctions
concur-
the

own
pro-

ize
me is

ial)
these

t-
ome
s is

l by
to an
e ab-
are as
Because slowdown abandons existing parallel software its rewards must be
for the community to investigate and adopt it. The advantages of developing applica
with full parallelism are: (1) they can be automatically mapped into machines with fe
processors, (2) portability between different architectures, and (3) generation porta
because they benefit from new architectures with more processors. For single pro
code portability results from hardware abstraction. Compilers adapt source code to n
all processors efficiently. Slowdown allows the same approach for parallel portability

The CM-2/Cray Y-MP example illustrates that parallelism contributes a great
to speedup for fully parallel algorithms. I assumed that the example application was
pable onto the CM-2. What this means formally is the algorithm is SIMD-transforma
Having examined the price performance and how to get around parallelizing single
cessor code I now examine the classes of parallel algorithms amenable to slowdow
the highest level, to achieve portability, algorithms must be developed for abstract
chines. This approach has been famously successful for the random access m
(RAM) used for single processor models. The parallel random access machine (PR
and its variants are widely used abstract parallel models [GIBB88][CORM90]. A PR
is a shared memory machine where each processor can randomly access any mem
ment with unit cost. The processors are assumed to be tightly synchronized. Restri
are placed upon reads and writes such as: concurrent reads, exclusive reads, and
rent writes and exclusive writes. The exclusive read and write (EREW) PRAM while
most restrictive is also most efficiently simulated on existing machines.

2.2.1 Efficiently parallelizeable algorithms

Nick’s Class (NC) is the class of computable and efficiently parallelized algorithms sh
in FIGURE 6. NC is defined as parallel algorithms that use a polynomial number of

cessors, , and take polylogarithmic time, [GIBB88], where the input s
is and and are constants. P is defined as sequential RAM algorithms whose ti

polynomial in the problem size . FIGURE 6 is partitioned into parallel (sequent
abstract machine and parallel (sequential) actual machine space. I am interested in
algorithms because they are efficient by definition.

Parallelizing compilers adapt℘-class algorithms to PRAMs, which is an inheren
ly hard problem because so efficient parallel algorithms may not exist for s
code. I bypass this problem by starting with efficient parallel algorithms in NC. Thi
done using a slowdown compiler, and sidesteps the difficulty of creating parallelism.

The simulation of a theoretical machine by a real machine is made practica
compilation. Once automated, the compilation of a program for an abstract machine
actual machine allows one to develop efficient code at a more abstract level. And, th
stract machine hides many details of the hardware from compilers and system softw

O nk1( ) O n
k2log( )

n k1 k2

O nk3( )

℘ NC⊄



26

uce

lica-
these
Al-
noted
algo-

e
ctor,

M
n a

ction
tions

an
nt al-
My
ther
well. This approach follows from the methodology of partitioning design work to red
complexity.

FIGURE  6 Classes of Algorithms

There are four main tasks for developing parallel computing: languages, app
tions, hardware, and system software development. Slowdown helps by separating
tasks (even with blurry lines). Application development is severed from the platform.
gorithms that are destined for greater parallelism and parallel cost effectiveness are
by defining classes of algorithms according to their characteristics. I define these
rithms by the following two classes:

Definition 2: MIMD Transformable algorithm is a fully parallel algorithm that can b
converted to a machine with processors with efficiency to within a constant fa

.

Definition 3: SIMD-Transformable, A fully parallel algorithm developed for the PRA
is SIMD-transformable when it may be converted to an algorithm that runs o

SIMD PRAM with  processors  whose efficiency is .

A SIMD PRAM is a machine where each processor uses the same instru
stream but for an appointed controller who both controls and determines the instruc
the rest of the processors execute.

The slowdown to either MIMD or SIMD is automated through optimizations of
intermediate form of the program. The same source code generates radically differe
gorithms for the two machines, extracting all parallelism available to the machine.
postulated relation of MIMD-transformable and SIMD-transformable classes to o

SIMD Transformable

MIMD

slowdown
parallelizing compiler

compiler

processor machineP
Actual

Theoretical

processor machine

Parallel (PRAM) Sequential (RAM)

Av1

Av2 A1

NC ℘

1

P v<

Transformable

Machines

Machines

Av

P P v<
TP APMIMD

( ) O v P⁄ Tv Av( )( )=

Av

APSIMD

P P v< TP APSIMD
( ) O v P⁄ Tv Av( )( )=



27

than

lute
D is
ped.

s-
p, the
r Hy-
as in

lgo-
ads
ral it
ted to
rithm
ose
odels
I pro-

and

tly of
sign
into

he
FIG-

n-

Glo-
to a
cal

bors.
com-

but
ction
classes is shown in FIGURE 6. If the overlap of NC and SIMD-transformable is large
the following hypothesis may be true.

Hypothesis 6: A significant number of parallelizeable algorithms achieve greater abso
speedup on SIMD machines than on MIMD machines, because , SIM
more efficiently synchronized, and many SIMD algorithms have already been develo

The facts that and SIMD is tightly synchronized makes SIMD-tran
formable algorithms and SIMD machines achieve more speedup. The size of overla
cross hatched area where is in FIGURE 6, is one critical question to investigate fo
pothesis 6. Similar approaches have been discussed for data parallelism such
[HILL85], but I believe the class of algorithms to contain more than just data parallel a
rithms. The two extremes, MIMD and SIMD represent the high and low reverse ro
shown by FIGURE 5 (road 1 and road 3): (1) make the machine so powerful and gene
can implement any algorithm, and (2) make the mapping and assignment sophistica
exploit the greater number of processors available to SIMD machines. Because algo
efficiency on each machine is so critical I define the following bridging models wh
characteristics are closer than the PRAM to physically realizable machines. SIMD m
in the literature such as [RICE88] are more detailed than I require for the discussion.
pose themixed cost communication machine(MCCM) for the development of fully paral-
lel algorithms. Fully parallel means that the algorithm is written for the problem size
not the machine size. The MCCM is defined in the next Section.

2.2.2 A Bridging Model, Mixed Cost Communication Machine (MCCM)

By ignoring the specific machine topology, algorithms can be designed independen
network specifics but they are ignorant of network costs. My solution to this is to de
algorithms on the PRAM, then evaluate their efficiency on a bridging model that takes
account network costs. A 3 levelcost model is used with self, local, and global costs. T
abstract machine is called a mixed cost communication machine or MCCM shown in
URE 7.

Definition 4: Mixed cost communication machine (MCCM): has PRAM execution co
structs, and communication constructs:self< local < global. The time complexity for any
algorithm is a function of both the computation and the mixed communication costs.
bal communication is cost for a permutation, and any number of requests from or
destination is for global communication cost, where is the congestion. Lo
communication cost is , and is serialized if there is contention for the same neigh
Local connections are through a multidimensional toroidally connected mesh. Self
munication has unit cost, and is equivalent to the PRAM’s memory cost.

Definition 5: MCCMSIMD A synchronous MCCM that has the same network power,
uses a single instruction stream. There is also a controller with a separate instru
stream that broadcasts instructions and data to the rest of the machine.

PSIMD PMIMD»

PSIMD PMIMD»

Av2

G

N NG N

L



28

go-
ages,
itects
ient.
al-
URE
e the

u-
com-
FIGURE  7 MCCM Mixed Cost Communication Machine

The MCCM not only allows evaluating the approximate network costs of al
rithms, but also provides an abstract machine that can insure portability. If langu
compilers, and systems software are cognizant of the MCCM model, computer arch
can provide MCCM features in computers making the simulation of the machine effic
FIGURE 8 shows the compilation or evaluation of EREW PRAM and CREW PRAM
gorithms on the MCCM. The transitions represent the same transitions given in FIG
6, and FIGURE 8 makes explicit the bridging of abstract machines to real machine lik
CM-5, Intel Paragon, etc.

FIGURE  8 Compilation Process By Virtualization and
Communication Refinement

If the key difficulty is parallelizing applications and not slowing them down (virt
alization techniques, scheduling decisions and so on), then investment in slowdown

network

Global Memory

PRAM MCCM

MasPar
C*

CM-2

CM-5
Intel Paragon

Intel Cube

MCCMSIMD

Virtualization

Virtualization

Tera

C90
NECSX3
KSR-1

MPP

EREW

CREW
PRAM



29

s
form

evel-
en-

the
lated
the

Spot
es
de-
sing
ide a
IMD
and

igh-
/860

the
l opti-

com-
code
at I

nt, su-
tines,

, up-
nsider

lyze
be-
piler technology may yield greater gains for both MIMD and SIMD algorithm
(Hypothesis 5). In the next section I discuss some of my work on slowdown trans
techniques and those in the literature.

2.2.3 Bridging the PRAM to Real Machines

My proposed algorithm development process is to develop a PRAM algorithm, then d
op an MCCM version. My claim is that the MCCM algorithm runs with the same effici
cy on a wide class of machines. Until efficient slowdown compilers are available,
process is manual, where the MCCM layout, communication, and run time are calcu
by the algorithm designer. Through familiarity of required layouts and efficiency on
MCCM I hope the conversion will be automated.

There are a variety of languages designed to perform a similar job such as
[SOCH91], Data Parallel C [HATC91], Linda [CARR90], and Ensembl
[GRIS90][ALV90] but these are low level languages. The PRAM is the ideal means to
velop parallel algorithms, and the MCCM provides a way of more accurately acces
their cost. Many machines are roughly equivalent to the MCCM because they prov
general interconnection network, and neighboring interconnections. Examples of S
machines include the Connection Machine CM-2, CM-200, and the MasPar MP-1
MP-2. Examples of MIMD machines with powerful interconnection networks and ne
boring connections include the Connection CM-5, Intel Touchstone Gamma (iPSC
Hypercube), Intel Touchstone Delta, and Intel Paragon (Mesh machines).

2.2.4 Slowdown Compiler Techniques

The conversion from a PRAM algorithm to machine code requires compilation of
source language into intermediate code, and then intermediate code is used for globa
mization to assign physical processors to the virtual processor’s work. Parallel
piler research has focused on discerning parallelism from sequential
[WOLF89][GELE90]. Others have worked on necessary techniques in isolation. Wh
attempt to do here is bring them all together and mention how they are interrelated.

The choices in contracting a program to a machine are: processor assignme
perstep sizes, communication globbing, communication patterns, sequential subrou
data replication, load balancing, data copy elimination, interprocedural flow analysis
date analysis, graph transforms, and operation optimizations. The compiler can co
each choice in turn, or in multiple passes. The most important choice isprocessor assign-
ment, which affects the communication and load balancing. Ideally one could ana
communication in isolation as proposed by Li and Chen [LI91a], but the relationship
tween computation and communication requires an iterative analysis.

P v



30

om-
his is
tch
the

those

l pro-
tion is
pro-

lgo-
ther

lica-
rs to

wing
The

deci-

ion,

ub-
eth-

e key
rithm

per-
ved
cal
ems,
ress of
nning
iple

cal-
Virtualizing from to processors is best chosen by using the program’s c
munication and computation characteristics. In data parallel single point algorithms t
done by looking at the stencil [SOCH90] and picking from the best virtualization to ma
that stencil and computation. In more complicated programs it requires analyzing
amount of communication between each virtual processor and combining jobs for
with a great deal of communication. This iscommunication globbingwhere communica-
tion is removed by assigning communicating virtual processors to the same physica
cessors. Once the processor assignments have been made, global communica
improved by decomposition and optimization, through techniques such as dynamic
gramming [LI91a]. For algorithms calculated in pipeline fashion embedding of the a
rithm graph into the architecture graph can be done [GREE92][LEIG92]. For fur
communication savings the compiler can usedata replication.

Data replicationis most useful for read shared data. One example of data rep
tion that I have found to be useful is in saving boundaries of virtual arrays on processo
eliminate local communication with near neighbors. The replication step requires kno
how much memory is available so as not to overfill caches and/or local memories.
knowledge of the memory hierarchy and data placement improves the compiler’s
sions. An example of manual data replication is in [YOO91].

Virtualized parallel calculation is often not as efficient as sequential calculat
therefore the compiler can invokesequential subroutines. For example in parallel prefix
[LADN80][KRUS85] the most efficient evaluation for each processor assigned s
nodes is to calculate their prefix in serial fashion rather than by the parallel m
od.

Load balancing choices are partially fixed in the processor assignment but th
to the contraction of to is the supersteps of work. Each superstep of the algo
may use a different processor assignment to both allow optimizations, and to improve
formance, a technique more critical for SIMD code. SIMD efficiency can be achie
through supersteps of work. For example in multigrid [BRIGG87][LEIG92] a numeri
technique to calculate boundary value, finite difference, and algebraic multigrid probl
the grid spacings change throughout the program, and are dependent upon the prog
the program. For SIMD this requires simply spreading the appropriate data and reru
the grid with the new assignment. For small grids, the opportunity to work on mult
grid problems simultaneously is possible. See FIGURE 9 below, that shows how the

v P v<

i

xi…xi k+

v P v<



31

to be

of
orst

y ran-
tions
s the
rsteps

redis-
IMD

cient
ina-
r they
used if
lop-
mple
ashing
.

ition
ining
llapse

bed-
re-

thm
rm
ing
culation proceeds to a fine grid where data must be communicated for all processors
used.

FIGURE  9 Multigrid Adaptation between Supersteps

Another example of load balancing is shown by [MASP91] in the calculation
fractals. By straight forward assignment of pixels to processors the run time is the w
case, because all processors must wait for the slowest to complete its iterations. B
domly assigning pixels the slowest processor has less work by checking during itera
if the pixel has finished and relying on the worst case pixels to be distributed acros
processors. Load balancing can be achieved through judicious intermixing of supe
and processor assignments even reassigning processors after partial calculation to
tribute the load. This dynamic superstep assignment is useful for both MIMD and S
processing.

Another compiler optimization method isdata copy elimination. A result of func-
tional programming and interprocedural effects, data copying can be extremely ineffi
[CANN92]. Interprocedural flow analysis helps the compiler to achieve data copy elim
tion. Update analysis allows different types of data areas to be declared, as whethe
are read shared or exclusive areas. Special memory areas can be more efficiently
located in closer levels of the memory hierarchy. Additionally, restrictions on the deve
ment of the program can greatly improve the chances of efficient compilation, for exa
using EREW PRAM abstraction removes concurrent reads. Improvements such as h
[VALI90] have been proven to distribute arbitrary communication to avoid contention

Graph transforms can be done by library search [LI91b] and decompos
[LI91a], but they can also be used to alter the calculation itself Section 2.3. By exam
the dependency graphs in image processing algorithms Li and Jamieson [LI91b] co
the graph into a hypergraph that may be more quickly matched to the architecture em
ding library. The library provides a solution using graph matching with heuristics to
duce the graph isomorphism complexity.

Li and Chen [LI91a] use a similar approach. A shared memory parallel algori
is compiled to distribute it. Communication is broken up, changing it into canonical fo
and matching a library of cost parametrized routine using dynamic programm
[CORM90] to minimize communication cost.



32

he
ndency
igns
di-

can
tions
the
essor

s
essary
ness

paral-
affect
, such
n and

tch-
quir-
on

ms.
sted
em-
are
pro-
esto
ro-
has
par-

. An-
ust
ell

her ar-

the
S90]
More generally,graph transformsare used to reduce communication, reduce t
depth of the dependency graph, and load balance the computation. The data depe
flow graph is used in traditional supercompilers, as well as systolic array des
[KUNG88]. By transforming the full dimensional dependency flow graph into lower
mensions efficient virtualizations can be found. Also general communication graphs
be embedded into hypercubes and butterfly graphs for more efficient communica
[VALI90][LEIG92]. Load balancing communication can also be done by not changing
program graph, but by hashing either the memory addresses [VALI90b], or the proc
assignments themselves.

The final task isoperation optimizations, where reordering of calculations make
code more efficient. The 12 compiler tasks discussed are some of the techniques nec
for effective slowdown compilers. Others are to be found, and the relative effective
and importance of each needs to be fully researched.

2.2.5 Existing System Software And Parallel Languages

System software is important to the success of slowdown. Because effective use of
lelism requires high average throughput, the system load and user requirements,
how best to run programs. This is apparent in the fastest throughput machines today
as the Cray Y-MP, that serves thousands of users with transparent process migratio
switching [BELL92]. The ability to serve a community of users requires rapid task swi
ing, and also examination of the true performance of applications on machines. By re
ing full parallelism in the algorithms, flexibility is enforced so they can be run
machines of any size.

Programming languages are also necessary for writing fully parallel progra
Functional programming, parallel Fortran-D [HIRA92], PRAM languages (as sugge
in [VALI90b]), and message passing languages such as OCCAM [INMO84] and Ens
bles [GRIS90][ALVE90] are all attempts to provide user control of parallelism. There
architecture independent languages (PICL [GEIS90], Data Parallel C [HATC91]),
posed parallel programming environments (C-Linda [CARR90], C++ and Pr
[BERS88]], Amber [CHAS89]), new types of approaches for parallelism (functional p
gramming), and parallelizing compilers to make parallel code more efficient. There
been mixed success such as Harrison III and Ammarguellat’s study [HARR90] where
allelizing compilers out performed parallel languages and compilers and vice-versa
other example of the difficulty is Data parallel C where Hatcher et al. report that they m
tune matrix multiplication for each architecture, “However, the result of tuning may w
improve performance on one architecture at the expense of execution speed on anot
chitecture,” ([HATC91] p381).

Another example of an architecture independent programming language is
PICL extension to C programs for image and vision processing. Geist et al. [GEI



33

, and
plicit

ation
with
ule. A

enta-
hat
t. The
pro-

l as
ap-
mory
op-

o do
add

pen-
n for
nica-
ers. A
. That
ndent
atu-
t effi-
ted

nce
on,
o be
first
such
sing

e re-

down
slow-
own,
claim the same source code executes upon the ipsc/2, ipsc/860, NCUBE 3200
NCUBE 6400 without change. The libraries are limiting though, because they use ex
message passing forcing the user to program in that fashion.

Carriero and Gelernter approach architecture independence by using coordin
languages [CARR90]. A coordination language is a programming language together
a coordination language—constructs used to synchronize, communicate, and sched
coordination language is the organizing strategy for parallel programs. Their implem
tion of the Linda coordination, called C-Linda, allows the expression of programs in w
they believe are the three important types of parallelism: result, agenda and specialis
ones that they don’t consider are data parallelism and speculative parallelism or logic
gramming.

Yet, the tendency to link the programming model to the hardware is typica
shown in Li and Chen’s communication optimization discussed earlier [LI91a]. They
proached algorithm development by automated compilation, claiming the shared me
programming paradigm “shields the user from many such low level concerns.” But, to
timize difficult communication they propose to add user directives to the compiler. T
this the user must somehow realize that the original coded algorithm is inefficient and
compiler directives to make the program more efficient.

All of these systems have been fielded with mixed success. Architecture inde
dent programming languages are more difficult to develop for parallel computers tha
sequential computers. The problems with scheduling, synchronization, and commu
tion overhead are exacerbated by languages designed for different parallel comput
program may be very efficient on one system, and not nearly as efficient on another
is why I propose slowdown as a new methodology to develop architecture indepe
parallel languages. It is important to allow description of parallelism at a high level, n
ral to the programmer, and have tools/compilers perform the conversion to the mos
cient implementation. I feel high level PRAM languages combined with sophistica
compiler and software technology are an ideal and practical approach.

Compiler transforms must create efficient code without tweaking and omniscie
by the user, or slowdown will not work. Also application libraries cannot be relied up
because efficient routines may not exist. Available application library routines can als
improved. Alternative means to solve the algorithm may be more efficient than the
coded approach, but if the algorithm is optimal on an abstract model of computation,
as the PRAM, then the algorithm should be efficiently mapped to the hardware. U
more restrictive models of PRAMs can of course improve efficiency, but should not b
quired.

System software and high level languages must be developed to support slow
compilers. System software and language research should be done in parallel with
down compiler and architecture work. In fact one of the best reasons to pursue slowd



34

n op-
from

elop-
e may
ber of
ke ad-

transi-

enta-
. In

to an-
E 10

with
h. The
filter

e ,
is that it finalizes the intermediate parallel code and algorithms, so that refinements i
erating systems, compilers, profilers, and languages can be worked upon in isolation
future platforms, and used to improve existing platforms.

2.3 Algorithm Design On Transition Graphs

As there are paradigms for algorithms, there are also paradigms for algorithm dev
ment. For the majority of image and graphics processing a transform based techniqu
be used to develop, validate, and analyze research. More importantly the large num
data representations and means to generate them allows high level applications to ta
vantage of untried transitions, and the assisted computational investigation of these
tions can speed the application assembly and validation.

Algorithms are represented as a directed graph where data repres
tions are vertices and transforms to intermediate representations are edges
geometric transform algorithms there are many edges going from one representation
other. The edges represent alternative ways to calculate the same result. FIGUR
shows sequence filtering. Filtering can be calculated by convolving a spatial filter
samples to create an output sample. This is shown by the backward edge in the grap
same output can also be calculated by taking each input and convolving them with a
that is summed in the output. This is the forward edge in the graph.

FIGURE  10 Filtering Directed Graph Representation

The backward operation convolves sequence with to get sequenc
. Pseudo code for backward processing is:

Initialize
for

for

G V E,( )=

v V∈ e E∈

A ℜ
C ℜ

backward

forward

Fourier
Z

A B C

C AOperatorB=

C

c C∈
k B A∩∈

C c[ ] OperatorC c[ ] A c k,[ ] B c k,[ ], ,( )=



35

cal-
g into
do-
t can
volu-

s di-
exist-
mples
ra-
ses

alent
ap-
roach

dis-
algo-
are
algo-
ources,

ith a
opti-
The forward algorithm is:

Initialize
for

for

The outer loop defines forwards or backwards calculation and each direction
culates the same result. Also one can calculate the filtered image by first transformin
the frequency domain, multiplying by a filter, and then transforming into the spatial
main. This is the Fourier edge transitions in FIGURE 10. Examples of operations tha
be calculated forwards or backwards include matrix product, grey scale dilation, con
tion, and grey scale erosion. Below I define the example operators:

Matrix multiply

, (EQ 6)

Convolution

, (EQ 7)

Grey scale dilation

, (EQ 8)

Grey scale erosion

. (EQ 9)

In fact, matrix multiply can be calculated on the Fourier transition, and perhap
lation and erosion can as well. The operators generalize to higher dimensions. The
ence of multiple ways to calculate the same result arise again and again. Other exa
include spatial warping Chapter III, volume rendering Chapters IV-V, ray tracing, and
diosity [FOLE90]. If a new application has been implemented with an algorithm that u
such transforms, then most likely there will be a variety of ways to calculate an equiv
output. Examining an algorithm at this level of detail allows quick classification of
proaches, identification of untried approaches, and analysis of the most effective app
for the application at hand.

FIGURE 11 gives volume rendering’s transform graph. Each approach will be
cussed in Chapters III-V, and application of this graph helped me to develop the
rithms in this dissertation. The basic transitions, forward, backward, Fourier,
applicable to many graphics and image processing algorithms. When designing
rithms, each alternative should be investigated because memory cost, computer res
and module integration affect the best choice. The transition graph allows research w
view of the entire application. Further, resource, time, and quality goals can guide an

C

k B A∩∈
c C∈

C c[ ] OperatorC c[ ] A c k,[ ] B c k,[ ], ,( )=

OperatorC c[ ] A c k,[ ] B c k,[ ], ,( ) C i j,[ ] A i k,[ ] B k j,[ ]×+=

C i[ ] A i k–[ ] B k[ ]×+=

Max C i[ ] A i k–[ ] B k[ ]+,( )=

Min C i[ ] A i k+[ ] B k[ ]–,( )=



36

opti-

ribed
sults.
speci-
s in-

ts are
gful
rmu-
elop-
of this
om-
com-
mization tool. In the next section, 2.4, I describe how to verse algorithm design as an
mization problem.

FIGURE  11 Volume Rendering Transform Graph

2.4 Automated Choices In Transform Graphs

The obvious approach is to solve an optimization problem with the application desc
in terms of source destination paths labelled with complexity costs and empirical re
This methodology allows graphics and image processing research to be assisted by
fying important factors to minimize and the available resources. Available resource
clude

■ computer systems performance, memory, I/O, and storage.

■ time: interactive 30 frame/sec. or days to weeks available.

In a research environment applications are in development, and transition cos
unknown. The output of the minimization includes the unknown costs in a meanin
fashion and provides alternative transitions if available. Such an interactive tool fo
lates its own information, prompts for the most useful information and speeds dev
ment. Because graphics and image processing algorithms are edges, the novelty
approach is that it provides a framework within which to develop and validate/test c
puter applications, a computer aided research (CAR) tool. The researcher enlists the

V ℜ3 I ℜ2

V ℜ3 V ℜ3… V ℜ3

C3

forward

backward

Fourier

Multipass forward

C2

V ℜ3

C3

I ℜ2

C2

Collapsed Representation Graph

Existing Algorithms



37

rallel

urce
fficient
nce is
e as

12
cost of
osts
time,

esenta-
mple
polat-

rtex
mod-

r a se-
ter.
ut the

on, or
the

m-
ities,
. The
puter to aid the critical thought process to prove or disprove hypotheses making pa
computers more useful.

Using the dependency flow graph representation of the algorithm a single so
shortest paths can find the most efficient algorithms. Once the best path is chosen, e
machine code can be created. The best approach to maintain parallel performa
through a slowdown compiler because of the difficulty in parallelizing sequential cod
discussed earlier.

Consider a transform graph with edges, , and vertices . FIGURE
shows an example graph. Each vertex is a data representation, and each edge is the
the transition from a vertex to another vertex. There is a full vector complement of c
along each edge. Costs are time complexity, space complexity, empirical compute
etc. Example representations are spatial, frequency, Hough space, boundary repr
tion, NURBS, URBS, triangles, and the multiple dimensions of these spaces. Exa
costs are the fast Fourier transform, resampling, Radon transform, rendering, inter
ing, surface fitting, volume rendering.

FIGURE  12 Transform Graph

The vectors are used to determine a minimum cost path from one ve
to another. The transition from one vertex to another represents a software/hardware
ule. From an earlier example, convolution, the representations are digital images. Fo
rial algorithm the transition is the complexity of convolving which depends on the fil
The researcher decides the filter type, image and filter sizes, and representations. B
most efficient calculation edge may change when the compute platform, representati
filter, changes. The choice of the most efficient edge is left to an assisting tool in
framework.

The transition graphs used will vary with cost type, transition direction, and co
pute platforms involved. Because each compute platform will have different capabil
the problem changes simply to an optimization in a transition graph for each system

e E∈ v V∈

1

2 3

4 5

cost12
cost13

cost14

cost24

cost23

cost25 cost35

cost45

cost34

e u v,( )=



38

avail-

n-
e cost

.
pro-
t.

stest

ion.

s

For
92].
I/O
tions
hich
r opti-
con-
I90].
ll bi-
on

is
ini-

ost
,
M

local
o less
lized.
comparison factor, true speedup, is calculated using the fastest sequential algorithm
able.

2.5 Digression on Optimal Algorithms

For the PRAM optimality is the minimum amount of work required [GIBB88]. This i
cludes a measure of the execution time, and the number of processors required. Th
of the algorithm is the number of time steps required for the algorithm to complete
The efficiency is given as utilization = #of ’s used in each time step, or work, the
cessor time product . An algorithm may be time optimal, but work inefficien

Definition 6: Optimal speedup. Linear speedup of the parallel program over the fa
known sequential program.

Definition 7: Optimal run time. A lower bound dependent upon the model of computat

Definition 8: Optimal space complexity.  on the order of the input size.

Definition 9: Optimal efficiency. Work efficiency, or time for the parallel algorithm time
the number of processors equals the time for the fastest sequential algorithm.

Optimality is often determined by achieving lower bounds for combining data.
example, if a calculation is associative and pair wise the lower bound is [LEIG
For fixed network algorithms optimality can be measured by the bisection width,
bandwidth, and diameter of the network. For example a mesh without toroidal connec
has a lower bound on communication of data from one to another that is w
results from the diameter of the network. These measures are only rough guides fo
mality. Obviously you can do worse than optimal. For example, a mesh algorithm for
nected components is because the path of a fully snaking component [TAN
And you may also do better such as a time sorting of binary numbers on a fu
nary tree with bisection width of [LEIG92]. Algorithms that beat the optimality criteri
given by the graph connectivity are the exception.

Optimality for the MCCM is determined by the network also. If communication
one-to-one then the diameter of the network is , the global communication cost. A m
mum for any algorithm that must combine global info is . The communication c
of the algorithm is expressible by where is self communications
local communications and non conflicting global communications. An optimal MCC
algorithm will use for each global value that must be exchanged, and for each
value that must be accessed, plus the computational requirement which may be n
than the PRAM’s . Reads to common locations may be done, but they are seria

T n( )
PE

P n( )T n( )

O n( )

nlog

PE O n( )

O n2( )
O nlog( )

1

G

O G( )
C n( ) a bL cG+ += a b

z

1G 1L

T n( )



39

rithm
dency

e im-
using
dge in
s are
ent of
effi-
h au-
rove

will
de-

ners
mu-

ta-
st of

lop-
ces-
ed. I

thms,
and
2.6 Summary and Discussion

By understanding how parallel algorithms are created, partial automation of the algo
design process is possible. First the most efficient approach is chosen from a depen
flow graph representation of the algorithm which changes with platforms and resourc
portance. Then the subroutines are compiled from a high level parallel language
speedup through slowdown. These abstractions provide greater freedom and knowle
adapting parallel programs to machines. Because high level fully parallel program
scalable and generation portable, I can motivate the necessary software developm
languages and compilers. The long term goal of speedup through slowdown allows
cient speedup of parallel algorithms and applications, and the dependency flow grap
tomated search will assist development of algorithms for applications, and imp
algorithm design.

The success of software tools for refining applications into parallel systems
determine the success of the machine models. By using bridging models, algorithm
signers can quickly determine the efficiency of their algorithm, and hardware desig
understand the features that must be provided. My bridging model the mixed cost com
nication machine (MCCM) is useful in comparing PRAM algorithm’s actual implemen
tion performance. In Chapters III and IV I use the MCCM to assess the network co
my PRAM algorithms and validate the results with performance measurements.

Both MIMD and SIMD can make general dramatic improvement through deve
ment of slowdown software technologies. Through examination of the number of pro
sors in parallel machines I demonstrated that parallelism has not greatly increas
advocate developing parallel machines with many more processors, high level algori
and slowdown software technologies to help make parallelism more cost effective
useful.



effi-
The
and
EW

for-
AM

for-
ns.

s in
re dis-
timiza-

eting
can
90]
age

S by a
ge
where
valid
Chapter III
Spatial Warping

In this chapter I present two new parallel image warping algorithms that are optimally
cient with low and high order filters on the parallel random access machine (PRAM).
simpler algorithm has concurrent reads and exclusive writes (for the CREW PRAM),
the non-obvious algorithm has exclusive reads and exclusive writes (for the ER
PRAM). I use the MCCM to provide a more accurate prediction of algorithm per
mance. I show that the algorithms are optimal on the PRAM, and that the EREW PR
algorithm has optimal communication on the MCCM. MasPar MP-1 and MP-2 per
mance measurements correlate with the MCCM 2D and 3D spatial warping predictio

I review warping and classify algorithms into forwards and backwards method
Sections 3.1 and 3.2. Filters are discussed in Sections 3.3 and 3.4. My algorithms a
cussed in Sections 3.5 to 3.8. Section 3.9 gives performance measurements and op
tion details. The chapter concludes in Section 3.10.

3.1 Background

Image warping is a spatial transform of an image called texture mapping, rubber she
[WEIN90], coordinate transforms, and geometric correction [JAIN89]. Image warping
be quite complex, such as quadratic and cubic transforms [SMIT87] [WEIN
[WOLB89]. I define two geometric spaces: the object space (OS), where the input im
resides, and the screen space (SS). The algorithm relates a point in OS to in S
transform or . The inverse transform is . FIGURE 13 shows ima

being warped to image . In each space there is a rectangular coordinate system
the images are represented by discrete samples: and . The extent of
points is defined by a bounding box for each image,  and .

FIGURE  13 Spatial Image Warping

p p′
T p′ T p( )= p T 1– p′( )=

I J

I x y,[ ] J x y,[ ]
BI BJ

T

p

p′

OS SS

I ′

JIBI
BJ



41

ts ,
ed in
5]

lgo-

sing.
ing

sted
be
image

ifica-
from

ors.
To calculate the discrete samples of requires reconstruction of at poin
which do not in general lie at ’s samples. Quality versus cost trade-offs have result
many approximations of reconstruction [BARR81] [BENN84] [CATM80] [FRASE8
[PAET86] [SCHR91] [SMIT87] [TANA86] [WEIM80] [WEIN90]. Image warping is
done in a one pass transforms, direct warps, and multiple pass transforms,multipass
warps. Direct warps and multipass warps may be performed by serial or parallel a
rithms.

Image warping has many applications in computer graphics and image proces
Computer graphics applications include texture mapping [HECK86], ray trac
[GLAS89], graphics design, and volume rendering [DREB88] [SCHR91]. I am intere
in warping primarily for volume rendering in Chapter IV but my algorithms may also
adapted to image processing applications such as correcting optical aberrations,
registration [OWCZ89], image restoration [GOSH89] [YOKO86], and cartography.

3.2 Possible Image Warping Approaches

It is easy to get lost in the details of specific approaches. FIGURE 14 shows a class
tion using the directed graph representation of warping. Each leaf is a different edge
the warping flow graph representation, and algorithms are differentiated by four fact

FIGURE  14 Image Warping Classification Tree, (* ) with new
algorithms: Backwards, Forwards, and Overlapped
Forwards

J x y,[ ] I p

I

forward

backward

direct

multipass

multipass

direct

lookup table

on the fly

lookup table

on the fly

I) direction II) lookup tables III) filter type IV) restrictions

direct * Affine: Forward MCCMF (EREWF) *

Separable:

[SMIT87]
Rotation:

Rotation: [TANA86]

Orthogonal: [WEST90]

direct

multipass

General poly fit: [YOKO86]

General: [WOLB89]

Texture Map: [FEIB80]

General: [GOSH89]

General: [WEIN90]

direct

direct

direct

* General: Backwards MCCMB (CREWB)*

[WEIM80][PAET86][SCHR91],

[CATM80][DREB88][HANR90]

linear/scanline

adjacent

convolve

nth order

polyfit

nth order

convolve

bezier patch



42

-
8]

ue is
de-
 filter.

i-
mory
okup
is in

re
l opti-
nline
GURE
tions
].

e
, re-
into
R91]

etch or
g their
nges
(EQ
. Ad-
).
The first factor,the transform direction , is the data flow of the program. An algo
rithm is forward mapping if data are passed by to the output [CATM80][DREB8
[HANR90] [SMIT87] [WEIM80][PAET86][SCHR91][TANA86][WEST90], or backward
mapping if output locations are inversed by to the input where an appropriate val
reconstructed [FEIB80][GOSH89][WEIN90]. Forward or backward mapping is better
pending on the size and organization of the input and output, the transform, and the

The second factor,lookup tables, saves time by pre-calculating transform coord
nates, filter coefficients, shading functions, and other values. A speed versus me
trade-off, as well as added programming complexity, are the key issues in using a lo
table. Image warping by lookup table is very general and efficient. A good description
[WEIN90]. See also [WOLB89][WOLB90][GOSH89][YOKO86].

The third factor,the filter type, has the largest effect on efficiency, because mo
accurate reconstruction requires more calculation. The most common computationa
mization for forward transforms is to decompose the transform, allowing regular sca
access and, more efficiency for some architectures. See the multipass branches in FI
14. Multipass warps are applied to decomposable transforms including rota
[PAET86][SCHR91][TANA86][WEIM80], bicubic, and biquadratic warps [SMIT87
But, multipass warps cannot perform higher order interpolation well.

The fourth factor,transform restrictions , allows optimizations such as coordinat
calculations by differencing, efficient partitioning and job assignment. For example
stricting 2D transforms to rotation allowed researchers to optimize by decomposing
multiple passes of 2 or 3 matrices. A nonscaling sequence of shears [PAET86][SCH
[TANA86] is,

. (EQ 10)

A shear is a transform that operates on only one coordinate. Shears may scale (str
shrink axes) or not scale (distances are preserved). Nonscaling shears have 1’s alon
diagonals such as in (EQ 10). The scaling factor by which an affine transform cha
area is the magnitude of the determinant of [BARN88]. I use the decomposition of
10) in my forward warp algorithm’s processor assignments of Section 3.6.2 and 3.6.3
ditional decompositions include the scaling shear sequences in (EQ 11) and (EQ 12

[CATM80][PAET86]:

(EQ 11)

[TANA86]:

T

T 1–

T θcos θsin–

θsin θcos

1 θ 2⁄tan–

0 1

1 0

θsin 1

1 θ 2⁄tan–

0 1
==

T

T 1 0

θtan θsec

θcos θsin–

0 1
=



43

ars for
]. Ro-

ze to
e-off
r the

r II.
MC-
. Per-
Section

)
dely
of
er
tion
ns of

l ap-
cond

urface
pting

lyno-
tions
Farin
ola-
and

mial
ion

ing
(EQ 12)

I have derived a deterministic formula to calculate a three pass sequence of pure she
both two dimensional and three dimensional transforms that are equiareal [MESE83
tation turns out to be a special case of my symbolic decomposition in Section 3.6.4.

I show that direct warps are nearly as efficient as multipass warps, generali
higher order filters, and have less aliasing (error). Direct parallel warps provide a trad
of speed versus filter quality. In Section 3.6 I describe the straightforward approach fo
CREW PRAM, and predict real machine cost by placing it on the MCCM of Chapte
Then an EREW PRAM algorithm is presented in Section 3.6.2 that is optimal on the
CM. Sections 3.6.3 through 3.8 detail algorithm variants and implementation issues
formance measurements are presented in Section 3.9 and the chapter concludes in
3.10.

3.3 Warping Filters

I use polynomial interpolation (th order) filters which include the zero-order hold (zoh
and first-order hold (foh). The implementation and performance of these filters is wi
discussed [JAIN89][PRESS88][FARI88]. I derive a polynomial interpolation algorithm
Aitken’s using Neville’s organization [FARI88][PRESS88], for calculating a low ord
piecewise polynomial fit. My algorithm is faster and more robust than the implementa
given by [PRESS88]. I also show that the most efficient higher dimensional expressio
these filters is the tensor product approach.

When interpolating to a sequence (1D), image (2D), or surface (3D) severa
proaches can be taken. One approach is to fit a polynomial to the given points. A se
approach is to create a system of control points that determines a spline or bezier s
that interpolates the points. A third approach is to create a least squares fit not attem
to exactly interpolate the points because there may be significant error in them. A po
mial fit avoids the overhead of creating control points and is reasonable for applica
where there is high confidence in the data. Aitken’s algorithm as presented by
[FARI88] is repeated linear interpolation to compute a higher order polynomial interp
tion. The recursive evaluation is more efficient than the direct evaluation. A larger
larger neighborhood of points calculates a higher order polynomial fit. The 1D polyno
interpolation fits an order polynomial to points. Starting with Farin’s express
[FARI88]1,

1.  page 61, Equation 6.2 in Chapter 6, with  replacing parameter ,  replac
, and  replacing  because I work almost exclusively with intensities.

