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Abstract

Designing Optimal Parallel Volume Rendering
Algorithms

by Craig Michael Wittenbrink

Chairperson of the Supervisory CommittBeofessor Arun K. Somani
Department of Electrical Engineering
and Department of Computer Science and Engineering

Volume rendering is a method for visualizing volumes of sampled data such as CT,
MRI, and finite element simulations. Visualization of medical and simulation data im-
proves understanding and interpretation, but volume rendering is expensive and each
frame takes from minutes to hours to calculate. Parallel computers provide the potential
for interactive volume rendering, but parallel algorithms have not matched sequential al-
gorithm’s features, nor have they provided the speedup possible.

| introduce a methodology to control the complexity in designing parallel algo-
rithms, and apply this methodology to volume rendering. The result is parallel algorithms
with all of the features of sequential ones that deliver the promise of parallelism. My algo-
rithms are sufficiently general to run on single instruction multiple data (SIMD) comput-
ers and multiple instruction multiple data (MIMD) computers. Through complexity
analysis and performance measurements | show that volume rendering is ideally parallel-
izeable with linear speedup and low memory overhead.






Chapter |
Overview 11

Motivation 11
Overview of Dissertation 11
Volume Rendering 11
Problem Statement 12
Research Contributions 13
Computer Aided Research 14
Image Warping Algorithms 14
Volume Rendering Algorithms 15
Fourier Volume Rendering 16
Summary 17

Chapter Il
Framework 18
Background 18
Development of Applications 18
Promise and Reality of Parallel Computing 19
Speedup Through Slowdown 24
Bridging the PRAM to Real Machines 29
Slowdown Compiler Techniques 29
Existing System Software And Parallel Languages 32
Algorithm Design On Transition Graphs 34
Automated Choices In Transform Graphs 36
Digression on Optimal Algorithms 38
Summary and Discussion 39
Chapter Il

Spatial Warping 40

Background 40

Possible Image Warping Approaches 41
Warping Filters 43

Error Derivation Of Filtering Approaches 48
Optimal RAM Image Warping Algorithm 51

Optimal PRAM Image Warping Algorithms 54
Optimal CREW PRAM Backwards Direct Warp Algorithm 55
Optimal EREW Forward Direct Warp Algorithm 56
Nonlinear Mapping Rules For Forward Algorithms 59
Sequences of Nonscaling Transforms 61
Optimal MCCM 3D Equiareal Algorithm 63
Comparison to Previous 3D Techniques 65

Scaling and Perspective 67

Virtualization 69



MasPar Performance Results 73
Initial Forward and Backward Algorithms 73
Interpolation and Overlapping Optimizations 76
Filter Complexity, Zero Order Hold 78
Optimization By Power of 2 Virtualization, and Register Optimization 80
Optimization Improvements 82
3D Rotation Performance and Implementation Results 84

Summary and Discussion 90

Chapter 1V
Spatial Volume Rendering 93
Background 93
Volume Rendering Lighting and Shading Models 94
Surface Lighting Models 95
Particle Lighting Model 96
Algorithm Development Methodology and Existing Approaches 101
Backward Warping Algorithms-Ray Tracing 103
Forward Algorithms-Compositing 106
Surface Fitting 107
Reprojection and Fourier Volume Rendering 107
Existing Methods Performance Summary 107
Optimal RAM Volume Rendering Algorithm 111
Optimal PRAM Volume Rendering Algorithm 111
Permutation Warping For Parallel Volume Rendering 118
Data Parallel Virtualization 122
High Granularity Virtualization 125
MasPar and Proteus Performance Results 127
MasPar Implementation 134
Proteus Implementation 140
Comparison of Proteus With Existing Methods 142
Summary and Discussion 143
Chapter V
Fourier Volume Rendering 145
Background 145
Possible Fourier Volume Rendering Approaches 147
Summary and Discussion 148
Chapter VI

Conclusions 149

Applying the Framework to Other Algorithms 149
Designing Parallel Warping Algorithms 149



Designing Parallel Volume Rendering Algorithms 150
Future Research 150

Bibliography 152

Appendix A
Glossary 164

Appendix B
Derivation of Compositing Complexity 167

Background 167

Back To Front Compositing 168

Front To Back Compositing 169

Parallel Binary Tree Compositing 171
Front-To- Back Binary Tree Compositing 173
Sum of Attenuated Emittances Approach 175
Summary and Discussion 177



FIGURE
FIGURE
FIGURE
FIGURE
FIGURE

FIGURE
FIGURE
FIGURE

FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE

FIGURE

FIGURE

FIGURE

FIGURE
FIGURE

FIGURE
FIGURE

FIGURE
FIGURE
FIGURE

FIGURE
FIGURE
FIGURE

FIGURE
FIGURE
FIGURE
FIGURE

g B~ WN -

[op}

10
11
12
13
14

15

16

17

18
19

20
21

22
23
24

25
26
27

28
29
30
31

Mental Processes Used In Research. 18
Critical Processes 18

Cost Performance Comparison 20
Cost vs. Performance 22

Slowdown By Reducing Parallelism (Similar to
[HENNO90]) 24

Classes of Algorithms 26
MCCM Mixed Cost Communication Machine 28

Compilation Process By Virtualization and
Communication Refinement 28

Multigrid Adaptation between Supersteps 31
Filtering Directed Graph Representation 34
Volume Rendering Transform Graph 36
Transform Graph 37

Spatial Image Warping 40

Image Warping Classification Tree, (*) with new

algorithms: Backwards, Forwards, and Overlapped
Forwards 41

nt order polynomial interpolation by Neville’s form of
Aitken’s algorithm 44

Tensor product 2D interpolation by Aitken’s
algorithm 45

Filter Quality Comparison (upper left: zero order hold,
upper right: first order hold, lower left: quadratic
interpolation, lower right: cubic interpolation) 46

Linear interpolation As Affine Combination 47

Bilinear interpolation done in horizontal direction first
and then vertical direction 47

Complete Image Processing System 48

Block Diagram of Operations In 2D Warping
Algorithm 48

Linearized 2D Warp Systems 49

3D Linearized Warp Systems 50

Simple to Code RAM Backwards Algorithm, , , (RAMB-
Simple) 52

Clipping To Upright Rectangle 52

Optimal RAM Backwards Algorithm, , , (RAMB) 54
Backwards Algorithm (CREWB=, MCCMB= for and
) 55

Nonlinear Mapping 57

Near Neighbors In Mesh 57

Forward Algorithm (EREWF=, MCCMF=) 58

512x512 35 and 45 image otation performed on the
MasPar MP-1. 58



FIGURE

FIGURE
FIGURE

FIGURE
FIGURE
FIGURE

FIGURE
FIGURE
FIGURE

FIGURE
FIGURE
FIGURE

FIGURE

FIGURE

FIGURE

FIGURE

FIGURE

FIGURE
FIGURE

FIGURE

FIGURE

FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE

32

33
34

35
36
37

38
39
40

4
42
43

44

45

46

47

48

49
50

51

52

53
54
55
56
57
58
59
60

Processor assignments in a 9x9 mesh to calculate 35 (left)
and 45 (right) otation 59

Distance of Interpolation Pointin and. 61

Processor assignments in a 5x5x5 volume to calculate 25/
2,25, 0and 35/2,35,0 (x,y,z) rotations 65

3D Perspective Volume Distortion 67
Scaling Of Data 68

Trade-off curve of trading jobs versus
communication 68

Spreading To Distribute Data 69
Striped Allocation of Volume Warping Jobs 69

Virtualization Showing Overlapping Boundaries of
Subimages 70

Volume Virtualization Techniques on a 2D Mesh 71
3D Tile Notation 71

Nearly Constant Run Time Versus Angle For 2D Image
Rotations, Bilinear Filter, Forward and Backward All
Sizes 74

Run Time Linear In The Number of Pixels, 2D Rotation,
Bilinear Filter 75

Run Times for 2D Rotation, Bilinear Interpolation on
Unit Interval, with Backward, Forward, and Overlapped
Forward 78

2D Rotations with Zero Order Holds, and Rule (Me)
Variant 79

2D Rotation, Power of 2 Addresses and Register
Optimization, Bilinear Interpolation Forward/Backward,
and Zero Order Hold Backward 81

Improvement of Each Program Variant for 512 x512
Image Rotation, Seconds Versus Optimization Step 82

All 2D Rotation Variants Over All Image Sizes 83

Column Virtualization on 1024 PE MP-1 Warping a
128x128x128 Volume 86

Slice and Dice Virtualization on 16,384 PE MP-1 warping
a 128x128x128 volume 87

16k MP-1 MasPar Performance on 128x128x128 Volume
Rotation, Slice and Dice compared to Column
Virtualization 89

Volume Visualization 95

Single Level Scattering Particle Model 96

Intensity calculation for one point in the volume 99
Volumetric compositing calculations 100

Data Parallel Volume Rendering Algorithm 102
Volume Rendering Transform Graph 103

Viewing Frustum For Ray Tracing 104

Octree Space and Graph Representation 105



FIGURE
FIGURE

FIGURE
FIGURE

FIGURE
FIGURE

FIGURE

FIGURE
FIGURE
FIGURE

FIGURE

FIGURE

FIGURE

FIGURE
FIGURE
FIGURE
FIGURE

FIGURE
FIGURE
FIGURE
FIGURE

FIGURE
FIGURE

FIGURE

FIGURE
FIGURE
FIGURE
FIGURE
FIGURE

61
62

63
64

65
66

67

68
69
70

71

72

73

74
75
76
77

78
79
80
81

82
83

84

85
86
87
88
89

Forward Mapping of Voxels into Pixels 106

speedup as the number of processors is increased from
to for an order interpolation,. 112

Fully Parallel Compositing 115

Halving of Frames During Parallel Product for
Compositing 116

Overall Volume Rendering Complexity 117

Permutation Warping Parallel Volume Rendering
Algorithm 118

Transformations and Communications in Permutation
Warping for a Single Voxel 119

Volume Transformations in Parallel 120
Transformation with OS and SS Merged 121

Three Dimensional Tiling To Calculate Processor
Identification and Subvolume Addresses from
Coordinates. 123

Spatial Volume Virtualization For a Variety of
Architectures 124

Steps of Virtual_Permutation_Volume_Render,
Virtualized SubVolumes to SubFrames to Final
Image 125

High Granularity Permutation Algorithm for , Image
order resampling storage . 126

High Granularity Rounds of Permutation Sends 127
Maximum Error in Reconstruction of Cube 129
Maximum Error in Reconstruction of Sphere 130

OMAX

Error for 45x45x45 rotations,

Top: Zero Order Hold, Middle: Multipass, Bottom
Trilinear 131

Data with Ramp to Show Noise 133
8X magnification, Zero Order Hold/ Trilinear 133
Nearly Constant Run Time Versus Angle 135

Run Times Versus Volume Size for the 16384 processor
MP-1 136

Spatial Volume Virtualization For Proteus 141

Run Time Versus Volume Size for Proteus and 16k
processor MP-1 141

Fourier Slice Theorem, projection top, spectra
bottom 145

Fourier Volume Rendering 146

Volume Rendering Transform Graph 147
Polar coordinates 148

Back-To-Front Compositing Tree 168
Back-To-Front Compositing Calculations 169



FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE

FIGURE
FIGURE

90
91
92
93
94
95
96

97
98

Front To Back Compositing Tree 170

Front-To-Back Compositing Calculations 170
Front-To-Back Compositing with Transparency 171
Binary Tree Compositing Associative Alternatives 172
Front-To-Back Parallel Compositing 173

Update Node Problem 174

Sum of Attenuated Emittances Sequential
Calculations 176

Sum of Attenuated Emittances Parallel Calculation 176
Compositing Methods 179



TABLE

TABLE

TABLE

TABLE

TABLE
TABLE

TABLE

TABLE

TABLE

TABLE

TABLE

TABLE

TABLE

TABLE

TABLE

TABLE

TABLE

TABLE
TABLE
TABLE

TABLE

TABLE

TABLE

TABLE

[o2 ¢ BEF N b}

10

11

12

13

14

15

16

17

18
19
20

21

22

23

24

Cost Performance Data for Peak Performance
[ZORP92][CYBE92][BELL92] 21

2D Interpolation error and resolution error for separable
interpolation functions (Reproduced from
[PRAT78]) 51

Sequential algorithm alternatives 53
Terms Used in Algorithm Alternatives Table 53
Algorithms Inner Loop Cost 54

Performance Constants for Algorithms and filters with
restricted rotations 66

MasPar 2D Rotations (times in seconds) with
interpolation not mapped to unit interval, Bilinear
Filter 74

Overlapped Forward Rotation Subroutine Timings, 45
degree rotation 76

% Improvement and Run Times 2D Rotations (Run times
in seconds) 77

MasPar 2D Rotations (times in seconds) with Zero Order
Hold Filters and Rule (Me) Variant 79

MasPar 2D Rotations (times in seconds) Power of 2 and
Register Optimized Versions 81

Improvement of Each Program Variant for 512x512
Image Rotation, Seconds Versus Optimization Step 83
Column Virtualization 3D Image Rotation 1k MP-1
Performance in Seconds 84

16K Processor MP-1 Slice And Dice Timings For
Warping, Seconds 87

Percent Improvement for 3D Slice and Dice Algorithms
on 16k Processor MP-1 88

Rotation Only, From [VEZI92][SCHR91]

Milliseconds 89

16k MP-1 Column Virtualization 3D Image Warping
Performance in Seconds 90

Terms in algorithm 102

Opague Voxel Algorithm Architecture Performance 108
Transparency Voxel Algorithm Architecture
Performance 109

Mean of the Measured Absolute Summed Error over all
rays for 45 degree rotation about all axes. 128
Absolute summed error on rays for 45, 45, 45 degree
rotation (See FIGURE 77) 132

16k Processor MP-1 128x128x128 Volume Rendering
Times in Milliseconds 135

16K Processor MP-1 Slice And Dice Timings For Warping
Only, Milliseconds. Reconstruction to align and resample
byte voxels with orthographic view. 137



TABLE

TABLE

TABLE

TABLE

TABLE

TABLE

TABLE
TABLE
TABLE
TABLE
TABLE

TABLE
TABLE

25

26

27

28

29

30

31
32
33
34
35

36
37

Rotation Only, From [VEZI92][SCHR91]
Milliseconds 138

Percent Performance Improvement for Different filters
using Using Permutation Warping on 16k Processor MP-
1 138

Volume Rendering Times For 1K MP-1, Seconds 139

4K MP-2 Column Virtualization Timings for 128x128x128
Volume, Seconds 139

Proteus Run Times, all output images are 256x256,
Seconds 139

4K MP-2 Slice and Dice Timings for 128x128x128 Volume,
Seconds 140

Speedup Versus for 32 Processors 142

Initialization costs 177

Number of Intensity Compositing Steps 177
Compute Cost, Update Cost 177

Number of Composites for Updates to transparency/
opacity 178

Multiplications for All Methods 178

Additions for All Methods 178



Acknowledgments

| thank Professor Arun K. Somani for his guidance and complete energy in assisting me. |
am grateful to my committee Professors Linda G. Shapiro, Robert M. Haralick, Anthony
DeRose, and Mark M. Ganter for their interest and help. | am indebted to Professor Steven
Tanimoto for his suggestions, inspiration, and example. | received immeasurable help
from others at the University of Washington including, Michael Harrington, Srinivas Tri-
dandapani, Chung-Ho Chen, Eric Koldinger, M. Y. Jaisimha, and Jonathan Unger. The
students and researchers of the GRAIL laboratory in the Department of Computer Science
and Engineering have always been helpful and insightful including Stephen Mann, Hu-
gues Hoppe, David Meyers, and Professor David Salesin. Support from the NASA gradu-
ate students researcher’s program as well as from the Navy through the Proteus project
was instrumental in allowing me to complete my research. Professors Arun K. Somani,
Robert M. Haralick, and Thomas Seliga provided me with the avenues to obtain research
funding.

| was lucky to have contact (mostly e-mail) with many researchers in my field
including Professor Marc Levoy, Rachael Brady, Jonathan Becher, Professor Arie
Kaufman, Professor Jane Wilhems, Dr. Donald J. Meagher, Professor Bill Lorensen,
Claudio Silva, Bill VanZandt, Professor Roni Yagel, Professor Ira Kalet, P. Schroeder, and
Tom Malzbender. By both providing references and feedback these graphics researchers
have improved my work. | hope to continue my interaction and collaboration with them.