1 0

θtan 1

θcos 0

0 θsec

1 θtan–

0 1
=

n

n n 1+

u t l
r I p



44

ted
d
e in-

is

the

s at
ch to

as
ltidi-
oduct
(EQ 13)

is the level of recursion, is the order of interpolation, and is the index of interpola
points. is the intensity at location on theth order interpolation. For example a 3r
order filter requires 4 points. One may reorganize the calculation by transforming th
terval to the unit interval by the substitution [FARI88]2. Then sim-
ply calculate

(EQ 14)

A further simplification if the point coordinate system has unit spacing ( )
. As a final form calculate,

, (EQ 15)

as a concise optimized solution for the interpolated point. FIGURE 15 shows
pseudocode polynomial interpolation procedurepolyint.

polyint(floatua[], float y[], int n, floatu)
{

int i,l;
float I[N];

for  to
;

for  to
for  to

return ;

FIGURE  15 nth order polynomial interpolation by Neville’s form of
Aitken’s algorithm

In FIGURE 15 is the array of parameter locations, is the function value
those locations, is the order of interpolation, and is the parameter location at whi
interpolate. If the coordinate system is not unit spacing replace with
shown in (EQ 14). For multidimensional interpolation a de Casteljau approach (mu
mensional recursion), while mathematically elegant, is less efficient than a tensor pr

2.  page 20, linear interpolation is invariant under affine domain transforms

I i
l u( )

ui l+ u–

ui l+ ui–
-------------------- I i

l 1– u( )
u ui–

ui l+ ui–
-------------------- I i 1+

l 1– u( );+=
l 1 … n;, ,=

i 0 … n l–, ,=



l n i

I 0
n u( ) u n

ui l+ ui–( ) u′
u ui–

ui l+ ui–
--------------------=

I i
l u( ) 1 u′–( )I i

l 1– u( ) u′I i 1+
l 1– u( );+=

I i
l 1– u( ) u′ I i 1+

l 1– u( ) I i
l 1– u( )–( )+=

ui l+ ui– 1=

u′
u ui–

l
-------------=

I i
l u( ) I i

l 1– u( )
u ui–

l
------------- I i 1+

l 1– u( ) I i
l 1– u( )–( );+=

l 1 … n;, ,=

i 0 … n l–, ,=



i 0= n

I i[ ] y i[ ]=

l 1= n

i 0= n l–

I i[ ] I i[ ] u ua i[ ]–
l

---------------------- I i 1+[ ] I i[ ]–( )+=

I 0[ ]

ua y

n u

l ua i 1+[ ] ua i[ ]–



45

alua-
, and

qua-
s the

FIG-

pola-
in-

I
call
the

a
te the
hey do

ter-
tion
approach (operating on each dimension in turn). If each intermediate point is an ev
tion, the quadratic 2D interpolation takes 13 evaluations by deCasteljau formulation
12 by tensor product. For bicubic deCasteljau takes 34 and tensor product 30. For 3D
dratic de Casteljau takes 45 and tensor product 39 evaluations. FIGURE 16 show
pseudo code tensor product polynomial interpolation procedure polyint2d. Polyint (
URE 15) is the subroutine used for 1D interpolation.

polyint2d(float *Ix, float * Iy, float * I, int m, int n, int offset, floatu, floatv)
{

int j;
float Itmp[n+1];

for(j=0;j<=n;j++){
Itmp[j]= polyint(Ix,I,m,u);
I=I+offset; /* wrap around to the next row of interp*/

}
return(polyint(Iy,Itmp,n,v); /* column to get final value*/

}

FIGURE  16 Tensor product 2D interpolation by Aitken’s algorithm

In FIGURE 16Ix andIy are the parameter locations in thex andy directions,I is a
pointer to a 2D array whose rows have offset number of elements. The order of inter
tion ism in thex direction and n in the y direction. The parameter locations at which to
terpolate are u in thex direction andv in they direction. As a comparison of efficiency,
compared [PRESS88] interpolation routine, polint, that took 0.21 milliseconds per
while polyint (FIGURE 15) took 0.05 milliseconds per call a 320% improvement. I ran
2D functions with the Numerical Recipes Example routine (xpolin2.c) [VETT88] on
Sun Sparc 2 using optimized gnu c compiled code. Because the iterations calcula
same points that [PRESS88] calculates, a crude error estimate may be provided as t
by giving the difference between the last point and the previous point (error estimate=I[0]-
I[1]). 3D filters are developed analogously by using 2D for each slice and a final 1D in
polation of the remaining dimensions. In general, tensor product polynomial interpola
has

, (EQ 16)

interpolations for an th order filter in  dimensions.

#int 1 2⁄ n 1+( ) n 1+( )d 1–[ ]=

n d



46

or-
n in

ces-
f inter-

ities.
each
n in
As an example of filter quality a 4x4 array of points is interpolated using a zero
der hold, a first order hold, a quadratic interpolation, and a cubic interpolation show
FIGURE 17.

FIGURE  17 Filter Quality Comparison (upper left: zero order hold,
upper right: first order hold, lower left: quadratic
interpolation, lower right: cubic interpolation)

For parallel implementation, polynomial interpolation is calculated at each pro
sor. Processors access a neighborhood of points whose size depends on the order o
polation. One can look at linear interpolation as an affine combination of point intens
The intensities and are combined according to their relative distances from
point. The relative distances are ratios and which multiply and as show
(EQ 17) and FIGURE 18.

(EQ 17)

2
3

4
5 2

3

4

5

0
1
2
3
4

2
3

4
5 2

3

4

5

0
1
2
3
4

2
3

4
5 2

3

4

5

0
1
2
3
4

2
3

4
5 2

3

4

5

0
1
2
3
4

2
3

4
5 2

3

4

5

0
1
2
3
4

2
3

4
5 2

3

4

5

0
1
2
3
4

2
3

4
5 2

3

4

5

0
1
2
3
4

2
3

4
5 2

3

4

5

0
1
2
3
4

I 1 I 2

u 1 u–( ) I 1 I 2

I a 1 u–( )I 1 uI2+=



47

uiv-
9)
ere I

nal
r. In
tions.
single
the
ith
led
FIGURE  18 Linear interpolation As Affine Combination

As an example consider bilinear interpolation, which is a 2D first order hold eq
alent to polyint2d in FIGURE 16 with . FIGURE 19, (EQ 18), and (EQ 1
show the arrangement of the points and intermediate interpolated values and . H
interpolate in the direction first getting and . Then I interpolate in to get the fi
value . The interpolation is calculated on the unit interval as described earlie
three dimensional reconstruction interpolation takes place in three orthogonal direc
For higher order reconstruction, more intermediate points are calculated to create a
point along each row of interpolation, and moving to the next orthogonal direction,
same approach is followed. The derivation provides for varying the filter quality w
varying compute costs, and is simple and highly efficient for working with point samp
images.

(EQ 18)

(EQ 19)

FIGURE  19 Bilinear interpolation done in horizontal direction first
and then vertical direction

I 1

I 2

I a

1 u–( )u

m n 1= =

I a I b

x Ia I b y

I x y,( )

I a I 1 u I2 I 1–( )+=

I b I 4 u I3 I 4–( )+=

I x y,( ) I b v Ia I b–( )+=

u
x xj–

xj 1+ xj–
----------------------= v

y yk–

yk 1+ yk–
----------------------=

I x y,( )

I a

I b

I 1 xj yk,[ ] I 2 xj 1+ yk,[ ]

I 4 xj yk 1+,[ ] I 3 xj 1+ yk 1+,[ ]



48

time
te
hines,
inter,
e D/C
anal-

and
con-
filter.
recon-
3.4 Error Derivation Of Filtering Approaches

Computer algorithms and their filter characteristics can be modeled by the discrete
system block in FIGURE 20 [DUDG84][JAIN89][CAST79]. The continuous to discre
(C/D) module digitizes images. Examples are scanners, computed tomography mac
and MRI scanners. The discrete to continuous (D/C) block is a computer display, pr
or film recorder, and reconstructs a continuous image that one views. Because th
block and one’s visual system can filter out differences between images quantitative
ysis is restricted to the discrete time system block.

FIGURE  20 Complete Image Processing System

FIGURE  21 Block Diagram of Operations In 2D Warping Algorithm

Direct warps are superior filters to multipass warps, because of less aliasing
less arithmetic error as shown in FIGURE 21. The multipass warp operation first re
structs or interpolates the data in a scanline direction using a linear interpolation
Then the data is resampled on the shear coordinates. There are 3 passes of linear

C/D

T

Discrete

D/C

T

Anti-alias
filter

Time System
h n[ ]

H ejω( )x n[ ] y n[ ] y t( )

linear linear linearres. on
shear

res. on
shear

res. on
shear

reconstruct resample
rotated

PAET86, SCH90, TANA86 Multipass Warp Rotation

Forward and Backward Direct Warp



49

d the
er of
s once.

inear
ling.
range.
error
URE

con-
does
n ef-
rors
struction followed by resampling on shear coordinates, with the shear coordinates an
direction of linear reconstruction varying each time according to the angle and ord
shears. The direct filtering approach makes one pass reconstruction and resample
Its block diagram system is also shown in FIGURE 21.

Ignoring aliasing, both filters are linear systems, but because the piecewise l
reconstruction spreads frequencies, Nyquist’s criterion will be violated in resamp
This happens because the reconstruction filter spreads the frequencies to an infinite
A linear system may be created by assuming the aliasing noise is additive error. If the
is exactly known, the linearized system and the nonlinear system are equivalent. FIG
22 gives a linearized view of the multipass and direct rotation.

FIGURE  22 Linearized 2D Warp Systems

My derivation assumes that the original signal is bandlimited, and the first re
struction avoids aliasing. By reconstructing a bandlimited image the direct warp filter
not alias, but additional amounts of noise/error will be introduced by the quantizatio
fects and by the finite precision arithmetic. I will ignore quantization and precision er

linear

PAET86, SCHR91, TANA86 Multipass Warp Rotation

+

error

×

cx r s,( )

linear +

error

×

cy r s,( )

linear +

error

×

cx r s,( )

nth order +

error

×

c r s,( )
Wittenbrink Direct Warp (MCCMF or MCCMB)

filter



50

RE

f the
iginal
ata.

n fil-
low
ll is a
e cal-
ss
eated
ative
in analysis noting that the multipass warp will suffer more than direct warping. FIGU
23 gives 3D filters are (assuming [SCHR90] reduced freedom rotation of 5 passes.)

FIGURE  23 3D Linearized Warp Systems

The direct warp algorithm has less aliasing for any nth order hold. Assuming the
initial data was bandlimited the error is computable by the energy in the sidelobes o
frequency response. The amount of error may be controlled by supersampling the or
data or by prefiltering the images or volume to further restrict the bandwidth of the d

 Assuming the power spectral density of the ideal image is

(EQ 20)

[PRAT78] derived the interpolation and resolution error for the nth order and gaussia
ters given in TABLE 2. In (EQ 20) is the sampling frequency. The sinc is an ideal
pass filter. The square is a zero order hold, the triangle is a first order hold and the be
second order hold. The cubic b-spline is a 3rd order hold, and all of these filters can b
culated by thepolyint2dalgorithm in the previous section (FIGURE 16). The multipa
warp algorithm uses a triangle filter in three passes, and ignoring the effect of rep
aliasing the filter error is the sum of three passes of triangle filters. This is a conserv

lin.

[SCHR90] Multipass Warp Rotation

+
error

×

ct r s t, ,( )

lin. +
error

×

cs r s t, ,( )

lin. +
error

×

ct r s t, ,( )

+

error

×

c r s t, ,( )

Direct Warp (MCCMF or MCCMB)

h r s t, ,( )

(nth order hold)

lin. +
error

×

cr r s t, ,( )

lin. +
error

×

ct r s t, ,( )

shear 1 shear 2 shear 3 shear 4 shear 5

WFI w( )
ws

2
----- 

 
2

w2–= w2
ws

2
----- 

 
2

≤

0= w2
ws

2
----- 

 
2

>

ws



51

aliases
(zoh)
V.

lcu-
lters
error

t the
ing,
estimate of the error because resampling after reconstruction in each pass severely
the data. The “% Interpolation” error places the multipass filter between the square
and the triangle (foh) which is supported by empirical filter comparisons in Chapter I

As interpolation error is reduced the resolution error grows. The amount of ca
lation required also goes up. Note that the amount of interpolation error in the direct fi
is more (zoh) or less (foh, soh, etc.) than the multipass approach, and the resolution
of the multipass is greater than all of the direct filters.

3.5 Optimal RAM Image Warping Algorithm

The simplest algorithm to code is to iterate in SS and clip in OS, doing everything a
point granularity. FIGURE 24 shows a simple algorithm that does not use differenc
computes every point’s transform, and clips to upright rectangles in OS.

TABLE  2 2D Interpolation error and resolution error for separable
interpolation functions (Reproduced from [PRAT78])

Function
% Resolution

Error
% Interpolation

Error

Sinc 0.0 0.0

Square 26.9 15.7

Triangle 44.0 3.7

Bell 55.4 1.1

Cubic B-spline 63.2 0.3

Gaussian 38.6 10.3

Gaussian 54.6 2.0

Gaussian 66.7 0.3

Multipass (3) 132.0 11.1

σw 3T 8⁄=

σw T 2⁄=

σw 5T 8⁄=



52

box
d the

lgo-
timal

can-
int,

hyper-

ans-

ts
RAMB-Simple( , , , ) {
1) for all  {

2)
3) If ( ) /* Upright Rectangle Clip FIGURE 25*/
4)
5) Else

}}

FIGURE  24 Simple to Code RAM Backwards Algorithm, ,
, (RAMB-Simple)

Clipping is done by four comparisons of a point’s coordinates to the bounding
of the image. I represent the bounding box as two points: the upper right point an
lower left point . FIGURE 25 shows code for clipping to an upright rectangle.

Clip( , , ) {
1)
2) if
3) else if
4) else if
5) else if
6) return ( )}

FIGURE  25 Clipping To Upright Rectangle

The optimal sequential warping algorithm is a basis for comparing parallel a
rithms. I argue that the following three observations can be used to determine an op
2D warping algorithm. The iteration can be performed at different granularity: point, s
lines, and polygons. And the clipping can be performed at different granularity: po
scanlines, and polygons. Additionally the clipping can be performed in OS or SS.

Observation 1: Clipping in object space is cheaper than clipping in screen space.

This observation holds, because screen space clipping requires clipping against
planes which is more expensive than clipping against an upright rectangle.

Observation 2: Transforming points is more costly than differencing3 them.

This optimization is restricted, because differencing can only be done for affine tr
forms.

3.  differencing points calculates transforms by using several transformed poin
and offsets for all other points.

J ← I BI BJ T 1–

p′ BJ∈

p T 1– p′( )=
p BI∈

J p′[ ] Reconstructionp I,( )=

J p′[ ] Background=

O n2( )
T 7M 10A 4Comp.+ +( )n2=

pur

pll

p pll pur
inside TRUE=

px pll x< inside FALSE=
px purx> inside FALSE=

py pll y< inside FALSE=
py pury> inside FALSE=

inside



53

per

her
scan-

ace,
de-
sts of

nd-
but
90]

s by
ca-
hm
ns-
Observation 3: Clipping by polygons is cheaper than clipping by lines which is chea
than clipping by points.

Clipping becomes an insignificant part of the processing when clipping at hig
granularity, because the overhead goes from clipping every point to clipping each
line, to clipping one bounding polygon of the entire image.

Therefore by Observations 1, 2, and 3 the best alternative is to clip in object sp
use differencing for point calculations, and clip polygons. For parallel algorithms it
pends on the granularity or amount of parallelism available. I summarize and the co
clipping, transforms, and reconstruction below in TABLE 3 and TABLE 4.

TABLE  3 Sequential algorithm alternatives

Clipping How Clipping Where

Screen Space Object Space

Point

Line

Polygon

TABLE  4 Terms Used in Algorithm Alternatives Table

Term Definition Cost

reconstruction Bilinear is

transform

hyperplane clipping

upright clipping

hyperplane line clip

upright line clip

hyperplane polygon clip

upright polygon clip

The difference in clipping cost is clipping each point , each line , or the bou
ing box, . Line and polygon clipping require a similar amount of work in SS and OS
object space is slightly more efficient. For line and polygon clipping see [FOLE
[MAIL92].

The optimal sequential algorithm computes all object space point coordinate
differencing, 2 additions, and the bilinear filter is calculated recursively with 3 multipli
tions and 6 additions ([CAST79]). FIGURE 26 gives the RAM backwards algorit
(RAMB). Higher order filters are calculated using polyint2d (FIGURE 16). If the tra

n2 Rec. T HC+ +( ) n2 Rec. T UC+ +( )

n2 Rec. T+( ) nHLC+ n2 Rec. T+( ) nULC+

n2 Rec. T+( ) HPC+ n2 Rec. T+( ) UPC+

Rec. 3M 6A+

T 4M 4A+

HC 12M 16A 4Comp.+ +

UC 4Comp.

HLC

ULC

HPC

UPC

n2 n

1



54

Po-
sing

*/

ters
n the
igher

as

l al-
es-
y

form is not possible by using differences the algorithm will be slightly less efficient.
lygonal clipping precalculates the bounding boxes, without affecting the proces
constants.

RAMB( , , , ) {

1)  /* Inverse x-form the output image bounding box into the object space OS 

2)  /* Clip  to the box of input  */

3) for all  /* Compute by differencing to correspondingly, integer indexed  */

4) for all

}

FIGURE  26 Optimal RAM Backwards Algorithm, ,
, (RAMB)

An examination of the sequential complexity shows that the higher quality fil
are available for a small cost. On real machines, if memory access is efficient the
RAM algorithms will accurately indicate the performance, and one should use the h
quality filter of the RAMB algorithm instead of a lower quality shear approach such
[PAET86] or [CATM80]. See TABLE 5 for the sequential algorithm comparisons.

3.6 Optimal PRAM Image Warping Algorithms

Optimal parallel algorithms were defined in Chapter II. I present here optimal paralle
gorithms for the CREW and EREW PRAMs. They have time using proc
sors where either for an image or for a volume of . B

TABLE  5 Algorithms Inner Loop Cost

RAMB
RAMB,
Rotation

[PAET86] [CATM80]

Transform General
4M, 4A

Differencing 3 Pass Shear 2 Pass Shear

Filter Bilinear
3M, 6A

Bilinear
3M, 6A

Linear
3M, 6A

Linear
2M, 4A

Cost of Inner
Loop

Quality of Filter High High Lower Lowest

n2

J ← I BI BJ T 1–

BJ′ T 1– BJ( )=

PJ′ Clip BJ′ BI,( )= BJ′ BI

p′ PJ′∈ p′
J p′[ ] Reconstructionp I,( )=
p′ PJ′∉
J p′[ ] Background=

O n2( )
T 3M 8A+( )n2=

7M 10A,( )n2 3M 8A,( )n2
3M 3A,( )n
3M 6A,( )n2

4M 2A,( )n
2M 4A,( )n2

O 1( ) P S=

S n2= n n× S n3= n n n××



55

ex-
AM.

ap-
sed in
EW
ect

l in-
the
um-
or

able
90].
.

teljau
more
PRAM

,
all for
ns
FIG-
the

ns-
optimality Definitions 1 and 2 the algorithms are optimal. The EREW algorithm also
hibits optimal speedup on the MCCM, a network model with less power than the PR

3.6.1 Optimal CREW PRAM Backwards Direct Warp Algorithm

For parallel image warping, one can partition the input object space (OS) for forward m
ping or the output screen space (SS) for backward mapping approaches as discus
Chapter II. The simpler algorithm is a SS backward mapping algorithm, called the CR
PRAM backwards algorithm (CREWB). The CREWB algorithm is the backward dir
mapping branch in FIGURE 14. The algorithm is given below in FIGURE 27.

CREWB( , , , ) {
1) for all output pixels ( ) in , , where  is the bounding box of ,

do {

2) find the inverse transformed pixel,  ( )
3) if  then (clip to the input image): ( )

4)  ( )
5) else set  to a background value.}

FIGURE  27 Backwards Algorithm (CREWB= , MCCMB=
 for  and )

This algorithm uses any where the inverse transform exists. For genera
puts of , numerical software can estimate the invertibility of to caution the user if
transform is nearly singular. A singular matrix does not have an inverse. A condition n
ber estimate could be calculated for the matrix [KAHA89], similar to what Matlab
Mathematica [WOLF88] uses for matrix calculations. The inverse is analytically solv
and typically stable for affine and orthogonal transforms without projections [FOLE
To compare filters the number of linear interpolations required was given in (EQ 13)

Assigning one processor per pixel, the filter complexity is . If
processors per pixel are used the filter complexity is just where both a de Cas
[FARI88] and a tensor product approach have steps. Using small order filters and
samples than processors there is one or fewer processors per sample. Assuming the
has a processor per sample, the asymptotic complexity of the CREWB algorithm is
and when and are small constants. The remaining constants are also sm
this algorithm. If additions ( ), multiplications ( ), rounding ( ), and compariso
( ) have the same cost a 2D image warping with a foh ( ) has 23 operations.
URE 27 shows the cost of each step. The complexity of the CREWB algorithm on
MCCM using a foh and is . , the congestion, varies with the tra
form. The backwards algorithm with anth order filter uses,

, (EQ 21)

J ← I BI BJ T 1–

p′ J p′ BJ∈ BJ J

p T 1– p′( )= Time 4M 4A+=
p BI∈ Time 4Comp=

J p′[ ] Reconstructionp I,( )= Time 3M 6A 2Rnd 4GN+ + +=
J p′[ ]

Time 23=
Time 23 4GN+= d 2= n 1=

T T 1–

T T

O nd 1+( ) n n 1+( )d 1–

O nd( )
nd

O nd( )
O 1( ) n d

A M Rnd

Cmp n 1=

d 2= Time 23 4GN+= N

n

#pts n 1+( )d=



56

un
M.
tion
a-

arp
ines
s in a
for
tion
M,
lev-

olate,
ment
the SS
d in
S ( ).
as-
r rule,

are in
(SS).

ersed
points which requires to fetch. The MCCM shows the realistic high r
time, and if is considered constant the run time complexity is on the MCC
In the next section I present a non-obvious EREW PRAM algorithm with conges

for an optimal MCCM run time of . Because the MCCM is an abstract m
chine , , and  will vary for real machines.

3.6.2 Optimal EREW Forward Direct Warp Algorithm

The CREW PRAM backwards algorithm in FIGURE 27 is general. It can be used to w
an image using any invertible transform, but suffers from inefficiency on actual mach
because of the concurrent reads illustrated by the MCCM costs. Restricting result
more efficient MCCM algorithm. In this section I present an optimal MCCM algorithm
nonscaling affine transforms. Optimal MCCM complexity is defined as communica
efficiency as small as the diameter of the network. My algorithm is optimal on the MCC
and requires exactly one global communication, or . This efficiency results from a c
er processor assignment.

Processors choose output samples with a rule, then use local data to interp
and reorder with an efficient one-to-one global communication. The rule is an assign
of OS processors to SS samples. Reconstruction of SS samples is done in OS. Then
samples are sent to their proper locations. Processors and their points are in OS an
SS. There is a duplicity of processor spaces, as processors are both in OS ( ) and S
Obviously , but they are differentiated to more clearly describe the
signments. Processor chooses a processor to work for by the nonlinear mapping o

. For example in 2D rotation  is

, (EQ 22)

where the first shear to be applied is (from (EQ 10)),

. (EQ 23)

denotes a shear in the x direction. Further details on the processor mapping
Section 3.6.3. FIGURE 28 shows in object space (OS) and in the screen space
After choosing the processor to work for, processor calculates processor ’s inv

Time #ptsNG=

#pts( ) O N( )

N 1= O 1( )
N G L

T

1G

π π′
π π′

π x y,[ ] π′ x y,[ ]=

π
M :π π′→ M

M round SHxround SHyround SHxπ( )( )( )=

SHxπ 1 θ 2⁄tan–

0 1

πx

πy

πx πy θ 2⁄tan–

πy

= =

SHx M

π π′
π π′



57

are

ten-
four

FIG-
sure
flicts,

ends
the
write

ma-
bor-
point position by mapping between spaces, . Point and mapping
also shown in FIGURE 28.

FIGURE  28 Nonlinear Mapping

Now, by using point ’s coordinates, processor retrieves the neighboring in
sities of point , and interpolates them. For example in 2D bilinear interpolation the
points surrounding are used in (EQ 15) withpolyint2dof FIGURE 16. The points sur-
rounding are guaranteed by my rule to be near neighbors in the mesh as shown in
URE 29. For higher order reconstruction a larger neighborhood is used. To in
exclusive reads the neighboring values are read in directional phases to avoid con
such as (1) north, (2) northwest, (3) west, etc.

FIGURE  29 Near Neighbors In Mesh

The reconstruction creates that lies at processor . In a final step, s
to by a global send. Every processor is given a unique to work for and

global send is a one-to-one send. This permutation of writes guarantees the exclusive
property of the algorithm. This algorithm is called the forward algorithm and is sum
rized in FIGURE 30. Theorem 3.1 proves one-to-one properties of and the neigh
hood properties of  in Section 3.6.3.

pπ′ T 1– π′( )= pπ′ T 1–

I

J

T 1–

pπ′

π′ p′=

M

π

OS SS

distance

pπ′ π
pπ′

pπ′
pπ′

π

pπ′

J pπ′[ ] π π
J pπ′[ ] π′ π π′

M

T 1– M



58

-
tated
m
pro-
EREWF( , , , , ) {
1) Each OS processor calculates output processor to work for

If  {  ( )

2)If  lies within processor array, or clip to output image,
If  ( ) {
3) Calculate the inversed location of the output pixel/processor in the input

 ( )
4) Get local neighbors reading in directional phases to avoid conflicts

and reconstruct
(by bilinear for 2D )

5) Processor  sends the  pixel value to processor  ( )}}}

FIGURE  30 Forward Algorithm (EREWF= , MCCMF=
)

A 512x512 image rotated by 35° and 45° is shown in FIGURE 31, and correspond
ing to assignments for a 9x9 mesh are shown in FIGURE 32. The image is ro
clockwise to the grey image orientation. Black dots indicate and a line is drawn fro
to . Clear dots with no lines from them are processors where . Gray dots are
cessors who have been clipped.

FIGURE  31 512x512 35  and 45  image rotation performed on the
MasPar MP-1.

J ← I BI BJ T 1– M

π BI∈ π′ rule π( ) Mπ= = Time 3Rnds 3M+ 3A+=

π′
π′ BJ∈ Time 4Comp=

p T 1– π′( )= Time 4M 2A+=

J p′[ ] J π′[ ]= reconstruction neighborsπ( ) p,( )
Time 3L 3M 6A 2Rnd+ + +=

π J π′[ ] π′ Time 1G=

30
Time 30 G 3L+ +( )=

π π′
π′ π

π′ π π′=



59

a-
RE
ame
de-
bal
eigh-
lcula-
lds,

costs
uality

the
us-

ge

ans-
inte-
,
ign-
FIGURE  32 Processor assignments in a 9x9 mesh to calculate 35
(left) and 45  (right) rotation

The MCCM complexity for the forward algorithm shows slightly more calcul
tions but optimal communication. For example, rotation complexity is given in FIGU
30 for the 2D foh after each step. Assuming each operation ( ) is the s
cost, the time is where and are the communication costs
scribed earlier. The forward algorithm is better if , because glo
communication is expensive, and/or there is congestion. The local reconstruction n
borhood is enlarged without changing the global cost. The overhead is the rule ca
tion to assign processors. The forward algorithm is better if the following inequality ho

. (EQ 24)

is the cost to evaluate the mapping ( ). The transform cost and reconstruction
are the same, and is the number of points used in the reconstruction. This ineq
proves to be true for parallel machines with up to a 59% improvement exhibited on
MasPar MP-1 (Section 3.9) for 2D images with foh and a 100% improvement with 3D
ing a foh.

The forward algorithm is on the MCCM, and therefore the forward ima
warping algorithm is optimal.

3.6.3 Nonlinear Mapping Rules For Forward Algorithms

I prove that nonscaling affine transforms are calculable by the forward algorithm. Tr
forms include translation, shearing, and rotation, (EQ 22). For translation, I round to
ger coordinates by mapping , ,

etc. The proof that translation and rounding gives a one-to-one ass
ment is Lemma 3.1.

M A Rnd Comp, , ,
Time 30 G+ 3L+( )= G L

30 G+ 3L+ 23 4GN+<

1G

RULE( ) #pts NG L–( ) G L–( )–<

RULE M

#pts( )

O 1( )

M :π π′→ πx′ round πx Tx+( )= πy′ round πy Ty+( )=

πz′ round πz Tz+( )=



60

ts
he in-
ts re-
are

one
takes

and
rsed

one,
e de-
invert-

tes a
fore a
sable

.

sor
aps
in

coordi-
d the

and
than

maps,

e the
Lemma 3.1: Arbitrary translation and rounding is one-to-one.

Proof: Each whole number grid location is unique before the mapping, so two poin
and have coordinates . If each point is translated by the same amount, then t
tegral and fractional amount of both translations is the same. Therefore assignmen
main unique after the translation and rounding. Higher dimensional translations
proven by induction using the same argument for each dimension. ■

Next I show that equiareal (including nonscaling affine) warps allow a one-to-
nonlinear processor assignment, and further, using this mapping insures that filtering
place in local neighborhoods.

Theorem 3.1:Equiareal warps , , can be decomposed into pure shears,
shearing followed by rounding is both one-to-one and results in a point whose inve
position is always within distance 1, in orthogonal directions.

Proof: There are 2 points to prove the correctness (1) that the mapping is one to
and (2) neighbors of are near neighbors of . Point (1): Nonscaling affine maps ar
composable into a sequence of translations, shears, and rotations, because they are
ible. Translations are one-to-one by Lemma 3.1. A pure shear (no scaling) transla
single coordinate. Each row (column/slice) is translated by a fixed amount, and there
shear and round is one-to-one transform by Lemma 3.1 also. Rotation is decompo
into a multistep shear, and because each shear is one-to-one rotation is one-to-one

( ) is one-to-one  is one-to-one.

Point (2): The interpolation point is within the local neighborhood of the proces
if and . OS processor coordinates pass through two m
( ) to arrive at the interpolation point (see FIGURE 28). Translation is trivially with
distance one because the rule rounds to the nearest point. For rotation calculate the
nates of the interpolation point in terms of the OS coordinates, the rotation angle, an
rounding errors. The distances between the processor and the point calculated in the

directions are nonlinear trigonometric equations. The distance for any angle is less
1 for up to around , as calculated by,

(EQ 25)

. (EQ 26)

A series of translations, shears, reflections, and rotations achieves all equiareal

therefore the map is one-to-one, and the distance properties of do not violat
neighborhood property for all equiareal maps. ■

p

q px qx≠

T det T( ) 1±=

M

pπ′ π

M :π x y,[ ] π′ r s,[ ]→( ) π x y,[ ] π1 x1 y1,[ ] π2 x2 y2,[ ] π′ r s,[ ]→ → →( )⇒
M1 M2 M3

Mi i 1 2 3, ,∈ M⇒

pπ′( )x πx– 1< pπ′( )y πy– 1<
T 1– M

x

y

100°

pπ′( )x πx– θ
2
---tan mod0.5± 

  θcos 1+( ) θsin mod0.5±( ) 1 2 θcos–( )+=

pπ′( )y πy– θ
2
---tan mod0.5± 

  θcos2 θsin2– θcos+( ) θsin mod0.5±( ) θsin θ
2
---tan θcos+ 

 +=

M T 1– M



61

ance
nce
E 33.
func-

is
sults

s. The
cen-
m to

ap-
. The
is

r
lied

be-
ping.
Because of the complicated nature of the distance functions, a plot of dist
helps to convince. The functions are plotted from to . Two values of the dista
(with different signs of second term), and the distance are superimposed in FIGUR
This shows that the distance is strictly less than 1 for angles up to about . The
tions explode at because of the singularity in . Decomposition using
stable from to complementing the tangent. A reflection about both axes re
in a decomposition with .

FIGURE  33 Distance of Interpolation Point in  and .

3.6.4 Sequences of Nonscaling Transforms

The forwards algorithm can do any sequence of translations, rotations, or pure shear
rule is optimized by combining transforms where possible. For example in arbitrary
tering of rotation the first two and last two matrices may be combined. The transfor
rotate about the point  and center the rotation in the output about  is

(EQ 27)

Translations are , and the rotation is . To use the transform for a m
ping , round after each pass denoted by with the bar above the transform pass
transform after replacing by the pure shear matrices

. I premultiply the first translation into the first shea
and the final translation into the last shear . Recall that a point is postmultip

with the transform matrix so the first transform is [FOLE90]. The mapping
comes . This gives a three pass rule to calculate the processor map
Transform  is the rounding of values produced by

0 180° x

y

100°
180° θ 2⁄tan θ 2⁄cot

π 2⁄ 3π 2⁄
θ 2⁄cot

0.5 1 1.5 2 2.5 3
angle

-1

-0.5

0.5

1

distance

x y

r x r y,( ) cx cy,( )

T T cx cy,( )R θ( )T rx– r y–,( )=

T tx ty,( ) R θ( )
M T

R θ( )
M T cx cy,( )SHySHxSHyT rx– r y–,( )=

SHy SHy

T rx– r y–,( )
M M3SHxM1=

M1



62

lica-

to-one
a one-
n the

ly. I
iareal

lv-
the 3

u-
v-
,(EQ 28)

and similarly,

. (EQ 29)

Each of these matrices is sparse so many terms (0 or 1) do not require multip
tion. My example of arbitrary centered rotation is calculated by,

. (EQ 30)

Concatenation of rotations, translations, shears, and scalings is possible with one-
processor assignments, and therefore optimal communication. Scalings do not have
to-one assignment, but if the scaling is decomposed from the general transform the
remaining transforms are optimal. All of the manipulation can be done symbolical
have also derived a decomposition for any two dimensional or there dimensional equ
transform.

The general solution to a 2 dimensional equiareal transform is calculated by so
ing a system of 5 equations with 3 unknowns. The unknowns are the coefficients in
pass shearing operation. An equiareal transformation by definition has

. (EQ 31)

The other four equations are found by setting

(EQ 32)

The result is , , and
. A special case is rotation, where

, (EQ 33)

and by insertion and reduction by the half angle form
la, , and . This shows how to calculate the result gi
en by [PAET86] [TANA86].

M1 SHyT rx– r y–,( )
1 0 0

α– 1 0

0 0 1

1 0 r x–

0 1 r y–

0 0 1

1 0 r x–

α– 1 αr x r y–

0 0 1

= = =

M3

1 0 cx

α– 1 cy

0 0 1

=

π′ round M3round SHxround M1π( )( )( )=

det
a11 a12

a21 a22 
 
 

a11a22 a12a21– 1±= =

a11 a12

a21 a22

1 b1

0 1

1 0

b2 1

1 b3

0 1
=

b1 a11 1–( ) a21⁄= b2 a21=

b3 a22 1–( ) a21⁄ a12a21 a11– 1+( ) a11a21( )⁄= =

θcos θsin–

θsin θcos

b1 θcos 1–( ) θsin( )⁄ θ 2⁄tan–= =

b2 θsin= b3 θcos 1–( ) θsin( )⁄ b1= =



63

ca-
r tri-
e 8
bors
The
ause

re 10

the
ould

ro-
eflec-
about
3.6.5 Optimal MCCM 3D Equiareal Algorithm

The beauty of the forward algorithm is that in 3D there is still only 1 global communi
tion instead of or more global communications by the backwards method (8 fo
linear interpolation, 27 for soh, and 256 for toh). With the first order hold there ar
corners in a cube whose intensities are trilinearly interpolated. By using local neigh
for the interpolation step the forward algorithm does 7 local MCCM communications.
rotation algorithm is the same as given in FIGURE 30, where the constants differ bec
of 3D transforms, fetching of additional local neighbors and 3D reconstruction.

The same decomposition approach used for 2D is used for 3D, and there a
equations with 9 unknowns,

(EQ 34)

. (EQ 35)

The solution from Mathematica(TM) is,

, , ,

, , ,

, . (EQ 36)

This allows direct solution for a three pass nonscaling transform, which I use in
rule calculation. It could also be used for a multipass warping provided the data c
move in 2 directions operating on “scanframes” if you will.

Most viewing transforms are rigid body transformations. I show how arbitrary
tation, and then arbitrary translation and rotation are decomposed into matrices. R
tion can be easily added. (EQ 37) shows 3D rotation as a concatenation of rotation
each axis , , and  [FOLE90] p. 215.

(EQ 37)

#pts( )

det

a11 a12 a13

a21 a22 a23

a31 a32 a33 
 
 
 
 

1±=

a11 a12 a13

a21 a22 a23

a31 a32 a33

1 b12 b13

0 1 b23

0 0 1

1 0 0

c21 1 0

c31 c32 1

1 d12 d13

0 1 d23

0 0 1

=

c31 a31= c32

a31 a22a31– a21a32+

c21
--------------------------------------------------= d12

a22 1–

c21
----------------

a32

a31
-------

a21a32

c21a31
---------------–+=

d23

c21 a23a31 a21a33–+

a22a31 a21a32–
-------------------------------------------------= d13

a23

c21
-------

a23a31 a21a33 c21–+

c21 a22a31 a21a32–( )
-------------------------------------------------–

a33

a31
-------

a21a33

c21a31
---------------–+= b23

a21 c21–

a31
--------------------=

b13

a11

a31
-------

c21a11a32 c21a31a12 a31–+

a31 a22a31 a21a32–( )
-----------------------------------------------------------------–= b12

1
c21
-------–

a31 c21 a12a31 a11a32–( )+

c21 a22a31 a21a32–( )
--------------------------------------------------------------+=

M

x y z

Rz ψ( )Ry φ( )Rx θ( )
ψcos ψsin– 0

ψsin ψcos 0

0 0 1

φcos 0 φsin

0 1 0

φsin– 0 φcos

1 0 0

0 θcos θsin–

0 θsin θcos

=



64

ion of
done
tri-

arbi-
35)

, only
poor
be
ed for
one

int co-
ne-to-

in
sed,

e. In
tion

trix,
out
era-

tation
their
This transformation is decomposed into pure shears. (EQ 38) gives a decomposit
, or rotation about by , into pure shear matrices. Rotation about and are

likewise with the 2D decomposition developed by [PAET86] and [TANA86], and 9 ma
ces result.

(EQ 38)

You can use all 8 shears, and also concatenate prior translations to provide
trary centering and flybys, or you can use just 6 shears from the decomposition in (EQ
and (EQ 36).

Note that the decomposed matrices are not used for a multipass resampling
to calculate the permutation, . The order of the transformations does not result in
filtering or the bottleneck problem [SMIT87]. Any angle of rotation, or translation can
performed in one pass without transposing the data. Different decompositions are us
rotation because of the discontinuity in . In fact 90 degree rotations are done in
pass, by a permutation of unsampled voxel values. After each shear operation the po
ordinate being operated upon is rounded to an integer coordinate maintaining the o
one assignment. The operation for the right most matrix in (EQ 38) results

. Because only one coordinate is affected, and no scaling is u
rounding chooses a unique coordinate.

The inverse used in determining the reconstruction point is numerically stabl
fact equiareal transformations are by definition invertible. For arbitrary centered rota
the transform is a product of translation matrices, , and the rotation ma

. Rotate about the point and center the rotation in the output ab

. The transformation given in (EQ 39) is decomposed and contracted into op
tions on single coordinates, and used to calculate .