Most importantly of all | thank my wife, Debra, for her support and
encouragement.



Chapter |
Overview

1.1 Motivation

Researchers developing parallel applications encounter many difficulties, because there is
greater flexibility and complexity than in sequential applications. | propose a methodology
to simplify and assist parallel algorithm research. Parts of the methodology can be auto-
mated for computer aided research. My initial experiments in the area of graphics and im-
age processing show that not only are there paradigms for algorithms, but there are
paradigms for algorithm development. In this dissertation | develop parallel volume ren-
dering algorithms with the methodology. My contribution is superior parallel volume ren-
dering algorithms and a framework for parallel algorithm development. This chapter gives

a brief overview of the dissertation in Section 1.1.1. Volume Rendering is introduced in
Section 1.2. Then in Section 1.3 the research questions addressed in this dissertation are
enumerated and explained. My research contributions, and answers to the questions raised
are highlighted in Section 1.4.

1.1.1 Overview of Dissertation

Chapter Il covers the scientific research process, reviews the state of the art in parallel al-
gorithm and application development, and then develops a framework for parallel algo-
rithm design. Parallel models of computation are introduced, including my bridging
model, the mixed cost communication machine (MCCM). Examples of applying the
framework are given. Chapter Ill covers spatial warping algorithms. Spatial warping is a
geometric transform of an image important in volume rendering and image processing al-
gorithms. | present my parallel warping algorithms in Chapter Ill. Chapter IV covers vol-
ume rendering algorithms. Both a survey of existing methods and my parallel algorithms
are discussed. Chapter V covers Fourier volume rendering algorithms. Chapter VI con-
cludes the dissertation and addresses future work and generalization of the research to oth-
er algorithms and applications.

1.2  Volume Rendering

Volume rendering is an algorithm to visualize sampled three dimensional data. Applica-
tions that create sampled data include medical imaging, finite element modelling, photore-
alistic graphics, molecular microscopy, and nondestructive testing. A collection of point
samples is called a scalar field, volumetric data, or voxels (for volume elements). The ap-
propriate visualization technique depends on the application, and surface fitting and ren-
dering is often adequate [FOLE90]. The rendering fidelity is lower when using
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intermediate surface representations; therefore, researchers have argued in favor of direct
methods that do not convert to surfaces [LEVO90][WEST91].

| call the direct methods transparency volume  rendering
[BLINB2][KAJIB6][LEVO90][SABES88]. The physical interaction of light is solved by
evaluating particle transport equations, a computationally expensive process. The primary
disadvantage of transparency volume rendering is the large amount of computer time and
memory required. Using transparency at least doubles the memory requirements over sur-
face methods. The largest volumes that can be processed are about 512x512x512 voxels,
and the highest performance is several (1-3) frames a second (on smaller 128x128x128
volumes) [KAUF88][SCHR90][YOO91][NIEH92]. Volume rendering will be more useful
with interactive update rates (10-30 frames/second). Animation by changing viewpoints,
data, and lighting allows steering simulations [MARS90] and creating internalized visual-
izations [LAUB90]. Recently, many parallel volume rendering implementations have been
published, but they have left open important research questions which | discuss in the next
section.

1.3 Problem Statement

There are four primary questions addressed in this dissertation:

1 What is the best algorithm for parallel volume rendering?

2 What is the best architecture for parallel volume rendering?

3 How can trade-offs be made between resources, quality, and time?

4 How can questions 1, 2 and 3 be determined for other parallel algorithms and par-

allel machines?
These questions embody many hypotheses. | have investigated several resulting hypothe-
seis and answered them. Section 1.4 gives an outline of my results. The goal of the disser-
tation is to determine the best algorithms and architectures for parallel volume rendering.
A companion goal is to understand and improve the methods used to develop parallel al-
gorithms.

| investigated techniques for general parallelism: single instruction multiple data
(SIMD) and multiple instruction multiple data (MIMD). This approach contrasts special
purpose architecture research. Systems for volume rendering have proliferated [GOLD85]
[JACK88] [KAUF88] [GEME90] [KAUF90] [KAUF91b] [MALZ90] [MEAG91]
[MOLN92], but are eclipsed by general parallel computers in speed, cost, and programma-
bility. Special purpose architectures such as the Pixar [LEVI84][DREB88], Kaufman-

Cube [KAUF88], LMO-2 [MEAG91], PARCUM, Voxel Processor, SCOPE, and 3DP
[OHASS85][KAUF90] achieve only limited improvements over general supercomputers
such as the Connection Machine [SCHR90][THIN89], MasPar MP-1 [BLAN90], and
MP-2. Also, the adaptability of special purpose architectures to different algorithms, data
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sets, and modelling is limited. For example, the Kaufman-Cube [KAUF88] achieves up-
date rates of 16-35 frames/second but uses binary voxel classification, an algorithm sim-
pler than transparency volume rendering. The Kaufman-Cube can not use more advanced
shading algorithms such as compositing or numerical integration, and scientists are using
ever more advanced visualization techniques. Special purpose graphics machines
[KAUF90] (Stellar GS, Ardent Titan, AT&T Pixel Machine [POTM89], Silicon Graphics

4D, HP Turbo SRX, SUN TAAC-1, Pixar, Pixel Planes-5 [FUCH89]) show good perfor-
mance with heterogeneous (SIMD and multiple types of MIMD) processors, but have lim-
ited availability and lag general computing technology.

From each question, 1 through 4, | have investigated the following hypotheses:
Hypothesis 1  There is an optimal algorithm for parallel volume rendering.

Hypothesis 2  There are optimal parallel volume rendering algorithms on weak models
of computation, such as SIMD.

Hypothesis 3  There is a continuum of choices between image quality and compute
time.

Hypothesis 4  The optimal parallel volume rendering algorithms and architecture map-
pings are adaptable to similar image and graphics applications.

These hypotheses are statements that ask: does SIMD or MIMD have an inherent
advantage for volume rendering, and what are the different algorithms that are most appro-
priate for each? To investigate the hypotheses | used both analytical and experimental re-
sults. For example, complexity analysis and performance measurement are necessary tools
for comparing algorithms. | was careful to correlate my complexity analysis with initial
performance measurements, so that subsequent choices in algorithms could be more confi-
dently evaluated. After validation, only algorithms with a clear complexity advantage
were implemented. Performance measurements were used to validate and compare to oth-
er researcher’s results.

1.4 Research Contributions

My research contributions are a new methodology for developing parallel algorithms in
Chapter II, new algorithms for parallel image warping in Chapter Ill, and new algorithms
for parallel volume rendering in Chapters IV and V. My methodology for developing par-
allel algorithms can be automated to simplify and accelerate parallel algorithm design. My
algorithms are general and adaptable to shared memory, distributed memory, SIMD, and
MIMD machines. They are also efficient in their space and run time complexity. Features
and limitations of these algorithms are briefly described in Sections 1.4.2to 1.4.4. My em-
pirical measurements support these efficiency claims and allow comparison to following
work on parallel image warping and volume rendering. Timing and filter results are given
in Chapters IIl and 1V, with notable performance results.
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1.4.1 Computer Aided Research

Many algorithms exhibit similar characteristics. For example, | have studied morphology,
warping, volume rendering, and free-form deformations that all use geometric transforma-
tions. Geometric transform based algorithms can be calculated with multiple processor as-
signments and transform directions. Using a classification of possible transform
approaches helps an algorithm designer understand the many possibilities. | have also in-
vestigated the use of a dependency flow graph for knowledge representation in algorithm
design. | have developed classifications and applied them to warping and volume render-

ing.

The graph representation allows search methods to optimize algorithms. Stated as
a shortest paths problem, the most efficient algorithm altering a representation (vertex) to
another representation by subroutines (edges) is selected by calculating the single source
shortest paths. Because arcs are missing, the knowledge of the minimum time and space
complexity bounds is used to conjecture that the algorithm is optimal or another may be
found. | have taken such an approach, and shown how to build the dependency flow graph
representation for morphology, warping, and volume rendering. The algorithms that | de-
veloped are new arcs which were likely to exist because previous arcs did not achieve the
optimal bounds.

An important part of the methodology is use of an abstract machine, the mixed cost
communication machine (MCCM), that | developed. This machine is a parallel random
access machine (PRAM) that assigns costs to memory accesses. The communication costs
help compare algorithms from different PRAMSs to determine their relative efficiency.

This methodology can be extended to other image processing and graphics appli-
cations, and perhaps to more general domains as well. The algorithm representations, and
the algorithm design process have helped me to understand how I create algorithms, and
kept me from ignoring important alternatives.

1.4.2 Image Warping Algorithms

An invertible warp is one where the transform has an inverse. A simple algorithm to calcu-
late invertible warps isd(1)  on the concurrent-read exclusive-write (CREW) PRAM with
optimal storage efficiency. | assume there is a processor for each sample point, and the fil-
ter evaluation cost is constant. Because of the concurrent read capability the data is easily
accessed, but concurrent reads are hard to emulate in real hardware.

A restricted transform domain allowed me to develop a permutation warp which

calculates equiareal warpBVMESE83], such as shears, rotations, reflections, and transla-
tions, on the exclusive-read exclusive-write (EREW) PRAM. My permutation warp has
run time complexityo(1) assuming constant filter complexity, anel s , Wirere is the
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number of processors arsd is the number of sample points. The EREW and CREW algo-
rithms have linear speedup when there are fewer processors than sample points. The paral-
lel run time onP processors is therefoedt,/P) wheye is the sequential run time and

P<S.

On my bridging model of computation, the MCCM, the EREW PRAM algorithm
is superior to the CREW PRAM algorithm because of network congestion when using first
order or larger filters. Performance measurements on the MasPar MP-1 show that CREW
algorithm is superior for zero order filters, but the EREW PRAM algorithm is up to 58%
faster for two dimensional warps and up to 100% faster for three dimensional warps with
first order filters. The gap widens for higher order filters. The MCCM assumes a general
interconnection network, so that these algorithm results generalize to hypercube networks
(iPSC Cube), hypercubic networks (butterfly, benes, etc.), reconfigurable meshes (Intel
Paragon), and shared memory machines. The use of exclusive reads on shared memory
machines such as the Sequent Symmetry S-81 reduces shared bus congestion for higher
performance.

1.4.3 Volume Rendering Algorithms

Spatial volume rendering using parallel product and general viewing transforms has run
time complexity O(logw) forw sample points along a view ray and storage complexity
O(S), S = rowsx colsx slices on the CREW PRAM. Using my new permutation warp,
volume rendering algorithms using equiareal viewing transforms have run time complexi-
ty O(logw) and storage complexityp(s) on the EREW PRAM. | show how to achieve
optimal speedup for both the CREW and EREW algorithms with fewer than
P = O(S/log9 processors fois samples maintaining the same storage efficiency. For
S/log S< P additional speedup is achieved but efficiency falls off. Optimal speedup is lin-
ear speedup, and machines with fewer processors than the stated bound achieve linear
speedup using my volume rendering algorithm. For example, any machine with fewer than
3, 025 551processors rendering@s6x 256x 25¢  volume achieves linear speedup. Exten-
sions to more general viewing transforms are straight forward, more efficient than other
methods, but are not optimal.

| have proven Hypothesis 1, because my EREW and CREW algorithms are opti-
mal for processors bounded ®= O(S/logg . Because available parallel machines have
few processors relative to input sizes, volume rendering is ideally parallelizeable with run
time o(t/P) onP processors. This significant result is discussed in Chapter IV.

1. The set of affine transformations that preserve the numerical values of the mea-
sures of triangles, and the determinant is equallto
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Using both the EREW and CREW algorithms | have developed volume rendering
algorithms for high and low granularity. Performance measurements exhibit linear speed-
up in the problem size, supporting Hypothesis 1. The SIMD implementations on the Mas-
Par MP-1 proves Hypothesis 2. The algorithms require general interconnections, but are
efficient on SIMD machines. Weaker interconnection structures require restricting view-
ing transforms and filter quality. Linear speedup is achieved without communication over-
head on SIMD or MIMD computers. And neither architecture has an inherent advantage.
In fact, dynamic load balancing techniques can be used on both SIMD and MIMD ma-
chines.

The future bottleneck for parallel volume rendering is compositing. Machines will
reach this bottleneck only when there are millions of processors, and at that time compos-
iting can be implemented in the interconnection network. In all machines, constant factor
speedups can be achieved using data dependent optimizations and dynamic load balanc-
ing. | did not implement these techniques as they will only gain constant amounts depend-
ing on the data. Data optimizations and load balancing are interesting future work.

| have proven Hypothesis 3 for filter quality. | show that by changing the filter

quality you can vary the run time, and the same quality filters used in sequential algo-
rithms can be used in my parallel algorithms without communication congestion. Because
the communication and resampling by my techniques in Chapters Il and IV solve for
multiple order filters, more involved shading models or data preprocessing can be effi-
ciently added. My techniques allow shading and preprocessing to be changed without
communication congestion making general purpose parallel machines efficient and exten-
sible for volume rendering. As faster machines become available more sophisticated visu-
alizations will be interactive.

1.4.4 Fourier Volume Rendering

Parallel Fourier volume rendering has complexitglogR) S0 its complexity appears to be
similar to the spatial volume rendering algorithms, but the fact that it worksRvith ~ data el-
ements to calculate a projection, gives it a significant advantage over spatial volume ren-
dering. The time folr processors for spatial volume rendering(s’ P) while the time
for Fourier volume rendering isO(RlogR/P) showing immediately the advantage
(S> Rog R. | have looked into developing a polar coordinate Fourier transform which
would allow picking arbitrary viewing directions without spectral resampling. | also
looked into developing ways to incorporate shading into Fourier volume rendering, but |
have not solved this problem. Levoy [LEVO92] recently published Fourier directional
shading that partially works, but is expensive and may likely be improved.
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15 Summary

In this dissertation | present a methodology for developing efficient parallel volume ren-
dering algorithms. | present the spatial warping and spatial volume rendering algorithms
and implementations that show: there is an optimal parallel volume rendering algorithm,
that there are no inherent advantages for SIMD or MIMD, and also that there are clear
quality/time trade-offs that can be made. Applying permutation warping to solid model-
ling through Free-Form-Deformations (FFD’s) [SEDES86], or to ray tracing of surface
scenes [GLAS89], seems possible. This dissertation will enable others to apply the devel-
opment methodology to other applications as | show in Chapter Il supporting Hypothesis
4.