(EQ 39)

For arbitrary centered rotations the inverse is easily calculated because ro
is orthogonal, meaning , and translations are inversed by negating

values,

. (EQ 40)

Rx θ( ) x θ y z

1 0 0

0 θcos θsin–

0 θsin θcos

1 0 0

0 1 θ 2⁄tan–

0 0 1

1 0 0

0 1 0

0 θsin 1

1 0 0

0 1 θ 2⁄tan–

0 0 1

=

M

θ 2⁄tan

Mη Round y z θ 2⁄tan–( )=

T x y z, ,( )
R ψ φ θ, ,( ) r x r y r z, ,( )
cx cy cz, ,( )

M

T T cx cy cz, ,( )R ψ φ θ, ,( )T rx– r y– r z–, ,( )=

T 1–

R ψ φ θ, ,( ) T 1– TT=

T 1– T cx cy cz, ,( )R ψ φ θ, ,( )T rx– r y– r z–, ,( )( ) 1–=

T rx– r y– r z–, ,( )( ) 1– R ψ φ θ, ,( )( ) 1– T cx cy cz, ,( )( ) 1–=

T rx r y r z, ,( ) R ψ φ θ, ,( )( )T T c– x c– y cz–, ,( )( )=



65

the
h the

ents
25

88]
on the
e-

boring
each
The rotation matrix and a translation matrix are given in (EQ 41) and (EQ 42), and
transpose of (EQ 41) is composed with the translations for calculating the inverse wit
minimum number of calculations.

(EQ 41)

(EQ 42)

In FIGURE 34 are 2 volume rotations showing the to processor assignm
with covered by a black dot and connected to by a line. The cube is rotated by°
about y 25/2° about x (left) and a 35° about y 35/2° about x (right) with z axis up, y to the
left, and x to the right.

FIGURE  34 Processor assignments in a 5x5x5 volume to calculate
25/2, 25, 0 and 35/2,35,0 (x,y,z) rotations

3.6.6 Comparison to Previous 3D Techniques

There are several previous parallel 3D warping techniques [SCHR91][DREB
[HANR90]. Schroeder and Salem use a multipass warp with 5 scale shear passes
Thinking Machines CM-2 [SCHR91]. By restricting the 3D rotation to two axes of fre
dom and combining two adjacent direction shears only 5 shears are needed. Neigh
voxel data locations are calculated through look up tables and resampling occurs in

R ψ φ θ, ,( )

φ ψcoscos( ) θ ψsincos– ψ φ θsinsincos+( ) ψ θ φsincoscos ψ θsinsin+( ) 0

φ ψsincos( ) ψ θcoscos φ ψ θsinsinsin+( ) θ φ ψsinsincos ψ θsincos– 0

φsin–( ) φ θsincos( ) φ θcoscos( ) 0

0 0 0 1

=

T cx cy cz, ,( )

1 0 0 cx

0 1 0 cy

0 0 1 cz

0 0 0 1

=

π π′
π′ π



66

of ro-
tion.

nd
was
algo-

m
ing the
st and
hm,
lgo-
im-
ient

an’s
rices.
im-

prob-
ectly
aling
can
pass. Because of multiple resampling steps more error is introduced, and the angles
tation are limited to 0-45 degrees to limit error. My algorithms do not have this limita

In TABLE 6 I have calculated roughly the MCCM complexity of Schroeder a
Salem’s algorithm and my algorithm with the restricted two axes rotation. Clipping
ignored in TABLE 6 because Schroeder does not discuss it. The complexity of the
rithms is essentially the same. Schroeder and Salem’s multipass warp has
or of my direct warp. See rows one, two, and three of TABLE 6. My algorith
uses more accurate filters with greater cost or less accurate filters for less cost, show
added complexity is essentially for the more accurate filters. The zoh has the least co
is simpler to program. Next in run time complexity is Schroeder and Salem’s algorit
but very nearly the same run time is the more accurate foh filter using the MCCMF a
rithm. The MCCMB algorithm is penalized by the congestion , but is the simplest to
plement. The forwards algorithm is slightly more complicated, but is the most effic
with general filters.

Drebin et al.’s [DREB88] techniques have been generalized in Hanrah
[HANR90] three pass decomposition for 3D affine transforms, using scale shear mat
This is an extension of Smith’s [SMIT87] 2D approach. Vezina et al. [VEZI92] have
plemented Hanrahan’s methods on the MasPar. This approach suffers from the same
lems as Schroeder and Salem’s, multistep filter error and more work than dir
resampling. But Hanrahan’s method covers a larger number of warpings. Nonsc
warpings are important, though, because combined with scaling algorithms they
achieve more general transforms more efficiently.

TABLE  6 Performance Constants for Algorithms and filters with
restricted rotations

Filter 2D 3D

[SCHR91] Multipass linear 24+1G 40+1G

MCCMF zero order hold 18+1G 34+1G

first order hold 29+1G 61+1G

second order hold 61+1G 176+1G

third order hold 122+1G 666+1G

MCCMB zero order hold 10+1NG 18+1NG

first order hold 19+4NG 39+8NG

second order hold 46+9NG 137+27NG

third order hold 100+16NG 436+256NG

24 1G+ 18 1G+≅
29 1G+

N



67

lgo-
vol-
are

ient
ed

see

Con-
pand-
3.7 Scaling and Perspective

To perform 3D perspective and scaling I use spreads to achieve optimal MCCM a
rithms. See FIGURE 35 below. The viewing frustum delineates the edges of a new
ume. Distortion of the volume is scaling in each column. The perspective view rays
distorted to an orthogonal view volume. The orthogonal view volume is a highly effic
distribution of data for z-buffering, max intensity, or compositing calculations perform
through parallel product evaluation (For parallel product and prefix
[LEIG92][GIBB88][CORM90][KRUS85] and Chapter IV.

FIGURE  35 3D Perspective Volume Distortion

In each column a spread communicates after which processors reconstruct.
sider expansion. Given PE’s through , the data , , and are scaled up, or ex

r 1

r 2

r 3

r 2

r 3

r 1

Object Space

Screen Space
Distorted Volume

πa π f I 1 I 2 I 3



68

s the

data
alanc-
d lo-
cur

data
ough
nta-
timal

deter-
cent
pan-
pread
-2
ed. Data values and determine the intensities for all PE’s. There are two way
outputs are calculated.

FIGURE  36 Scaling Of Data

1) Processors get this data directly and interpolate or 2) processors get the
from someone else and interpolate for someone else. There is a continuum of load b
ing with varying performance as shown in FIGURE 37. When the data is interpolate
cally the PE’s have a lot of work. When all of the data is first sent, then the PE’s will in
a large communication overhead.

FIGURE  37 Trade-off curve of trading jobs versus communication

The optimal approach lies within these two extremes. Processors can get the
to be interpolated on the MCCM mesh by either sending on local connections or thr
the interconnection network (ICN). The use of a mixture of the two can also be adva
geous, and a decomposition of the communication into ICN and local sends is the op
approach.

The processor job assignment, or who sends, interpolates, receives, etc. is
mined by a choice of the optimal decomposition of the communication patterns. Adja
columns of data communicate their values to allow interpolation. For the extreme ex
sion of data in FIGURE 36 the data is sent along the mesh interconnections by a s
operation. This broadcast is efficiently built into the MasPar [BLAN90] and the CM

I 1 I 2

scaled up

πaπb πc πdπe π f

πaπb πc πdπe π f

I 1 I 2 I 3

I 1 I 2

get all data do all jobs local to data

Time

get some
interpolate send some and send



69

h of

sical
ch
over-
ur-
ad

ing
how
ica-
oces-
the
[THIN89]. The spread occurs in an aligned dimension of the multidimensional mes
the MCCM.

FIGURE  38 Spreading To Distribute Data

Job assignment is done efficiently on algorithms on machines with fewer phy
processors than virtual processors. MCCMSIMD takes advantage of the coherence of ea
region’s scaling and matches processors communication and computation in a tiled c
age of the total job. FIGURE 39 shows tiled trapezoidal distortion with vertical tiles ins
ing that communication and scaling are similar in a widely varying format. This lo
balancing allows SIMD to achieve good performance with diverse requirements.

FIGURE  39 Striped Allocation of Volume Warping Jobs

3.8 Virtualization

I have found that virtualization significantly affects performance. Virtualization is runn
an algorithm written for processors on processors. FIGURE 40 and FIGURE 41 s
space subdivision for virtualization. In the forward transform algorithm, local commun
tion is removed by overlapping boundaries of the virtual subimages stored on each pr
sor. FIGURE 40 shows 2D virtualization with data in one processor highlighted. Only

πaπb πc πdπe π f

I 2 I 2 I 2 I 2 I 2 I 2

I 1 I 1 I 1 I 1 I 1 I 1

Spread

r 1

r 2

r 3

v v



70

e of
M-

t by
data

alcu-
arping
d the
are a
output.

For
ctical

o-
ases
itera-

tion
is done
For
e re-

e as-
and

n. I
global communication is performed. This is the EREW PRAM algorithm, but becaus
the virtualization the final global send is no longer 1-to-1. I call this algorithm the MCC

SIMD overlapped forward algorithm (MCCMSIMDOF).

I achieved further savings by not only processing at virtual subimage levels, bu
communicating at the virtual subimage level, and only transferring large amounts of
in each global communication. Using this improvement an upright SS rectangle is c
lated at each processor that lies near the original data. It’s as if each processor is w
his own small image. The data required for the calculation of the subimage is local an
subimage is an upright rectangle that fills in the appropriate tile in the output. There
variable number of messages depending on the overlap of a processor’s data in the
This technique was used in the Proteus large granularity algorithm in Chapter IV.
SIMD data parallel control is easier, and I found the subimage approach is more pra
for large granularity MIMD processing because only large messages are efficient.

FIGURE  40 Virtualization Showing Overlapping Boundaries of
Subimages

I present two 3D virtualization techniques in FIGURE 41 illustrating with 16 pr
cessors. Column virtualization is a natural extension of 2D virtualization, and incre
each processor’s storage in the dimension. This allows the 2D routines to be used
tively for input and output, and for the overlapping routines. Slice and dice virtualiza
assigns processors across all 3 dimensions. A factoring of the cube size is used, as
in FIGURE 41 where column is and slice and dice is processors.
the MasPar MP-1 a balanced 3D assignment would be . Slice and dic
moves dependency of run time on rotation angle, but complicates processor to volum
signments, and also makes file I/O more complicated. The application, proceeding
following procedures, and the volume dimensions determine the best virtualizatio

I
J

T 1–

p

π′ p′=

M

π

OS SS

distance

z

24 2222= 24 212122=

210 242323=



71

with

an
tes

tile is
the

l-
major

the
show in the results that slice and dice is important for maintaining constant run time
arbitrary view angle freedom

FIGURE  41 Volume Virtualization Techniques on a 2D Mesh

To virtualize with either of the above schemes, I tile the volume similar to tiling
image [WITT91]. Given a voxel address where the , , and coordina
are , , and respectively, it may be decomposed into tiles. The address in the

. The dimensions of the tile are . FIGURE 42 shows a schematic of
voxel space.

FIGURE  42 3D Tile Notation

A volume consists of elements. The vo
ume is addressed by a address. The addressing is by slice, then row
order. denotes any voxel , , . Tiles are
also referenced in slice, row major order with being the height, the width, and
depth of the tile.

Column Virtualization Slice and Dice Virtualization

xy

z

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

0
1

2
3

4
5

6
7

11

12
13

14

15

z y x〈 〉 row col slice

y x z

i j k, ,( ) m n o, ,( )

x (j)

y (i)

z (k)

m
n

o

(y,x,z) with address <z|y|x>
global coordinate

tile coordinate (r,s,t)
in tile coordinate (i,j,k)

rows cols slices×× voxels rows cols slices⋅ ⋅=

row column slice, ,( )
y x z, ,( ) 0 y rows 1–≤ ≤ 0 x cols 1–≤ ≤ 0 z slices 1–≤ ≤

m n o



72

are
n

s
t-

el
,

nd
ere

tion of
s the
tiled

are
and the
ho-
the

the
d the

and
exam-
coor-
ns
r

The address calculations can be very efficient if , , , , , and
powers of two. The Thinking Machines CM-2 [THIN89] provides built in virtualizatio
with power of 2 shapes, but the MasPar doesn’t. A voxel at isstored at address

, and if they are powers of 2 the addres
is a concatenation of binary strings represen

ing x, yandz.

The volume consists of tiles. Thus a given vox
in an volume belongs to tile , where , , and

and its address in the tile is given by , where , , a
. The address can be viewed as consisting of six parts wh

bits representing are a concatenation of bits representing and , is a concatena
and , and is a concatenation and . gives the tile address and give

address in the tile. Finally, if an image is stored in a tiled form, then the address in the
form is given by

.(EQ 43)

To create a tile address from a row major address thek, i, andj bit fields are gathered to the
right,

. (EQ 44)

To implement column virtualization with the notation introduced, the tile sizes
chosen to cover the processor numbers. The tile address is the processor’s address,
address in a tile is the position within the virtual array. The virtualization in depth is c
sen to be completely virtualized, or . Because of this the field is 0 bits, and
 field is the number of bits needed to represent . The transform is the following,

. (EQ 45)

Processor  has an array of values  as shown in FIGURE 42.

For slice and dice virtualization , , and are chosen to equally subdivide
number of physical processors. In this case, the field is a non zero number of bits an
transform given in (EQ 44) is used.

With the transforms represented in (EQ 44) and (EQ 45) processor numbers
virtual array coordinates can be calculated from voxel addresses and vice versa. For
ple in 2D, the processor and virtual array coordinates can be calculated from a pixel
dinates. I first define the number of virtual rows by and virtual colum
by . Given pixel coordinate with the processo
and virtual array coordinate can be calculated by,

(EQ 46)

rows cols slices m n o

y x z, ,( )
z rows cols⋅ ⋅ y cols⋅ x+ +

address z rows cols⋅ ⋅ y cols⋅ x+ + z y x〈 〉= =

rows m⁄( ) cols n⁄( ) slices o⁄( )⋅ ⋅
y x z, ,( ) r s t, ,( ) r y m⁄= s x n⁄= t z o⁄=

i j k, ,( ) i ymodm= j xmodn=

k zmodo= z y x〈 〉 t k r i s j〈 〉
y r i x

s j z t k t r s〈 〉 k i j〈 〉

tiled_address t rows cols o⋅ ⋅ ⋅ r+ cols m o⋅ s m n o k m n⋅ ⋅ i n j+⋅+ +⋅ ⋅ ⋅+⋅ ⋅ t r s k i j〈 〉= =

t k r i s j〈 〉 t r s k i j〈 〉→

o slices= t

k z

z r i s j〈 〉 r s z i j〈 〉→

r s〈 〉 z i j〈 〉

m n o

t

v_rows rows m⁄=

v_cols cols n⁄= y x z, ,( ) address z y x〈 〉=

proc y v_rows⁄( ) nxproc× x v_cols⁄+=



73

al ar-
hifts
nted

nif-

zation

de on
I at-
men-
ted to

ts

essor
(32

ers,
y in
ected
, and
. The
es the

CM
shear
.6.5.
nts by
and
back-
(EQ 47)

But if all of these sizes are powers of 2 the same processor number and virtu
ray address can be calculated much more efficiently replacing multiplications by left s
divisions by right shifts, and remainders by masking. The field lengths are represe
with a symbol such as , meaning bits for field . A mask with bits in the least sig
icant positions and zeros otherwise is given by . The calculations are,

(EQ 48)

. (EQ 49)

Such optimizations help by a constant amount, and the result of address and virtuali
optimizations are given in the next Section.

3.9 MasPar Performance Results

In this section I detail the decisions and procedures necessary for optimizing the co
the MasPar MP-1 [BLAN90]. Four groups of programs were created for 2D rotations.
tempted to make the implementation as efficient as the MasPar could allow. 3D imple
tation performance is also presented, and discusses optimization issues rela
virtualization. I implemented the MCCMSIMDB backward algorithm, the MCCMSIMDF
forward algorithm, the MCCMSIMDOF overlapped forward algorithms, and some varian
on the MasPar. Timings for all of the variants are presented and discussed.

Performance measurements were taken on either a 1024 or 16384 SIMD proc
MP-1 whose peak performance is 26,000 MIPS (32 bit integer) and 1,200 MFLOPS
bit floating point). The architecture supports frame buffers through VME frame grabb
HIPPI connection, or through MasPar’s frame buffer (not available yet). Image displa
the current implementation is done on the X host. The processors are interconn
through both a toroidally connected mesh with 23,000 Mbytes/sec peak bandwidth
through a general multistage crossbar router with 1,300 Mbytes/sec peak bandwidth
array controller provides a software accessible hardware timer that accurately captur
elapsed run time.

3.9.1 Initial Forward and Backward Algorithms

The performance of the MasPar MP-1 algorithms correlates well with predicted MC
performance. I did not implement the multipass shear or the nonmoving multipass
[SCHR91] and refer the reader to the MCCM complexity comparison of Section 3
MP-1s with 1024 and 16384 processors were used for performance measureme
reading from the SIMD array controller’s timer. 100 timings for each angle were used,
then 10 timings when confidence in the measurements increased. The forward and
ward algorithms were implemented with a first order hold and zero order hold.

vir_array_add ymodv_rows( ) v_cols× xmodv_cols+=

br b r br

mask bj( )

proc y bi»( ) bs« x bj»+=

vir_array_add y&mask bi( )( ) bj« x&mask bi( )+=



74

-
tions
es 5 to
culat-
rent
rams

r all
TABLE 7 gives timings for the initial implementation of 2D rotation. The pro
grams for these timings used single precision (float) variables for interpolation frac
and image coordinates. The pixels are stored as unsigned characters of 8 bits. Angl
85 degrees were run with 100 trials of each angle. The mean of the 100 trials was cal
ed during the measurement run. For 2D rotation, performance varies little with diffe
angles. FIGURE 43 shows the time versus angle for the forward and backward prog
using all image sizes from 32x32 to 2048x2048. In TABLE 7 the mean of the time fo
angles is given.

FIGURE  43 Nearly Constant Run Time Versus Angle For 2D Image
Rotations, Bilinear Filter, Forward and Backward All
Sizes

TABLE  7 MasPar 2D Rotations (times in seconds) with
interpolation not mapped to unit interval, Bilinear Filter

size Backward Forward improvement

32x32 0.005723 0.004932 16.03%

64x64 0.01800 0.01316 36.77%

128x128 0.06735 0.04686 43.72%

0

2

4

6

8

10

12

14

16

18

0 10 20 30 40 50 60 70 80 90

R
u
n
 
T
i
m
e
 
(
S
e
c
o
n
d
s
)

Angle (Degrees)

2D Image Rotation

"32"
"32r"
"64"
"64r"
"128"

"128r"
"256"

"256r"
"512"

"512r"
"1024"

"1024r"
"2048"

"2048r"



75

er of
E 44
pix-
The implemented algorithms are also linear in the problem size. As the numb
pixels is increased the time to process them increases by a linear amount. FIGUR
shows the average run times from TABLE 7 on a logarithmic time scale to remove the
els squared term. The run times are clearly linear.

FIGURE  44 Run Time Linear In The Number of Pixels, 2D Rotation,
Bilinear Filter

256x256 0.265 0.1819 45.68%

512x512 1.055 0.7228 45.69%

1024x1024 4.216 2.887 46.03%

2048x2048 16.91 11.55 46.40%

TABLE  7 MasPar 2D Rotations (times in seconds) with
interpolation not mapped to unit interval, Bilinear Filter

size Backward Forward improvement

0.001

0.01

0.1

1

10

100

0 1 2 3 4 5 6

R
u
n
 
T
i
m
e
 
(
S
e
c
o
n
d
s
)

Image Size

2D Image Rotation

"rot2d.out"
"rot2dr.out"



76

ms.
tion.
im-
cause

for-
r of
per-
g an
tained
efore

added
e used
same

ro-
ubrou-
one

outine
ver-

. To
cost

pen-

ller’s
brou-
.

87
3.9.2 Interpolation and Overlapping Optimizations

Further optimizations in the reconstruction filter yielded improvement for both algorith
The use of interpolation on the unit interval reduces the work for each linear interpola
Mapping to the unit interval was described in Section 3.3. An additional algorithmic
provement was removal of a large switch statement required in SIMD processing be
of the possible locations of the pixel being worked on. Because the current pixel in the
ward algorithm could be on any of four edges, in any of four corners, or in the cente
the virtual array, a switch statement was required to decide which communication to
form. Every processor was required to perform the entire switch statement. By storin
overlapped amount of image on each processor, the pixel was guaranteed to be con
within the processor’s virtual array. The added cost was copying the neighbors data b
hand, but this is very efficient because of the near neighbor connections, and the
storage is negligible because of the dynamic storage overhead already increases th
size to the power of 2 larger than the image. The overlapped image sizes allow the
size images to be processed.

TABLE 8 gives the timings for each subroutine in the overlapped forward p
gram. The parser reads the user’s file names, image size, and rotation angle. The s
tinepl_createimageis the parallel malloc of data on all of the processors, two images,
for the input, and one for the output. The subroutinepl_readimageis the slow process of
reading the image data from disk, across the VMEbus, to the processors. The subr
pl_image_o, takes the input data in unoverlapped form, and copies it to an array with o
lapped storage, reading neighbors data as necessary. The final subroutine shown isrotate,
or timing to resample the image. The rotate algorithm is focused on in this section
write the file to disk takes about the same amount of time as reading it in. The overlap
is small and the resampling savings is considerable.

These timings are for running the algorithm once, and show the performance
alty of running code the first time. Look at the columnspl_createimage 1and
pl_createimage 2. The timings show that the first timepl_createimageruns, it takes 40
times longer because of the penalty of loading the program into the array contro
memory. These factors were removed from the other timing results by running the su
tines 100 times and averaging, or 11 times throwing out the first time and averaging

TABLE  8 Overlapped Forward Rotation Subroutine Timings, 45
degree rotation

Size parser
pl_createimage

1
pl_createimage

2
pl_readim

age
pl_image_

o
rotate

32x32 0.082735 0.00863552 0.0002072 0.0708901 0.0002784 0.0043



77

la-
f the
r all
lts in
prob-
scale
t al-

9

91

24

48

92

6

6

5

6

5

7

TABLE 9 gives timings for 2D centered rotations using the improved interpo
tion, and the overlapped and switched forward program timings. The improvement o
overlapped forward algorithm over the backward algorithm is 24% to 59% percent fo
angles. There is a greater improvement for the larger images. As in TABLE 7 the resu
TABLE 9 are the averages of each angle’s average. Run time remains linear with the
lem size as illustrated in FIGURE 45 which shows the three 2D alternatives on a log
(lines, scale right vertical axis). The table shows the percent improvement of differen
ternatives is constant for images larger than 256x256 due to virtualization.

64x64 0.083327 0.0084488 0.00020752 0.11803 0.0004224 0.01187

128x128 0.0825923 0.00834048 0.00020688 0.181399 0.00073088 0.0414

256x256 0.0828725 0.00840512 0.00020656 0.506679 0.00143344 0.1613

512x512 0.0907654 0.00843712 0.000208 3.09354 0.0031824 0.6395

1024x1024 0.0847466 0.00844944 0.0002072 19.6275 0.00803344 2.5527

TABLE  9 % Improvement and Run Times 2D Rotations (Run
times in seconds)

% Imp. Run Times

Image Size For. over Bac.
O. For. over

Bac.
O. For.

over For.
Backward Forward O. Forward

32x32 11.12% 23.94% 10.93% 0.00547059 0.00489659 0.0044137

64x64 33.41% 44.93% 8.63% 0.01707747 0.01279988 0.01178253

128x128 41.18% 54.18% 9.21% 0.06368441 0.04510853 0.0413027

256x256 43.37% 56.97% 9.48% 0.25039082 0.17464594 0.1595143

512x512 43.92% 57.94% 9.74% 0.99782029 0.69327718 0.6317430

1024x1024 43.86% 58.06% 9.86% 3.98377918 2.76904247 2.5204016

2048x2048 44.70% 58.89% 9.80% 16.1994028 11.194726 10.194994

TABLE  8 Overlapped Forward Rotation Subroutine Timings, 45
degree rotation

Size parser
pl_createimage

1
pl_createimage

2
pl_readim

age
pl_image_

o
rotate



78

rfor-
from

aria-
dicted

hm
tion of
ports

and
r filter
s

-
ack-
s for

zero
FIGURE  45 Run Times for 2D Rotation, Bilinear Interpolation on Unit Interval,
with Backward, Forward, and Overlapped Forward

3.9.3 Filter Complexity, Zero Order Hold

Because the communication is efficient, I also examined how the filter impacts pe
mance. A zero order hold was implemented. The number of interpolations is reduced
3 to 0. FIGURE 46 shows a comparison of the zero order hold filters with several v
tions. Because of the rule overhead, a backwards zero order hold is fastest, as pre
with the MCCM complexity examination. The rule is overkill, because the algorit
needs to do overlapping, read a local value then send the value globally. The conges
a single fetch is small for the backwards algorithm, as the MasPar efficiently sup
small messages.

An interesting alternative sends the pixel value determined by the rule, ,
does not calculate the inverse transform. The image has nonlinear noise, and poo
quality, but every pixel is in the output! For this approach, every processor calculate
and sends its pixel to that location. ThisMevariation is the most efficient when the virtual
ization ratio is very small. This is because the communication is more efficient than b
wards, but the rule has an overhead of rounding after each step which dominate
images after virtualization of 4 to 1 (image of 64x64 or larger). Both the backwards

0.001

0.01

0.1

1

10

100

0 1 2 3 4 5 6

R
u
n
 
T
i
m
e
 
(
S
e
c
o
n
d
s
)

Image Size

2D Image Rotation

"rot2d.out"
"rot2dr.out"

"rot2dr1.out"

M

M



79

and
order hold, and the forwards zero order hold calculate the same value. FIGURE 46
TABLE 10 give the run times.

FIGURE  46 2D Rotations with Zero Order Holds, and Rule (Me)
Variant

TABLE  10 MasPar 2D Rotations (times in seconds) with Zero
Order Hold Filters and Rule (Me) Variant

size Backward Forward Rule Only (Me)

32x32 0.003411 0.004089 0.002909

64x64 0.007454 0.01056 0.008107

128x128 0.02379 0.03647 0.02894

256x256 0.08893 0.1403 0.1124

512x512 0.34931 0.5549 0.4457

1024x1024 1.390 2.213 1.778

2048x2048 5.561 8.845 7.109

0.001

0.01

0.1

1

10

0 1 2 3 4 5 6

R
u
n
 
T
i
m
e
 
(
S
e
c
o
n
d
s
)

Image Size

2D Image Rotation

"pltme.out"
"pltzoh.out"

"pltrzoh.out"



80

ake
ulate

e im-
ich is
I also
ds and
sPar.
his is
E
cien-
ar,
algo-

he
ugh

sed to
3.9.4 Optimization By Power of 2 Virtualization, and Register Optimization

Another improvement in run time was achieved by using power of 2 size images to m
the address calculations in the virtualized images more efficient. For example, to calc
a processor coordinate from a pixel coordinate requires division and remainder. If th
ages are powers of 2 the calculation can be done by binary shifts and masks, wh
much faster on the 4 bit simplified processor of the MasPar MP-1. See Section 3.8.
used as many register declarations in these variants as possible so as to avoid loa
stores, which can become a significant overhead in the bit slice operation of the Ma
The resulting programs are restricted to images with sizes equal to a power of 2. T
similar to the virtualization restrictions of the CM-2 [THIN89]. FIGURE 47 and TABL
11 give the results for the address and register optimized programs. Their order of effi
cy is, from high efficiency to low efficiency is backwards zero order hold, forward biline
and backwards bilinear. Therefore, the best bilinear approach remains the forwards
rithm. Higher order filters will be more efficient with the forward algorithm as well. T
backwards algorithm is the most efficient approach with the simplest (zoh) filter. Thro
modification of the MasPar executable, the largest image size possible was increa
4096x4096 for these programs so an additional row is included in TABLE 11.



81
FIGURE  47 2D Rotation, Power of 2 Addresses and Register
Optimization, Bilinear Interpolation Forward/Backward,
and Zero Order Hold Backward

TABLE  11 MasPar 2D Rotations (times in seconds) Power of 2 and
Register Optimized Versions

size
Backward,
Bilinear

O. Forward,
Bilinear

Backwards, Zero
Order Hold

32x32 0.005253 0.004362 0.002847

64x64 0.016147 0.011228 0.006415

128x128 0.060026 0.038720 0.020897

256x256 0.235750 0.148841 0.078631

512x512 0.938320 0.588704 0.309550

1024x1024 3.749883 2.347833 1.233059

2048x2048 14.998778 9.383540 4.926640

4096x4096 60.001183 37.528438 19.702110

0.001

0.01

0.1

1

10

100

0 1 2 3 4 5 6 7

R
u
n
 
T
i
m
e
 
(
S
e
c
o
n
d
s
)

Image Size

2D Image Rotation

"rot2dz.out"
"rot2d.out"
"rot2dr.out"



82

illus-
imi-
tions.
pro-

ilinear
r hold
val
ack-
nifi-
not

pro-

IG-
rly
rfor-
3.9.5 Optimization Improvements

Each program variant was improved through successive optimizations. FIGURE 48
trates the improvement from the initial programs, to the unit interval interpolation opt
zations, to overlapping storage, and finally to addressing and register optimiza
FIGURE 48 shows average run times for rotation of a 512x512 image. The fastest
gram is the backwards zero order hold. The second fastest program is the forward b
program, and the slowest is the backwards bilinear program. The forward zero orde
and forwardMe variation are included at their time of development, near the unit inter
optimization step. They are faster than the bilinear filters, but not faster than the b
wards zero order hold. This plot shows conclusively that the optimization steps sig
cantly improved the programs, but that the relative efficiency of the programs was
affected. This supports using complexity models such as the MCCM to compare
gram’s relative efficiencies.

FIGURE  48 Improvement of Each Program Variant for 512 x512
Image Rotation, Seconds Versus Optimization Step

For completeness the timings shown in FIGURE 48 are given in TABLE 12. F
URE 48 gives the ranking of all 2D rotation variants. All of the 2D rotations vary linea
with the number of pixels. There are eleven variants in all. FIGURE 49 gives their pe

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Initial unit interval overlap storage add/reg

R
u
n
 
T
i
m
e
 
(
S
e
c
o
n
d
s
)

Optimization Step

Backward Bilinear
Forward Bilinear

Backwards Zero Order Hold
Forwards Zero Order Hold

Forwards Me



83

This
mance, but because of the log scaling it is very hard to distinguish different programs.
figure highlights the fact that the optimizations are only constant improvements.

FIGURE  49 All 2D Rotation Variants Over All Image Sizes

TABLE  12 Improvement of Each Program Variant for 512x512
Image Rotation, Seconds Versus Optimization Step

Optimization
Steps

Variant Initial Unit Interval
Overlap
Storage

Address and
Register

Backwards Bilinear 1.055036 0.996531 0.938320

Forward Bilinear 0.722759 0.693277 0.631743 0.588704

Forward Zero Order Hold 0.549814

Forward Me 0.440839

Backwards Zero Order
Hold

 0.349311 0.309550

0.001

0.01

0.1

1

10

100

0 1 2 3 4 5 6

R
u
n
 
T
i
m
e
 
(
S
e
c
o
n
d
s
)

Image Size

"A_rot2d.out"
"A_rot2dr1.out"
"B_rot2d.out"

"B_rot2dr.out"
"B_rot2dr1.out"
"C_rot2dz.out"
"C_rot2drz.out"
"C_rot2drm.out"
"D_rot2d.out"

"D_rot2dr.out"
"D_rot2dz.out"



84

IG-
ion.
re not
for a
and

ad in
e used.
achine.
es and
be-

fer-
lues in-

linear
lters.
t pro-

59

6

64

94

4

3

3.9.6 3D Rotation Performance and Implementation Results

For 3D, I implemented both column virtualization and slice and dice virtualization (F
URE 41). Column virtualization does not have constant run time with angle of rotat
Rotations of 0 to 45 degrees are reasonably efficient, but rotations of 45-85 degrees a
as efficient because of communication congestion. FIGURE 50 shows the run times
volume size of 128x128x128 with the fastest variants of each filter: backwards zoh
forwards foh. A small number of these timings are also given in TABLE 13.

The advantages of column virtualization, are that the image slices may be re
with the same routines used for 2D processing, and the same overlap routines can b
The performance penalty results because 3D processing is being done on a mesh m
The performance penalty can be avoided by using rotations between 0 to 45 degre
doing full 90 degree transpositions for other filters. I don’t feel this is a good solution
cause it is similar to the multipass approaches, even if the filter quality is better.

Both the forward trilinear and backwards zoh timings are shown. In 3D the dif
ence between a zoh and a foh is greater than in the 2D case, because there are 8 va
stead of 4 values to interpolate. Therefore, the differences between the forward tri
and the backward trilinear are exaggerated over the differences in the 2D bilinear fi
By altering the virtualization to slice and dice I removed the dependence on angle bu
gramming and I/O are complicated.

TABLE  13 Column Virtualization 3D Image Rotation 1k MP-1
Performance in Seconds

Filte
r

Rotation Axes Image Size 0 20 40 60 80

foh About x 32x32x32 0.113783 0.120679 0.122798 0.127573 0.158763

64x64x64 0.873327 0.925875 0.941115 0.962964 1.206774

128x128x128 6.944496 7.365861 7.479546 7.626624 9.616525

256x256x256 55.496932 58.839463 59.767284 60.697352 76.9173

foh About 32x32x32 0.113784 0.124002 0.127627 0.146191 0.198402

64x64x64 0.873322 0.948982 0.983515 1.122743 1.496889

128x128x128 6.944496 7.545647 7.817494 8.949651 11.94849

256x256x256 55.496932 60.302461 62.466563 71.554257 95.3399

foh About 32x32x32 0.114852 0.124515 0.127035 0.125806 0.126379

64x64x64 0.874561 0.963425 0.964367 0.948151 0.959466

128x128x128 6.945591 7.713501 7.677307 7.541527 7.647887

256x256x256 55.496937 61.628235 61.243510 60.157255 60.7908

foh About , , and 32x32x32 0.113784 0.130417 0.143873 0.189098 0.24228

64x64x64 0.873321 0.986322 1.092952 1.454064 1.869899

128x128x128 6.944496 7.822128 8.678686 11.556266 14.97008

y

z

x y z



85

21

2

22

84

64

5

7

68
256x256x256 55.496932 62.520676 69.326421 92.388327 119.452

zoh About x 32x32x32 0.048917 0.056515 0.057663 0.060113 0.08839

64x64x64 0.367715 0.421055 0.432319 0.449363 0.680601

128x128x128 2.931376 3.338181 3.435066 3.556403 5.419631

256x256x256 23.499534 26.681865 27.493456 28.392862 43.3829

zoh About 32x32x32 0.048916 0.058983 0.062726 0.078388 0.119829

64x64x64 0.367716 0.441973 0.472276 0.601324 0.940745

128x128x128 2.931376 3.507766 3.757546 4.797153 7.533232

256x256x256 23.499522 28.048093 30.038246 38.413253 60.4202

zoh About 32x32x32 0.049982 0.057913 0.055157 0.056251 0.056250

64x64x64 0.368808 0.436837 0.431357 0.428977 0.442319

128x128x128 2.932458 3.569854 3.506354 3.491875 3.474053

256x256x256 23.499522 28.569808 28.116221 28.268908 28.1027

zoh About , , and 32x32x32 0.048916 0.062139 0.072289 0.100700 0.15886

64x64x64 0.367717 0.469397 0.553640 0.791117 1.263828

128x128x128 2.931376 3.743829 4.427272 6.354319 10.17816

256x256x256 23.499532 30.015604 35.481798 51.011271 81.7456

TABLE  13 Column Virtualization 3D Image Rotation 1k MP-1
Performance in Seconds

Filte
r

Rotation Axes Image Size 0 20 40 60 80

y

z

x y z



86

n the
algo-
51

ero
e im-

over
e first
TA-
2D is 7
lgo-
ro or-
FIGURE  50 Column Virtualization on 1024 PE MP-1 Warping a
128x128x128 Volume

Slice and dice virtualization does indeed remove the dependence of run time o
rotation angle for a one pass, any angle approach. Both the forwards and backwards
rithms are more efficient for higher angles of rotation using slice and dice. FIGURE
and TABLE 14 show backwards first order hold, forwards first order hold, forwards z
order hold, and backwards zero order hold, respectively. TABLE 15 shows the relativ
provements between slice and dice virtualized algorithms. The separation of forwards
backwards increases to 62% to 101%. The zoh is from 85% to 148% faster than th
order hold, comparing the forwards foh to the backwards zoh. MCCM predictions,
BLE 6, and the MasPar measurements correspond well, because the congestion for
and for 3D is 10 assuming normalized global communication costs, . The a
rithms are ranked according to the congestion and rule overhead. The backwards ze

0

2

4

6

8

10

12

14

16

0 10 20 30 40 50 60 70 80 90

R
u
n
 
T
i
m
e
 
(
S
e
c
o
n
d
s
)

Angle (Degrees)

FOH XYZ
FOH Y
FOH X
FOH Z

ZOH XYX
ZOH Y
ZOH X
ZOH Z

G 1=



87

oints
der hold is the fastest, followed by forwards first order hold, and as the number of p
used goes up the congestion becomes even more important.

FIGURE  51 Slice and Dice Virtualization on 16,384 PE MP-1
warping a 128x128x128 volume

TABLE  14 16K Processor MP-1 Slice And Dice Timings For
Warping, Seconds

vol size Mean Min Max

Back foh 32x32x32 0.019801 0.016054 0.028579

64x64x64 0.130724 0.090662 0.198416

128x128x128 1.006664 0.629505 1.537600

256x256x256 7.976678 4.685603 12.314704

Forward foh 32x32x32 0.012223 0.010403 0.014923

64x64x64 0.066698 0.056962 0.081431

128x128x128 0.501673 0.429225 0.601604

256x256x256 3.977112 3.407390 4.749763

Forward zoh 32x32x32 0.011060 0.009243 0.013762

64x64x64 0.057393 0.047662 0.072114

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 10 20 30 40 50 60 70 80 90

R
u
n
 
T
i
m
e
 
(
S
e
c
o
n
d
s
)

Angle (Degrees)

Backwards FOH XYZ
X

Forwards FOH XYZ
X

Forwards ZOH XYZ
X

Backwards ZOH XYZ
X



88

dice
tion

are
ota-
uter
FIGURE 52 compares slice and dice to the column virtualization. Slice and
virtualization keeps the run time constant for any angle. Some of the column virtualiza
timingsare also given in TABLE 17 to compare with those from TABLE 14.