Chapter I
Framework

2.1  Background

2.1.1 Development of Applications

Consider research at the highest level. Ideas are intuitively generated and then are ana-
lyzed by critical thought to further develop, validate, or falsify them. The mental processes
occurring are shown in FIGURE 1 [STOCB85]. As shown in FIGURE 2 creative ideas enter
our minds, and we must form hypotheses to test them.

Imaginativeq— Critical

Aim i Discovery Validation/Falsification
Key Mental@ Intuition Reason or Logic
Process

FIGURE 1 Mental Processes Used In Research.

For example, creative idea: projection of volumetric data may be done fastest
through direct resampling; hypothesis, a comparison of existing techniques may reveal a
superior approach. The hypothesis is further and further quantified as critical thinking
progresses, and ideas may be thrown out or deemed useful for some other area. This oc-
curs in the validate/test thought process. Computer applications are an important tool in
evaluating hypotheses, and form much of the research done in computer graphics and im-
age processing.

%rg’:t'veﬁéa Hypothesise— = Develop Application
i (where computers can help) Validate/Test
Intuitive Critical Analyze‘rtgjffs to hypothesis

FIGURE 2 Critical Processes
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In research, application development has several purposes. Applications are used
to calculate intermediate forms of scientifically collected data, make decisions on that da-
ta, and control external devices. In my example, volume rendering may be used by medi-
cal researchers to interpret tissues. Volume rendering is one part of a larger application,
and hypotheses about direct resampling affect the whole application.

A performance study of volume rendering approaches can be done by complexity
analysis alone, but application development and measurement give empirical evidence to
help support any conclusions from the analysis. If a researcher wishes to try such an ap-
proach they need to develop software for each step, integrate each module, and evaluate
the performance. The performance can vary due to user input, quality, and the correctness
of the approach. Any factors that can be automatically calculated allow the researcher to
focus on unproven aspects of the application. The goal is to have applications work as
quickly as possible and then investigate the performance. Application development diffi-
culties delay important feedback, and if the effort is too great for implementation, analyti-
cal analysis is done rather than building a functional system. Any insight from a prototype
system is lost.

The process of developing an application has several steps and goals. The steps
are: (1) problem formulation, (2) specification of a solution, (3) means to achieve a solu-
tion, (4) development of system, (5) testing and analysis of results, and (6) further refine-
ments or restart in new directions. The goals often used are accuracy, efficiency,
correctness, understanding, speed, alternative viewpoints, and validation or hypothesis
testing.

Parallel computers provide more potential for demanding and previously intracta-
ble calculations, but have also added to the complexity of the development phase. Parallel-
ism requires more sophisticated techniques than sequential computing to develop and
analyze applications. If one takes a step back from the research in parallel computing and
looks at the goal, it is utilization of parallelism in applications. Parallel control, partition-
ing, scheduling, and communication are building blocks for developing parallel applica-
tions. At a higher level, above the parallelism, application research is done. Problem
formulation, theorizing, and system prototyping are what computers are used for, and my
proposed framework can assist in application development on parallel computers. The dif-
ficulty in using parallelism demands developing tools for parallel application develop-
ment, as | will show in the next section.

2.1.2 Promise and Reality of Parallel Computing

Parallelism has given a 1000 fold increase in performance over single processors in the
last 10 years, but the scientific community has not completely adopted parallelism because
of the difficulty in harnessing it. Parallelism has not been widely successful. Scores of ap-

plications have been developed for parallel computers, but they are not portable and took
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considerable effort to develop [HATC91]. The primary differences in single and multipro-
cessor development are synchronization, partitioning, communication, deadlock avoid-
ance, standards, and availability.

Parallelism has a lower cost to peak-performance ratio than sequential processing,
and its use is the next logical step for high end applications. But, the cost performance im-
provement is for tuned applications. Because of overhead (synchronization, communica-
tion, and scheduling) the peak performance is very difficult to attain, and 1% to 25% of
peak is typical [CYBE92]. Today’s cost performance ratio is in flux. FIGURE 3 and TA-
BLE 1 [BELL92][CYBE92][ZORP92] show that the cost to peak-performance ratio is not
monotonic.
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FIGURE 3 Cost Performance Comparison
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TABLE 1 Cost Performance Data for Peak Performance
[ZORP92][CYBE92][BELL92]

#Computer proc] MFlops costgollar Flop/$ | $/MFlop
SparcClassic 1 21 4295 4889.4 204.52
SunSparLX 1 40 7995 5003.1 199.875
HP715/33 1 45 5695 7901 126.55
HP725/50 1 72.1 17895 4029 248.1969
Decalpha 1 125.1 41195 3036.7 328.285
HP735 1 150.6 37395 4027.2 248.3
SunSparc10 2 142.8 40000 3570.0 280.11
SunSparc10 4 285.6 80000 3570.0 280.11
MP-1 16k 1200 2000000 600 1666.6
Proteus 16 1280 200000 6400 156.25
MasPar_MP-2 4096 | 1600 500000 3200 3125
Cray_C90 16 16000 30000000 533.33 1875
NEC_SX3 4 25600 25000000 1024 976
Intel_Paragon 512 | 40960 40000000 1024 976
KSR_1 1088 | 43500 30000000 1450 689
TMC_CM5 1024 | 128000 | 30000000 4266.6 234.375

In FIGURE 4 the cost versus peak performance is shown for all of the systems in
TABLE 1. The added peak processing power is achieved through using more processors.
See for example the jump from the NEC SX3 (4 processors) to the Intel Paragon (512 pro-
cessors). The improvement from new processors is seen in the gap between the KSR-1 and
the CM-5. This cost performance survey shows that machines are not gaining much more
parallelism by using off the shelf processors in specialized networks. Machines such as the
KSR-1, CM-5, Intel Touchstone, etc. are gaining more performance by using more power-
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ful processors. But one cannot use peak power for accurate comparisons. | note only that
parallelism remains modest with ever increasing costs.
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FIGURE 4 Cost vs. Performance

Existing approaches have been expressed as the road to Eldorado [HENN90], a fa-
bled city of riches. Either one opts for millions of simple processors, known as the high
road, or one uses thousands of more complex processors, the low road. In both the low and
high roads sequential programs are turned into parallel ones.

The speedup of an application is the sequentialtime  over the parallgitime
T1(A)
Te(Ap) -

The parallel time is a function of the number of processors and how much work per pro-
cessor. If an algorithm can be virtualized arbitrarily the relationship of run time while
varying the number of processors is,

Speedup= (EQ)

Tp(A) = (WVP)T(A) . (EQ2)

T, is defined as the run time of a virtual processor’s work on the algorgthm . For algo-
rithms/applications of this type the speedup can be compared on different architectures.
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As an extreme example consider using the Cray Y-MP and the Connection Ma-
chine CM-2. The time for a virtual processor’s work on each processor is different,

To (A>T (A) (EQ3)

related to the performance per processor (MFLOPS, MIPS). There are also different num-
bers of processor®,,,., = 65536 Py, = 8 . If the application can be ideally speeded up
on both architectures, then the most speedup is attained by the algorithm-architecture pair
that minimizes the parallel run time,

T (A) = minEPlyT\,y(Av)EI y 0 machines. (EQ 4)

So the machine’s run times are in a greater or less than relation to each other depending
upon the number of processars |, the power per procassor , and the ability to efficiently

virtualize (EQ 2),

\' \'

— o _VvV
PCM_ZTV(;M.Z(AV) H PY_MPTVYNP(AV) . (EQ 5)

In this example the CM-2 achieves greater speeduprfor <8191, , or the CM-2’s

processors can be 8K times slower than the Y-MP’s processors and still achieve more
speedup.

In practice peak performance and linear speedup are difficult to achieve. As men-
tioned earlier, most parallel applications achieve only 1% to 25% of peak performance.
Existing approaches to achieve speedup are new programming styles (data parallel
[HATC91] and functional) and parallelizing compilers (convert sequential to parallel pro-
grams) [GELE90][WOLF89][CANN92][BELL92]. The low road allows automated com-
piling of existing code while the high road requires rewriting applications in parallel form.
But those approaches are the paths to El Dorado. Given that parallel hardware has im-
proved while the acceptance of parallelism has not, how can software technology im-
prove? | believe that efficient parallel applications adapt to parallel architectures. |
conjecture that reversing the road to Eldorado will provide greater portability and freedom
from these lower level issues.

| call the approactspeedup through slowdowwhich means developing applica-
tions with as much parallelism as possible. See FIGURE 5.

Definition I Speedup through slowdown. A program with fully specified parallelisnv for
processors can be modified to run PR v processors by grouping work and slowing it
down by emulatingy processors with  Processors. The speedup attained is the run time
of theP processors over a single processor (EQ 1).

Using higher level algorithm representations allows not only an algorithm designer
to crystallize the important information, but provides hooks for automating the design and
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compilation of algorithms. Use of slowdown compilers, bridging machines, my transition
graph design approach, and transition graph optimizations may help further the success of
parallel processing.
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FIGURE 5 Slowdown By Reducing Parallelism (Similar to

[HENN9O])

In the next section | review efficient parallel algorithm classes and relate them to
slowdown compilers. My bridging model, the MCCM, is introduced as a tool for analyz-
ing parallel algorithms. The techniques useful in slow down compilers are reviewed. Then
| present a paradigm for transform based algorithms with several important examples.

2.2  Speedup Through Slowdown

The key difference in speedup through slowdown is to ignore the number of processors
of existing machines, and concentrate on developing algorithms with as many wrtual ( )
processors as needed. is bounded to be polynomial in the problem size to be realistic.
FIGURE 5 shows algorithm, traveling the reverse road to three architectures. This is the
opposite approach from [HENN9O0]. For an introduction to speedup refer to that source.
Valiant and others have discussed similar approaches
[CANN92][GIBB88][VALI9O][VALI9Ob]. By using explicit parallelism in the algorithm,
subsequent transforms of the algorithm maximize parallelism. Whether one takes the high
road or the low road back, the difficulty of creating parallelism is gone. Compilers can pre-
serve the efficiency. Slowdown creates portable parallel algorithms.

Hypothesis 5Slowdown is the methodology that will create parallel program portability
and efficiency necessary for the success of parallel processing.
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Because slowdown abandons existing parallel software its rewards must be great
for the community to investigate and adopt it. The advantages of developing applications
with full parallelism are: (1) they can be automatically mapped into machines with fewer
processors, (2) portability between different architectures, and (3) generation portability
because they benefit from new architectures with more processors. For single processor
code portability results from hardware abstraction. Compilers adapt source code to nearly
all processors efficiently. Slowdown allows the same approach for parallel portability.

The CM-2/Cray Y-MP example illustrates that parallelism contributes a great deal
to speedup for fully parallel algorithms. | assumed that the example application was map-
pable onto the CM-2. What this means formally is the algorithm is SIMD-transformable.
Having examined the price performance and how to get around parallelizing single pro-
cessor code | now examine the classes of parallel algorithms amenable to slowdown. On
the highest level, to achieve portability, algorithms must be developed for abstract ma-
chines. This approach has been famously successful for the random access machine
(RAM) used for single processor models. The parallel random access machine (PRAM)
and its variants are widely used abstract parallel models [GIBB88][CORM90]. A PRAM
is a shared memory machine where each processor can randomly access any memory ele-
ment with unit cost. The processors are assumed to be tightly synchronized. Restrictions
are placed upon reads and writes such as: concurrent reads, exclusive reads, and concur-
rent writes and exclusive writes. The exclusive read and write (EREW) PRAM while the
most restrictive is also most efficiently simulated on existing machines.

2.2.1 Efficiently parallelizeable algorithms

Nick's Class (NC) is the class of computable and efficiently parallelized algorithms shown
in FIGURE 6. NC is defined as parallel algorithms that use a polynomial number of pro-

cessorsO(n*) , and take polylogarithmic tima(logkzn) [GIBB88], where the input size
isn andk, and, are constants. P is defined as sequential RAM algorithms whose time is

polynomial in the problem size(n*) . FIGURE 6 is partitioned into parallel (sequential)
abstract machine and parallel (sequential) actual machine space. | am interested in these
algorithms because they are efficient by definition.

Parallelizing compilers adaft -class algorithms to PRAMSs, which is an inherent-
ly hard problem because 0ONC  so efficient parallel algorithms may not exist for some
code. | bypass this problem by starting with efficient parallel algorithms in NC. This is
done using a slowdown compiler, and sidesteps the difficulty of creating parallelism.

The simulation of a theoretical machine by a real machine is made practical by
compilation. Once automated, the compilation of a program for an abstract machine to an
actual machine allows one to develop efficient code at a more abstract level. And, the ab-
stract machine hides many details of the hardware from compilers and system software as
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well. This approach follows from the methodology of partitioning design work to reduce
complexity.

Parallel (PRAM) | Sequential (RAM)

Theoretical SIMD Transformablie

Machines

slowdown

Actual . ) )
Machines P processor maching | 1 processor machine
P<v E
FIGURE 6 Classes of Algorithms

There are four main tasks for developing parallel computing: languages, applica-
tions, hardware, and system software development. Slowdown helps by separating these
tasks (even with blurry lines). Application development is severed from the platform. Al-
gorithms that are destined for greater parallelism and parallel cost effectiveness are noted
by defining classes of algorithms according to their characteristics. | define these algo-
rithms by the following two classes:

Definition 2 MIMD Transformable algorithm is a fully parallel algorithm, that can be
converted to a machine with  processersv with efficiency to within a constant factor,
Te(Ap,,,) = O(W/PT,(A)) .

Definition 3 SIMD-Transformable, A fully parallel algorithm, developed for the PRAM
is SIMD-transformable when it may be converted to an algorithim that runs on a

SIMD PRAM with P processorg<v whose efficiency T$(As_ ) = O(v/PT,(A))

A SIMD PRAM is a machine where each processor uses the same instruction
stream but for an appointed controller who both controls and determines the instructions
the rest of the processors execute.

The slowdown to either MIMD or SIMD is automated through optimizations of an
intermediate form of the program. The same source code generates radically different al-
gorithms for the two machines, extracting all parallelism available to the machine. My
postulated relation of MIMD-transformable and SIMD-transformable classes to other
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classes is shown in FIGURE 6. If the overlap of NC and SIMD-transformable is large than
the following hypothesis may be true.

Hypothesis 6A significant number of parallelizeable algorithms achieve greater absolute
speedup on SIMD machines than on MIMD machines, bec&dsg » Pyvo , SIMD is

more efficiently synchronized, and many SIMD algorithms have already been developed.

The facts thabg,, » Pyywp  @nd SIMD is tightly synchronized makes SIMD-trans-
formable algorithms and SIMD machines achieve more speedup. The size of overlap, the
cross hatched area whekg  is in FIGURE 6, is one critical question to investigate for Hy-
pothesis 6. Similar approaches have been discussed for data parallelism such as in
[HILL85], but | believe the class of algorithms to contain more than just data parallel algo-
rithms. The two extremes, MIMD and SIMD represent the high and low reverse roads
shown by FIGURE 5 (road 1 and road 3): (1) make the machine so powerful and general it
can implement any algorithm, and (2) make the mapping and assignment sophisticated to
exploit the greater number of processors available to SIMD machines. Because algorithm
efficiency on each machine is so critical | define the following bridging models whose
characteristics are closer than the PRAM to physically realizable machines. SIMD models
in the literature such as [RICE88] are more detailed than I require for the discussion. | pro-
pose themixed cost communication machi(dCCM) for the development of fully paral-
lel algorithms. Fully parallel means that the algorithm is written for the problem size and
not the machine size. The MCCM is defined in the next Section.