Comparisons to [VEZI92] and [SCHR92] show that our resampling times
about a factor of 4 slower than [VEZI92] and 1.3 to 5 times faster than [SCHR91] for r
tion only. See TABLE 16. The factor of 4 slowdown is clearly a result of the general ro

128x128x128 0.427223 0.354747 0.527172

256x256x256 3.381126 2.810794 4.154157

Backward zoh 32x32x32 0.006591 0.005384 0.008076

64x64x64 0.028422 0.020378 0.037909

128x128x128 0.203063 0.140105 0.281743

256x256x256 1.602002 1.096583 2.223762

TABLE  15 Percent Improvement for 3D Slice and Dice Algorithms
on 16k Processor MP-1

Volume Size
Forward over

Backward (FOH)
ZOH over FOH

32x32x32 61.99% 85.44%

64x64x64 95.99% 134.67%

128x128x128 100.66% 147.05%

256x256x256 100.56% 148.25%

TABLE  14 16K Processor MP-1 Slice And Dice Timings For
Warping, Seconds

vol size Mean Min Max



89

router
and mesh router mismatch, recall 1300 Mbytes/s versus 23,000 Mbytes sec. The
start-up penalty and/or the rule overhead accounts for the rest of the difference.

FIGURE  52 16k MP-1 MasPar Performance on 128x128x128
Volume Rotation, Slice and Dice compared to Column
Virtualization

TABLE  16 Rotation Only, From [VEZI92][SCHR91] Milliseconds

Computer vol size Time
Speedup vs.

Permutation Warp

[VEZI92] zoh 4 pass 16k pe MP-1 128x128x128 49 0.241

16k pe MP-1 256x256x256 390 0.243

[VEZI92] foh 4 pass 16k pe MP-1 128x128x128 139 0.277

16-k pe MP-1 256x256x256 1107 0.278

[SCHR91] foh 5 pass 64k pe CM-200 128x128x128 268 1.320

32k pe CM-200 128x128x128 511 2.516

16k pe CM-200 128x128x128 1033 5.087

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 10 20 30 40 50 60 70 80 90

R
u
n
 
T
i
m
e
 
(
S
e
c
o
n
d
s
)

Angle (Degrees)

Column Backwards FOH XYZ
Slice-n-Dice Forwards FOH XYZ

Column Backwards ZOH XYZ
Slice-n-Dice Backwards ZOH XYZ



90

The
han
al al-

is
le, or
po-
AM

urate-
the

p is
The
e the
low

t. The
allow-

3

9

3.10 Summary and Discussion

I presented new optimal direct warp algorithms for the CREW and EREW PRAMs.
EREW PRAM algorithm is restricted to equiareal transforms, but is more efficient t
the CREW algorithm in practice and can be used in conjunction with the more gener
gorithm for other transforms. The parallel run time complexity of both algorithms

using processors per sample, using 1 processor per samp
if filter complexity is considered constant ( is the order of the polynomial inter

lation reconstruction filter, and is the dimension of the image being warped.) The PR
complexities are the same, but on different strength machines. The MCCM more acc
ly predicts performance of existing machines. The backwards algorithm is on
MCCM where is congestion that varies with the transform. The forward direct war

on the MCCM, and therefore optimal because of its efficient communication.
MCCM directly maps to most commercial parallel processing machines, and therefor
forward direct warp algorithm can achieve arbitrary image and volume rotations with
communication costs. The forward algorithm works because of clever job assignmen
nonlinear processor mapping assigns jobs to be close to where the original data lies,

TABLE  17 16k MP-1 Column Virtualization 3D Image Warping
Performance in Seconds

Filter Rotation Axes Volume Size 20 40 60 80

Back foh About x 128x128x128 0.482388 0.495113 0.524356 0.675803

256x256x256 3.827529 3.918777 4.057814 5.312173

About 128x128x128 0.482790 0.502875 0.571791 0.845904

256x256x256 3.820866 3.984160 4.503583 6.745278

About 128x128x128 0.497712 0.503362 0.497712 0.485640

256x256x256 3.901328 4.041634 3.930743 3.901326

About , , and 128x128x128 0.520609 0.579541 0.864906 1.668463

256x256x256 4.047185 4.545814 6.880653 13.09321

Back zoh About x 128x128x128 0.229737 0.240114 0.24969 0.391298

256x256x256 1.801486 1.888355 1.962068 3.103868

About 128x128x128 0.228393 0.247116 0.304206 0.559010

256x256x256 1.794471 1.943612 2.404857 4.450803

About 128x128x128 0.238539 0.245222 0.242995 0.238540

256x256x256 1.867224 1.955556 1.927851 1.861124

About , , and 128x128x128 0.248391 0.307315 0.454092 1.543877

256x256x256 1.957220 2.434717 3.599034 12.35775

y

z

x y z

y

z

x y z

O nd( ) n n 1+( )d 1– O nd 1+( )
O 1( ) n

d

O N( )
N

O 1( )



91

ood

and
r the
me
the
ter-
half
sec-
ffect
caling
ing efficient gathering of the results, and optimal implementation of local neighborh
filters.

The forward algorithm works for all dimensions, and I presented results for 2D
3D. Using a first order hold the EREW algorithm has up to a 59% improvement ove
CREW algorithm for 2D. Improvements of up to 100% were measured for 3D. 3D volu
rotations are important for scientific visualization of voxel data. My implementation of
forward algorithm on the MasPar MP-1 is linear in problem size and fast enough for in
active (<1 second) visualization. 2 million voxels (128x128x128) are rotated in about
of a second using 16384 processors and a first order hold. It takes only one fifth of a
ond with a zero order hold. I also showed how virtualization techniques can severely a
performance. Future research is necessary to generalize the forward algorithm to s
affine and other transforms.



92



ient
apter
mes-
is sup-
allel
. The
ms

.1. I
tation

4.4
ments
ms in

data
so-
s. Vi-
ted by
pli-
either

g of
ing

eory
t vol-
-
ped to
rs

uency
Chapter IV
Spatial Volume Rendering

In this chapter I present two new volume rendering algorithms that are optimally effic
on the PRAM. The first algorithm uses a data parallel approach and warping from Ch
III for massively parallel architectures. The second algorithm uses large granularity
sages for architectures that do not support small messages. Empirical error analys
porting the analysis in Chapter III illustrates the quality advantage over existing par
methods, and the performance measurements show the new flexibility in view angles
performance measurements also confirm the flexibility of my direct warp algorith
which can use many orders of filters efficiently.

I review volume rendering and develop the rendering equations in Sections 4
survey and classify existing algorithms in Section 4.2, then I present two new permu
warping algorithms for volume rendering that achieve linear speedup in Sections
through 4.5. Empirical error analysis and Maspar and Proteus performance measure
are given to confirm the speedup and tunable accuracy characteristics of the algorith
Section 4.6. The chapter concludes in Section 4.7.

4.1 Background

Volume rendering is transparency visualization of sampled three dimensional
[KAJI84] [LEVO88][KAUF91]. Samples, called voxels, are created by magnetic re
nance imaging, finite element analysis, computed tomography, and other application
sualization techniques are application dependent, and many applications are well sui
traditional graphics using surface models [TIED90][UDUP90]. But, there are other ap
cations that require semi-transparent, volume rendering. The transparency is used
for effect, for example special effects in movies, or because the data are aliased1 or hard to
segment2. Applications that use transparency effects include photo realistic renderin
clouds [KAJI84], creating contextual clues for medical imaging [LEVO89], and view
of multi-valued functions [KRUE90].

The lighting and shading calculation for transparency is solved by transport th
[CHAN60]. Those who have extended the solution to non-homogeneous media call i
ume rendering [BLIN82][KAJI84][KRUE90][LEVO90][SABE88]. Because volume ren
dering is computationally expensive, special purpose architectures have been develo
improve performance [KAUF90][KAUF91b][GOLD85][KAUF88]. Recently researche

1.  undersampled data where multiple frequencies are seen as the same freq

2.  To separate regions in an image as to their membership in desired sets



94

ey are
ener-
uals
e run
t is
nder-
ping
eedup
ering

of my

sur-
as

f the
sure-

led
the

tion,

res
N89].
tation

is
ulate
used

note
have investigated algorithms for general purpose parallel computers, because th
more widely used, can use enhanced shading and illumination models, and provide g
ation scalable solutions. Volume rendering is an run time algorithm where eq
the number of samples stored in the volume, . Because is very large, th
time is great. For example, for a volume, and if each sample poin
a red, green, blue, (opacity) tuple, the source volume is 64 Megabytes. Volume re
ing is memory and compute bound. My volume rendering algorithms use the war
techniques from Chapter III and new techniques developed here to achieve linear sp
on shared and distributed memory parallel machines. The error in direct volume rend
versus multipass approaches is empirically investigated, showing the improvement
algorithm.

First, I review the particle lighting and shading models, Section 4.1.1. Then I
vey existing volume rendering techniques classifying them by their viewing transform
introduced in Chapter II. The algorithms are described in Section 4.4. Complexity o
parallel algorithms is discussed in Section 4.4, and filter quality and run time mea
ments are given in Section 4.6.

4.1.1 Volume Rendering Lighting and Shading Models

If a three dimensional function is prefiltered to avoid aliasing it can be samp
provided the Nyquist criterion is satisfied for spatial frequencies , where is
highest frequency contained in the volume,

. (EQ 50)

, , and are the sampling frequencies. Examples of are X-ray attenua
radio pharmaceutical concentration, and proton density.

To render, the samples 3 are classified and segmented to extract featu
of interest. Segmentation separates regions of the volume into its components [JAI
For example, density ranges can identify bone, skin, and other tissues with a segmen
operator of , where is the scalar value of the chosen surface and
the tolerance [DREB88]. The results are opacities ( ) and normals ( ) used to calc
the lighting and shading in the volume. Both surface and particle lighting models are
to render voxels.

3. [] brackets will be used to denote discrete functions and () parenthesis to de
continuous functions.

O S( ) S

S n n n××= S

S 224= 256 256 256××
α

V u v w, ,( )
f Si j k, , 2 f V≥ f V

V x y z, ,[ ] V
1
f S
-----

x
x

1
f S
-----

y
y

1
f S
-----

z
z, , 

 =

f Sx
f Sy f Sz

V u v w, ,( )

V x y z, ,[ ]

V x y z, ,[ ] Vs– ξ≤ Vs ξ
α N



95

map-
ions
E 53.

in
ls do
cted

in Sec-
ed in

terial
g in-

an),

del.
d the
n to
ave-
e,
down
Then, samples are projected into a 2D image. A projection, , is defined as a
ping from object space ( ) to screen space ( ), . Two common project
are perspective and orthogonal. The process of volume rendering is shown in FIGUR

FIGURE  53 Volume Visualization

The difficulty of projection is that many voxels in OS contribute to each pixel
SS, therefore combining rules are defined on the volume. Also, the transformed voxe
not match up with the pixel locations, and reconstruction and resampling of the proje
voxels are necessary. The combining operations are lighting and shading discussed
tion 4.1.3. Projections are warps from Chapter III and high granularity warps develop
this chapter.

4.1.2 Surface Lighting Models

One approach is to fit voxels with opaque surfaces. The surface normals ( ), ma
properties ( , , , and ), and colors ( and ) are used to calculate the shadin
tensity. The lighting model sums scattered (ambient), diffuse (Lamberti
and reflected  (specular) light. A lighting model is [FOLE90]

. (EQ 51)

The material properties are determined by trial and error in this empirical lighting mo
is the light source attenuation factor. is the angle between the reflected light an

view direction. is the intensity of the directional light sources, where the directio
the light source is specified as . The model is calculated for 3 primary specular w
lengths with . A lighting model may incorporate ambient, diffus
and specular or any combination. Also, depth cueing may be incorporated to divide
the intensity of light as a function of the distance to the viewer.

T

OS SS SS T OS( )=

3D 3D 2D

V x y z, ,[ ]

Scalar Field

Segmented, Filtered
Iso-density Surface(s)

I x′ y′,[ ]

Image

N

ka kd ks n Odλ Osλ
I a I λγ N L•( )

I λγ θn
γcos( )

I Sλ I akaOdλ f attI λγ kdOdλ N L•( ) ksOsλ θn
γcos+[ ]+=

f att θγ
I λγ

L

λ red green blue, ,{ }=



96

te it
colors
t due
ing,
the
90]).

I84]
ght

the
rings
].
phics

t of
per-

en-

ount
phase
A shading model is the evaluation of this lighting equation. Rather than evalua
at all points on the surface if one uses a triangulated surface they can interpolate the
or normals to calculate colors between the vertices. Many variations on shading exis
to the different ways in which normals may be calculated from voxels (z-buffer shad
grey-level gradient shading, and adaptive grey-level shading [TIED90][KAUF91]) and
lighting models calculated (constant, Gouraud, Phong, and Torrance-Sparrow [FOLE

4.1.3 Particle Lighting Model

Particle lighting models are used to render transparent materials [BLIN82][KAJ
[LEVO89] [SABE88]. Transport theory of energy solves a system of interacting li
sources and particles that absorb, reflect, emit, and transmit light. Initially applied to
modelling of stellar phenomena such as interstellar clouds and planetary
[BLIN82][CHAN60], transport theory is now applied to voxel visualization [KAJI84
Methods to solve for the final intensity that reaches the eye has been the focus of gra
researchers [BLIN82][DREB88] [GOLD88] [KAJI84] [KRUE90] [LEVO90] [SABE88]
[UPSO88] [WEST90]. I define intensity, , as the radiant intensity (Watts) or amoun
measured light energy, not to be confused with luminance brightness (lumens), the
ceived intensity. Consider point light sources, , of intensity illuminating a variable d
sity volume of particles. FIGURE 54 shows a sketch of the system.

FIGURE  54 Single Level Scattering Particle Model

The densities, gradients, and lighting properties of particles determine the am
of light reflected, absorbed, and scattered. Particles are quantified through their

I

γ I γ

Eye

E

V r s t, ,( )

V i j k, ,[ ]

Lγ 1[ ]

I ray

w 1=

w 2=

w W=

Light Source
γ

p1

pW

Lγ 2[ ] Lγ W[ ]



97

the
d to

fore
cess

num-
and
to

mber
icles,
89]
ap-
f the
light

.
llow-

scat-
vol-
any
g
such

an
ratio-

ply
path

ten-
ans-
iew
function, a function which determines the direction and amount of reflected light. If
particles have low albedo, or little reflection, then a single level of scattering is use
model the light in the volume.

Kajiya [KAJI84] and others assume that the density of particles is low, there
the probability that there are no particles in a volume is modelled by a poisson pro
[BLIN82][ESPO79],

. (EQ 52)

The parameter is the number of particles per unit volume, and is the expected
ber of particles in the volume. Higher density models are derived by [ESPO79]
[KAJI84]. At each point in the volume an intensity is emitted only if there are particles
reflect, transmit, or emit light. All points therefore are attenuated by the expected nu
of particles at that point in the volume. I use to denote the expected number of part
and the segmented function. Several researchers [BLIN82][KAJI84][SABE88][LEVO
do some fudging with the transport theory in the expression of the optical depth. It is
propriate to look at the original sources such as [ESPO79] for clear understanding o
many approximations taking place. Optical depth is the dimensionless attenuation of
as it passes through the particles  of (EQ 52).

Define to be the probability density of an encounter at point
Then for a poisson process the probability of encountering particles along path , a
ing the ray to pass is [ESPO79],

. (EQ 53)

Light from a source reaches a point in the volume if it doesn’t encounter a particle to
ter it. The probability of the ray being scattered as it proceeds from the source into the
ume is (EQ 53) integrated along the illuminated ray or transparency. I consider
modification of such as powering [SABE88], scaling [KAJI84], or mappin
[LEVO89] part of the classification. Ignore the constants given by other researchers,
as absorption coefficient [KAJI84], particle volume [BLINN82][SABE88], and me
cross sectional area for extinction [ESPO79][SABE88]. These constants are used to
nalize the poisson density that most researchers use.

The incident light energy ( ) of a light source at any point in the volume is sim
the product of the light source strength and the transparency along the
from the point to the light source,

. (EQ 54)

The intensity resulting from the interactions of light with the particles is the shading in
sity ( ). This interaction in surface graphics is described by the shading function. In tr
port theory, interaction is described by the phase function , a function of the v

V

P 0 V;( ) e n0V–=

n0 n0V

α

τ n0V=

α u v w, ,( ) u v w, ,( )
0 l

tl u v w, ,( ) P k=0 l,( ) e
α l ′( ) l ′d

l∫–
= =

α u v w, ,( )

I L

I γ tl γ u v w, ,( )

I Lγ u v w, ,( ) I γ tl γ u v w, ,( )=

I S

Φ E L⋅( )



98

ring
the

clas-

ten-

ng a
ated

t in
had-
t to
r. A
mits

ath
long
t en-
ves a
arti-

e eye
ingle
direction ( ) and light source direction ( ). See FIGURE 54. The volume rende
lighting model takes into account both the phase function of particle interaction and
oriented surface interaction. Normals ( ) within the volume are calculated as part of
sification [LEVO89][KRUE90]. For multiple light sources the shading intensity is

. (EQ 55)

Kajiya [KAJI84] considers only the particle interaction (not surface) so the shading in
sity resulting from all light sources with incident light intensity  is

, (EQ 56)

a function of the phase function . The particles are chosen to be oriented alo
plane whose normal is determined by the particle gradient. The gradient is approxim
by central differences,

.(EQ 57)

Or normals can be approximated in the two dimensional SS [KAUF91][TIED90].

For particle models this shading intensity is not what is emitted from that poin
the volume. The emitted intensity from any point in the volume is the product of the s
ing intensities and the probability that there is a particle there for the ligh
bounce off of. This probability as I defined earlier is the probability of an encounte
completely opaque surface emits all of the light, , but a semitransparent voxel e
only the amount of light that will reflect or be transmitted by the particles,

. (EQ 58)

In FIGURE 55 I clarify the intensities , , , and . Shown is the complete p
of light from source to eye. The light source has strength intensity , that travels a
path and is attenuated along that path giving an incident intensity of . The inciden
ergy interacts with the particles according to their shading or phase function and gi
shading intensity . The shading intensity scaled by the probability of there being a p
cle at that position creates the emitted intensity . The emitted intensity travels to th
attenuated by the transparency along the path . The intensity resulting from a s

E– L

N

I S u v w, ,( ) ShadingE N Lγ α I Lγ, , , ,( )
γ

∑=

I Lγ

I S u v w, ,( ) I Lγ u v w, ,( ) Φ E Lγ⋅( )( )
γ

∑=

Φ E L⋅( )

V i j k, ,[ ]∇ ≈

1
2
--- V i 1 j k, ,+[ ] V i 1– j k, ,[ ]–( ) 1

2
--- V i j 1 k,+,[ ] V i j 1– k, ,[ ]–( ) 1

2
--- V i j k 1+, ,[ ] V i j k 1–, ,[ ]–( ), ,

I Sγ u v w, ,( )
α

α 1=

I E u v w, ,( ) I S u v w, ,( )α u v w, ,( )=

I γ I L I S I E

I γ
l1 I L

I S

I E

tl2
l2



99

ray

ibu-

he
d the
berg
le inte-

ctiv-
f the
f scat-
n is
in a
e vi-
sim-
point in the volume is . The ray intensity is the sum of all points on that
through the volume.

FIGURE  55 Intensity calculation for one point in the volume

To summarize, the intensity, , of a view ray is equal to the sum of the contr
tions at all points along the ray,

. (EQ 59)

This is a line integral along a path from point to point shown in FIGURE 54. T
final intensity of the view ray is the product of the transparency, shaded intensity, an
volume density (expected number of particles). Kajiya [KAJI84] uses numerical Ryd
integration to calculate the intensities and transparencies; others use rectangular ru
gration to be described shortly.

(EQ 59) defines the lighting and shading model in terms of a low albedo (refle
ity) shading or phase function. If higher albedo particles are modelled, the solution o
scattering equation becomes more involved. The solution depends on many paths o
tering and not the single path illustrated in FIGURE 54. A perturbation theory solutio
derived by Kajiya to model high albedo particle clouds. Multiple scattering effects
volume have been proposed [KAJI84], but at this time are not practical for interactiv
sualization. Kajiya shows that multiple scattering is useful for rendering clouds but
pler methods are often adequate for other applications.

I Etl2
I ray

Eye

LWE

V u v w, ,( )

I I Etl2
=

Light Source

I γ 1=

l1

I L1 I 1tl1
=

I S I L1Φ E L⋅( )=

I E I Sα=

For a specific pointr s t, ,( )

l2

I ray

I ray t l( )I S l( )α l( ) ld
p1

pW∫=

l p1 pW



100

e
ch
is

tions
ples

eady

dis-
he re-
e is
enu-
es the
vox-
ability
lab.

ve-
labs
e

is
sity
is

slabs
The low albedo model, (EQ 59), is further simplified [LEVO90] by ignoring th
inter-particle shadowing along lines of illumination. Calculate directly at ea
point ignoring the attenuation of the light through the volume. (Let .) Th
is how Drebin, Levoy, and Sabella perform volume rendering. The algebraic formula
they use are numerical integration of (EQ 59) by the rectangular rule. Consider sam
along each view ray where the shading intensities and opacities have alr
been computed. The discrete formulation of (EQ 59) is [SABE88]

. (EQ 60)

Which may be reformulated to

. (EQ 61)

Levoy gives an alternative development reaching (EQ 61) by starting with a
crete system. The models are the same but the discrete model derivation clarifies t
sults. Refer to FIGURE 56 which considers effects along the view ray. The volum
modelled as a varying density emitter with a single level of scattering. The light is att
ated in the view direction, where two effects are considered. Depth-cueing attenuat
intensity as an inverse of the distance from the viewer, and particles block rays from
els behind them. Each sub slab is considered separately by using a conditional prob
that slabs between the eye and the current slab will block the illumination from the s

FIGURE  56 Volumetric compositing calculations

Consider the contribution of slab . If all slabs in front ofw have no particles,
w has an intensity only if the view ray hits a particle in . I can quantify the events: ha
no-particles, and hits-a-particle, by probabilities. In FIGURE 56, the probability that s

have no particles is evaluation of (EQ 52) for the cylindrical ray volum
. The probability that the ray hits a particle in cylindrical volume

. So the joint probability of these events, the probability the shading inten
reaches the eye, is . The resulting intensity from slab
then just the shading intensity times the probability that there are no particles in

 and there is one particle in slab .

I Lγ u v w, ,( )

I Lγ u v w, ,( ) I γ=

w 1toW=

I ray e

α m[ ]

m 1=

w 1–

∑–

I S w[ ]α w[ ]
w 1=

W

∑=

I ray I S w[ ]α w[ ] e α m[ ]–

m 1=

w 1–

∏
w 1=

W

∑=

Ray

w=1 w=Ww=wEye

w w=

w

1 w 1–,{ }
V1… w 1–( ) Vw

1 P 0Vw;( )–

P 0 V1… w 1–( );( ) 1 P 0Vw;( )–( ) w

1… w 1–( ) w



101

ion of
in

ylin-
G-
sity
en in

ages
the
uting
com-
(EQ
enot-
(EQ

y, ,

iting
rency

64)
cities

m in-
f the
the

al-
te the
g ap-
The discrete transparency is often approximated by the taylor series expans
the exponential as , where and are probabilities
the range . Levoy’s approximation is the expected number of particles in the c
drical volume , which is summed over the entire unit volume of FI
URE 56. The volume terms drop out . Sabella, Blinn, and Kajiya use the den
as the expected number of particles (EQ 59). The sum of all slab’s contributions is giv
(EQ 61) derived earlier.

Compositing is evaluation of (EQ 61), and there are several alternatives. Im
are composited from front to back (or back to front) carrying both the intensity and
opacity to each sub-slab. A running product and sum is calculated adding the contrib
factor of each sub-slab until for each ray a final intensity is calculated. I express the
bined results as emitted intensities, , the starting intensity as (EQ 55) or
56), and the initial density or opacity as . Note that the combined opacities are d
ed as and similarly for the transparencies. A front-to-back recursive solution of
61) in terms of the transparency, , is

, (EQ 62)

. (EQ 63)

A substitution of  can be made to derive the equations in terms of the opacit

, (EQ 64)

. (EQ 65)

For all of the above . Such an algebraic evaluation rule is called compos
[FOLE90] and is used in other graphics applications such as animation. The transpa
equations ((EQ 62) and (EQ 63)) are more efficient than the opacity equations ((EQ
and (EQ 65)). When compositing back-to-front the incremental transparencies or opa
do not need to be maintained,

. (EQ 66)

Other combining rules have proven useful for volume rendering such as the maximu
tensity, the sum of the two highest intensities , or the standard deviation o
intensities [LAUB90]. Other simplifications include binary voxel rendering where
voxels are opaque or transparent [FRIE85][KAUF88].

4.2 Algorithm Development Methodology and Existing Approaches

Volume rendering is a transform based algorithm. Because of this, all view transform
ternatives can be investigated in the directed graph paradigm of Chapter II. I separa
algorithm into three separate steps to clarify design choices, then classify existin

t m[ ] e α m[ ]– 1 α m[ ]–( )≅= t m[ ] α m[ ]
0 1,[ ]

α w[ ] 1 P– 0 Vw;( )( )=

e n– e nV–=

I E w[ ] I S w[ ]
α w[ ]

αi … j

t 1 α–=

I E w[ ] I E w 1–[ ] I S w[ ]α w[ ]t1… w 1–( ) w 1–[ ]+=

t1…w w[ ] t1… w 1–( ) w 1–[ ] 1 α w[ ]–( )=

t 1 α–= α

I E w[ ] I E w 1–[ ] I S w[ ]α w[ ] 1 α1… w 1–( ) w 1–[ ]–( )+=

α1…w w[ ] α1… w 1–( ) w 1–[ ] α w[ ] 1 α1… w 1–( ) w 1–[ ]–( )+=

w 1. . W=

I E w[ ] I S w[ ]α w[ ] I E w 1+[ ] 1 α w[ ]–( )+= , w W…1=

I max1
I max2

+



102

hms

FIG-
ace

he do-
steps
3) the

s,

. The
reen
proaches. An optimal sequential algorithm is described, after which parallel algorit
and their optimal approaches are discussed.

Volume rendering is concisely represented as the data parallel algorithm in
URE 57 with terms defined in TABLE 18. For each step points lie in: (Step 1) object sp
(OS) , (Step 2) 3D screen space (SS) , and (Step 3) 2D screen space (SS) . T
main of points in each space is defined by bounding hulls , , and . The three
are: (1) the preprocessing stage (PPS), (2) the volume warping stage (VWS), and (
compositing stage (CS).

Transparency_Volume_Render( , , , , ) {

}

FIGURE  57 Data Parallel Volume Rendering Algorithm

TABLE  18 Terms in algorithm

 point in original volume space

 normal at point  in

 direction to light source at point

 opacity at point  in

 shading intensity at point

 point in volume screen space

 opacity at point  in

 resampled shading intensity at point  in

 transformation

 intensity of ray at point  in 2D image space  created from intensitie
and opacities along the  ray at
all points .

 bounding hull of volume data

 bounding hull of transformed volume data

 bounding hull of 2D screen space image

The PPS calculates normals , opacities , and initial shaded intensities
VWS transforms the initial shading intensities and the opacities to the 3D sc

p p′ p′W
BV BV′ BSS

I ray[ ] ← V Γ T classify shading

PPS

Np normal V( )=

αp classify V Np,( )=

I Sp shadingNp Ep Lpγ αp I γ, , , ,( )=

p BV∈( )∀

VWS αp′ I S p', T αp I Sp,( )= p′ BV′∈( )∀

CS Ip'w
t l( )I S l( )α l( ) ld

p′1

p′2∫= pW′ BSS∈( )∀

p OS

Np p OS

Lpγ p

αp p OS

I Sp p

p' SSfinal

αp' p' SSfinal

I S p' p′ SSfinal

T OS SSfinal→
I p'w

p'W SS
W

p'w W∈

BV

BV′

BSS

Np αp I Sp

I Sp αp



103

creen

rom
for-

e CS
nt to
cuss
the
are

ping,
pix-

4]
t-
are
space by resampling. The CS evaluates the view ray line integrals to get the 2D s
space pixel intensities, .

FIGURE 58 shows the VWS and CS alternatives intermixed as transitions f
three dimensional OS to two dimensional SS. Essentially calculation may be done
ward, backward, multipass forward, surface fitting, or through Fourier techniques. Th
has different freedoms for sequential algorithms such as back-to-front (EQ 66) or fro
back (EQ 62) to (EQ 65), and in parallel there are multiple ways of compositing. I dis
parallel compositing in Section 4.4 and in Appendix B, but first I explain and discuss
existing volume rendering approaches. Other surveys of volume rendering
[GOLD85][KAUF91][WILH91][ELVI92].

FIGURE  58 Volume Rendering Transform Graph

4.2.1 Backward Warping Algorithms-Ray Tracing

Ray tracing is a backwards transform algorithm. FIGURE 59 shows backwards war
or ray tracing, where a ray passes from the eye through pixel into the volume. The
el intensity depends on the contributions of points through [BLINN82][KAJI8
[KRUE90][LEVO90][LEVO90d][SABE88]. The sample points are reconstruc
ed, typically by trilinear interpolation (such as in [LEVO89]). Reconstruction samples

I p′W

V ℜ3 I ℜ2

V ℜ3 V ℜ3… V ℜ3

C3

forward

backward

Fourier

Multipass forward

C2
Existing Algorithms

p′xy

p′1 p′W
p′1… p′W



104

warp-

nu-
cre-
areas

d into
roach

gher
composited as described in the previous section in (EQ 62) and (EQ 63). Backward
ing is also used in opaque voxel rendering [JACK88][KAUF88][WILH92].

FIGURE  59 Viewing Frustum For Ray Tracing

Techniques to reduce the amount of work in ray tracing including hierarchical e
meration, adaptive termination, and bounding hulls. Hierarchical enumeration is the
ation of multiple representations of the volume data so that empty or homogeneous
are traversed quickly. If space is divided into octants, and the octants are subdivide
octants, a pyramidal structure is created. See FIGURE 60 below. Levoy uses this app
[LEVO90] and stores the multiple representations. See also [DANS92]. Mea

Eye
ScreenVolume

View

Ray

-Point Sample

p′W
p′1

p′xy

Pixel

Voxels T 1–



105

s for-

y is
umu-
eloped
e ter-
rest.
g the
pro-
en-

h and
l.
ared
y the
em-

ectural
ds al-
nges-
ance

. en-
of the
s and
ran-
pact-
[MEAG91] creates a single octree representation that holds all of the data, and use
wards algorithms to display.

FIGURE  60 Octree Space and Graph Representation

Adaptive ray termination [LEVO90] stops processing a ray when the full opacit
reached. If you traverse the ray from front to back when the opacity of the ray has acc
lated to a threshold you stop processing that ray. Danskin and Hanrahan have dev
variance octrees and importance sampling for hierarchical enumeration and adaptiv
mination [DANS92]. Another speedup is bounding hulls that surround objects of inte
The hull is used to test ray intersections in deciding whether to continue processin
ray. For animation a space-time-hull further reduces rays [GLASS88]. Ray tracing
vides for incorporating geometric primitives [LEVO90c] which are useful for three dim
sional perception.

Parallelism has also been used to speedup backward mapping algorithms. Nie
Levoy [NIEH92], Yoo et al. [YOO91], Challinger [CHAL92], and Montani et a
[MONT92] have developed parallel backwards algorithms. Nieh and Levoy use a sh
memory machine (Stanford DASH) where arbitrary memory requests are satisfied b
system. Challinger [CHAL92] also uses a shared memory machine (BBN TC2000). M
ory congestion and storage overhead are the primary disadvantages, but the archit
strength of the DASH gives nearly linear speedup. Yoo et al. implemented a backwar
gorithm on Pixel Planes 5, a distributed memory machine, and because of network co
tion elected to replicate the data set on every processor. This results in high perform
(See TABLE 20), but limits the amount of data that can be rendered. Montani et al
countered similar difficulties on the nCube, where clusters of processors get copies
data set, and data must also be sent on request resulting in both memory limitation
network congestion. Backwards parallel algorithms require lots of storage or lots of
dom accesses of voxels. Yoo et al. and Nieh and Levoy reduce storage by using a com



106

tree

II, for-
er OS
wards
dis-

]

]
on-
ally
ack-

-
uali-
here
rojec-
net-

-
a cu-
of the
to
con-

ses
rder-
ed 32 bit voxel representation, a grey scale 8 bit voxel value combined with 1 bit of oc
information and a 2 byte compressed normal value.

4.2.2 Forward Algorithms-Compositing

Forward algorithms send volume elements into the screen. As discussed in Chapter
ward algorithms are the opposite of the backwards algorithms, and one iterates ov
samples rather than SS samples. Approaches include the multipass forwards, for
wavefront, and forwards splatting. Surface fitting transforms data forward also, but is
cussed in 4.2.3.

FIGURE  61 Forward Mapping of Voxels into Pixels

The multipass forward approach has been taken by [FRIE85][LENZ86
[DREB88][HANR90][WEST90][SCHR91][CAME92][VEZI92][KABA92][WRIG92].
Parallel multipass forwards approach [DREBB88] [SCHR91] [VEZI92] [KABA92
[WRIG92] use a decomposition of the viewing transform into shears for low network c
gestion, but they suffer from lower filter quality and view angle restrictions. Essenti
multipass algorithms cannot calculate the same quality or variety of images that b
wards warping can.

Theforwards wavefrontapproach [CAME92] works on SIMD machines with sim
ple interconnection networks, such as a token ring [SCHR92], and gives better filter q
ty than the multipass methods. Limitations are similar to the multipass methods w
view angles are restricted, and the filter quality is not as good as because of a post p
tion resampling. Perspective projection is not possible, and the technique suffers from
work congestion as well [SCHR92].

Forwards splattingalgorithms [WEST89][WEST90][LAUR91] have been de
scribed as easily parallelizeable. A voxel is splatted [WEST90] into the screen and
mulative image is saved. Splatting techniques suffer from ordering noise because
unavoidable overlap in the splatted kernels [WEST90][WILH91b][WEST92]. Similar
ray tracing, general viewpoints require random accessing of the screen, resulting in
gested writes. An implementation without view angle freedom by Elvins [ELVI92] u
sequential compositing limiting speedup. Opaque forward algorithms do not have o
ing problems, and are very efficient [MEAG84][MEAG91][GEME90].

Voxel

Pixels

P



107

ation
n-
nsity

ce for
ord
w on

g re-
y effi-
. The
as a

rd by
ines
ata.

ples to
re

D
eo-
ow-
tes 3D
ain

cause
fitting
, ex-

hich
and

r sec-
ble
ture
t im-
4.2.3 Surface Fitting

Surface fitting matches a surface to voxels during segmentation and classific
[GALL89][LORE87]. the technique is similar to the creation of contours from two dime
sional data. Marching cubes [LORE87] creates a triangulated surface from an iso-de
segmentation of the voxel data. The voxel’s corners are inside or outside of the surfa
256 different possibilities ( ). A look up table accessed by the 8 bit corner decision w
specifies triangle(s) to generate. Due to the large number of triangles generated follo
processing may prune triangles from the representation [SCHR92][TURK92].

Saving previously calculated intersections as you march along, and even usin
duced resolution volumes improves performance. The memory accessing is relativel
cient, because only 4 slices need be held in memory to compute the gradients
resulting image triangles are rendered directly in a traditional graphics pipeline (such
z-buffer and Phong shading pipeline.) Parallelizing marching cubes is straight forwa
object space assignment. A recent study is [HANS92] which gives Thinking Mach
CM-2 performance to create an isodensity surface of triangles from volumetric d
Hansen et al. do not discuss the rendering speeds. is classification of the point sam
isosurfaces. Surface fitting [WILH92][CLIN88] with points instead of triangles is mo
efficient (TABLE 19 [CLIN88]) but resolution is lost.

4.2.4 Reprojection and Fourier Volume Rendering

Reprojection, or Fourier volume rendering [MALZ91][DUNN90][LEVO92] creates 2
renderings from 3D frequency information. Through application of the Fourier slice th
rem [KAK88] a plane of the volume’s spectral (frequency) information creates a shad
gram of the entire 3D data set. This approach is fast because 2D frequency data crea
spatial information. There are similar techniques in the spatial dom
[HARR78][JAFF82]. Chapter V more fully describes this approach.

4.2.5 Existing Methods Performance Summary

TABLE 19 lists special purpose architectures that use opaque voxel algorithms. Be
these machines are determining isosurfaces, they compete directly with the surface
algorithms such as marching cubes [LORE87]. All of the special purpose machines
cept the Insight system [MEAG85][MEAG91], use image space normal calculation w
is inaccurate [TIED90]. High frame rates are achieved through volume size limitations
restricted voxel formats. The performance of each architecture is shown in frames pe
ond. Performance of 10 f/s [OHAS85], 16f/s [GOLD85], and 35 f/s [KAUF88] are nota
for parallel architectures, but higher quality shading with a uniprocessor architec
achieves 5 f/s [MEAG91] with newer technology. The results are hard to compare, bu

28



108

duced
proved algorithms have resulted in speedups while demand for more features has re
performance.

TABLE  19 Opaque Voxel Algorithm Architecture Performancea

a. Partially adapted from [KAUF90] which is also published as [KAUF91b]

Transform Shading Perf. Voxel Prototype Volume Proc.

Cube
[KAUF88]

backwards,
orthogonal

image nor-
mal

35 f/s 8bits 163 mem-
ory

5123 3

Insight II/
[MEAG84]
[MEAG91]
[GEME90]

forward block and
volume
normal,
depth cued

5 f/s,
250k pix-
els/s

1-16
bits

Insight I,
Insight II

512x512x
90, up to
80Mb
octree

1

PARCUM II
[JACK88]

backward image nor-
mal,
diffuseand
specular

1/38 to
1/110 f/s

1, or
8bit

MC68020
emulation

5123 1bit,
or 2563

8bit

4

Voxel Proces-
sor (GODPA)
[GOLD85]

forward, arb.
rotation and
scaling

image nor-
mal

16 f/s 4 bit 643 2563 64 +
8+ 1b

b. Denotes multiple types of processors 64 of type 1, 8 of type 2, and 1 controller

3DP4

[OHAS85]
forward, per-
spective

image nor-
mal

10 f/s,
estimated

app.
depen
dent

software
simulated

2563 256+
255+1

iso-surface
generation
with octrees
[WILH92]

backward/
forward to
render

NA (1/4.5 +
polygon
rend.) f/s

32
bits

Sparc 1 256x256x
113

1

point alg.
[CLIN88]

forward/sur-
face

volume
normal,
smooth

.2-.5 f/s Unkn
own

on GE
9800
scanner

64x64x93
to
256x256x
93

1

[MONT92] backward Unknown 0.1945f/s Unkn
own

NCube-2
Model
6410

97x97x11
6 to
350x250

128

[HANS92] surface NA .14-6.8
conver-
sions/sec-
ond

NA CM-2, 643-2563

to trian-
gles

65536



109

need
al pur-
num-
f the
of al-
With the need for more sophisticated shading and lighting models grew the
for more processing power. Performance studies have been almost entirely on gener
pose and graphics machines. I list in TABLE 20 parallel and sequential performance
bers for transparency rendering. Direct comparison of results is difficult, because o
variation in shading, data set sizes, resolution of voxels and images, and generality
gorithms.

TABLE  20 Transparency Voxel Algorithm Architecture Performance

Transform Shading Perf. Voxel Prototype Volume Proc.