2.2.2 A Bridging Model, Mixed Cost Communication Machine (MCCM)

By ignoring the specific machine topology, algorithms can be designed independently of
network specifics but they are ignorant of network costs. My solution to this is to design
algorithms on the PRAM, then evaluate their efficiency on a bridging model that takes into
account network cost# 3 level cost model is used with self, local, and global costs. The
abstract machine is called a mixed cost communication machine or MCCM shown in FIG-
URE 7.

Definition 4: Mixed cost communication machine (MCCM): has PRAM execution con-
structs, and communication construdslf< local < global. The time complexity for any
algorithm is a function of both the computation and the mixed communication costs. Glo-
bal communication is cost  for a permutation, and any number of requests from or to a
destination isN forNG global communication cost, wheye is the congestion. Local
communication cost is , and is serialized if there is contention for the same neighbors.
Local connections are through a multidimensional toroidally connected mesh. Self com-
munication has unit cost, and is equivalent to the PRAM’s memory cost.

Definition 5: MCCMgyp A synchronous MCCM that has the same network power, but

uses a single instruction stream. There is also a controller with a separate instruction
stream that broadcasts instructions and data to the rest of the machine.
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Global Memory

network

FIGURE 7 MCCM Mixed Cost Communication Machine

The MCCM not only allows evaluating the approximate network costs of algo-
rithms, but also provides an abstract machine that can insure portability. If languages,
compilers, and systems software are cognizant of the MCCM model, computer architects
can provide MCCM features in computers making the simulation of the machine efficient.
FIGURE 8 shows the compilation or evaluation of EREW PRAM and CREW PRAM al-
gorithms on the MCCM. The transitions represent the same transitions given in FIGURE

6, and FIGURE 8 makes explicit the bridging of abstract machines to real machine like the
CM-5, Intel Paragon, etc.

CM-5
EREW
_— >
PRAM MCC 'Il'netreall Paragon
Intel Cube
CRE N <0
PRAM ¢ Virtualization QSEIS-S]_XS
MCCMsvp M2
MasPar
C*

Virtualization

FIGURE 8 Compilation Process By Virtualization and
Communication Refinement

If the key difficulty is parallelizing applications and not slowing them down (virtu-
alization techniques, scheduling decisions and so on), then investment in slowdown com-
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piler technology may yield greater gains for both MIMD and SIMD algorithms
(Hypothesis 5). In the next section | discuss some of my work on slowdown transform
techniques and those in the literature.

2.2.3 Bridging the PRAM to Real Machines

My proposed algorithm development process is to develop a PRAM algorithm, then devel-
op an MCCM version. My claim is that the MCCM algorithm runs with the same efficien-
cy on a wide class of machines. Until efficient slowdown compilers are available, the
process is manual, where the MCCM layout, communication, and run time are calculated
by the algorithm designer. Through familiarity of required layouts and efficiency on the
MCCM I hope the conversion will be automated.

There are a variety of languages designed to perform a similar job such as Spot
[SOCH91], Data Parallel C [HATC91], Linda [CARR90], and Ensembles
[GRIS90][ALV90] but these are low level languages. The PRAM is the ideal means to de-
velop parallel algorithms, and the MCCM provides a way of more accurately accessing
their cost. Many machines are roughly equivalent to the MCCM because they provide a
general interconnection network, and neighboring interconnections. Examples of SIMD
machines include the Connection Machine CM-2, CM-200, and the MasPar MP-1 and
MP-2. Examples of MIMD machines with powerful interconnection networks and neigh-
boring connections include the Connection CM-5, Intel Touchstone Gamma (iPSC/860
Hypercube), Intel Touchstone Delta, and Intel Paragon (Mesh machines).

2.2.4 Slowdown Compiler Techniques

The conversion from a PRAM algorithm to machine code requires compilation of the
source language into intermediate code, and then intermediate code is used for global opti-
mization to assigrP  physical processors to the virtual processor’s work. Parallel com-
piler research has focused on discerning parallelism from sequential code
[WOLF89][GELE90]. Others have worked on necessary techniques in isolation. What |
attempt to do here is bring them all together and mention how they are interrelated.

The choices in contracting a program to a machine are: processor assignment, su-
perstep sizes, communication globbing, communication patterns, sequential subroutines,
data replication, load balancing, data copy elimination, interprocedural flow analysis, up-
date analysis, graph transforms, and operation optimizations. The compiler can consider
each choice in turn, or in multiple passes. The most important choredcgssor assign-
ment which affects the communication and load balancing. Ideally one could analyze
communication in isolation as proposed by Li and Chen [LI91a], but the relationship be-
tween computation and communication requires an iterative analysis.
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Virtualizing fromv toP< v processors is best chosen by using the program’s com-
munication and computation characteristics. In data parallel single point algorithms this is
done by looking at the stencil [SOCH90] and picking from the best virtualization to match
that stencil and computation. In more complicated programs it requires analyzing the
amount of communication between each virtual processor and combining jobs for those
with a great deal of communication. Thisaemmunication globbingrhere communica-
tion is removed by assigning communicating virtual processors to the same physical pro-
cessors. Once the processor assignments have been made, global communication is
improved by decomposition and optimization, through techniques such as dynamic pro-
gramming [LI91a]. For algorithms calculated in pipeline fashion embedding of the algo-
rithm graph into the architecture graph can be done [GREE92][LEIG92]. For further
communication savings the compiler can data replication

Data replicationis most useful for read shared data. One example of data replica-
tion that | have found to be useful is in saving boundaries of virtual arrays on processors to
eliminate local communication with near neighbors. The replication step requires knowing
how much memory is available so as not to overfill caches and/or local memories. The
knowledge of the memory hierarchy and data placement improves the compiler’s deci-
sions. An example of manual data replication is in [YOO91].

Virtualized parallel calculation is often not as efficient as sequential calculation,
therefore the compiler can involeequential subroutineg-or example in parallel prefix
[LADN8O][KRUSS85] the most efficient evaluation for each processor assigned sub-
nodesx...x ., is to calculate their prefix in serial fashion rather than by the parallel meth-
od.

Load balancing choices are partially fixed in the processor assignment but the key
to the contraction of tP<v is the supersteps of work. Each superstep of the algorithm
may use a different processor assignment to both allow optimizations, and to improve per-
formance, a technique more critical for SIMD code. SIMD efficiency can be achieved
through supersteps of work. For example in multigrid [BRIGG87][LEIG92] a numerical
technique to calculate boundary value, finite difference, and algebraic multigrid problems,
the grid spacings change throughout the program, and are dependent upon the progress of
the program. For SIMD this requires simply spreading the appropriate data and rerunning
the grid with the new assignment. For small grids, the opportunity to work on multiple
grid problems simultaneously is possible. See FIGURE 9 below, that shows how the cal-
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culation proceeds to a fine grid where data must be communicated for all processors to be
used.

ik

FIGURE 9 Multigrid Adaptation between Supersteps

Another example of load balancing is shown by [MASP91] in the calculation of
fractals. By straight forward assignment of pixels to processors the run time is the worst
case, because all processors must wait for the slowest to complete its iterations. By ran-
domly assigning pixels the slowest processor has less work by checking during iterations
if the pixel has finished and relying on the worst case pixels to be distributed across the
processors. Load balancing can be achieved through judicious intermixing of supersteps
and processor assignments even reassigning processors after partial calculation to redis-
tribute the load. This dynamic superstep assignment is useful for both MIMD and SIMD
processing.