[KAJI84] Spherical
Harmonic

High
albedo

7x10-5 to
2.8x10-4

f/s

Unkn
own

VAX 11/
780, IBM
4341

163,
128x128x16
to 5122

1

[LEVO90] backwards phong .008-.33
f/s

32
bits

Sun 4/280 72x60x33 to
2562,
2563 to 5122

1

[DREB88] forward,
multipass

phong .017 f/s
([LEVO9
0d]

32 bit
r,g,b,

Pixar
Computer

2563 4 SIMD

[LEVO90d
]

backwards volume
normal,
phong

.17 -.017
f/s (1-
10f/s)

8
bytes

DEC
3100/Sun
4/280

256x256x
128, 5122

image

1

[SCHR91] forward,
multipass
(pure shear)

Unknown .609-6.32
f/s

Unkn
own

 CM-2 643-1283 to,
642-2562

16k -
64k
SIMD

[NIEH92] backward Phong 1.18-11.1
f/s

32
bits

Dash 1283 to
2092, 2563

to 4162

48
MIMD

[VEZI92] forward,
multipass
(scale
shear)

unknown .288-11.6
f/s

Unkn
own

MasPar
MP-1

323 to 322,
2563 to 2562

16384
SIMD

[YOO91] backward,
trilinear

Phong 15 f/s 32
bitsa

Pixel
Planes-5

1283 to
640x512
images

16
MIMD

[YOO91] backward
trilinear

Phong 1.4 f/s 64bit,
color

Pixel
Planes-5

1283 to
640x512
images

16
MIMD
+
SIMD

α



110

ted
oints
er. I
ibil-
they
.

Even with parallelism, performance is only up to 15 f/s [YOO91] using restric
volume sizes and voxel formats. Higher rates can be achieved with restricted viewp
[SCHR92b], but achieving higher performance requires simply more processing pow
show in Sections 4.5.1 and 4.5.2 algorithms that allow full linear speedup with the flex
ity of the backwards warping algorithms. I call them permutation warping because
use non conflicting communication. Sequential algorithms are discussed briefly next

[CAME92] forward
wavefront

unknown 10 f/s unkno
wn

DAP 510 128x128x64 1024
SIMD

[CHAL92] backward unknown .084 f/s NA BBN
TC2000

100x120x16
to 5122

100
MIMD

[CHAL92] forwards unknown 0.38 f/s NA BBN
TC2000

100x120x16
to 5122

100
MIMD

[SCHR92b
]

wavefront pre shaded 1.09-17.9
f/s

grey
scale,
color

CM-2 643 and
1283

16384,
or
32768
SIMD

[SCHR92b
]

wavefront pre shaded 2.58-35.7
f/s

grey
scale,
color

Princeton
Engine

1283 and
2563

1024
SIMD

[STRE92] forward grey scale 42-.18f/s unkno
wn

Cray
YMP-8

643-5123 8
MIMD

Chapter IV permuta-
tion warp-
ing

max .17 - 3.44
f/sb

8 bit Proteus 323-2563 to
2562

16
MIMD

Chapter IV permuta-
tion warp-
ing

max .71 - 6.66
f/sc

8 bit Proteus 323-2563 to
2562

32
MIMD

Chapter IV permuta-
tion warp-
ing

max .89-155 f/
s

8 bit MasPar
MP-1

323-2563 to
322-2562

16384
SIMD

a. 8 bit gradient magnitude, 13 bit normal, 1 bit octree
b. No preprocessing or data structure optimization
c. No preprocessing or data structure optimization

TABLE  20 Transparency Voxel Algorithm Architecture Performance

Transform Shading Perf. Voxel Prototype Volume Proc.



111

Fou-
is
But
ren-

nd
ddi-
rmina-
m is
com-
e. See
sts
rse

s.

effi-
.

r the
ls are
ide up

ds,
tant

to
uires
rder
each
trees
4.3 Optimal RAM Volume Rendering Algorithm

The optimal RAM volume rendering algorithm has been shown by Malzbender to be
rier volume rendering [MALZ91]. The output image is rays, the volume

samples, and the number of samples along each view ray is .
Fourier volume rendering does not allow surface shading. The optimal spatial volume
dering algorithm is Levoy’s . Assume that . In fact forward, backward, a
surface fitting are all because they require visiting all voxel points. The only a
tional savings are data dependent including the hierarchical data sets, adaptive te
tion, and bounding hulls mentioned earlier. So a simple straightforward RAM algorith
given in FIGURE 57, iterating over each volume sample point to shade, warp, and
posite. The forward or backward approach is better depending on the data set siz
Chapter 3 for clarification of the optimal RAM warping approaches. [WILH91] Sugge
that ray tracing is easier to implement, but splatting is slightly more efficient. Of cou
splatting is inaccurate in the accumulation of opacities because of ordering problem

4.4 Optimal PRAM Volume Rendering Algorithm

I examine each of the three steps of the data parallel algorithm to explain the PRAM
ciency. The is the calculation of opacities and of the initial volume intensities,
These operations take constant time and therefore are for the RAM and fo
PRAM opacities and shaded intensities are calculated in parallel once the norma
available. Since preprocessing consists of simple point operations ( ) processors div
the work to  for , which is  for .

The complexity for warping is also for constant factor sized neighborhoo
and for maximal sized windows where is the order of reconstruction. Cons
order filters are quite accurate and therefore the PRAM complexity is typically
warp, but can reach for the most accurate filters. Fast high order filtering req

processors per voxel, where is the dimension of the image, and is the o
of interpolation in each dimension. Further speedup by assigning more processors to
sample point does not result in further linear speedup, because of the mesh of

O R Rlog( ) R

S rows cols slices××= W

O S( ) S RW≈
O S( )

PPS I S

O S( )

P

O S P⁄( ) 1 P S≤ ≤ O 1( ) P S=

O 1( )
O nd( ) n

O 1( )
O nd( )

n n 1+( )d 1– d n



112

as

, the

ork

an be
rns de-
order

are
cu-
ve

ted
tial
[LEIG92] structure of the filter. FIGURE 62 shows the diminishing speedup return
more processors are added.

FIGURE  62 speedup as the number of processors is increased from
 to  for an  order interpolation, .

The number of steps in the parallel evaluation of the filter is,

(EQ 67)

Using the number of interpolations, Chapter III (EQ 16), and the number of time steps
speedup can be calculated,

(EQ 68)

The amount of work being done is the number of interpolations. The efficiency is the w
divided by the product of the time and number of processors,

(EQ 69)

The efficiency drops off as more and more processors are idled. The warping stage c
speeded up using more processors through mesh of trees calculation, but the retu
crease. Filters used in Chapter III and in this Chapter are the zero order hold and first
hold, and will be assumed constant complexity with one processor per sample.

The compositing stage, CS, is calculated by a general technique ofparallel prod-
uct [KRUS85][LEIG92]. The run time complexity for data independent (data locations
known before processing begins) is , and for the product cal
lation is work efficient. To apply the parallel product algorithm to compositing, I pro
that compositing is an associative operator inLemma 4.1.

To simplify the notation in the proof I change briefly to subscripts, where emit
intensities are, , the initial shading intensities are , and the ini

200 400 600 800 1000
Processors

50

100

150

200

250

300

Speedup

P 1= 32 36× n 32= d 2=

#par timesteps n 1+( ) j i
P

---------------------
i 1=

n

∑
j 0=

d 1–

∑=

Speedup #int
#par timesteps
----------------------------------=

Efficiency #int
#par timestepsP
--------------------------------------=

O Wlog( ) PZ O W Wlog⁄( )=

I Ew I E w[ ]= I Sw I S w[ ]=



113

and

ten-
70),
short

ties

y are

4.1.
is an
n (as
opacities are . I use the classified opacity labelled at each level . (EQ 62)
(EQ 63) in a more concise subscript notation to composite two images  and  are,

(EQ 70)

(EQ 71)

. (EQ 72)

As before is the opacity, is the transparency, is the combined emitted in
sity, and is the shading intensity at level . I now prove that compositing by (EQ
(EQ 71), and (EQ 72) of three images by any associative groupings is the same. A
hand for compositing  is  [DREB88].

Lemma 4.1: Compositing is associative .

Proof: Given initial opacities, , and shading intensities, , the initial emitted intensi
and transparencies are,

. (EQ 73)

Two associative groupings for compositing 3 images are

. (EQ 74)

Evaluation of the transparencies and intensities of terms and shows that the
equal,

■

For more layers of images compositing is associative by induction on Lemma
Because compositing is not commutative it must be evaluated in a strict order, but it
acceptable operation for parallel product. Lest one tries to relax the order of evaluatio

αw α w[ ]= αi

i j

I Ej I Sjα j=

I Eij I Ei I Ejti+=

tij ti 1 α j–( )=

α t I Eij

I Sj j

I i j I ioverI j=

I E1overI E2( )overI E3 I E1over I E2overI E3( )=

αi I Si

I E1 α1I S1= I E2 α2I S2= I E3 α3I S3=

t1 1 α1–( )= t2 1 α2–( )=

I E1overI E2( )overI E3 ? I E1over I E2overI E3( )

A B

A B

A,
I E12 I E1over2 I E1 I E2t1+= =

t12 t1over2 t1t2= =

I E123 I E12over3 I E1 I E2t1 I E3t1t2+ += =

I E23 I E2over3 I E2 I E3t2+= =

I E123 I E1over23 I E1 I E2 I E3t2+( )t1+= =

I E1 I E2t1 I E3t1t2+ +=

B,

I∴ E 1over2( )over3 I E1over 2over3( )=



114

on-

lts

),

ia-
nts is
y in-
hich

ting

ed to
ost ef-
here
is done in some splatting techniques [WEST90] [WILH91b]) consider the following c
straint,

Lemma 4.2: Compositing is not commutative .

Proof:

In is attenuated by and in is attenuated by . The resu
are not the same, therefore compositing is not commutative. ■

Theorem 4.1: Parallel compositing is and sequential compositing is O(W
where W is the number of sample points along a view ray.

Proof: by Lemma 4.1 can be combined through any assoc
tivity. Assign 2 sample points to each processor, composite, and the number of poi
halved. Continue this process of halving the number of sample points until the final ra
tensity is calculated. (See FIGURE 63.) The time complexity is the depth of the tree w
is . If done sequentially there are  compositing evaluations or O(W). ■

Constant factors for additions and multiplications using binary tree composi
are multiplications and additions to take , and to when
is a power of 2. If there are not a power of 2 image levels, then the tree may be balanc
the back edge to reduce the number of incremental transparencies calculated. The m
ficient sequential method, ignoring data dependent optimizations is back-to-front w

I 1overI 2( ) I 2overI 1( )≠

I E12 I E1over2 I E1 I E2t1+= =

I∴ E 1over2( ) I E 2over1( )≠

I E21 I E2over1 I E2 I E1t2+ I E1t2 I E2+= = =

I E1overI E2( ) I E2 t1 I E2overI E1( ) I E1 t2

O Wlog( )

I ray I E1overI E2overI E3…I EW=

Wlog W 1–

3W 2– Wlog– 2W 2– αi I Si I ray W



115

lica-

tors
ually
, all
arallel
siting
per-

6,

data

rig-
llel or
stant
2 other
he col-

par-
ugh a
am-
rs de-
no incremental transparency or opacity updates are performed giving multip
tions and  additions. (See Appendix B for details.)

FIGURE  63 Fully Parallel Compositing

Spatial volume rendering, as FIGURE 57 shows, requires combining of all fac
along the ray (CS). No ray surface intersections are found. Compositing is not us
computed in parallel [DREB88][LEVO90b][SCHR90]. If there are enough processors
rays are computed in parallel, and the intensities and opacities can be calculated in p
Special purpose architectures have been proposed for parallel compo
[FOLE90][MALZ90]. Several general purpose machine’s interconnection networks
form parallel product [THIN89][BLAN90].

Theorem 4.2: Parallel Volume Rendering is an optimal parallel algorithm by definition
7, 8, and 9 (Chapter II) for  processors on CREW and EREW PRAMs.

Proof: The preprocessing stage is point operations, reads require only neighboring
which is accessed in directional phases. Time is , for  sample points.

By Theorem 3.1 warping is calculable with exclusive reads and is for
id body transforms. By partitioning object space subcubes are warped in data para
overlap fashion. If rigid body transforms are used the volume’s extents remain con
and the overlap of any source subcube in image space subcubes is fixed to at most 1
cubes. Either a constant number of subcubes are intersected (overlap approach), or t
lision of messages is restricted to a small constant (data parallel approach).

Subcubes are then composited local to each processor for work. The
allel product then operates on local frames. The local frames must be combined thro
parallel product evaluation. The number of samples, starting with s
ples at each processor, is halved at each increment, FIGURE 64. The run time diffe

2W 1–

2W 2–

1 2 3 4 5 6 7 8

I E1…8 t1…8,

I S1α1 I S2α2
I S3α3 I S8α8

t1 1 α1–( )= t2 1 α2–( )= t3 1 α3–( )= t1 1 α1–( )=

I E12 t12, I E34 t34, I E56 t56, I E78 t78,

I E1234 t1234, I E5678 t5678,

P O S Slog⁄( )=

O S P⁄( ) S

O S P⁄( )

O S P⁄( )

Sframe R PxPy( )⁄=



116

k is

is
ng
sub-

re-
. The

ls

ar
on 6,
er

the

ng
llelize
uct
llow
pending on the number of processors, either and . The total wor
always , where  is the ray sampling or initial number of subframes.

For each processor remains busy for all compositing and time
. For , processors are idled at some point duri

compositing. Two terms are one for all processors busy which equals . The
frames are halved until there is one sample in the subframe. There are
maining composites, enough single sample composites to combine all samples
time for compositing the subframes is  for .

The total compositing time when is which equa
. Compositing achieves linear speedup for .

Each stage PPS, VWS, and CS is for , therefore line
speedup is achieved over the fastest sequential algorithms which are (Definiti
Definition 9). storage is used for optimal space complexity (Definition 8). The low
bound for computation on an EREW PRAM is for inputs and the run time of
fastest algorithm  is  which is below the lower bound (Definition 7). ■

FIGURE  64 Halving of Frames During Parallel Product for
Compositing

FIGURE 65 summarizes the overall complexity. Here I show with varyi
amounts of virtualization, the speedup. Because all three steps of the algorithm para
ideally from to processors there is linear speedup. Parallel prod
thresholds at shown for . Using more and more processors does a
more accurate filters for reconstruction.

1 P R≤< R P RW≤<
R Pz 1–( ) Pz

1 P R≤<
O R Pz 1–( ) P⁄( ) O S P⁄( )= R P RW≤<

Sframe 1–

Pzlog Sframelog–

Pz

Sframe 1– Pzlog Sframelog–+ Sframe Pz<

R P S≤< O S P⁄ Pz Sframe⁄log+( )
O S P⁄ Plog+( ) P O S Slog⁄( )=

O S P⁄( ) P O S Slog⁄( )=

O S( )
O S( )

nlog n

P S≥ Wlog

Sframe
Sframe

2
-------------

Sframe

4
-------------

P 1= O S Slog⁄( )
O Wlog( ) P S RW≅=



117

own
s that
arallel

ct
m-

e is

ring

si-
e is
FIGURE  65 Overall Volume Rendering Complexity

The amount of parallelism for the volume rendering algorithm can be broken d
into 4 regions. The first region is parallel . Processors are assigned subcube
they preprocess, warp, and composite. Each processor stays busy through the p
product calculations. Run time is .

The second region is work efficient parallel produ
. Now processors are idled during the final steps of co

positing. When half of the working processors are idled upon each step. Run tim
.

The third region is non work efficient because processors become idled du
compositing and efficiency starts to drop off of linear speedup, .

The fourth region is fully parallel with providing the fastest algorithm pos
ble, with multiple processors per voxel, but compositing dominates so run tim

, determined by the number of sample points along a ray.

Processors

Speedup

S Wlog⁄

R S

P O S Slog⁄( )=

ParallelSequential Parallel Compositing
dominates

O
S
P
--- 

 

O S
P
--- Plog+ 

  O Wlog( )

Product with

1

Idling Machine outsizes
problem

1 P R≤<

O S P⁄( )

R P S< < , P O S Slog⁄( )=

P S=

O S P⁄ Plog+( )

O S P⁄ Plog+( )

P S≥

O Wlog( )



118

a gen-
etter
or ef-
ge as
ces-
as-

re on
.

de by
thwest,

is
.

any
e in-
ne
orem
ces-
e pro-
Step
or

G-
,

lid
4.5 Permutation Warping For Parallel Volume Rendering

Permutation warping is essentially a processor assignment technique that provides
eral approach for efficient parallel transform algorithms. Permutation warping is b
than prior parallel algorithms because it is simultaneously memory efficient, process
ficient, general, and accurate. The algorithm (FIGURE 66), calculates the same ima
FIGURE 57, but gives specific memory layout and communication requirements ne
sary for the EREW PRAM. Processors (natural or whole numbers are
signed sample points requiring processors. Processor locations a
a whole number lattice, and samples are a discrete sampling  of space

FIGURE  66 Permutation Warping Parallel Volume Rendering
Algorithm

Step 1.0 is the same as the PPS in FIGURE 57. Processors classify and sha
reading necessary neighboring data in directional phases, east, northeast, north, nor
etc.

In Step 2, the view transform points to points by . Resampling
required because the discrete rays do not line up with transformed voxels,
This results from allowing general viewpoints. Either viewpoints can be restricted, or
viewpoint can be supported by randomly accessing voxels that surround th
versed SS point . This backwards (ray tracing) solution is do
by the warping from Chapter III. The assignment is guaranteed to be one-to-one, The
3.1 Chapter III. FIGURE 67 illustrates the transformations calculated by a single pro
sor. The OS and SS are separated, the OS on the left and the SS on the right. First th
cessor shown as a circle in the OS lattice calculates who to resample for in
2.1 of the algorithm (FIGURE 66). The result is labelled process

and the logical connection is shown by the dotted line in FI
URE 67. Next, processor calculates the inversed point position of

in Step 2.2. The inverse transformation is shown by a so

π r s t, ,[ ] N∈
p x y z, ,[ ] ℜ∈ P S=

x y z, ,[ ] u v w, ,( )

Permutation_Volume_Render( , , , , ) {

1.0) PPS, calculate , .

2.0) VWS, Processor  does:

2.1) Calculate processor assignments

2.2) Calculate reconstruction point

2.3) Perform resampling of  and

2.4) send resampled values to SS processors

3.0) CS, calculate ray intensities  with parallel product.

}

I ray[ ] ← V Γ T classify shading

αp I Sp

π
π′ M π( )=

pπ′ T 1– p′π′( )=

αp I Sp

π′
I ray

T p p′ p′ T p( )=

p′ x′ y′ z′, ,[ ] N∉

p i j k, ,[ ]
p x y z, ,( ) T 1– p′ r s t, ,[ ]( )=

π r s t, ,[ ]

π′ r ′ s′ t′, ,[ ] M π r s t, ,[ ]( )=

π π′
pπ′ x y z, ,( ) T 1– π r ′ s′ t′, ,[ ]( )=



119

wn

num-
eigh-
s 7
rs as

, by
ry

ica-
ox is
cessor
and SS
rpo-
line labelled . The point at which to perform reconstruction is and is sho
as an asterisk * in FIGURE 67.

FIGURE  67 Transformations and Communications in Permutation
Warping for a Single Voxel

Processor reads the values of and of its neighboring processors. The
ber of neighbors used determines the filter order. A zero order hold reads only one n
boring voxel, the closest one to . A first order hold, or trilinear interpolation, read
neighboring voxels surrounding , and FIGURE 67 shows processor ’s 7 neighbo
cubes. To avoid conflicts each processor reads in directional stages.

The final step in the VWS, Step 2.4, is sending the reconstructed values to
an explicit send in the MCCM to or by writing to a unique memo
location in the EREW PRAM.

To understand the advantage of this extra work FIGURE 68 shows all commun
tions taking place in parallel. There are no conflicts. The OS processor bounding b
green, and the forward warped version is also given as green in the SS. The SS pro
bounding box is red in both spaces. Of course processors are both OS processors
processors with . This is shown by those processors who inte

T 1– pπ′ x y z, ,( )

pπ′
π pπ=

M

π′ p′=

T 1–

OS

SS

π I Sp αp

pπ′
pπ′ π

π′
π r s t, ,[ ] π′ r ′ s′ t′, ,[ ]

T

π
π′ π r s t, ,[ ] π′ r s t, ,[ ]=



120

re not

d the
rma-
late for themselves, the blue processors in the interior where communications arcs a
drawn.

FIGURE  68 Volume Transformations in Parallel

Also, see FIGURE 69 where the OS and SS have been properly merged, an
communication that is taking place can be seen to be nontrivial. The Viewing transfo

color photograph inserted



121

tation

paci-
any

ia-

ans-

)
pling,
.
steps
tion is a rotation of the cube by 15 degrees about and 15/2 degrees about . Permu
warping calculates a one pass resampling.

FIGURE  69 Transformation with OS and SS Merged

The final step in the algorithm, step 3, combines resampled intensities and o
ties using parallel product evaluation. Binary tree combining computes products for
associative operator ( ), [KRUS85]. Compositing ( ) is assoc
tive. Numerical integration is also associative.

The processor assignment calculated by works for any equiareal tr
form, . The equiareal transform is,

. (EQ 75)

(EQ 75) is solved symbolically for coefficients ( , , , , , , , , and
in Chapter III. Note that the decomposed matrices are not used for a multipass resam
only to calculate the permutation, .
where is a composed pretranslation and postranslation so only three rounding
occur for a total of seven rounds for any equiareal transform.

y z

color photograph inserted

⊗ I 1 I 2 … I W⊗ ⊗ ⊗ I ioverI j

π′ M π( )=

det T( ) 1±=

a11 a12 a13

a21 a22 a23

a31 a32 a33

1 b12 b13

0 1 b23

0 0 1

1 0 0

c21 1 0

c31 c32 1

1 d12 d13

0 1 d23

0 0 1

=

b12 b13 b23 c21 c31 c32 d12 d13 d23

M M McM1M2M3Mr M1 Tran+( )M2 M3 Tran+( )= =

Tran



122

, be-
forms
ans-

tation
their

the
h the

ht of
rithm
ray. I

e con-
sors.
al al-

hen
ssor so
s the
The inverse used in determining the reconstruction point is numerically stable
cause equiareal transforms are by definition invertible. For arbitrary centered trans
use a product of translation matrices, , and the equiareal transform . Tr
form about the point  and center the transform about .

For arbitrary centered rotations the inverse is easily calculated because ro
is orthogonal, meaning , and translations are inversed by negating

values,

. (EQ 76)

The rotation matrix and a translation matrix are given in (EQ 77) and (EQ 78), and
transpose of (EQ 77) is composed with the translations for calculating the inverse wit
minimum number of calculations.

(EQ 77)

(EQ 78)

4.5.1 Data Parallel Virtualization

To apply permutation warping without a processor for each sample point can be thoug
as virtual processors running on processors. With current technology an algo
designer has processors, is the number of rays times samples on each
have found that a data parallel approach uses permutation warping very efficiently.

I conserve as much storage as possible and calculate the correct image. Th
stant space requirements are for where is the number of proces
When the number of processors equals the number of SS samples the virtu
gorithm becomes the nonvirtual algorithm FIGURE 66.

To virtualize I make an assignment of processors to the voxels. If t
samples are replicated to several processors. I evaluate the rule only once per proce
the cost of is amortized over the virtual sub volumes. The assignment maintain

Tran x y z, ,( ) T

r x r y r z, ,( ) cx cy cz, ,( )

T 1–

R ψ φ θ, ,( ) T 1– TT=

T 1– T cx cy cz, ,( )R ψ φ θ, ,( )T rx– r y– r z–, ,( )( ) 1–=

T rx– r y– r z–, ,( )( ) 1– R ψ φ θ, ,( )( ) 1– T cx cy cz, ,( )( ) 1–=

T rx r y r z, ,( ) R ψ φ θ, ,( )( )T T c– x c– y cz–, ,( )( )=

R ψ φ θ, ,( )

φ ψcoscos( ) θ ψsincos– ψ φ θsinsincos+( ) ψ θ φsincoscos ψ θsinsin+( ) 0

φ ψsincos( ) ψ θcoscos φ ψ θsinsinsin+( ) θ φ ψsinsincos ψ θsincos– 0

φsin–( ) φ θsincos( ) φ θcoscos( ) 0

0 0 0 1

=

T cx cy cz, ,( )

1 0 0 cx

0 1 0 cy

0 0 1 cz

0 0 0 1

=

v P v<
1 P RW≤≤ RW

S R P1 3/⁄+ 1 P RW≤≤ P

S′ RW=

P S P S>

M



123

ss til-
ch-

f a

esh
73

lume.

more

cessor
E 72
e SS
icts,

density
d and

The
sor to
pled
, and
SS

re are
rithm
uses
communication efficiency. OS voxel points are assigned to processor id’s by an addre
ing. Address tiling in three dimensions is an extension of two dimensional tiling te
niques [BLIN90] [WITT91]. FIGURE 70 shows how to calculate the tiled version o
slice, row major addressed volume, or

FIGURE  70 Three Dimensional Tiling To Calculate Processor
Identification and Subvolume Addresses from

 Coordinates.

Such virtualization is amenable to a wide variety of architectures such as m
[BLAN90], hypercube [SOMA91], and multistage interconnection networks. FIGURE
shows how machines with 16 processors are virtualized into a three dimensional vo
Each dimension gets approximately  cuts.

The algorithm is the same as that in FIGURE 66, except now processors have
points to iterate over, points each. In step 1, 2, and 3 a for loop is added for points
do, and the only challenging part is that the screen space assigned to each pro
shrinks after each parallel product evaluation so they all remain assigned. FIGUR
shows the processors start with 1/4 of the screen, then get 1/8, and finally 1/16. Th
samples being calculated are unique, and in the EREW PRAM there will be no confl
but because of virtualization processors may receive more than one message. The
of messages across the network is the same if the slice and dice virtualization is use
communication remains efficient.

The data parallel algorithm requires storing an entire resampled volume.
source volume is not duplicated, but a 1 voxel overlap may be stored at each proces
avoid any local communication for the warping stage. In the worst case all resam
points are communicated, but in any communication period there is small congestion
for any filter, only the final interpolated point is sent. All compositing takes place in the
processors along preferred communication directions of the architecture. When the
enough processors for every data point the communication is one-to-one so this algo
scales smoothly for machines which support fine message granularity. The algorithm
exclusive reads and writes or a small amount of communication congestion.

t k r i s j〈 〉 t r s k i j〈 〉→

r s i j

r si j

tiled

row column

tile
k

k

addressprocessor id

t

t
slice

in subvolume

row column slice, ,( )

P1 3/

S P⁄ S P⁄



124
FIGURE  71 Spatial Volume Virtualization For a Variety of
Architectures

Slice and Dice Virtualizationxy

z

0
1

2
3

4
5

6

11

12
13

14

15

0 1 2 3
4 5 6 7
8 9 10 1
12 13 14 15

ICN a
b c

d, e

Mesh
Enhanced Hypercube

I
C
N

Dance Hall Architecture

1

15

0

5
4

6 7

77

15

3

0
1

2 3

4 5

6 7

8 9

10 11

12 13

14
15

1

15

0

processors memory

Physical Layouts

Spatial Assignments



125

mpled
high

d each
ent to

essages
me is
mes-
SS par-
end

sing.
signed

Step
FIGURE  72 Steps of Virtual_Permutation_Volume_Render,
Virtualized SubVolumes to SubFrames to Final Image

4.5.2 High Granularity Virtualization

In high granularity machines such as Proteus [SOMA91] a message for each resa
point cannot be sent efficiently. I use instead an algorithm that takes advantage of the
virtualization ratio and sends large messages. There is no overlapped storage, an
processor completely render’s it’s subframe to the aligned SS, then subframes are s
SS processors. Each processor can overlap at most 18 SS subvolumes. Then 18 m
can be sent. For Proteus, there are currently only 8 clusters of 4 Intel i860’s. The volu
partitioned eight ways, and the screen is partitioned eight ways. There are only seven
sages to be sent, and each cluster sends the messages without conflict because the
titioning is fixed, the OS partitioning is fixed, and the cluster may or may not have to s
a value to the particular area of the screen.

In step 1) as in the Permutation_Volume_Render FIGURE 66, is preproces
Each processor calculates the opacities and shaded intensities for a subvolume as
through slice and dice virtualization.

In step 2.1), the VWS, processors calculate the inversed coordinate frame.
2.2) warp each point by differencing.

0

xz

y

0 1 2
3

4
5

6

11

12
13

14
15

Overlapped

5
4

6 7
77

15

3

Parallel Product

Final Image

Aligned

0

1

2

3

1

23

1011
9 8

67
5 4

23
1 0

1415
13 12

1011
9 8

Virtualization
Cubes

View

Step 3.0

Step 2.0

456
7

0
1

2

15

8
9

10
11

1
0

23
3 3

11

7

23
1 0

View

Resample

Product

Object
Space

Screen
Space

View Volume



126

alter-
pends
y di-

d. Once
) where

sub-

f the
Steps

hown
used

po-
cal-
lues are
uses
mory

llel
he
allel
Reconstructions are composited into temporary subframes using local data,
nating warping and compositing, steps 2.4 and 3.1. The number of subframes de
only upon the overlap of your data in the SS. Traversal is determined from the SS ra
rections, and the subvolume data of the processor is randomly accessed as neede
the subframes are completed, they are sent to the aligned screen space (step 3.2
further compositing takes place. This send requires sending parts of the calculated
frame to several processors.

In step 3.2 subframes are combined. The final frame is distributed across all o
processors, and every processor remains busy compositing data. FIGURE 74 shows
2.4 and 3.1, 3.2, and 3.3 of the algorithm. Various physical processor layouts were s
in FIGURE 71 which correspond to the same OS spatial layout. The subvolumes are
as temporary storage while combining.

FIGURE  73 High Granularity Permutation Algorithm for ,
Image order resampling storage .

The large granularity algorithm, FIGURE 73 and FIGURE 74, stores only tem
rary subframes, and is very memory efficient. The trade-off is that is more involved to
culate the messages to be sent, and the boundaries of those messages. Fewer va
communicated also, because compositing is partially done in the OS. The algorithm
exclusive reads and writes which can be implemented on distributed or shared me
machines.

Both algorithms calculate compositing through a product evaluation. A para
product evaluation [KRUS85], is work efficient up to processors in t
view depth dimension. The product evaluation is a speed limit for the time when par

HighGrain_Permutation_Volume_Render( , , , , ) {

1.0) PPS ,  calculated

2.0) VWS
2.1) For each subcube calculate overlap into SS to choose messages

2.2) Calculate subcube coordinates

2.3) Choosing and iteration start point at back corner of cube
For each sample in subcube {

2.4) reconstruct

(CS) 3.1) Composite into subframe }

3.2) Rounds of Permutation send of temporary subframes
3.3) Parallel product compositing of subframes
}

I ray[ ] ← V Γ T classify shading

αp I Sp

pπ′ T 1– p′π′( )=

Tmp αp′ I Sp′,[ ] Reconstruction[ ]=

I Ew I Sp′αp′ I Ew 1 αp′–( )+=

P RW≤
O R( )

P O n P⁄ Plog+( )=



127

s are

the
nd

pling
inter-

ter a
t to tri-
RE

show
rpo-
machines get millions of processors. But for now input volume sizes and architecture
clearly in the linear speedup region shown in FIGURE 65.

FIGURE  74 High Granularity Rounds of Permutation Sends

4.6 MasPar and Proteus Performance Results

I have implemented the data parallel algorithm on the MasPar MP-1 [BLAN90] and
high granularity algorithm on Proteus [SOMA91]. In this section I show filter quality a
time and trade-offs, followed by performance measurements.

Multipass shears and direct warping are not equivalent. Because each resam
stage loses the original data, a shear filtering approach has more resolution error and
polation error than a comparable direct filter (See [PRAT78] for one pass filters). Af
shear all that is stored is the new samples, hence a multipass shear is not equivalen
linear interpolation. I demonstrate here the quantitative difference in the filters. FIGU
77 shows the empirical error in my direct warp compared to the multipass shearing. I
direct warps using zero order hold, trilinear interpolation, and shearing with linear inte

1

xy

z

0 1 2
3

4
5

6

11

12
13

14
15

Overlapped

1

0

5
4

6 7
77

15

3

SubVolumes SubFrames

Parallel Product

Final Image

15

4

4

Aligned
View Volume

0
1

2
3

0

3 2

11 10
89

3 2
01

7 6
45

11 10
89

15 14
1213

3 2
01

Virtualization
Cubes

View

OS SSRounds of
3D

Step 3.2

Step 2.4 & Step 3.1
Step 3.3Permutations



128

ses. I
s and
nsities

ed and
mple-
sam-

lute
ut all

the
or all
r than
an tri-
mes.

ns the
peated

m error

quency

her fil-
lation. The multipass method has more error than the trilinear reconstruction in all ca
used two test objects to calculate the reconstruction error: a cube of 65535 intensitie
a sphere whose intensities are zero at the edge and 65535 at the center. 16 bit inte
were used. The volumes were 128x128x128 voxels with the sphere and cube center
of diameter/width 64. A Sun Sparc 2 was used to calculate the comparison to ease i
mentation of the shearing approach. The errors were calculated by differencing each
ple point for an altered viewpoint with the analytically defined cube or sphere. Abso
errors were summed on each ray. FIGURE 77 is the error in rotating 45 degrees abo
three axes simultaneously.

TABLE 21 shows the mean of the summed error for all rays in an image for
volumes resampled. The mean error varies little with rotation angle, and the mean f
measured cases from 5 degrees to 45 degrees is given. The trilinear is clearly bette
shearing, but the zero order hold is the same as the trilinear for the cube and worse th
linear and shearing for the sphere. This results from the frequency content of the volu
The cube is a step function and has infinite frequencies. The zero order hold maintai
resolution very well. Because of the high frequencies, the multipass approach has re
aliasing steps which degrades the reconstruction considerably.

The cube has sharp edges and high frequencies so errors were higher. FIGURE 75 shows the maximu

for the three approaches versus rotation angle about all angles simultaneously. The cube is not fre

limited, and the zero order hold does very well, because it can preserve resolution better than the ot

TABLE  21 Mean of the Measured Absolute Summed Error over all rays for 45
degree rotation about all axes.

Cube
% worse than

trilinear
Sphere

% worse than
trilinear

zoh 48370 0% 4079 1468%

multipass 64068 32% 775 198%

trilinear 48385 0% 260 0%



129

rror for

rent
rilin-
re er-
age
gure,
the
shear,
calcu-
ters. The trilinear is more accurate though, as in the sphere case. FIGURE 76 shows the maximum e

any ray rendering the sphere at different view angles.

FIGURE  75 Maximum Error in Reconstruction of Cube

FIGURE 76 shows the maximum error for any ray rendering the sphere at diffe
view angles. FIGURE 77 shows the error in a direct warp using zero order hold and t
ear interpolation compared to the multipass shearing. The multipass method has mo
ror than the trilinear reconstruction in all cases. The mean error for all rays in the im
remains the same across view angles. FIGURE 77 shows how error is placed in the fi
with error ramped from the maximum errors. The trilinear filter has low error across
whole image. The zero order hold has more error on the sphere than the multipass
but less error on the cube. The zero order hold is useful because it is inexpensive to
late.

0

200000

400000

600000

800000

1e+06

1.2e+06

0 5 10 15 20 25 30 35 40 45

M
a
x
 
E
r
r
o
r
 
o
f
 
a
n
y
 
R
a
y

X, Y, and Z Rotation Angle (Degrees)

Cube shearing max
Cube zoh max

Cube trilinear max



130
FIGURE  76 Maximum Error in Reconstruction of Sphere

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0 5 10 15 20 25 30 35 40 45

M
a
x
 
E
r
r
o
r
 
o
f
 
a
n
y
 
R
a
y

X, Y, and Z Rotation Angle (Degrees)

Sphere zoh max
Sphere shearing max

Sphere trilinear max



131
FIGURE  77 0MAX
Error for 45x45x45 rotations,
Top: Zero Order Hold, Middle: Multipass, Bottom
Trilinear



132

. FIG-
er-

ighest
hows

re er-
er hold

My
imita-
ain a
par-

iven
tion.
The mean error for all rays in the image remains the same across view angles
URE 77 shows how error is placed in the figure, with error ramped from the maximum
rors in the pseudo colored images. The range of error is from 0 to 217719 (shear h
error) for the cube and zero to 41886 for the sphere (zoh highest error). TABLE 22 s
the mean and max errors for the 45, 45, 45 degree rotation.

The trilinear filter has low error across the whole image. The zero order hold has mo
ror on the sphere than the multipass shear, but less error on the cube. The zero ord
is useful because it is inexpensive to calculate.

Visual differences on application data illustrate the qualitative differences.
multipass implementation could not process the medical data because of memory l
tions. Max intensity is useful because it is simple, and works on volumes which cont
lot of noise. FIGURE 78 shows the noise inherent in the MR angiography data. A com
ison of the filter quality using a trilinear and a zero order hold with max intensity are g
for a magnification of the 256x256x28 data to a 512x512 image using 8X magnifica
The filter difference on these medical image is readily apparent.

TABLE  22 Absolute summed error on rays for 45, 45, 45 degree rotation (See
FIGURE 77)

Cube Sphere

mean max mean max

zoh 48372 131070 3977 41886

multipass 65028 217719 802 10648

trilinear 48309 172078 259 3501



133
FIGURE  78 Data with Ramp to Show Noise

FIGURE  79 8X magnification, Zero Order Hold/ Trilinear

color photograph inserted

color photographs inserted



134

tics
lates
per-

view
erfor-

6,000
up-

Par’s
e on
mesh
router
essi-

ir-
neigh-
voxel

rpola-
oiding
es not
for dy-
iced

rp-
first

algo-
each
h each

ilarly
n doing

ized
ts
es to

ation
s the
This empirical study shows how a direct warp has improved filter characteris
over multipass shear approaches of [SCHR91] and [VEZI92]. The direct warp calcu
reconstruction filters identical to ray tracing of sequential algorithms. Next I present
formance measurements.

4.6.1 MasPar Implementation

Performance measurements were taken on the MasPar MP-1 [BLAN90]. I briefly re
the architecture, and then discuss implementation details. The MasPar used for the p
mance study was a 16384 SIMD processor MP-1 whose peak performance is 2
MIPS (32 bit integer) and 1,200 MFLOPS (32 bit floating point). The architecture s
ports frame buffers through VME frame grabbers, HIPPI connection, or through Mas
frame buffer (not available yet). Image display in the current implementation is don
the X host. The processors are interconnected through both a toroidally connected
with 23,000 Mbytes/sec peak bandwidth, and through a general multistage crossbar
with 1,300 Mbytes/sec peak bandwidth. The array controller provides a software acc
ble hardware timer that accurately captures the elapsed run time.

My implementation in MPL, a C like parallel language, uses the slice and dice v
tualization discussed, and virtualizes processors across all three dimensions. The
boring processors do not need to be accessed in the resampling step by providing a 1
overlap of volume storage on each processor. This allows the octant wherein the inte
tion point lies to be accessed by a random access in each processor’s local array av
the need for a costly case decision in the SIMD language. The storage overhead do
affect the size of volumes that can be processed, because there is a slight overhead
namic memory allocation. The data is loaded directly from disk into the slice and d
overlapped array.

The zero order hold is most efficiently calculated without using permutation wa
ing, and I therefore use a backwards calculation and no overlapping for the zoh. The
order hold uses the rule calculation for a significant advantage over the backwards
rithm. My implementation takes advantage of the MasPar instruction ScanMax. Once
processor composites its subcube, ScanMax composite across z in segments to finis
parallel product of each ray with one instruction. The over operator can be done sim
using the Scan operator to create the proper transparency at each processor, and the
a parallel addition.

A max intensity parallel product operator was used to generate like s
(32x32x32 to 32x32) byte images. Sizes of 323 to 2563 were processed. Measuremen
given are the average of multiple runs at each angle. FIGURE 80 shows the run tim
render a 128x128x128 byte volume to a 128x128 image. See TABLE 23. The rot
only times are given in FIGURE 80 also showing how the resampling for rotation take



135

ut y,

e ef-
rri-
majority of the time. The many lines for each filter show rotation about x, rotation abo
rotation about z, and rotation about x, y, and z.

FIGURE  80 Nearly Constant Run Time Versus Angle

By using a single decomposition of the rotation all of the rotation angles can b
ficiently calculated with tunable (zoh, trilinear, or cubic) filters. There is no artificial ba

TABLE  23 16k Processor MP-1 128x128x128 Volume Rendering Times in
Milliseconds

Filter Rotation Axes 0 20 40 60 80

Foh About x 434.235 482.359 496.150 504.567 533.154

About 434.235 485.119 493.886 497.846 537.060

About 434.811 498.804 508.437 512.326 543.372

About , , and 434.235 502.090 508.438 520.601 606.616

Zoh About x 145.060 185.513 196.245 205.139 236.907

About 145.060 186.502 192.709 199.392 237.332

About 145.614 205.881 213.413 221.776 239.916

About , , and 145.060 206.853 212.068 224.002 252.644

0

0.1

0.2

0.3

0.4

0.5

0.6

0 10 20 30 40 50 60 70 80 90

R
u
n
 
T
i
m
e
 
(
S
e
c
o
n
d
s
)

Angle (Degrees)

First Order Hold about XYZ

about X

about Y

about Z

Zero Order Hold about XYZ

about X

about Y

about Z

y

z

x y z

y

z

x y z



136

e uses
intain

max
per-
ffec-

akes
per-

has
hows

92]
to 5

uter
con-
TA-

der
, but
ithm
er at 45 degrees as with the multiple pass approaches, and with a decomposition th
reflected inputs to the matrix the cotangent can be used instead of the tangent, to ma
stability for angles 90 degrees to 180 degrees.

FIGURE 81 gives the mean run time across all angles, and using the min and
as error bars, for different volume sizes. See TABLE 23 and TABLE 24. Note that the
formance is tightly bounded for each volume. The performance is predictable. The e
tiveness of direct warps lies in the performance filter tunability. The zero order hold t
from 73% to 146% less time than the first order hold, and can be used for interactive
formance in viewing the larger volumes. The trilinear interpolation, or first order hold,
comparable performance to the multipass warps but is more accurate. FIGURE 79 s
the filter quality tuning for the foh and zoh. Comparisons to [VEZI92] and [SCHR
show that my resampling times are about a factor of 4 slower than [VEZI92] and 1.3
times faster than [SCHR91] for rotation only. See TABLE 25.

FIGURE  81 Run Times Versus Volume Size for the 16384 processor
MP-1

The factor of 4 slowdown is clearly a result of the general router and mesh ro
mismatch, recall 1300 Mbytes/s versus 23,000 Mbytes sec. But the communication
gestion is low for the permutation warp. Using the rotation speed of 0, 0, 0 degrees in
BLE 23 the congestion is 19% to 29% of the run time for the rule algorithm, first or
hold. The congestion is 40% to 43% for the backwards algorithm, or zero order hold
for that simple filter the overhead of the rule calculation makes a backwards algor

0.001

0.01

0.1

1

10

100

32x32x32 64x64x64 128x128x128 256x256x25

R
u
n
 
T
i
m
e
 
(
S
e
c
o
n
d
s
)

Volume Size

16 i860 Proteus trilinear
16 i860 Proteus zoh
16k MP-1 trilinear

16k MP-1 zero order hold

4k MP-2 trilinear
4k MP-2 zoh



137

est of

re is
aria-
irect
92]
cost

hen
com-
high

ared
er-
arallel
ation
s.
more efficient. The router start-up penalty and/or the rule overhead account for the r
the difference.

A comparison to other performance numbers in the literature reveals that the
intense competition for constant factor speedups TABLE 20. Because of the wide v
tion in view transforms, voxel formats, shading, preprocessing, and image sizes d
comparisons are difficult. The closest comparisons are to [VEZI92][SCHR91][SCHR
who use similar voxel sizes. Comparison of resampling times shows that direct filters
more (4 times more, [VEZI92]) but the direct filter is superior to the shear locally t
send approach [SCHR91] with up to a 5 times speedup depending on the machine
pared to. The forward wavefront approach [SCHR92] trades view angle freedom for
performance and a 1.35 speedup over my work TABLE 20.

The architecture strongly controls the algorithm features and performance. Sh
memory of the Dash [NIEH92] or full data replication [YOO91] provide the highest p
formance arbitrary view solutions. But these approaches cannot be used on data p
machine such as the MasPar MP-1/MP-2, CM-2, and CM-200. I have through permut
warping provided improved quality and view angle freedom for data parallel machine

TABLE  24 16K Processor MP-1 Slice And Dice Timings For Warping Only,
Milliseconds. Reconstruction to align and resample byte voxels with
orthographic view.

vol size Mean Min Max

Forward foh 32x32x32 12.223 10.403 14.923

64x64x64 66.698 56.962 81.431

128x128x128 501.673 429.225 601.604

256x256x256 3977.112 3407.390 4749.763

Backward zoh 32x32x32 6.591 5.384 8.076

64x64x64 28.422 20.378 37.909

128x128x128 203.063 140.105 281.743

256x256x256 1602.002 1096.583 2223.762



138

of
d for
d in

t use
revi-
ere is
time
algo-
oteus
y al-

mu-
a first
My implementation on the MasPar allows rendering with changing viewpoints
130 frames/second for 32x32x32 volumes to 32x32 images and 75 frames/secon
higher quality trilinear reconstruction. Volumes of size 128x128x128 can be rendere
4.8 frames/second with a zoh and 2.0 frames/second with a trilinear filter. I did no
transparency shading, but max intensity, but for rough comparison this improves on p
ous MasPar results [VEZI92] by a factor of 2, and because of the better filters used th
less error. Another important advantage, as illustrated in FIGURE 80, is that the run
is the same across all view angles. This is a significant improvement over previous
rithm work, and also exploits the network strengths of the MasPar. Rendering on Pr
can be compared roughly to Pixel Planes 5 [FUCH89] which also uses i860’s, and m
gorithm on Proteus does not require storage replication.

I think that any parallel computer with a network strong enough to support per
tations would achieve a rate dependent solely on the compiler or coding efforts, and

TABLE  25 Rotation Only, From [VEZI92][SCHR91] Milliseconds

Computer vol size Time
Speedup vs.

Permutation Warp

[VEZI92] zoh 4 pass 16k pe MP-1 128x128x128 49 0.241

16k pe MP-1 256x256x256 390 0.243

[VEZI92] foh 4 pass 16k pe MP-1 128x128x128 139 0.277

16-k pe MP-1 256x256x256 1107 0.278

[SCHR91] foh 5 pass 64k pe CM-200 128x128x128 268 1.320

32k pe CM-200 128x128x128 511 2.516

16k pe CM-200 128x128x128 1033 5.087

TABLE  26 Percent Performance Improvement for Different filters using Using
Permutation Warping on 16k Processor MP-1

Volume Size ZOH over FOH

32x32x32 73%

64x64x64 126%

128x128x128 143%

256x256x256 146%



139

t be
es-
implementation of the algorithm would not have communication congestion, but migh
computation inefficient. Various timings on the MasPar MP-1 with 1K and 16K proc
sors, the MP-2 with 4K processors, and Proteus with 16 processors follows.

TABLE  27 Volume Rendering Times For 1K MP-1, Seconds

Filters vol size Mean Min. Max

Trilinear 32x32x32 0.143146 0.116181 0.247137

64x64x64 1.088516 0.885357 1.922671

128x128x128 8.651044 7.027133 15.303813

256x256x256 69.061064 56.129872 122.29240

Zero Order Hold 32x32x32 0.073746 0.051313 0.168320

64x64x64 0.557138 0.379754 1.326254

128x128x128 4.442529 3.014020 10.646267

256x256x256 35.589276 24.132464 85.505345

TABLE  28 4K MP-2 Column Virtualization Timings for 128x128x128 Volume,
Seconds

Filter Mean Min Max

First Order Hold 1.342751 0.827207 4.233842

Zero Order Hold 0.852031 0.391235 3.564636

TABLE  29 Proteus Run Times, all output images are 256x256, Seconds

vol size
32 PE’s

Tril
32 PE’s

Zoh
1PE
tril

1 PE
Zoh

32x32x32 0.161 0.150 0.241 0.097

64x64x64 0.291 0.203 1.760 0.554

128x128x128 1.046 0.498 13.846 3.870

256x256x256 4.316 1.411 95.064 24.523



140

igi-
t I/O
71,
aggre-

is a
on
Each
hared
bus.

han-
r 32
pro-

erial
ut of
o a
age at
urrent
lay is

. The
data

ercon-
ourth
d data,
tion is
4.6.2 Proteus Implementation

Proteus is a scalable MIMD (multiple instruction multiple data) parallel computer or
nally intended for computer vision. The strong interconnection network provides fas
necessary for interactive visualization [SOMA91]. The machine, shown in FIGURE
has from 32 to 1024 processors, with 32 processors to a group. Each group has an
gate I/O of 16*250M bits/second.

A prototype group with 32 Intel i860’s has been implemented. The Intel i860
40MHz/Mips processor with built in floating point capability 80 peak MFlops, 8k byte
chip data cache, and 4k byte on chip instruction cache. Each cluster has 4 i860’s.
i860 has 1 Mbyte of external cache accessible by 160Mbyte/sec bus. The cluster’s s
memory is 8 Mbytes of DRAM upgradeable to 32 Mbytes, and has a 40 Mbyte/sec
Each cluster is controlled by a 33 MHz Intel i960 which sets up communication and
dles interrupts freeing the i860’s for computation. A group has 8 clusters of 4 i860’s fo
processors and 2.560 peak GigaFlops. FIGURE 71 shows the physical layout of 32
cessors in eight clusters labelled to . The interconnection network is a bit s
crossbar with single link transfer rates of 250 Mbits/second which achieve a throughp
roughly 20 Mbytes/second. A frame buffer is interfaced through the serial links s
256x256 byte image can be refreshed at 1280 frames/second, a 1024x1024 byte im
80 frames/second, and a 32 bit/pixel 1024x1024 image at 20 frames/second. The c
implementation uses the communication interface board as the frame buffer. Disp
done through a Sun server.

FIGURE 71 also shows the spatial layout of the 8 clusters assigned voxel data
network communicates cluster to cluster so the partitioning is done by clusters. The
set is not replicated. Each communication uses a permutation which the crossbar int
nection network (ICN) provides. Within each cluster, the four processors render one f
of the subimage being calculated. Because the cluster composites locally resample
only 7 messages are sent. Data sending is started before all of the local computa
complete, and compositing begins before all of the data has been transmitted.

TABLE  30 4K MP-2 Slice and Dice Timings for 128x128x128 Volume,
Seconds

Filter Mean Min Max

First Order Hold 1.123582 0.889419 1.230521

Zero Order Hold 0.560859 0.338280 0.751107

C0 C7



141

uter
or-
FIGURE  82 Spatial Volume Virtualization For Proteus

FIGURE  83 Run Time Versus Volume Size for Proteus and 16k
processor MP-1

I implemented the high granularity algorithm on the Proteus Supercomp
[SOMA91]. Two different reconstruction filters are used, a first order hold and a zero

Slice and Dice Virtualization

xy

z

C0
C1

C2

C3

C5
C6

C7C7
C3

Physical Layout Spatial Assignments

4 5 6 7 28 29 30 310 1 2 3

C0 C1 C7

ICN ICN

C3
C1

C2

Frame Buffer

0.1

1

10

100

64x64x64 128x128x128 256x256x25

R
u
n
 
T
i
m
e
 
(
S
e
c
o
n
d
s
)

Volume Size

 1 i860 Proteus trilinear
 1 i860 Proteus zoh      
32 i860 Proteus trilinear
32 i860 Proteus zoh      



142

m-
aphy
were
ging.

vol-
giv-

ges-
or-
sors.
near

n. The
ted
com-
cit
ces-

-
d 0.7
size
gram
es (8
nsity
his

of
der hold. Direct warps support high order filters more effectively. Max intensity ray co
bining is used, and different shading is possible with the same filters. MR angiogr
images were used after being window and leveled to 8bits/voxel. Images created
8bits/pixel. All measurements were taken using multiple runs of the code, and avera

FIGURE 83 shows the Proteus volume rendering algorithm’s run time versus
ume size (TABLE 29). The output image is 256x256 for all volume sizes. Speedup is
en in TABLE 31. Proteus provides a speedup of 24.

4.6.3 Comparison of Proteus With Existing Methods

My algorithm calculates backwards viewing, use tunable filters, and have limited con
tion and memory overhead for efficiency. The efficiency is run time, st
age for samples to render with rays, samples per ray, on proces
Measured performance is strongly controlled by the implementation. My numbers are
those of comparable powered machines, and I don’t use data dependent optimizatio
important result of this study is efficient arbitrary viewpoint rendering with distribu
volumes. Different shading, preprocessing, and voxel sizes make results difficult to
pare quantitatively (TABLE 19 and TABLE 20). Qualitatively I have shown that expli
distribution of source data is efficient and that parallel product can allow scaling pro
sors beyond the number of rays.

Comparison numbers for [VEZI92][YOO91]
[CAME92][CHAL92][SCHR91][STRE92][NIEH92] and [SCHR92] are included for tim
ing reference. My frame rates are 2 frames/second for 128x128x128 volumes an
frames/second for 256x256x256 volumes. I am able to visualize volumes of
512x512x128 of byte voxels. This uses 32 Megabytes leaving 32 Megabytes for pro
code and other variables. The total memory capacity of Proteus is 64 Megabyt
Mbytes per cluster) and can be increased to 32 Mbytes/cluster with higher de
DRAMs. The performance in millions of voxels per second ranges from 3 to 12. T
compares to the 31.77 Mvoxels/second of [SCHR92], 23.30 Mvoxels/second
[NIEH92], and 21.18 Mvoxels/second of [STRE92].

TABLE  31 Speedup Versus for 32 Processors

Volume Size Trilinear Zoh

64x64x64 6.05 2.73

128x128x128 13.24 7.80

256x256x256 22.03 17.38

O S P⁄( ) O S( )
S RW= R W P



143

ated
ality
tions
ear

, pro-
rallel
ines

ken

s, be-
o not
prove

in

el as-
and

com-
. This

hows
ma-
and

and
ore
warp-

of 5
tion
lts
d,
and
re-

oteus
es 5
es-

lity,
fea-
4.7 Summary and Discussion

I presented optimal EREW PRAM algorithms for volume rendering, and demonstr
their efficiency on parallel machines. General reconstruction filters provide time/qu
trade-offs not possible in previous parallel approaches making parallel implementa
more useful for volume rendering. Volume rendering is ideally parallelizeable with lin
speedup. Theoretically, volume rendering can be a constant run time algorithm
vided that the network can composite all of the ray samples. As parallelism grows, pa
prefix and parallel product are more valuable for volume rendering. But, today’s mach
fall well into the linear speedup region , is the number of samples ta
to create the output image.

Volume rendering costs are linked to the data structures and representation
cause of the high compute and storage costs. Volumes, while conceptually simple, d
provide the fastest visualization. Octrees, amalgams, and transparent surfaces can im
efficiency. In fact few applications require explicit voxelization, only the effects of light
semitransparent media, which boundary surfaces can represent.

Regardless of the data structure, object space partitioning gives easy parall
signment shown by my parallel algorithms. I have shown SIMD and MIMD results
found more important differences lie in the supported message granularity.

The data parallel version can be ported to massively parallel general purpose
puters and the high granularity version can be implemented on less parallel machines
fact, and the ability to change combining rules, shading, or reconstruction filters, s
that permutation warping achieves high efficiency with great flexibility on general
chines. Special purpose machines cannot offer this flexibility in shading, combining,
filter choices. My streamlined communication supports many filters for truly useful
general algorithms. My algorithms also support arbitrary viewpoints efficiently. Bef
these results, researchers thought general viewpoints were inefficient. Permutation
ing proves this not to be the case.

My implementation on the MasPar allows rendering with changing viewpoints
frames/second and 2 frames/second for higher quality trilinear reconstruc
(128x128x128 volumes). This improves on previous resu
[DREBB88][SCHR91b][VEZI92][KABA92][WRIG92] because of the better filters use
and I illustrated the filter differences. Permutation warping is also memory efficient,
the data parallel algorithm requires memory and the high granularity algorithm
quires . The practical effect is larger data sets can be rendered, and on Pr
and the MasPar I rendered volumes of Megabytes. On Pixel Plan
[YOO91], for example, network inefficiency required storing the volume on every proc
sor, limiting data sizes to . My algorithms are simultaneously tunable for filter qua
communication efficient, space efficient, and general. Providing sequential algorithm
tures in an efficient parallel algorithm is a most significant contribution.

O 1( )

P O S Slog⁄( )= S

S S′+

S R PxPy( )⁄+

512 512 128× × 32

1283



144



ove-

m
lume
veral
se 2D
patial

m of
form
t re-
Chapter V
Fourier Volume Rendering

In this chapter I review Fourier volume rendering and discuss possible algorithm impr
ments, and recent developments by other researchers.

5.1 Background

Fourier volume rendering [MALZ91][DUNN90][LEVO92] uses transitions to and fro
the frequency representation of a volume for rendering. Because the majority of vo
data is created by the use of the projection slice theorem [KAK88], it was clear to se
researchers that Fourier volume rendering held promise. This approach is fast becau
frequency data creates 3D spatial information. There are similar techniques in the s
domain [HARR78][JAFF82].

FIGURE  84 Fourier Slice Theorem, projection top, spectra bottom

The approach is as follows. Compute the three dimensional Fourier transfor
the volume saving calculation and storage by using the 3D real Hartley trans
[BRAC86]. The Hartley transform is more efficient because the data is not complex bu
al. Given the Fourier transform , the Hartley transform  is

, (EQ 79)

and the three dimensional Hartley transform is,

, (EQ 80)

where .

dθ p( )

d x y,( )
θ

DΘ q( ) Θ

q

u

v

V r s t, ,( )

F f( ) H f( )

H f( ) F real f( ) F imag. f( )–=

H u v w, ,( ) V r s t, ,( )cas 2π ur vs wt+ +( )( ) r s tddd
∞–

∞∫∞–

∞∫∞–

∞∫=

casθ θcos θsin+=



146

of
at
e.

tted

ject.

entire
line

sity

of an
. The

her
am-
90].
stly
orm.
Then, by the Fourier slice theorem [KAK88], any planar slice through the origin
the spectra is the Hartley transform of the projection of the volume
that same angle where  is a 2D plane oriented at angle  in the spectral volum

FIGURE 84 illustrates the Fourier slice theorem, where is the transmi

intensity, is the projected density that passes through the ob

The transmitted density’s spectra represents one line of spectral information for the
object. is the incident beam intensity, distance along detector array, and the

. Reversing the projection and going from the spectra, to the den

 calculates the line integral or shadowgram .

From a three dimensional spectra, represents the Hartley transform
angle of projection, and an inverse transform of a slice calculates the projection itself
inverse Hartley transform is

. (EQ 81)

FIGURE  85 Fourier Volume Rendering

Malzbender [MALZ91] has implemented a Fourier approach, and shown hig
efficiency than backward mapping algorithms. The difficulty that he runs into is in res
pling and reconstruction in the Fourier domain, a problem also seen by [DUNN
Malzbender found the filtering to reconstruct the planar slice of was more co
than the inverse fast Hartley transform , a direct analog of the fast Fourier transf

H u v w, ,( ) V r s t, ,( )
u′ v′, θ φ,

I p θ,( )

d p θ,( )
I o

I p θ,( )
-----------------log=

I o p

q u2 v2+= DΘ q( )

d x y,( ) d p θ,( ) d x y,( ) ld
∞–

∞∫=

H u v w, ,( )

I x y,( ) H u′ v′,( )cas 2π u′x v′y+( )( ) u′ v′dd
∞–

∞∫=

V r s t, ,( ) H u v w, ,( )

H u′ v′,( )

HT

HT 1–

planeH u v w, ,( )

I x y,( )

H u v w, ,( )

HT 1–



147

atial
d re-
ffer-
rtley

f the
. The

trans-
ard

lume
erings.

sev-
nt is-
ding,
dient
ome-
al ad-
dering

giog-
ed in
n does
artley
FIGURE 85 shows the transformation process. The rabbit in the upper left is the sp
model, voxels. The Hartley transform, HT, computes a 3D spectra. By sampling an
construction a 2D plane of spectra through the origin is obtained in the lower left. Di
ent plane orientations create projections in different directions. The inverse Ha

transform, , computes a 2D plane of intensities, , that is a shadowgram o
original data. The shadowgram represents attenuation and is like an artificial X-ray
speed of the process is obvious because the 2D plane selection and inverse Hartley
form work with only a slice of data. This contrasts with both forward mapping, backw
mapping, and surface fitting algorithms that work with a full volume of data.

Because the Fourier slice theorem dictates that a line integral through the vo
is formed it may not be possible to achieve hidden surface and surface shaded rend
Nevertheless reprojection is valuable for medical and speed critical applications.

5.2 Possible Fourier Volume Rendering Approaches

I had proposed to perform Fourier volume rendering using the Radon transform, and
eral architectures have surfaced to compute the Radon transform [CURR92]. Importa
sues for Fourier volume rendering have turned out to be how to get anisotropic sha
and how to avoid aliasing artifacts. Levoy has implemented an algorithm that uses gra
volumes in orthogonal directions to give directional shading results. The results are s
what ambiguous because of the view independent shading model. The computation
vantage is somewhat reduced because four precalculated volumes are used for ren
instead of one.

FIGURE  86 Volume Rendering Transform Graph

For those applications that do not require directional shading, such as MR an
raphy, Fourier volume rendering is ideal. In MR angiography because data is collect
the frequency domain, rendering is even more direct, because a spatial representatio
not have to be created until a projection angle is chosen. A three dimensional fast H

HT 1– I x y,( )

V ℜ3 I ℜ2

H3
Levoy Fourier

H2

Existing Algorithms

H3
Malzbender Fourier

H2

H3

H3

H3

H2

H2

H2

∑



148

ke
e.

,
al-

ors is
tial

recon-
t. By

n be
ey of
sym-
ate
ctan-

d for
], but

r fil-
evelop-
ing
aral-
transform takes work [DUDG84]. The two dimensional inverse would ta
for each projection. This can be fully parallelized for parallel run tim

The fastest algorithms, using processors for Fourier volume rendering is
and for spatial volume rendering is . But the Fourier volume rendering
gorithm works with less data, and therefore with a comparable number of process
faster. Using processors for both, Fourier rendering is still while spa
rendering is  for a clear advantage.

Polar coordinate transforms may ease the resampling problem. Because the
struction, or resampling, is the costliest step, reducing the resampling cost is importan
sufficient prefiltering, a high quality polar coordinate representation of the volume ca
created, which allows less expensive spatial reconstruction following projection. Surv
the literature reveals that polar coordinates are often used in derivation of circularly
metric function transforms or the Hankel transform [JAIN89]. A fast polar coordin
transform is difficult to derive because the sampling geometry is not separable like re
gular coordinates.

(EQ 82)

FIGURE  87 Polar coordinates

The Radon transform is generalized Hough transform, which can be adapte
rendering purposes. The Radon transform is the projection of spatial data [JAIN89
how to create anisotropic, or directional lighting effects is unclear.

5.3 Summary and Discussion

There are intriguing possibilities for development of frequency representation both fo
tering and rendering of sampled data sets. Researchers are skeptical about the d
ment of anisotropic shading in Fourier methods [MALZ90b], but Fourier render
provides the fastest asymptotic run time complexity method for both sequential and p
lel volume rendering algorithms.

O S Slog( )
O R Rlog( ) O Rlog( )

P R= O Rlog( )
P S= O Wlog( )

P R≈ O Rlog( )
O S R⁄( ) O W( )=

g r θ φ, ,( ) G s Θ Φ, ,( )ei2πsr Θcos θcos Θsin θsin φ Φ–( )cos+[ ]s2 Θ s Θ Φdddsin

0

2π

∫
0

π

∫
0

∞

∫=



algo-
wl-
with

. Be-
me
n ap-
ource
timal
nds on
on

tro-
ed as
neral
CM

om-

ing
ortant
e fi-

Algo-
new

rece-
re,
tech-
ine

clu-
but

neral
ors,
Chapter VI
Conclusions

In this dissertation I have presented an algorithm design framework, and several new
rithms for optimal parallel volume rendering. My framework is a collection of the kno
edge used in developing algorithms. A directed graph representation allows working
algorithms at a high level using representations and algorithms as building blocks
cause of the multiplicity in transform calculations, including spatial warping and volu
rendering, the most efficient algorithms were derived using my methodology. Such a
proach creates more portable and flexible algorithms using abstractions where res
and efficiency trade-offs are easier to make. My volume rendering algorithms are op
because they achieve linear speedup, are memory efficient, and achieve lower bou
the EREW PRAM. My algorithms are also practically efficient and implementation
SIMD (MasPar) and MIMD (Proteus) confirm the complexity analysis.

6.1 Applying the Framework to Other Algorithms

Evaluating algorithms before coding is important and the bridging model that I in
duced, the MCCM, allows designers to evaluate parallel algorithms. Intended to be us
an engineering tool, the MCCM is simple, and adds communication costs and a ge
network topology to the PRAM. I used the directed graph representation and the MC
to develop parallel warping and volume rendering algorithms. The MCCM run time c
plexity accurately matched the MasPar and Proteus performance measurements.

For any application many algorithms will work, but by setting clear goals, us
knowledge of resources and parameters, one can design efficient algorithms. An imp
contribution of this dissertation is development of parallel algorithms that give the sam
delity as sequential algorithms, and that are portable to existing parallel computers.
rithms designers should not have to give up features to use parallel computers. My
parallel warping and volume rendering algorithms achieve linear speedup with unp
dented flexibility in view angles, reconstruction filters, and image fidelity. In the futu
portable algorithms will be easier to develop, because slowdown compilers provide a
nology for efficient portability. Efficiently parallelized algorithms are portable, mach
scalable, problem size scalable, and generation scalable.

6.2 Designing Parallel Warping Algorithms

My parallel spatial warping algorithms are with a processor per sample. The ex
sive read exclusive write (EREW) algorithm is restricted to equiareal transforms,
joined with the CREW algorithm can down sample or up sample to achieve more ge
transforms. Because an EREW PRAM algorithm strictly limits interaction of process

O 1( )



150

algo-

es-
effi-
the

cessor
ional

ues
r
algo-
lity,

y di-
ages.
l im-

hms
ulti-

truc-
s are
ront
limit
filter-
ds
opti-
to
lume
rks.

m de-
impor-
the EREW algorithm turns out to be much more efficient than the concurrent read
rithm. The MCCM makes these differences explicit.

I also illustrated how to slow down the algorithm for machines with fewer proc
sors than samples. Any parallel computer with a general interconnection network can
ciently warp an image with run time, for processors and samples. On
MasPar, slice and dice virtualization, and a 1 sample boundary overlap on each pro
kept the density of messages low for any rigid body two dimensional or three dimens
warp.

Other parallel warping algorithms relied primarily on multipass warp techniq
[PAET86][TANA86][SCHR91][HANR90] which have poorer filter quality. Higher orde
transforms are possible with multipass warps, but my algorithms provide a two pass
rithm, one with scaling, and the other equiareal, for a good mix of generality, filter qua
and efficiency.

6.3 Designing Parallel Volume Rendering Algorithms

Warping algorithms are useful for volume rendering, because they generalize to an
mensional image and in fact there are greater advantages with higher dimensional im
For example two dimensional improvement is as high as 59% and three dimensiona
provement is up to 100%. I compare existing parallel volume rendering algorit
grouped into four categories determined by their viewing transforms: backwards, m
pass forwards, forwards wavefront, and forwards splatting.

Existing backwards parallel volume rendering algorithms have general recons
tion filter support, but restrict platforms or data set sizes. Existing multipass algorithm
very efficient, but restrict viewpoints and reconstruction filter quality. Forwards wave f
algorithms have higher quality projection filters, but require post processing, and
view points similar to the multipass approaches. Forwards splatting algorithms have
ing error from out of order compositing [WILH91]. My algorithms calculate backwar
viewing, use tunable filters, and have limited congestion and memory overhead for
mal efficiency. The efficiency is run time, storage for samples
render with rays, samples per ray, on processors. My fastest EREW spatial vo
rendering algorithm is which can be improved upon by using stronger netwo

6.4 Future Research

There are several research areas touched upon in this dissertation: parallel algorith
sign, volume rendering techniques, and parallel software methods. Each area has
tant open research problems.

O S P⁄( ) P S

O S P⁄( ) O S( ) S RW=

R W P

O Wlog( )



151

lgo-
ansi-
s that
s and

rithm

such
strib-
sam-
dup
ench-
ithms,

86]
et of

for
ear-
ould

lers
ts are
rallel
de-

, and
s.

im-
lume
when
cessi-
I showed how transition graphs are a starting point for global optimization of a
rithms. The algorithms developed in this dissertation were discovered by using the tr
tion representation, investigating the alternatives, and working hard on those edge
represented the best features and performance. Automation of the transition choice
automated postulation of transitions is one topic. Optimization techniques and algo
representations are the first issues to investigate.

There is much research left for constant factor speedups in volume rendering
as ray termination, bounding hulls, adaptive sampling, and adaptive quadrature. A di
uted algorithm using my permutation warping, and optimizations such as adaptive
pling, ray termination, and bounding hulls would provide the best of both parallel spee
and data dependent optimizations. Another important research area is effective b
marks and standard data sets for comparison of volume rendering hardware, algor
and packages.

Extension of the warping techniques to free form deformations (FFD’s) [SEDE
would provide parallelism for interactive solid modelling. Because of the unique subs
FFD’s that are volume preserving, I believe that an optimal warping algorithm exists
them. Additionally FFD’s would allow interactive viewing of sampled data, such as sh
ing away material instead of simply changing the transparency. This interactivity c
provide a better understanding of the 3D nature of the data than possible before.

I have highlighted important research for parallel software. Slowdown compi
can provide unprecedented parallel code portability. Although the development cos
high, standards, and widespread use would provide longevity currently missing in pa
software. Missing technologies for slowdown include general efficient communication
composition, control of slackness or multithreading bounds necessary for efficiency
accepted parallel languages. Effective progress requires collaboration and standard

My investigation of parallel volume rendering has been fruitful, and points to
portant problems in parallel algorithms research. I have developed optimal parallel vo
rendering algorithms, and introduced a methodology to control the decision space
designing parallel algorithms. Further generalization of my approach can increase ac
bility of parallel computing.



s.

nd

-
ed-

al
26,

Inc.

EE

sac-

es,”

m-
, Se-

ro-
eat-

on
San

ty

n a
lec-
.

l

Bibliography

[AHO83] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, Data Structures and Algorithm
Bell Telephone Laboratories, 1983.

[AHO86] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers Principles, Techniques, a
Tools. Reading, MA: Addison-Wesley, 1986.

[ALVE90] G. A. Alverson, W. G. Griswold, D. Notkin, and L. Snyder, “A Flexible Com
munication Abstraction for Nonshared Memory Parallel Computing,” in Proce
ings of Supercomputing ‘90, 1990.

[BAJU92] M. Bajura, H. Fuchs, and R. Ohbuchi, “Merging Virtual Objects with the Re
World: Seeing Ultrasound Imagery within the Patient,” Computer Graphics, Vol.
No. 2, July 1992, pp. 203-210.

[BARN88] M. Barnsley, Fractals Everywhere. San Diego, CA: Academic Press,
1988.

[BARR81] A.H. Barr, “Superquadrics and Angle-Preserving Transformations,” IE
Computer Graphics and Applications, January 1981, pp. 11-23.

[BATC80] Kenneth E. Batcher, “Design of a Massively Parallel Processor,” IEEE Tran
tions on Computers, Vol. C-29, No. 9, September 1980, pp. 836-840.

[BELL92] G. Bell, “Ultra Computers: A Tera Flop Before Its Time”,Communications of
the ACM, Vol 35, No. 8, Aug 1992, pp. 27-47.

[BENN84] P.P. Bennet and S. A. Gabriel, “System for Spatially Transforming Imag
U.S. Patent 4,472,732, Sep. 18, 1984.

[BERS88] B. N. Bershad, et al. “An Open Environment for Building Parallel Progra
ming Systems,” tech. rep. Dept. of Computer Science, University of Washington
attle, WA, Jan. 1988, tech rep. 88-01-03.

[BERS88b] B. N. Bershad, et al. “PRESTO: A System for Object-Oriented Parallel P
gramming,” tech. rep. Dept. of Computer Science, University of Washington, S
tle, WA, Jan. 1988, tech rep. 87-09-01.

[BLAN90] T. Blank, “The MasPar MP-1 Architecture,” in Proceedings of Compc
Spring 90 The Thirty-Fifth IEEE Computer Society International Conference,
Francisco, CA Feb. 26-March 2, 1990, pp. 20-24.

[BLIN82] J. F. Blinn, “Light Reflection Functions for Simulations of Clouds and Dus
Surfaces,”Computer Graphics, Vol. 16, No. 3, pp. 21-29, July 1982.

[BLIN90] J. F. Blinn, “JIm Blinn’s Corner ‘The Truth About Texture Mapping,’” IEEE
Computer Graphics and Applications, Mar. 1990, pp. 78-83.

[BRAC86] R. N. Bracewell,The Hartley Transform. New York, NY: Oxford University
Press, 1986.

[BRAD92] R. Brady and C. Potter, “A Real-Time 3D Volume Rendering Technique O
Massively Parallel Supercomputer,” abstract in SPIE/ IS&T’s Symposium On E
tronic Imaging Science and Technology, San Jose, CA, Feb. 9-14, 1992, p. 104

[BRIGG87] W. L. Briggs,A Multigrid Tutorial. Philadelphia, PA: Society for Industria
and Applied Mathematics 1987.



153

nded

ata
ics

irst

NJ

r-

es-

rk of
ton,

wo
ical
1.
s.

ics

yn-
fic
,

rm
90,

evo-

in
992,
[BRUN90] P. Brunet and I. Navazo, “Solid Representation and Operation Using Exte
Octrees,”ACM Transactions on Graphics, Vol. 9, No. 2, pp. 170-197. Apr. 1990.

[CAME92] G.G. Cameron and P.E. Undrill, “Rendering Volumetric Medical Image D
on a SIMD Architecture Computer,” in Proceedings of the Third Eurograph
Workshop on Rendering, Bristol England 17-20 May 1992

[CANN92] D. Cann, “Retire Fortran? A Debate Rekindled,”Communications of the ACM,
Vol. 35, No. 8, Aug. 1992, pp. 81-89.

[CARR90] N. Carriero and D. Gelernter, How To Write Parallel Programs, A F
Course. Cambridge, MA: The MIT Press, 1990.

[CAST79] K.R. Castleman, Digital Image Processing. Prentice Hall, Englewood Cliffs
1979.

[CATM80] E. Catmull and A.R. Smith “3D Transformations of Images in Scanline O
der,” Computer Graphics, Vol. 14, No. 3, July 1980 pp. 279-285.

[CHAL92] J. Challinger, “Parallel Volume Rendering on a Shared-Memory Multiproc
sor,” Technical report UCSC-CRL-91-23, UC Santa Cruz, 1992.

[CHAN60] S. Chandrasekhar,Radiative Transfer. Dover, NY: Oxford University Press,
1960.

[CHAS89] J. S. Chase, et al., “The Amber System: Parallel Programming on a Netwo
Multiprocessors,” tech. rep. Dept. of Computer Science, University of Washing
Seattle, WA, Sep. 1989, tech rep. 89-04-01.

[CLIN88] H. E. Cline, W. E. Lorensen, S. Ludke, C.R. Crawford, and B. C. Teeter, “T
Algorithms For the Three-Dimensional Reconstruction of Tomograms,” Med
Physics, Vol. 15, No. 3, May/Jun. 1988, pp. 320-327. Also in [KAUF91] pp. 64-7

[CORM90] T. H. Cormen, C. E. Lieserson, and R. L. Rivest, Introduction to Algorithm
Cambridge, MA: The MIT Press, 1990.

[CROW88] F. C. Crow, “Parallelism in Rendering Algorithms,” In Proceedings Graph
Interface’88, Edmonton, Alberta, June 6-10, pp. 87-96.

[CROW89] F. C. Crow, G. Demos, J. Hardy, J. McLaughlin and K. Sims, “3D Image S
thesis on the Connection Machine,” inProceedings of the Conference on Scienti
Applications of the Connection Machine, World Scientific Publishing Co., PTE Ltd.
Ed H. D. Simon, 1989.

[CURR90] W. Current, P. Hurst, E. Shieh, and I. Agi, “An Evaluation of Radon Transfo
Computations Using DSP Chips,” Machine Vision and Applications, Vol. 3, 19
pp. 63-74.

[CYBE92] G. Cybenko and D.J. Kuck, “Supercomputers/Reinventing the Machine: R
lution or evolution?,” IEEE Spectrum, Sept. 1992, pp. 39-41.

[DANS92] J. Danskin and P. Hanrahan, “Fast Algorithms for Volume Ray Tracing,”
Proceedings of 1992 Workshop on Volume Visualization, Boston, Oct. 19-20, 1
pp. 91-97.

[DREB88] R. A. Drebin, L. Carpenter, and P. Hanrahan, “Volume Rendering,”Computer
Graphics, Vol. 22, No. 4, pp. 65-74, Aug. 1988.

[DUDG84] D. E. Dudgeon and R. M. Mersereau,Multidimensional Signal Processing.
Englewood Cliffs, NJ: Prentice Hall, 1984.



154

19,

irst
nta

r

r,”

tual

acti-

,”

To
2,

-

nel
and

ed

ach
ely

hics

al

for

C
30,
[DUFF85] T. Duff, “Compositing 3-D Rendered Images,” Computer Graphics, Vol
No. 3, July, 1985, pp. 41-43.

[DUNN90] S. Dunne, S. Napel, and B. Rutt, “Fast Reprojection of Volume Data,” in F
Conference on Visualization in Biomedical Computing, May 22-25, 1990, Atla
GA, pp. 11-18.

[ELVI92] T. T. Elvins, “A Survey of Algorithms for Volume Visualization,” Compute
Graphics, Vol. 26, No. 3, Aug. 1992, pp. 194-201.

[ELVI92b] T. T. Elvins, “Volume Rendering on a Distributed Memory Parallel Compute
in IEEE Visualization ‘92, Boston, MA, Oct. 19-23, 1992, pp. 93-98.

[ESPO79] L. W. Esposito, “Extensions to the Classical Calculation of the Effect of Mu
Shadowing in Diffuse Reflection,”Icarus, Vol. 39, pp. 69-80, 1979.

[FARI88] G. Farin, Curves and Surfaces for Computer Aided Geometric Design, A Pr
cal Guide.” San Diego, CA: Academic Press, 1988.

[FEIB80] E. Feibush, M. Levoy, R. Cook, “Synthetic Texturing Using Digital Filters
Computer Graphics, Vol. 14, No. 3, pp. 294-301, July 1980.

[FELD92] Y. Feldman and E. Shapiro, “Spatial Machines: A More Realistic Approach
Parallel Computation,” Communications of the ACM, Vol. 35, No. 10, Oct. 199
pp. 60-73.

[FIRM90] D. N. Firmin et al., “The Application of Phase Shifts in NMR for Flow Mea
surement,”Magnetic Resonance in Medicine, Vol. 14, pp. 230-241, 1990.

[FOLE90] J. Foley, A. vanDam, S.K. Feiner, and J.F. Hughes,Computer Graphics Princi-
ples and Practice, Second Edition. Reading, MA: Addison Wesley Inc., 1990.

[FRASE85] D. Fraser, R. A. Schowengerdt, and I. Briggs, “Rectification of Multichan
Images in Mass Storage Using Image Transposition,” Computer Vision Graphics
Image Processing Vol. 29, No. 1, Jan. 1985, pp. 23-36.

[FRIE85] G. Frieder, D. Gordon, R. A. Reynolds, “Back-to-Front Display of Voxel-Bas
Objects,”IEEE Computer Graphics and Applications, Vol. 5, No. 1, pp. 52-60, Jan.
1985.

[FRIE88] G. Frieder, O. Frieder, and M. R. Stytz, “A High Performance Parallel Appro
to Medical Imaging,” in IEEE Second Symposium on The Frontiers of Massiv
Parallel Computations, 1988 Oct 10-12 Fairfax, VA, pp. 282-288.

[FUCH89] H. Fuchs et al., “Pixel-Planes 5: A Heterogeneous Multiprocessor Grap
System Using Processor-Enhanced Memories,”Computer Graphics, Vol. 23, No. 3,
pp. 79-88, July 1989.

[FUCH89b] H. Fuchs, M. Levoy, and S. Pizer, “Interactive Visualization of 3D Medic
Data,” IEEE Computer, Vol. 22, No. 8, pp. 46-51, Aug. 1989.

[GALL89] R. Gallagher and J. Nagtegaal, “An Efficient 3-D Visualization Technique
Finite Element Models and Other Course Volumes,”Computer Graphics, Vol. 23,
No. 3, pp. 185-194, July 1989.

[GEIS90] G. A. Geist, et al., PICL A Portable Instrumented Communication Library
Reference Manual, tech. rep., Oak Ridge National Laboratory, ORNL/TM-111
Oak Ridge, TN, July 1990.



155

ni-
ak

s for

ted
P.O.

ity

ca-

al-
EE
d in

ues

lti-

ter-

ing
o. 3,

ro-
.
y-

ical

c-
ory

en-

” in
[GEIS90] G. A. Geist, et al., A User’s Guide To PICL A Portable Instrumented Commu
cation Library, tech. rep., Oak Ridge National Laboratory, ORNL/TM-11616, O
Ridge, TN, Sep. 1990.

[GELE90] D. Gelernter, A. Nicolau, and D. Padua, Editors, Languages and Compiler
Parallel Computing. Cambridge, MA: MIT Press, 1990.

[GEME90] GE Medical Systems, “3D Image Display and Manipulation,” in Integra
Diagnostics Update, Works-in-progress presentation, GE Medical Systems,
Box 414, Milwaukee, WI 53201, 1990.

[GIBB88] A. Gibbons and W. Rytter, Efficient Parallel Algorithms. Cambridge Univers
Press, Cambridge, England, 1988.

[GLAS88] A. S. Glassner, “Space-time Ray Tracing For Animation,”IEEE Computer
Graphics and Applications, Vol. 8 No. 2, pp. 60-70, Mar. 1988.

[GLASS89] A. S. Glassner, Editor, An Introduction To Ray Tracing. San Diego, CA A
demic Press Limited, 1989.

[GOLD85] S. M. Goldwasser, R. A. Reynolds, T. Bapty, D. Baraff, J. Summers, D. A. T
ton, and E. Walsh, “Physician’s Workstation with Real-Time Performance,” IE
Computer Graphics and Applications, Vol. 5, No. 12, Dec. 1985, pp. 44-56, an
[KAUF91] pp. 321-334.

[GOLD88] S. M. Goldwasser, R. A. Reynolds, D.A. Talton, and E.S. Walsh, “Techniq
for the Rapid Display and Manipulation of 3D Biomedical Data,”Computed Medi-
cal Imaging and Graphics, Vol. 12 No. 1, pp. 1-25, 1988.

[GOLU89] G. H. Golub and C. F. VanLoan, Matrix Computations, Second Edition. Ba
more, Maryland: The Johns Hopkins University Press, 1989.

[GOOD84] J. W. Goodman, F. J. Leonberger, S. Y. Kung, and R. A. Athale, “Optical In
connections for VLSI Systems,”Proceedings of the IEEE, Vol. 72, No. 7, July 1984,
pp. 850-866.

[GOSH89] A. Goshtasby, “Correction of Image Deformation From Lens Distortion Us
Bezier Patches,” Computer Vision, Graphics, and Image Processing, Vol. 47, N
Sep. 1989, pp. 385-394.

[GREE89] N. Greene, “Voxel Space Automata: Modeling with Stochastic Growth P
cesses in Voxel Space,”Computer Graphics, Vol. 23, No. 3, pp. 175-184, July 1989

[GREE92] G. Greenwood, “A Methodology For Mapping Pipelined Algorithms Onto H
percube Arrays,” Ph.D. Dissertation, University of Washington, Dept. of Electr
Engineering 1992.

[GRIS90] W. G. Griswold, G. A. Harrison, D. Notkin, and L. Snyder, “Scalable Abstra
tions for Parallel Programming,” in Proceedings of the Fifth Distributed Mem
Computing Conference, Charleston, South Carolina, April 1990.

[HAAC90] E. M. Haacke et al., “Optimizing Blood Vessel Contrast in Fast Three-Dim
sional MRI,”Magnetic Resonance in Medicine, Vol. 14, pp. 202-221, 1990.

[HANR90] P. Hanrahan, “Three-Pass Affine Transforms for Volume Rendering,”Comput-
er Graphics, Vol. 24, No. 5, pp. 71-78, Nov. 1990.

[HANS92] C. D. Hansen and P. Hinker, “Massively Parallel Isosurface Extraction,
IEEE Visualization ‘92, Boston, MA Oct. 19-23, 1992, pp. 77-83.



156

ri-
To-
ing

s
A.

m-
July

nd

tive

EE

85.
-

ans,
ng-

lo-
n-

ain
za-

tice

g

[HARR78] L. D. Harris, R. A. Robb, T. S. Yuen, and E. L. Ritman, “Noninvasive Nume
cal Dissection and Display of Anatomic Structure Using Computerized X-Ray
mography,” inSPIE Vol. 152, Recent and Future Developments in Medical Imag,
1978, pp. 10-18.

[HARR90] W. L. Harrison III and Z. Ammarguellat, “A Comparison of Automatic Versu
Manual Parallelization of the Boyer-Moore Theorem Prover,” in D. Gelernter,
Nicolau, and D. Padua, Editors,Languages and Compilers for Parallel Computing.
Cambridge, MA: MIT Press, 1990, pp. 402-422.

[HATC91] P. J. Hatcher et al. “Short Notes-Data-Parallel Programming on MIMD Co
puters,” IEEE Transactions on Parallel and Distributed Systems, Vol. 3, No. 2,
1991, pp. 377-383.

[HECK86] P.S. Heckbert “Survey of Texture Mapping,” IEEE Computer Graphics a
Applications Vol 6, No. 11, November 1986 56-67.

[HENN90] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantita
Approach. San Mateo, CA: Morgan Kaufmann 1990.

[HERM92] G. T. Herman, J. Zheng, C. A. Bucholtz, “Shape Based Interpolation,” IE
Computer Graphics and Applications, Vol. 12, No. 3, May 1992, pp. 69-79.

[HILL85] W. D. Hillis, The Connection Machine. Cambridge, MA: The MIT Press, 19
[HIRA92] S. Hiranandani, K. Kennedy, C. Tseng, “Compiling Fortran D: for MIMD Dis

tributed Memory Machines,”Communications of the ACM, Vol. 35, No. 8, Aug.
1992, pp. 66-80.

[INMO84] Inmos Limited,Occam Programming Manual. Englewood Cliffs, NJ: Pren-
tice-Hall, 1984.

[JACK88] D. Jackel and W. Strasser, “Reconstructing Solids from Tomographic Sc
The PARCUM II System,” in Advances in Computer Graphics Hardware II. Spri
er International, 1988, pp. 101-109. Also in [KAUF91] pp. 358-371.

[JAFF82] S. M. Jaffey and K. Dutta, “Digital Perspective Correction for Cylindrical Ho
graphic Stereograms,” inSPIE Vol. 367, Processing and Display Of Three Dime
sional Data, 1982, pp. 130-140.

[JAIN89] A. K. Jain,Fundamentals of Digital Image Processing. Englewood Cliffs, N J:
Prentice Hall, 1989.

[KABA92] J. Kaba, J. Matey, G. Stoll, H. Taylor, and P. Hanrahan, “Interactive Terr
Rendering and Volume Visualization on the Princeton Engine,” in IEEE Visuali
tion ‘92, Boston, MA Oct. 19-23, 1992, pp. 349-355.

[KAHA89] D. Kahaner, C. Moler, S. Nash, Numerical Methods and Software. Pren
Hall, Englewood Cliffs, New Jersey 1989.

[KAJI84] J. T. Kajiya, “Ray Tracing Volume Densities,”Computer Graphics, Vol. 18, No.
3, pp. 165-174, July 1984.

[KAJI86] J. T. Kajiya, “The Rendering Equation,”Computer Graphics, Vol. 20, No. 4,
pp.143-150, Aug. 1986.

[KAK88] A. C. Kak and M. Slaney,Principles of Computerized Tomographic Imagin.
New York, NY: IEEE, 1988.



157

ic

3D

res

ter

res
n,
d as

.D.

d-

.
the

ent
1,

,

nsi-

pt.
[KAUF87] A. Kaufman, “Efficient Algorithm for 3D Scan-Conversion of Parametr
Curves, Surfaces, and Volumes,”Computer Graphics, Vol. 21, No. 4, pp. 171-179,
July 1987.

[KAUF88] A. Kaufman and R. Bakalash, “Memory and Processing Architecture for
Voxel-Based Imagery,”IEEE Computer Graphics and Applications, Vol. 8 No. 6, pp.
10-23, Nov. 1988.

[KAUF90] A. Kaufman, R. Bakalash, D. Cohen, and R. Yagel, “A Survey of Architectu
for Volume Rendering,”IEEE Engineering In Medicine And Biology, pp. 18-23,
Dec. 1990, also appears as [KAUF91b]

[KAUF91] A. Kaufman, Editor, Volume Visualization. Washington, D.C.: IEEE Compu
Society Press, 1991.

[KAUF91b] A. Kaufman, R. Bakalash, D. Cohen, and R. Yagel, “Chapter6: Architectu
for Volume Rendering,” in Volume Visualization, A. Kaufman, Editor. Washingto
D.C.: IEEE Computer Society Press, 1991, pp. 331-320, also appeare
[KAUF90].

[KLAS87] R. Klassen, “Modeling the Effect of the Atmosphere on Light,”ACM Transac-
tions on Graphics, Vol. 6, No. 3, pp. 215-237, July 1987.

[KOCH89] P. D. Kochevar, “Computer Graphics On Massively Parallel Machines,” Ph
Dissertation, Dept. of Computer Science, Cornell University, 1989.

[KRUE90] W. Krueger, “Volume Rendering and Data Feature Enhancement,”Computer
Graphics, Vol 24, No. 5, pp. 21-26, Nov. 1990.

[KRUS85] Kruskal, L. Rudolph, and M. Snir, “The Power of Parallel Prefix,” in Procee
ings IEEE International Parallel Processing Symposium, 1985, pp. 180-185.

[KUNG88] S. Y. Kung,VLSI Array Processors. Englewood Cliffs, NJ: Prentice Hall 1988
[LADN80] R. E. Ladner and M. J. Fischer, “Parallel Prefix Computation,” Journal of

ACM, Vol. 27, No. 4, Oct. 1980, pp. 831-838.
[LAUB90] G. Laub, “Displays for MR Angiography,”Magnetic Resonance in Medicine,

Vol. 14, pp. 222-229, 1990.
[LAUR91] D. Laur and P. Hanrahan, “Hierarchical Splatting: A Progressive Refinem

Algorithm for Volume Rendering,” Computer Graphics, Vol. 25, No. 4, July 199
pp. 285-288.

[LEIG92] F.T. Leighton,Introduction to Parallel Algorithms and Architectures: Arrays
Trees, Hypercubes. San Mateo, CA: Morgan Kaufmann, 1992.

[LENZ86] R. Lenz, B. Gudmundsson, B. Lindskog, and P. Danielsson, “Display of De
ty Volumes,” IEEE Computer Graphics and Applications, Vol. 6, No. 7, pp. 20-29,
July 1986.

[LEVI84] Levinthal, A. and Porter, T., “Chap - A SIMD Graphics Processor,”Computer
Graphics, Vol. 18, No. 3, July, 1984, pp. 77-82.

[LEVO89] M. Levoy, “Display of Surfaces From Volume Data,” Ph.D. Dissertation, De
of Computer Science, Univ. of North Carolina, Chapel Hill, May 1989.

[LEVO90] M. Levoy, “Efficient Ray Tracing of Volume Data,”ACM Transactions on
Graphics, Vol. 9, No. 3, pp. 245-261, July 1990.



158

,”
0.
k-

use,
” in
ing,

,”
ssing

ly
l. 2,

ed

Y:

tion

e
niv.

t-
92,

P

ns

el
-

er-

s,”
and
[LEVO90b] M. Levoy and R. Whitaker, “Gaze-Directed Volume Rendering,”Computer
Graphics, Vol.24, No. 2, pp. 217-223, March 1990.

[LEVO90c] M. Levoy, “A Hybrid Ray Tracer for Rendering Polygon and Volume Data
IEEE Computer Graphics and Applications, Vol. 10, No. 2, Mar. 1990, pp. 33-4

[LEVO90d] M. Levoy, “Design for a Real-Time High Quality Volume Rendering Wor
station,” Computer Graphics Tutorial, 1990, pp. 224-232.

[LEVO90e] M. Levoy, H. Fuchs, S. M Pizer, J. Rosenman, E. L. Chaney, G. W. Shero
V. Interrante, and J. Kiet, “Volume Rendering in Radiation Treatment Planning,
Proceedings of The First Conference on Visualization in Biomedical Comput
IEEE Computer Society Press, May 1990, pp. 4-10.

[LEVO92] M. Levoy, “Volume Rendering Using The Fourier Projection-Slice Theorem
in Proceedings Graphics Interface ‘92, Vancouver, Canadian Information Proce
Society, May 1992.

[LI91a] J. Li and M. Chen, “Compiling Communication- Efficient Programs for Massive
Parallel Machines,” IEEE Transactions on Parallel and Distributed Systems, Vo
No. 3, July 1991, pp. 361-376.

[LI91b] J. Li and L. H. Jamieson, “A System for Algorithm-Architecture Mapping Bas
on Dependence Graph Matching and Hypergraphs,” inFifth International Parallel
Processing Symposium, Anaheim CA, April 30 - May 2, 1991, pp. 513-518.

[LOWM91] P. Lowman and J. Stokes, Introduction To Linear Algebra. New York, N
Books For Professionals, 1991.

[LORE87] W. Lorensen, “Marching Cubes: A High Resolution 3D Surface Construc
Algorithm,” Computer Graphics, Vol. 21, No. 4, pp. 163-169, July 1987.

[MACH92] R. Machiraju, L. Schwiebert, and R. Yagel, “Parallel Algorithms for Volum
Rendering,” Dept. of Computer and Information Science, The Ohio State U
OSU-CISRC-10/92-TR29, Oct. 17, 1992.

[MAIL92] P. Maillot, “A New, Fast Method for 2-D Polygon Clipping: Analysis and Sof
ware Implementation,” ACM Transactions on Graphics, Vol. 11, No. 3, July 19
pp. 276-290.

[MALZ90] T. Malzbender, “Hierarchically Composited Ray Cast Volume Rendering,” H
Laboratories Technical Report HPL-90-28, Apr. 1990.

[MALZ90b] T. Malzbender, personal communication.
[MALZ93] T. Malzbender, “Fourier Volume Rendering,” to appear in ACM Transactio

on Graphics, 1993.
[MANI89] E. S. Maniloff and K. M. Johnson, “Holographic Routing Network for Parall

Processing Machines,” inProceedings Holographic Optics II: Principles and Appli
cations, Editor G. M. Morris, 25-28 April 1989, pp. 283-289.

[MARS90] R. Marshall, J. Kempf, S. Dyer, “Visualization Methods and Simulation Ste
ing for a 3D Turbulence Model of Lake Erie,”Computer Graphics, Vol. 24, No. 2,
pp. 89-97, March 1990.

[MASP91]Data-Parallel Programming Guide. Sunnyvale, CA: MasPar Corp. 1991.
[MEAG82] D. Meagher, “Efficient Synthetic Image Generation of Arbitrary 3D Object

in Proceedings of IEEE Computer Society Conference on Pattern Recognition



159

73-

.
Oc-

over

er

.
ing
0.
n a
iza-

h-

ly
CA,

D
ton,

of
hics

ro-
, pp.

lay
5, C.
d in

ngle-
Image Processing, IEEE Computer Society Press, Washington DC, 1982, pp. 4
478.

[MEAG82] D. Meagher, “Geometric Modeling Using Octree Encoding,”Computer
Graphics and Image Processing, Vol. 19, No. 2, pp. 129-147, June 1982.

[MEAG84] D. Meagher, “A New Mathematics for Solids Processing,”Computer Graph-
ics World, Oct. 1984.

[MEAG85] D. Meagher, “Applying Solids Processing To Medical Planning,” inProceed-
ings of NCGS ‘85, Dallas, TX, 1985, pp. 101–109. Also in [KAUF91] pp. 372-378

[MEAG91] D. Meagher, “Fourth-Generation Computer Graphics Hardware Using
trees,” NCGA ‘91, in press.

[MESE83] B. E. Meserve. Fundamental Concepts of Geometry. Toronto, Ontario: D
Publications, 1983.

[MIDK90] S. P. Midkiff, D. A. Padua, and R. Cytron, “Compiling Programs with Us
Parallelism,” in D. Gelernter, A. Nicolau, and D. Padua, Editors,Languages and
Compilers for Parallel Computing. Cambridge, MA: MIT Press, 1990, pp. 402-422

[MOLN92] S. Molnar, J. Eyles, and J. Poulton, “PixelFlow: High-Speed Rendering Us
Image Composition,” Computer Graphics, Vol. 26, No. 2, July 1992, pp. 231-24

[MONT92] C. Montani, R. Perego, and R. Scopigno, “Parallel Volume Visualization o
Hypercube Architecture,” in Proceedings of 1992 Workshop on Volume Visual
tion, Boston, Oct. 19-20, 1992, pp. 9-16.

[MITC88] D.P. Mitchell and A. N. Netravali, “Reconstruction Filters in Computer Grap
ics,” Computer Graphics, Vol. 22, No. 4, pp 221–228, Aug. 1988.

[NICK90] J. R. Nickolls, “The Design of the MasPar MP-1: A Cost Effective Massive
Parallel Computer,” in Proceedings of Compcon Spring 1990, San Francisco,
Feb. 26- Mar. 2, 1990, pp. 25-28.

[NIEH92] J. Nieh and M. Levoy, “Volume Rendering on Scalable Shared-Memory MIM
Architectures,” in Proceedings of 1992 Workshop on Volume Visualization, Bos
Oct. 19-20, 1992, pp. 17-24.

[NEYF90] Derek R. Ney, Elliot K. Fishman, and Donna Magid, “Volumetric Rendering
Computed Tomography Data: Principles and Techniques,” IEEE Computer Grap
and Applications, Vol. 10 No. 2, March 1990, pp. 24–32.

[NING92] P. Ning and L. Hesselink, “Vector Quantization for Volume Rendering,” in P
ceedings of 1992 Workshop on Volume Visualization, Boston, Oct. 19-20, 1992
69-74.

[NISH90] D. G. Nishimura, “Time-of-Flight MR Angiography,”Magnetic Resonance In
Medicine, Vol 14, pp. 194-201, 1990.

[OHAS85] T. Ohashi, T. Uchicki, and M. Tokoro, “A Three-Dimensional Shaded Disp
Method for Voxel-Based Representations,” in Proceedings of Eurographics 198
E. Vandoni, Editor, Eurographics Association, Sep. 1985, pp. 221-232. an
[KAUF91] pp. 335-343.

[OPPE89] A.V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing. E
wood Cliffs, New Jersey: Prentice Hall 1989.



160

age
ess-

ngs
rma-

Re-

t-

r,”

c.

rical
si-

Ob-

-
om-

rallel
25,

rallel
91.
ngle

,” in
992,

etric

of
ited
ci-
[OWCZ89] J. Owczarczyk, W.J. Welsh, and S. Searby, “Performance Analysis of Im
Registration Techniques,” in IEE Third International Conference on Image Proc
ing and Its Applications, Univ. of Warwick, U.K., 18-20 July 1989, pp. 10-13.

[PAET86] A.W. Paeth, “A Fast Algorithm For General Raster Rotation,” Proceedi
Graphics Interface 1986 Vision Interface 1986 26–30 May 1986 Canadian Info
tion Processing Society Vancouver, BC.

[PAIN89] J. Painter and K. Sloan, “Antialiased Ray Tracing by Adaptive Progressive
finement,”Computer Graphics, Vol. 23, No. 3, pp. 281–288, July 1989.

[PANG90] A. T. Pang, “Line-Drawing Algorithms for Parallel Machines,” IEEE Compu
er Graphics and Applications, Vol. 10, No. 5, Sep. 1990, pp. 54-59.

[PORT84] T. Porter and T. Duff, “Compositing Digital Images,”Computer Graphics, Vol.
18, No. 3, pp. 253-259, July 1984.

[POTM89] M. Potmesil and E. Hoffert, “The Pixel Machine: A Parallel Image Compute
Computer Graphics, Vol. 23, No. 3, pp. 69-78, July 1989.

[PRAT78] W. K. Pratt, Digital Image Processing. New York, NY: John Wiley & Sons, In
1978.

[PRESS88] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Nume
Recipes in C, The Art of Scientific Computing. New York, NY: Cambridge Univer
ty Press 1988.

[REEV83] W. Reeves, “Particle Systems-A Technique for Modeling a Class of Fuzzy
jects,”ACM Transactions on Graphics, Vol. 2, No. 2, pp. 91–108, Apr. 1983.

[RICE88] M. D. Rice, S. B. Seidman, and P. Y. Wang, “A Formal Model for SIMD Com
putation,” in IEEE Second Symposium on The Frontiers of Massively Parallel C
putations, 1988 Oct 10-12 Fairfax, VA, pp. 601-607.

[SABE88] P. Sabella, “A Rendering Algorithm for Visualizing 3D Scalar Fields,”Com-
puter Graphics, Vol. 22, No. 4, pp. 51–58, Aug. 1988.

[SCHR91] P. Schroeder and J. B. Salem, “Fast Rotation of Volume Data on Data Pa
Architectures,” in Proceedings IEEE Visualization ‘91, San Diego, CA Oct. 22-
1991, pp. 50-57.

[SCHR91b] P. Schroeder and J. B. Salem, “Fast Rotation of Volume Data on Data Pa
Architectures,” Technical Report, TMC-195, Thinking Machines Corporation, 19

[SCHR92] W. J. Schroeder, J. A. Zarge, and W. E. Lorensen, “Decimation of Tria
Meshes,” Computer Graphics, Vol. 26, No. 2, July 1992, pp. 65-70.

[SCHR92b] P. Schroeder, G. Stoll, “Data Parallel Volume Rendering as Line Drawing
Proceedings of 1992 Workshop on Volume Visualization, Boston, Oct. 19-20, 1
pp. 25-32.

[SEDE86] T. W. Sederberg and S.R. Parry, “Free-Form Deformation of Solid Geom
Models,” Computer Graphics, Vol. 20, No. 4, Aug. 1986, pp. 151-160.

[SIEG87] H.J. Siegel, T. Schwederski, J. T. Kuehn, and N.J. Davis IV, “An Overview
the PASM Parallel Processing System,” in Tutorial: Computer Architecture, ed
by D.D. Gajski, V.M. Milutinovic, H.J. Siegel, and B.P. Furht, IEEE Computer So
ety Press, Washington, DC 1987 pp. 387-407.



161

ph-

ted
g

Par-

raw

sted
rk-

hod
e on

-

ity

2,

ara-
ing,

cal

s

as-
ct.
[SMIT87] A. R. Smith, “Planar 2-Pass Texture Mapping and Warping,” Computer Gra
ics Vol 21, No. 4, July 1987 pp. 263-272.

[SOCH90] D. G. Socha, “Compiling Single-Point Iterative Programs for Distribu
Memory Computers,” InProceedings of the 5th Distributed Memory Computin
Conference, Charleston, SC., Apr. 1990.

[SOCK91] D. G. Socha, Supporting Fine-Grain Computation on Distributed Memory
allel Computers. Seattle, WA: University of Washington, Ph.D. thesis, 1991.

[SOMA91] A. Somani et al., “Proteus System Architecture & Organization,” inFifth In-
ternational Parallel Processing Symposium, Anaheim CA, April 30 - May 2, 1991,
pp. 276-284.

[STOC85] M. Stock, A Practical Guide to Graduate Research. New York, NY: McG
Hill, 1985.

[STON87] Harold S. Stone,High Performance Computer Architecture. Reading, MA: Ad-
dison Wesley, 1987.

[STRE92] D. Stredney, R. Yagel, S. F. May, and M. Torello, “Supercomputer Assi
Brain Visualization with an Extended Ray Tracer,” in Proceedings of 1992 Wo
shop on Volume Visualization, Boston, Oct. 19-20, 1992, pp. 33-38.

[TANA86] A. Tanaka, M. Kaneyama, S. Kazama, and O. Watanabe, “A Rotation Met
For Raster Image Using Skew Transformation,” Proceedings IEEE Conferenc
Computer Vision and Pattern Recognition (June 1986) pp. 272-277.

[THIN89] Thinking Machines Corp.,Connection Machine Model CM-2 Technical Sum
mary, Version 5.1. Cambridge, MA: Thinking Machines Corp., 1989.

[THIN88] Thinking Machines Corp.,*Lisp Reference Manual, Version 5.0. Cambridge,
MA: Thinking Machines Corp., 1988.

[THOM91] K.K. Thompson, Ray Tracing With Amalgams. Ph.D. Dissertation Univers
of Texas, Austin, 1991.

[TIED90] U. Tiede et al., “Investigation of Medical 3D-Rendering Algorithms,”IEEE
Computer Graphics and Applications, Vol. 10, No. 2, pp. 41–53, Mar. 1990.

[TURK92] G. Turk, “Re-Tiling Polygonal Surfaces,” Computer Graphics, Vol. 26, No.
July 1992, pp. 55-64.

[UDUP90] J. K. Udupa and H. M. Hung, “Surface Versus Volume Rendering A Comp
tive Assessment,” in First Conference on Visualization in Biomedical Comput
May 22-25, 1990, Atlanta GA, pp. 83-91.

[UPSO88] C. Upson, and M. Keeler, “V-Buffer: Visible Volume Rendering,”Computer
Graphics, Vol. 22, No. 4, pp. 59–64, Aug. 1988.

[VALI90] L. G. Valiant, “General Purpose Architectures,” The Handbook of Theoreti
Computer Science, Vol 1 Chap. 18, J. Van Leeuwen, Ed, 1990.

[VALI90b] L. G. Valiant, “A Bridging Model for Parallel Computation,” Communication
of the ACM, Vol. 33, No. 8, August 1990, pp. 103-111.

[VEZI92] G. Vezina, P. A. Fletcher, and P. K. Robertson, “Volume Rendering on the M
Par MP-1,” in Proceedings of 1992 Workshop on Volume Visualization, Boston, O
19-20, 1992, pp. 3-8.



162

cal

m-

g,”
22.
ed-
a,

m.
al

es,

l-

M

e
-
l pa-

n,”

e

y

n-
ium

up

sh-

ter.

A:
[VETT88] W. T. Vetterling, S. A. Teukolsky, W. H. Press, and B. P. Flannery, Numeri
Recipes Example Book (C). New York, NY: Cambridge University Press 1988.

[WEIM80] C. F. R. Weiman, “Continuous Anti-Aliased Rotation and Zoom of Raster I
ages,” Computer Graphics, Vol. 14, No. 3, July 1980, pp. 286–293.

[WEIN90] F. Weinhaus and M. Wallerman, “A Flexible Approach To Image Warpin
SPIE Vol 1244 Image Processing Algorithms and Techniques (1990) pp. 108–1

[WEST89] L. Westover, “Interactive Volume Rendering,” in C. Upson, Editor, Proce
ings of the Chapel Hill Workshop on Volume Visualization, Univ. of North Carolin
ACM, May 1989, pp. 9-16.

[WEST90] L. Westover, “Footprint Evaluation for Volume Rendering,”Computer Graph-
ics, Vol. 24, No. 4, pp. 367-376, Aug. 1990.

[WEST92] L. Westover. Splatting: A parallel, feed-forward volume rendering algorith
North Carolina Chapel Hill, University of North Carolina at Chapel Hill, Doctor
dissertation, 1991.

[WILH91] J. Wilhems, “Decisions in Volume Rendering,” SIGGRAPH 91 Course Not
Vol. 8 State of The Art in Volume Visualization, pp. I.1-I.11.

[WILH91b] J. Wilhelms, A.V. Gelder, “A Coherent Projection Approach for Direct Vo
ume Rendering,” Computer Graphics, Vol. 25, No. 4, 1991.

[WILH92] J. Wilhelms and A.V. Gelder, “Octrees for Faster Isosurface Generation,” AC
Transactions on Graphics, Vol. 11, No. 3, July 1992, pp. 201-227.

[WITT91] C. M. Wittenbrink and A. K. Somani, “Cache Tiling for High Performanc
Morphological Image Processing,” inCAMP 91, Computer Architecture For Ma
chine Perception, Paris, France, Dec. 16-18, 1991, pp. 427-438. Prize paper. Ful
per to appear inMachine Vision and Applications, 1993.

[WITT92] C. M. Wittenbrink, “The Theory and Practice of Speedup Through Slowdow
technical report FTCL, July, 1992.

[WITT93] C. M. Wittenbrink and A. K. Somani, “2D and 3D optimal parallel imag
warping,” inSeventh International Parallel Processing Symposium, Newport Beach,
CA, April 13-16, 1993, pp. 331-337.

[WITT93b] C. M. Wittenbrink and A. K. Somani, “Improved Filters and View Flexibilit
for Data Parallel Volume Rendering,” to appear in theParallel Rendering Sympo-
sium, Visualization ‘93, San Jose, CA, October 25-26, 1993.

[WITT93c] C. M. Wittenbrink and A. K. Somani, “Permutation Warping for Volume Re
dering,” inProceedings of the Fifth Annual Western Computer Graphics Sympos,
Silver Star Mountain, British Columbia, March 28-30, 1993.

[WOLB89] G. Wolberg and T.E. Boult, “Separable Image Warping With Spatial Look
Tables,” Computer Graphics, Vol. 23, No. 3, July 1989, pp. 369-378.

[WOLB90] G. Wolberg “Digital Image Warping,” IEEE Computer Society Press, Wa
ington DC 1990.

[WOLF88] S. Wolfram, Mathematica, A System For Doing Mathematics By Compu
Reading, MA: Addison-Wesley, 1988.

[WOLF89] M. Wolfe, Optimizing Supercompilers for Supercomputers. Cambridge, M
MIT Press, 1989.



163

,”
7.
o-
s-

h-
-

rt

ion
ttern

tak-
ec-
pp.

aral-
[WRIG90] W. E. Wright, “Parallelization of Bresenham’s Line and Circle Algorithms
IEEE Computer Graphics and Applications, Vol. 10, No. 5, Sep. 1990, pp. 60-6

[WRIG92] J. R. Wright and J. C. L. Hsieh, “A Voxel-Based, Forward Projection Alg
rithm for Rendering Surface and Volumetric Data,” in IEEE Visualization ‘92, Bo
ton, MA Oct. 19-23, 1992, pp. 340-348.

[YAGE92] R. Yagel and A. Kaufman, “Template-Based Volume Viewing,” in Eurograp
ics ‘92, A. Kilgour and L. Kjelldahl, Editors, Vol. 11, No. 3, 1992, pp. C-153 to C
167.

[YAGE92b] R. Yagel, “High Quality Template-Based Volume Viewing,” Technical repo
OSU-CISRC-10/92-TR28, The Ohio State University, Columbus, OH, 1992.

[YOKO86] N. Yokobori, P.S. Yeh, and A. Rosenfeld, “Selective Geometrical Correct
of Images,” In IEEE Computer Society Conference on Computer Vision and Pa
Recognition, June 22-26, 1986, Miami Beach FL. pp. 530-533.

[YOO91] T. S. Yoo, U. Neumann, H. Fuchs, S.M. Pizer, T. Cullip, J. Rhoades, R. Whi
er, “Achieving Direct Volume Visualization with Interactive Semantic Region Sel
tion,” in Proceedings IEEE Visualization ‘91, San Diego, CA, Oct. 22-25, 1991,
58-65.

[ZORP92] G. Zorpette, “Supercomputers/Reinventing the Machine: The Power of P
lelism,” IEEE Spectrum, Sept. 1992, pp. 28-33.



ances

sus

of in-

se an-
e.

ten-
han
in

iven,
u

ation

3].

ce.

m-
ol-

hase
Appendix A
Glossary

affine transform A map from one space to another that preserves ratios of dist
and parallel lines, but does not preserve angles.

albedo Reflectiveness or proportion of light reflected from a particle ver
the light impinging.

alias Multiple frequencies are seen as the same frequency because
adequate sampling or reconstruction.

anisotropic medium The phase function is dependent upon more than just the pha
gle, such as gradient within a volume or the direction of a surfac

bilinear A first order hold in two dimensions that has a cross term .

brightness The perceived intensity of an object, not to be confused with in
sity the measured intensity of an object. Brightness is different t
intensity because of the psychological and physiological factors
perception.

CRCW See PRAM.

CREW See PRAM.

data dependent For parallel algorithms, it is when the location of the data is g
but is not known apriori. Typically a linked list of values, and yo
are given only the head.

data independent For parallel algorithms, when the data are strictly found by loc
and doesn’t vary with the input.

EREW See PRAM.

equiareal A transform  whose determinant satisfies  [MESE8

frustum Viewing pyramid formed by projecting the screen into object spa

globbing Slang for grouping together, a way to describe virtualizing jobs.

initial prefix Evaluation of all partial products of an associative operator. Exa
ples are calculation of carries in addition, and compositing for v
ume rendering.

intensity , or radiant intensity, the amount of measured light energy.

isotropic medium Phase function or reflectance function depends only upon the p
angle.

xy

T det T( ) 1±=

I



165

com-

are

lar
m-

t is.

icular

ber
m.

the

n se-

is-

ine
ed,
ally
he

p se-

sets.
linear transform A map from one vector space to another that preserves linear
binations.

moire Beat patterns that arise if the image contains periodicity that
close to half the sampling frequency.

MCCM Mixed cost communication machine. A theoretical machine simi
to a PRAM, but takes into account the interconnectivity and co
munication costs.

opacity , the density of matter, or a measure of how opaque an objec
Values are from  to . See transparency.

optical depth Describes amount of attenuation as light passes through a part
volume.

optimal efficiency Work efficiency, or time for the parallel algorithm times the num
of processors equals the time for the fastest sequential algorith

optimal run time For the model of computation is typically a lower bound given
strength of the machine.

optimal space complexity

 on the order of the number of input elements.

optimal speedup Linear speedup of the parallel program over the fastest know
quential program.

perf. Performance, the speed of execution, such as frames/second.

parallel prefix Evaluation of an initial prefix operation done in parallel.

phase angle The angle between incident light and emitted/reflected light.

pixel Picture element. The individual point light sources in a raster d
play.

PRAM Parallel random access machine. A parallel theoretical mach
model that has multiple processors that are strictly synchroniz
and memory is readable by random access. The memory is typic
restricted by disallowing concurrent reads or concurrent writes. T
typical variants are:
CRCW - concurrent read concurrent write
CREW - concurrent read exclusive write
EREW - exclusive read exclusive write

RAM Random access machine. A theoretical machine used to develo
quential algorithms by comparing their asymptotic run times.

segment Separate regions in an image as to their membership in desired

shear A transform that affects only one coordinate.

α
0 1

O n( )



166

lows
ret-

ime

ace,
an
age
Fou-

 to .

a

ty ef-

tric
slackness The amount of excessive parallelism in an application which al
for bundling of processing for better asymptotic bounds on theo
ical machines. See [VALI90b].

speedup The ratio of execution time without the improvement over the t
with the improvement.

toroidally connected Connected by modulus wrap around.

transform The process of sending a point, image, or object into another sp
commonly meaning a geometric transform of a coordinate. C
also mean calculating an alternative representation of an im
such as the frequency representation calculated by the discrete
rier transform.

transparency , the clearness of an object. It equals , and varies from

tril. Trilinear, a first order hold in three dimensions called that has
cross term of .

volume rendering Creating a 2D image from 3D voxels using transparency/opaci
fects.

voxel Volume element, an abbreviation analogous to pixel. A volume
data element within an image data cube.

warping Spatial image transform such as rotation.

t 1 α– 0 1

xyz



po-
ntial
ount
ck

ition
ions
e for
e par-

the
ter-

most

asses
of the
dered
onal-
com-
s are
e five
el,
g the
e ef-
fore

m my
rying
tion
.5.
Appendix B
Derivation of Compositing

Complexity

2.1 Background

There are many ways to compute volumetric compositing for a single ray of sample
sitions. I derive the complexity of each alternative, and show the most efficient seque
and parallel methods. Compositing combines two image intensities taking into acc
their opacity, or opaqueness, ability to block light. The image in front will partially blo
out the image behind depending on its opacity value, , which ranges from 0 to 1. If
the image behind will be completely occluded and will not contribute anything.

A stack of images can be processed back-to-front, front-to-back, or any pos
within the stack. Trade-offs in partial updates, parallelism, and algorithmic optimizat
create different complexities for each method. The asymptotic complexity is the sam
the sequential methods , where, is the number of images in the stack, and th
allel approaches are , but differences in constant notation allow for selecting
most efficient method. Sequentially the best is back-to-front, but if using adaptive ray
mination then front-to-back must be used. In parallel, binary tree compositing is the
efficient, and a front-to-back progressive deepening may be used.

Compositing can use opacity or transparency based equations. A view ray p
through the stack of images and the final intensity of each ray is dependent upon all
images. The ray’s intersection with each image is a sample point in the volume consi
a leaf of a tree. The internal nodes of the tree denote compositing calculations. Additi
ly, at each internal node not only the composited intensity is calculated, but also a
bined transparency or opacity to be used in following computations. Five method
presented described and the constant complexity is derived for each method. Th
methods are front-to-back [LEVO90], back-to-front [LEVO90], binary-tree fully parall
binary-tree front-to-back, and sum of attenuated emittances. I conclude by comparin
complexities of all of the methods. I show that calculating with transparencies is mor
ficient in all methods except back-to-front where it has the same complexity. It is there
prudent to use transparency, especially in the parallel evaluation methods. I also clai
three parallel methods have optimal efficiency, and allow for different approaches va
communication and/or ray processing termination conditions. Adaptive ray termina
may reduce the amount of computation and is described in section 1.3 and section 2

W

α α 1=

O W( ) W

O Wlog( )



168

had-

ber
lated

the
ple

point
puta-

ray,
nsity,
lume
n to
p 3 is
im-
2.2 Back To Front Compositing

I derive the compositing complexity step by step. The first step is to premultiply the s
ing intensity at each sample with the opacity to give an emitted intensity,

, (EQ 83)

where I define the opacity ( ), shading intensity ( ), sample location ( ), and the num
of sample levels ( ). If samples are combined from back to front intensities are calcu
using,

(EQ 84)

, (EQ 85)

where is the image in front and is the image behind. Combine first the and
sample point, then the intensity is combined with the sam

point and so on. FIGURE 88 shows how the compositing is performed. Each sample
is a leaf of the tree, and each internal node represents both an intensity, and the com
tion to calculate that intensity.

FIGURE  88 Back-To-Front Compositing Tree

FIGURE 89 shows an example compositing 4 image samples along one
. Assume the preprocessing stage of the algorithm provides the shading inte

, and opacities, . Samples are labelled 1 to 4 with sample 1 at the front of the vo
and sample 4 at the rear of the volume in FIGURE 89. Step 1 is the premultiplicatio
calculate the emitted intensities. Step 2 is the compositing of images (3) and (4). Ste
compositing image (2) with the previously combined (34) image. Step 4 is combining

I Ei I Siαi=( ) i W∈,

αi I Si i

W

I Eij I Ei I E j 1 αi–( )+=

αi j αi α j 1 α j–( )+=

i j Wth

W 1–( )st I E W 1–( )W W 2–( )th

back-to-front

front back
1 2 3 4

W 4=

I Si αi



169

refore

using
tions
the
iting
lti-
e, so
ay be

ter-
eshold.
ause
ded.
vol-

from
ents
urther

ment
tly as
com-
ack
late a
90.
age (1) with the (234) result. Notice that the updated opacities aren’t used, and the
did not need to be calculated.

FIGURE  89 Back-To-Front Compositing Calculations

Because the opacities don’t need to be updated the complexity is the same
either opacity or transparency. The number of calculations necessary is multiplica
for the emitted intensity calculation, Step 1, and compositing operations, or
number of non-leaf nodes in the compositing tree, FIGURE 88. the cost of a compos
emitted intensities is 2 additions and 1 multiplication, (EQ 84). The total is mu
plications and additions. This seems to be the most efficient way to composit
why consider other methods? For sequential implementations a substantial savings m
achieved by using adaptive ray termination [LEVO90][DANS92]. This is a method for
minating processing on a ray once the ray becomes more opaque than a selected thr
Adaptive ray termination can only be done when processing from front-to-back bec
the final intensity is a result from all objects in the volume and any ray may be occlu
Back-to-front cannot determine occlusion until the processing reaches the front of the
ume. Also, progressive refinement [FOLE90] must be done by traversing the ray
front-to-back. This allows incrementally updating of an image that immediately repres
an approximation of the image, and incremental improvements occur as each ray is f
processed.

2.3 Front To Back Compositing

Front to back compositing allows adaptive ray termination and/or progressive refine
during the computation of an image. Calculate emitted intensities from samples exac
shown in the previous section, but we change the order. This requires calculating a
posited opacity which is used in following computations. FIGURE 90 shows front-to-b
compositing with circled nodes representing those nodes at which we must also calcu
composited opacity value. FIGURE 91 shows the calculations taking place in FIGURE

I E1 α1I S1= I E3 α3I S3= I E4 α4I S4= WI E2 α2I S2=

I E34 I E3 I E4 1 α– 3( )+=

mult.

W 1– composited

Step 1

Step 2

Step 3

Step 4

α34 α3 α4 1 α– 3( )+=

I E234 I E2 I E34 1 α– 2( )+=

α234 α2 α34 1 α– 2( )+=

I E1234 I E1 I E234 1 α– 1( )+=

α1234 α2 α234 1 α– 1( )+=

intensities.

W

W 1–

2W 1–

2W 2–



170

ity
tiply.
nd
g
for a
e ef-
 is,
FIGURE  90 Front To Back Compositing Tree

FIGURE  91 Front-To-Back Compositing Calculations

There are initial premultiplies, intensity composites, and opac
composites. Again an intensity, or opacity, composite takes 2 additions and 1 mul
The total for front-to-back compositing using opacity is + multiplications a

additions, for a total of multiplications and additions. Savin
transparency calculations when computing intensities saves additions
total of additions. As described earlier compositing with transparencies is mor
ficient. Compositing versed in terms of transparency replacing (EQ 84) and (EQ 85)

(EQ 86)

. (EQ 87)

front-to-back

front back
1 2 3 4

-denotes opacity calculation

I E1 α1I S1= I E3 α3I S3= I E4 α4I S4= WI E2 α2I S2=

I E12 I E1 I E2 1 α– 1( )+=

mult.

W 1– composites

Step 1

Step 2

Step 3

Step 4

α12 α1 α2 1 α– 1( )+=

I E123 I E12 I E3 1 α– 12( )+=

α123 α12 α3 1 α– 12( )+=

I E1234 I E123 I E4 1 α– 123( )+=

W 2– updates

W W 1– W 2–

W 2W 3–( )
2 2W 3–( ) 3W 3– 4W 6–

t 1 α–= W 2–

3W 4–

I Eij I Ei I E j ti+=

tij ti t j=



171

ren-

m-
he to-

pro-

inary
era-

ariety
otation
Transparency calculations are included in the initialization,

. (EQ 88)

FIGURE 92 shows computing the premultiplied emitted intensity, the transpa
cies, and then compositing from front-to-back calculating the tree in FIGURE 90.

FIGURE  92 Front-To-Back Compositing with Transparency

The complexity is multiplications and additions for step 1 and co
posited intensities for steps 2-4 and updated transparencies for steps 2 and 3. T
tals are multiplications and
additions. Transparency compositing is more efficient than opacity compositing, but
cessing is not always sequential. I discuss parallel compositing in the next Section.

2.4 Parallel Binary Tree Compositing

Compositing is associative (See Chapter IV) and can be calculated optimally in a b
tree fashion. This is true because of arbitrary groupings shown below by the “over” op
tor [DREB88]. 4 image intensities can be grouped in any associative fashion.

1. back-to-front: I=(I1 over (I2 over (I3 over I4)))

2. front-to-back: I=(((I1 over I2) over I3) over I4)

3. binary-tree: I= ((I1 over I2) over (I3 over I4))
Each method computes the same value. In parallel the associative groupings allow v
as in the sequential cases. I ignore communication costs and derive the constant n
complexity for each method.

ti 1 αi–( )=

I E1 α1I S1= I E3
α3I S3= I E4 α4I S4=I E2 α2I S2=

I E12 I E1 I E2t1+=
W 1– composites

Step 1

Step 2

Step 3

Step 4

t12 t1t2=

W 2– updates

t1 1 α– 1( )= t2 1 α– 2( )= t3 1 α– 3( )=

I E123 I E12 I E3t12+=

t123 t12t3=

I E1234 I E123 I E4t123+=

W mult.

W 1– add.

W W 1– W 1–

W 2–

W W 1– W 2–+ + 3W 3–= W 1–( ) W 1–( )+ 2W 2–=



172

may
re
wed

and in-
ee im-

ssible
ht to
fore
d up-
emulti-

for
ernal
epth
full
ntal

o up-
te in-
1
to-

tial-
This

p-
Taking the associative groupings of three images to combine them pair wise
be done by either ((I1 over I2) over I3), or (I1 over (I2 over I3)). If is a power of 2 the
is no choice. From the derivation of the back-to-front and front-to-back schemes I sho
that internal nodes that are near the front require updated transparencies (opacities)
ternal nodes on the back edge of the tree do not. I represent the two groupings of thr
ages in FIGURE 93.

FIGURE  93 Binary Tree Compositing Associative Alternatives

Updating transparencies is avoided by placing as many internal nodes as po
along the back edge of the tree as shown by the right tree in FIGURE 93. Using rig
left pair wise groupings does this. The complexity of binary tree compositing is there
precomputed emitted intensities (leafs), composited intensities (internal nodes), an
dated transparency updates (circled nodes). There are leaves, and hence pr
plies and for both opacity and transparency calculations. Add additions
transparency calculations when compositing by transparency. The number of int
nodes is always . This is the number of intensity compositing calculations. The d
of the tree for any number of leaves is . Clustering the non updates to the
side of the tree there will always be internal nodes that do not require increme
transparency (or opacity) updates. This includes the root. All other internal nodes d
dates. There are nodes performing updates. For transparency the upda
volves, , 1 multiplication. For opacity the update involves ,
addition and 1 multiplication, when is saved during intensity calculations. The
tal cost for transparency is emitted intensity initializations, transparency ini
izations, intensity composites, and transparency updates.
reduces to multiplications and

 additions.

The total cost for opacity is premultiplication + intensity composite + opacity u
dates, multiplications and

 additions.

W

front back
1 2 3

-denotes opacity calculation

1 2 3
front back

W W

W 1–

W 1–

W Wlog

Wlog

W 1– Wlog–

tij ti t j= αi j αi αi j 1 αi–( )+=

1 αi–( )
W W 1–

W 1– W 1– Wlog–

W W 1–( ) W 1– Wlog–( )+ + 3W 2– Wlog–=

W 1–( ) W 1–( )+ 2W 2–=

W W 1–( ) W 1– Wlog–( )+ + 3W 2– Wlog–=

2 W 1–( ) W 1– Wlog–( )+ 3W 3– Wlog–=



173

of in-
ives a
inter-
dition
inary

ples
us tree
2 does
iting

and
mber
.

and
num-
e ex-

right
trees
2.5 Front-To- Back Binary Tree Compositing

The binary tree method may be balanced in ways not intended to reduce the number
termediate transparency (opacity) calculations. For example, an unbalanced tree g
trade-off between adaptive ray termination and parallel computation. The updated
mediate transparency (opacities) in this case can be delayed until the terminate con
is evaluated saving operations upon termination. The front-to-back calculations in b
tree fashion are done as shown in FIGURE 94.

FIGURE  94 Front-To-Back Parallel Compositing

FIGURE 94 shows leaping into the samples by doubling the number of sam
each time, and by updating the incremental transparencies (opacities) in each previo
only after the threshold has been tested. Step 1 does not update the opacity, but step
(See circle) because the termination condition failed. The costs for parallel compos
are still the intensity calculations, which remain unchanged: multiplications

additions, only the number of transparency (opacity) updates changes. The nu
of carry-forward opacity-calculations cannot be calculated by a closed form equation

Given sample points, a tree is formed by taking pairs starting from the left
building a binary tree. The depth of the tree is, as mentioned earlier, and the
ber of internal nodes is . Define an update node as the internal nodes of the tre
cluding all nodes along the right most path to the root. Also exclude the root. For the
balanced tree the number of non update nodes is always , but for left balanced

< thresh? < thresh?
< thresh?

Step 1 Step 2

Step 3-denotes opacity calculation

2W 1–

2W 2–

W

Wlog

W 1–

Wlog



174

dat-

can
ed by

ll
er of

nch
um-

ines

r of

d

are

ting
nal

he
com-
plica-
rency
it is not as simple. Example trees for equal to 2, 3, 4, and 5 are given below with up
ed nodes circled.

FIGURE  95 Update Node Problem

A closed form equation is not possible, but a dynamic programming approach
calculate the number for any , and further the update nodes will always be bound

which is just the number of update nodes in the fu
binary tree with a number of nodes greater than or equal to our own. This is the numb

internal nodes minus the number of internal nodes along the right bra
. The number can be found by bit counting. The exact form for any is the s

mation

, (EQ 89)

using integer division. (EQ 89) adds the bits in the binary word, which determ
directly the number of full binary sub trees in the tree.

I use the upper bound of update nodes. The total numbe

calculations for opacity updates is multiplications an

additions. The combined intensity and opacity calculations

multiplications and additions. To sim-
plify discussion define the intensity computation minimum bound as composi
operations, and front-to-back binary-tree compositing incurs an additio

 opacity updates.

Compositing with transparency, , gives slightly different results. T
number of compositing operations remains the same, but the costs of initialization,
positing, and updates differs. The compositing cost changes to 1 addition and 1 multi
tion using the transparency equations, (EQ 86), and the cost of updating a transpa

W

front back
1 2 3 4

-denotes opacity calculation

1 2 1 2 3 41 2 3 5

W

# update nodes 2 Wlog 1– Wlog–≤( )

2 Wlog 1–

Wlog W

#update nodes W 1– W 1–( ) 2i⁄
i 0=

Wlog 1–

∑–=

W 1–

2 Wlog 1– Wlog–

2 Wlog 1– Wlog–

2 Wlog 1– Wlog–

2W 2 Wlog 2– Wlog–+ 2W 2 Wlog 3– Wlog–+

W 1–

2 Wlog 1– Wlog–

t 1 α–=



175

de-
ber
iving

9)
are

ty of

y tree
ities/
ttenu-
ined
requires only a single multiplication, (EQ 87). So, by using all of the previous results
rived for opacity compositing, the number of compositing operations is . The num
of transparency updates is the same as the number of opacity updates g

multiplications for an upper bound, or (#update nodes) (EQ 8
for exact results. The totals for initialization, compositing, and updates

multiplications and
 additions.

2.6 Sum of Attenuated Emittances Approach

The line integral can be evaluated in other parallel fashion by calculating the intensi
each sample point as seen by the eye. From the line integral equation

(EQ 90)

it is possible to derive a direct evaluation formula

. (EQ 91)

This has the same complexity as the binary tree method, and in fact is done in binar
fashion, but different communication is used. It requires communicating the opac
transparencies to the levels preceding your local level. You can add the samples a
ated emittances in a binary tree fashion. Which approach is more efficient is determ
by the communication.

W 1–

2 Wlog 1– Wlog–<

W( ) W 1–( ) 2 Wlog 1– Wlog–+ + 2W 2 Wlog 2– Wlog–+=

W 1–( ) W 1–( )+ 2W 2–=

I t l( )I S l( )V l( ) ldλ1

λ2∫=

I I E1 I E2t1 I E3t1t2 I E4t1t2t3+ + +=

W



176

lcula-
tially

ted
ich

ons
the

ar-

st be
for
com-
Create the sum of attenuated emittances by performing the transparency ca
tions and then combining. For example, FIGURE 96 shows 4 images being sequen
processed.

FIGURE  96 Sum of Attenuated Emittances Sequential Calculations

The intensity of the ray, , is the sum of the first image’s intensity, unattenua
as there is nothing blocking it, and the sum of all of the following image intensities wh
are attenuated by specific amounts. Totals are multiplicati
and additions. The above technique is not fully parallel because
creation of the transparencies requires sequential communication.

If instead calculation is done as shown in FIGURE 97, the calculation is fully p
allel and limited only by the speed of the parallel add, .

FIGURE  97 Sum of Attenuated Emittances Parallel Calculation

This has the same complexity as binary-tree compositing. The values mu
retrieved from all previous images, which may be slow. Also the product calculations
the transparencies will be not as efficient as binary tree approaches but perhaps the

I E1 α1I S1= I E3 α3I S3= I E4 α4I S4= WI E2 α2I S2=

t1 1 α1–( )= t2 1 α– 2( )= t3 1 α– 3( )=

t12 t1t2=

mult.

W 1– add.

I Eray I E1 t1I E2 t12I E3 t123I E4+ + +=
W 1– add.
W 1– mult.

t 12( )3 t12t3=

W 2– mult.

I Eray

W W 2– W 1–+ + 3W 3–=

W 1– W 1–+ 2W 2–=

Wlog

I E1 α1I S1= I E3 α3I S3= I E4 α4I S4= WI E2 α2I S2=

t1 1 α1–( )=

t12 1 α– 1( ) 1 α– 2( )=

t123 1 α– 1( ) 1 α– 2( ) 1 α– 3( )=

mult.

add.

I Eray I E1 t1I E2 t12I E3 t123I E4+ + += W 1– add.
W 1– mult.

mult.

αi



177

ra-

e ray
t-to-

of 2
many
aral-

all of
binary
com-

otice
/trans-
es ap-

also
E 34
munication network can calculate the products in a scan [THIN89][BLAN90] type ope
tion. In fact, I use this approach in my MasPar implementation.

2.7 Summary and Discussion

For sequential methods, back-to-front is the most efficient but does not allow adaptiv
termination or progressive refinement. To do this a slightly higher cost method is fron
back, which saves calculation if only part of the ray is processed.

For parallel methods I combine samples in binary fashion. Without a power
number of samples update costs are minimized by associative groupings that place
internal nodes along the back of the tree. Balancing the tree forward allows mixing p
lel progressive refinement and parallel evaluation.

An alternative evaluation directly calculates local transparencies and sums up
the results. This sum of attenuated emittances approach may be more efficient than
tree compositing depending on the communication overhead. The constant notation
plexities are summarized below. FIGURE 98 shows all methods for five images. N
again that internal nodes are intensity composite step, and circled nodes are opacity
parency updates, and + nodes denote addition for the sum of attenuated emittanc
proach.

The number of updates is the biggest variance in the respective methods. It is
more efficient to calculate with transparencies. The update costs are shown in TABL
and TABLE 35. The total costs are shown in tables TABLE 36 and TABLE 37.

TABLE  32 Initialization costs

emitted intensity premultiply 1 multiplication

transparency only transparency calculation 1 addition

TABLE  33 Number of Intensity Compositing Steps

All Methods

TABLE  34 Compute Cost, Update Cost

intensity opacity transparency

1M, 2A 1M, 2A 1M

W 1–



178

the
addi-

com-
TABLE  35 Number of Composites for Updates to transparency/opacity

method cost

back-to-front none

front-to-back

binary-tree

binary-tree, front-to-back  or (EQ 89)

sum of attenuated emittances

TABLE  36 Multiplications for All Methods

Method Transparency/Opacity

back-to-front

front-to-back

binary-tree

binary-tree, front-to-back

sum-of-atten.

TABLE  37 Additions for All Methods

Method Transparency Opacity

back-to-front

front-to-back

binary-tree

binary-tree, front-to-back

sum-of-atten. NA

The tables show clearly that the number of multiplications is the same for both
transparency and opacity calculation approaches. Opacity approaches require more
tions for opacity updates, such as in the front-to-back, and binary-tree methods. I re

W 2–

W 1– Wlog–

2
Wlog

1– Wlog–<

W 2–

2W 1–

3W 3–

3W 2– Wlog–

2W 2
Wlog

2– Wlog–+<

3W 3–

2W 2– 2W 2–

2W 2– 4W 6–

2W 2– 3W 3– Wlog–

2W 2– 2W 2
Wlog

3– Wlog–+<

2W 2–



179

uced
mend using transparency, both because of its simplicity in expression and red
calculation for both sequential and parallel algorithms.

FIGURE  98 Compositing Methods

back-to-front front-to-back binary-tree

-denotes opacity/transparency update

front back f b f b

-composite intensity

binary-tree
front-to-back

sum of attenuated
emittances

+ +

+

+

+ -summation only



Vita

Craig Michael Wittenbrink was born in Denver, Colorado on June 29, 1965. He
received his B.S. in electrical engineering and computer science from the University of
Colorado in May 1987. After working at The Boeing Company designing computer image
generators for flight simulators, he returned to get his M.S. in electrical engineering in
December 1990 and Ph.D. in 1993 at the University of Washington. Craig has published in
the journal Machine Vision and Applications, is a coinventor on a patent application for
the Proteus Supercomputer, and has published and presented his work internationally. The
work presented herein was done with support from the NASA Graduate Student
Researcher’s Program. The image warping chapter was published in part in the
International Parallel Processing Symposium, 1993 as “2D and 3D Optimal Parallel Image
Warping” [WITT93]. Material from the volume rendering chapter, Chapter IV, was partly
published in the Parallel Rendering Symposium, Visualization ‘93 as “Improved Filters
and View Flexibility for Data Parallel Volume Rendering,” [WITT93b] and in SkiGraph as
“Permutation Warping for Volume Rendering,” [WITT93c]. With support from his NASA
fellowship he also presented results from this dissertation in Washington, D.C. in 1992
and 1993 at the NASA GSRP Annual Symposium.


	Designing Optimal Parallel Volume Rendering Algorithms
	by
	Craig Michael Wittenbrink
	A dissertation submitted in partial fulfillment of the requirements for the degree of
	Doctor of Philosophy
	University of Washington
	1993

	University of Washington
	Abstract

	Designing Optimal Parallel Volume Rendering Algorithms
	by Craig Michael Wittenbrink
	Chairperson of the Supervisory Committee: Professor Arun K. Somani Department of Electrical Engin...
	Chapter I Overview�11
	Chapter II Framework�18
	Chapter III Spatial Warping�40
	Chapter IV Spatial Volume Rendering�93
	Chapter V Fourier Volume Rendering�145
	Chapter VI Conclusions�149
	Bibliography �152
	Appendix A Glossary�164
	Appendix B Derivation of Compositing Complexity�167

	Acknowledgments

	Chapter I Overview
	1.1 Motivation
	1.1.1 Overview of Dissertation

	1.2 Volume Rendering
	1.3 Problem Statement
	1 What is the best algorithm for parallel volume rendering?
	2 What is the best architecture for parallel volume rendering?
	3 How can trade-offs be made between resources, quality, and time?
	4 How can questions 1, 2 and 3 be determined for other parallel algorithms and parallel machines?

	1.4 Research Contributions
	1.4.1 Computer Aided Research
	1.4.2 Image Warping Algorithms
	1.4.3 Volume Rendering Algorithms
	1.4.4 Fourier Volume Rendering

	1.5 Summary

	Chapter II Framework
	2.1 Background
	2.1.1 Development of Applications
	FIGURE 1 Mental Processes Used In Research.
	FIGURE 2 Critical Processes

	2.1.2 Promise and Reality of Parallel Computing
	FIGURE 3 Cost Performance Comparison
	TABLE 1 Cost Performance Data for Peak Performance [ZORP92][CYBE92][BELL92]
	FIGURE 4 Cost vs. Performance
	. (EQ 1)
	. (EQ 2)
	, (EQ 3)
	. (EQ 4)
	? . (EQ 5)

	FIGURE 5 Slowdown By Reducing Parallelism (Similar to [HENN90])



	2.2 Speedup Through Slowdown
	2.2.1 Efficiently parallelizeable algorithms
	FIGURE 6 Classes of Algorithms

	2.2.2 A Bridging Model, Mixed Cost Communication Machine (MCCM)
	FIGURE 7 MCCM Mixed Cost Communication Machine
	FIGURE 8 Compilation Process By Virtualization and Communication Refinement

	2.2.3 Bridging the PRAM to Real Machines
	2.2.4 Slowdown Compiler Techniques
	FIGURE 9 Multigrid Adaptation between Supersteps

	2.2.5 Existing System Software And Parallel Languages

	2.3 Algorithm Design On Transition Graphs
	FIGURE 10 Filtering Directed Graph Representation
	Initialize for for
	Initialize for
	for
	, (EQ 6)
	, (EQ 7)
	, (EQ 8)
	. (EQ 9)
	FIGURE 11 Volume Rendering Transform Graph


	2.4 Automated Choices In Transform Graphs
	FIGURE 12 Transform Graph

	2.5 Digression on Optimal Algorithms
	2.6 Summary and Discussion

	Chapter III Spatial Warping
	3.1 Background
	FIGURE 13 Spatial Image Warping

	3.2 Possible Image Warping Approaches
	FIGURE 14 Image Warping Classification Tree, (*) with new algorithms: Backwards, Forwards, and Ov...
	. (EQ 10)
	(EQ 11)
	(EQ 12)


	3.3 Warping Filters
	(EQ 13)
	(EQ 14)
	, (EQ 15)
	polyint(float ua[], float y[], int n, float u)
	{
	int i,l;
	float I[N];
	for to
	;
	for to
	for to
	return ;
	FIGURE 15 nth order polynomial interpolation by Neville’s form of Aitken’s algorithm

	polyint2d(float * Ix, float * Iy, float * I, int m, int n, int offset, float u, float v)
	{
	int j;
	float Itmp[n+1];
	for(j=0;j<=n;j++){
	Itmp[j]= polyint(Ix,I,m,u);
	I=I+offset; /* wrap around to the next row of interp*/
	}
	return(polyint(Iy,Itmp,n,v); /* column to get final value*/
	}
	FIGURE 16 Tensor product 2D interpolation by Aitken’s algorithm
	, (EQ 16)

	FIGURE 17 Filter Quality Comparison (upper left: zero order hold, upper right: first order hold, ...
	(EQ 17)

	FIGURE 18 Linear interpolation As Affine Combination
	(EQ 18)
	(EQ 19)

	FIGURE 19 Bilinear interpolation done in horizontal direction first and then vertical direction


	3.4 Error Derivation Of Filtering Approaches
	FIGURE 20 Complete Image Processing System
	FIGURE 21 Block Diagram of Operations In 2D Warping Algorithm
	FIGURE 22 Linearized 2D Warp Systems
	FIGURE 23 3D Linearized Warp Systems
	(EQ 20)

	TABLE 2 2D Interpolation error and resolution error for separable interpolation functions (Reprod...

	3.5 Optimal RAM Image Warping Algorithm
	FIGURE 24 Simple to Code RAM Backwards Algorithm, , , (RAMB-Simple)
	FIGURE 25 Clipping To Upright Rectangle
	TABLE 3 Sequential algorithm alternatives
	Clipping How Clipping Where

	TABLE 4 Terms Used in Algorithm Alternatives Table
	Term Definition Cost
	FIGURE 26 Optimal RAM Backwards Algorithm, , , (RAMB)


	TABLE 5 Algorithms Inner Loop Cost

	3.6 Optimal PRAM Image Warping Algorithms
	3.6.1 Optimal CREW PRAM Backwards Direct Warp Algorithm
	FIGURE 27 Backwards Algorithm (CREWB= , MCCMB= for and )
	, (EQ 21)


	3.6.2 Optimal EREW Forward Direct Warp Algorithm
	, (EQ 22)
	. (EQ 23)
	FIGURE 28 Nonlinear Mapping
	FIGURE 29 Near Neighbors In Mesh
	FIGURE 30 Forward Algorithm (EREWF= , MCCMF= )
	FIGURE 31 512x512 35° and 45° image rotation performed on the MasPar MP-1.
	FIGURE 32 Processor assignments in a 9x9 mesh to calculate 35° (left) and 45° (right) rotation
	. (EQ 24)


	3.6.3 Nonlinear Mapping Rules For Forward Algorithms
	(EQ 25)
	. (EQ 26)
	FIGURE 33 Distance of Interpolation Point in and .

	3.6.4 Sequences of Nonscaling Transforms
	(EQ 27)
	, (EQ 28)
	. (EQ 29)
	. (EQ 30)
	. (EQ 31)
	(EQ 32)
	, (EQ 33)

	3.6.5 Optimal MCCM 3D Equiareal Algorithm
	(EQ 34)
	. (EQ 35)
	, . (EQ 36)
	(EQ 37)
	(EQ 38)
	(EQ 39)
	. (EQ 40)
	(EQ 41)
	(EQ 42)
	FIGURE 34 Processor assignments in a 5x5x5 volume to calculate 25/2, 25, 0 and 35/2,35,0 (x,y,z) ...

	3.6.6 Comparison to Previous 3D Techniques
	TABLE 6 Performance Constants for Algorithms and filters with restricted rotations


	3.7 Scaling and Perspective
	FIGURE 35 3D Perspective Volume Distortion
	FIGURE 36 Scaling Of Data
	FIGURE 37 Trade-off curve of trading jobs versus communication
	FIGURE 38 Spreading To Distribute Data
	FIGURE 39 Striped Allocation of Volume Warping Jobs

	3.8 Virtualization
	FIGURE 40 Virtualization Showing Overlapping Boundaries of Subimages
	FIGURE 41 Volume Virtualization Techniques on a 2D Mesh
	FIGURE 42 3D Tile Notation
	. (EQ 43)
	. (EQ 44)
	. (EQ 45)
	(EQ 46)
	(EQ 47)
	(EQ 48)
	. (EQ 49)


	3.9 MasPar Performance Results
	3.9.1 Initial Forward and Backward Algorithms
	FIGURE 43 Nearly Constant Run Time Versus Angle For 2D Image Rotations, Bilinear Filter, Forward ...
	TABLE 7 MasPar 2D Rotations (times in seconds) with interpolation not mapped to unit interval, Bi...
	FIGURE 44 Run Time Linear In The Number of Pixels, 2D Rotation, Bilinear Filter


	3.9.2 Interpolation and Overlapping Optimizations
	TABLE 8 Overlapped Forward Rotation Subroutine Timings, 45 degree rotation
	TABLE 9 % Improvement and Run Times 2D Rotations (Run times in seconds)
	FIGURE 45 Run Times for 2D Rotation, Bilinear Interpolation on Unit Interval, with Backward, Forw...


	3.9.3 Filter Complexity, Zero Order Hold
	FIGURE 46 2D Rotations with Zero Order Holds, and Rule (Me) Variant
	TABLE 10 MasPar 2D Rotations (times in seconds) with Zero Order Hold Filters and Rule (Me) Variant

	3.9.4 Optimization By Power of 2 Virtualization, and Register Optimization
	FIGURE 47 2D Rotation, Power of 2 Addresses and Register Optimization, Bilinear Interpolation For...
	TABLE 11 MasPar 2D Rotations (times in seconds) Power of 2 and Register Optimized Versions

	3.9.5 Optimization Improvements
	FIGURE 48 Improvement of Each Program Variant for 512 x512 Image Rotation, Seconds Versus Optimiz...
	TABLE 12 Improvement of Each Program Variant for 512x512 Image Rotation, Seconds Versus Optimizat...
	FIGURE 49 All 2D Rotation Variants Over All Image Sizes


	3.9.6 3D Rotation Performance and Implementation Results
	TABLE 13 Column Virtualization 3D Image Rotation 1k MP-1 Performance in Seconds
	FIGURE 50 Column Virtualization on 1024 PE MP-1 Warping a 128x128x128 Volume
	FIGURE 51 Slice and Dice Virtualization on 16,384 PE MP-1 warping a 128x128x128 volume

	TABLE 14 16K Processor MP-1 Slice And Dice Timings For Warping, Seconds
	TABLE 15 Percent Improvement for 3D Slice and Dice Algorithms on 16k Processor MP-1
	TABLE 16 Rotation Only, From [VEZI92][SCHR91] Milliseconds
	FIGURE 52 16k MP-1 MasPar Performance on 128x128x128 Volume Rotation, Slice and Dice compared to ...

	TABLE 17 16k MP-1 Column Virtualization 3D Image Warping Performance in Seconds


	3.10 Summary and Discussion

	Chapter IV Spatial Volume Rendering
	4.1 Background
	4.1.1 Volume Rendering Lighting and Shading Models
	. (EQ 50)
	FIGURE 53 Volume Visualization

	4.1.2 Surface Lighting Models
	. (EQ 51)

	4.1.3 Particle Lighting Model
	FIGURE 54 Single Level Scattering Particle Model
	. (EQ 52)
	. (EQ 53)
	. (EQ 54)
	. (EQ 55)
	, (EQ 56)
	. (EQ 57)
	. (EQ 58)

	FIGURE 55 Intensity calculation for one point in the volume
	. (EQ 59)
	. (EQ 60)
	. (EQ 61)

	FIGURE 56 Volumetric compositing calculations
	, (EQ 62)
	. (EQ 63)
	, (EQ 64)
	. (EQ 65)
	. (EQ 66)



	4.2 Algorithm Development Methodology and Existing Approaches
	Transparency_Volume_Render(, , , , ) { }
	FIGURE 57 Data Parallel Volume Rendering Algorithm
	TABLE 18 Terms in algorithm
	FIGURE 58 Volume Rendering Transform Graph


	4.2.1 Backward Warping Algorithms-Ray Tracing
	FIGURE 59 Viewing Frustum For Ray Tracing
	FIGURE 60 Octree Space and Graph Representation

	4.2.2 Forward Algorithms-Compositing
	FIGURE 61 Forward Mapping of Voxels into Pixels

	4.2.3 Surface Fitting
	4.2.4 Reprojection and Fourier Volume Rendering
	4.2.5 Existing Methods Performance Summary
	TABLE 19 Opaque Voxel Algorithm Architecture Performance
	TABLE 20 Transparency Voxel Algorithm Architecture Performance


	4.3 Optimal RAM Volume Rendering Algorithm
	4.4 Optimal PRAM Volume Rendering Algorithm
	FIGURE 62 speedup as the number of processors is increased from to for an order interpolation, .
	(EQ 67)
	(EQ 68)
	(EQ 69)
	(EQ 70)
	(EQ 71)
	. (EQ 72)
	. (EQ 73)
	. (EQ 74)

	FIGURE 63 Fully Parallel Compositing
	FIGURE 64 Halving of Frames During Parallel Product for Compositing
	FIGURE 65 Overall Volume Rendering Complexity

	4.5 Permutation Warping For Parallel Volume Rendering
	Permutation_Volume_Render(, , , , ) { 1.0) PPS, calculate , . 2.0) VWS, Processor does: 2.1) Calc...
	2.2) Calculate reconstruction point
	2.3) Perform resampling of and
	2.4) send resampled values to SS processors 3.0) CS, calculate ray intensities with parallel prod...
	FIGURE 66 Permutation Warping Parallel Volume Rendering Algorithm
	FIGURE 67 Transformations and Communications in Permutation Warping for a Single Voxel
	FIGURE 68 Volume Transformations in Parallel
	FIGURE 69 Transformation with OS and SS Merged
	. (EQ 75)
	. (EQ 76)
	(EQ 77)
	(EQ 78)


	4.5.1 Data Parallel Virtualization
	FIGURE 70 Three Dimensional Tiling To Calculate Processor Identification and Subvolume Addresses ...
	FIGURE 71 Spatial Volume Virtualization For a Variety of Architectures
	FIGURE 72 Steps of Virtual_Permutation_Volume_Render, Virtualized SubVolumes to SubFrames to Fina...

	4.5.2 High Granularity Virtualization
	HighGrain_Permutation_Volume_Render(, ,,,) { 1.0) PPS , calculated 2.0) VWS 2.1) For each subcube...
	FIGURE 73 High Granularity Permutation Algorithm for , Image order resampling storage .
	FIGURE 74 High Granularity Rounds of Permutation Sends



	4.6 MasPar and Proteus Performance Results
	TABLE 21 Mean of the Measured Absolute Summed Error over all rays for 45 degree rotation about al...
	FIGURE 75 Maximum Error in Reconstruction of Cube
	FIGURE 76 Maximum Error in Reconstruction of Sphere
	FIGURE 77 0 MAX Error for 45x45x45 rotations, Top: Zero Order Hold, Middle: Multipass, Bottom Tri...

	TABLE 22 Absolute summed error on rays for 45, 45, 45 degree rotation (See FIGURE 77)
	FIGURE 78 Data with Ramp to Show Noise
	FIGURE 79 8X magnification, Zero Order Hold/ Trilinear

	4.6.1 MasPar Implementation
	FIGURE 80 Nearly Constant Run Time Versus Angle
	TABLE 23 16k Processor MP-1 128x128x128 Volume Rendering Times in Milliseconds
	FIGURE 81 Run Times Versus Volume Size for the 16384 processor MP-1

	TABLE 24 16K Processor MP-1 Slice And Dice Timings For Warping Only, Milliseconds. Reconstruction...
	TABLE 25 Rotation Only, From [VEZI92][SCHR91] Milliseconds
	TABLE 26 Percent Performance Improvement for Different filters using Using Permutation Warping on...
	TABLE 27 Volume Rendering Times For 1K MP-1, Seconds
	TABLE 28 4K MP-2 Column Virtualization Timings for 128x128x128 Volume, Seconds
	TABLE 29 Proteus Run Times, all output images are 256x256, Seconds
	TABLE 30 4K MP-2 Slice and Dice Timings for 128x128x128 Volume, Seconds

	4.6.2 Proteus Implementation
	FIGURE 82 Spatial Volume Virtualization For Proteus
	FIGURE 83 Run Time Versus Volume Size for Proteus and 16k processor MP-1
	TABLE 31 Speedup Versus for 32 Processors

	4.6.3 Comparison of Proteus With Existing Methods

	4.7 Summary and Discussion

	Chapter V Fourier Volume Rendering
	5.1 Background
	FIGURE 84 Fourier Slice Theorem, projection top, spectra bottom
	, (EQ 79)
	, (EQ 80)
	. (EQ 81)

	FIGURE 85 Fourier Volume Rendering

	5.2 Possible Fourier Volume Rendering Approaches
	FIGURE 86 Volume Rendering Transform Graph
	(EQ 82)

	FIGURE 87 Polar coordinates

	5.3 Summary and Discussion

	Chapter VI Conclusions
	6.1 Applying the Framework to Other Algorithms
	6.2 Designing Parallel Warping Algorithms
	6.3 Designing Parallel Volume Rendering Algorithms
	6.4 Future Research

	Bibliography
	Appendix A Glossary
	Appendix B Derivation of Compositing Complexity
	2.1 Background
	2.2 Back To Front Compositing
	, (EQ 83)
	(EQ 84)
	, (EQ 85)
	FIGURE 88 Back-To-Front Compositing Tree
	FIGURE 89 Back-To-Front Compositing Calculations

	2.3 Front To Back Compositing
	FIGURE 90 Front To Back Compositing Tree
	FIGURE 91 Front-To-Back Compositing Calculations
	(EQ 86)
	. (EQ 87)
	. (EQ 88)

	FIGURE 92 Front-To-Back Compositing with Transparency

	2.4 Parallel Binary Tree Compositing
	1. back-to-front: I=(I1 over (I2 over (I3 over I4)))
	2. front-to-back: I=(((I1 over I2) over I3) over I4)
	3. binary-tree: I= ((I1 over I2) over (I3 over I4))
	FIGURE 93 Binary Tree Compositing Associative Alternatives


	2.5 Front-To- Back Binary Tree Compositing
	FIGURE 94 Front-To-Back Parallel Compositing
	FIGURE 95 Update Node Problem
	, (EQ 89)


	2.6 Sum of Attenuated Emittances Approach
	(EQ 90)
	. (EQ 91)
	FIGURE 96 Sum of Attenuated Emittances Sequential Calculations
	FIGURE 97 Sum of Attenuated Emittances Parallel Calculation

	2.7 Summary and Discussion
	TABLE 32 Initialization costs
	TABLE 33 Number of Intensity Compositing Steps
	TABLE 34 Compute Cost, Update Cost
	intensity opacity transparency

	TABLE 35 Number of Composites for Updates to transparency/opacity
	method cost

	TABLE 36 Multiplications for All Methods
	Method Transparency/Opacity

	TABLE 37 Additions for All Methods
	Method Transparency Opacity
	FIGURE 98 Compositing Methods


	Vita