Another compiler optimization method @ata copy eliminationA result of func-
tional programming and interprocedural effects, data copying can be extremely inefficient
[CANNO92]. Interprocedural flow analysis helps the compiler to achieve data copy elimina-
tion. Update analysis allows different types of data areas to be declared, as whether they
are read shared or exclusive areas. Special memory areas can be more efficiently used if
located in closer levels of the memory hierarchy. Additionally, restrictions on the develop-
ment of the program can greatly improve the chances of efficient compilation, for example
using EREW PRAM abstraction removes concurrent reads. Improvements such as hashing
[VALI9O] have been proven to distribute arbitrary communication to avoid contention.

Graph transforms can be done by library search [LI91b] and decomposition
[L191a], but they can also be used to alter the calculation itself Section 2.3. By examining
the dependency graphs in image processing algorithms Li and Jamieson [LI91b] collapse
the graph into a hypergraph that may be more quickly matched to the architecture embed-
ding library. The library provides a solution using graph matching with heuristics to re-
duce the graph isomorphism complexity.

Li and Chen [LI91a] use a similar approach. A shared memory parallel algorithm
is compiled to distribute it. Communication is broken up, changing it into canonical form
and matching a library of cost parametrized routine using dynamic programming
[CORM90] to minimize communication cost.
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More generallygraph transformsare used to reduce communication, reduce the
depth of the dependency graph, and load balance the computation. The data dependency
flow graph is used in traditional supercompilers, as well as systolic array designs
[KUNG88]. By transforming the full dimensional dependency flow graph into lower di-
mensions efficient virtualizations can be found. Also general communication graphs can
be embedded into hypercubes and butterfly graphs for more efficient communications
[VALI9O][LEIG92]. Load balancing communication can also be done by not changing the
program graph, but by hashing either the memory addresses [VALI90b], or the processor
assignments themselves.

The final task isoperation optimizationswhere reordering of calculations makes
code more efficient. The 12 compiler tasks discussed are some of the techniques necessary
for effective slowdown compilers. Others are to be found, and the relative effectiveness
and importance of each needs to be fully researched.

2.2.5 Existing System Software And Parallel Languages

System software is important to the success of slowdown. Because effective use of paral-
lelism requires high average throughput, the system load and user requirements, affect
how best to run programs. This is apparent in the fastest throughput machines today, such
as the Cray Y-MP, that serves thousands of users with transparent process migration and
switching [BELL92]. The ability to serve a community of users requires rapid task switch-
ing, and also examination of the true performance of applications on machines. By requir-
ing full parallelism in the algorithms, flexibility is enforced so they can be run on
machines of any size.

Programming languages are also necessary for writing fully parallel programs.
Functional programming, parallel Fortran-D [HIRA92], PRAM languages (as suggested
in [VALI9ODb]), and message passing languages such as OCCAM [INMO84] and Ensem-
bles [GRIS90][ALVE9OQ] are all attempts to provide user control of parallelism. There are
architecture independent languages (PICL [GEIS90], Data Parallel C [HATC91]), pro-
posed parallel programming environments (C-Linda [CARR90], C++ and Presto
[BERS88]], Amber [CHAS89]), new types of approaches for parallelism (functional pro-
gramming), and parallelizing compilers to make parallel code more efficient. There has
been mixed success such as Harrison Ill and Ammarguellat’'s study [HARR90] where par-
allelizing compilers out performed parallel languages and compilers and vice-versa. An-
other example of the difficulty is Data parallel C where Hatcher et al. report that they must
tune matrix multiplication for each architecture, “However, the result of tuning may well
improve performance on one architecture at the expense of execution speed on another ar-
chitecture,” ([HATC91] p381).

Another example of an architecture independent programming language is the
PICL extension to C programs for image and vision processing. Geist et al. [GEIS90]
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claim the same source code executes upon the ipsc/2, ipsc/860, NCUBE 3200, and
NCUBE 6400 without change. The libraries are limiting though, because they use explicit
message passing forcing the user to program in that fashion.

Carriero and Gelernter approach architecture independence by using coordination
languages [CARR90]. A coordination language is a programming language together with
a coordination language—constructs used to synchronize, communicate, and schedule. A
coordination language is the organizing strategy for parallel programs. Their implementa-
tion of the Linda coordination, called C-Linda, allows the expression of programs in what
they believe are the three important types of parallelism: result, agenda and specialist. The
ones that they don't consider are data parallelism and speculative parallelism or logic pro-
gramming.

Yet, the tendency to link the programming model to the hardware is typical as
shown in Li and Chen’s communication optimization discussed earlier [LI91a]. They ap-
proached algorithm development by automated compilation, claiming the shared memory
programming paradigm “shields the user from many such low level concerns.” But, to op-
timize difficult communication they propose to add user directives to the compiler. To do
this the user must somehow realize that the original coded algorithm is inefficient and add
compiler directives to make the program more efficient.

All of these systems have been fielded with mixed success. Architecture indepen-
dent programming languages are more difficult to develop for parallel computers than for
sequential computers. The problems with scheduling, synchronization, and communica-
tion overhead are exacerbated by languages designed for different parallel computers. A
program may be very efficient on one system, and not nearly as efficient on another. That
is why | propose slowdown as a new methodology to develop architecture independent
parallel languages. It is important to allow description of parallelism at a high level, natu-
ral to the programmer, and have tools/compilers perform the conversion to the most effi-
cient implementation. | feel high level PRAM languages combined with sophisticated
compiler and software technology are an ideal and practical approach.

Compiler transforms must create efficient code without tweaking and omniscience
by the user, or slowdown will not work. Also application libraries cannot be relied upon,
because efficient routines may not exist. Available application library routines can also be
improved. Alternative means to solve the algorithm may be more efficient than the first
coded approach, but if the algorithm is optimal on an abstract model of computation, such
as the PRAM, then the algorithm should be efficiently mapped to the hardware. Using
more restrictive models of PRAMs can of course improve efficiency, but should not be re-
quired.

System software and high level languages must be developed to support slowdown
compilers. System software and language research should be done in parallel with slow-
down compiler and architecture work. In fact one of the best reasons to pursue slowdown,
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is that it finalizes the intermediate parallel code and algorithms, so that refinements in op-
erating systems, compilers, profilers, and languages can be worked upon in isolation from
future platforms, and used to improve existing platforms.

2.3 Algorithm Design On Transition Graphs

As there are paradigms for algorithms, there are also paradigms for algorithm develop-
ment. For the majority of image and graphics processing a transform based technique may
be used to develop, validate, and analyze research. More importantly the large number of
data representations and means to generate them allows high level applications to take ad-
vantage of untried transitions, and the assisted computational investigation of these transi-
tions can speed the application assembly and validation.

Algorithms are represented as a directed graph (V, E) where data representa-
tions are vertices 0V  and transforms to intermediate representations areeedges .In
geometric transform algorithms there are many edges going from one representation to an-
other. The edges represent alternative ways to calculate the same result. FIGURE 10
shows sequence filtering. Filtering can be calculated by convolving a spatial filter with
samples to create an output sample. This is shown by the backward edge in the graph. The
same output can also be calculated by taking each input and convolving them with a filter
that is summed in the output. This is the forward edge in the graph.

backward

forward

Z‘_/

FIGURE 10 Filtering Directed Graph Representation

The backward operation convolves sequemce  wvdth to get sequence
C = AOperatoB. Pseudo code for backward processing is:

Initialize C
forcoc
forkOBn A
Clc] = Operato(C[c], Alc, K, B[c, K])
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The forward algorithm is:

Initialize C
forkoBn A
forcoc
Clc] = OperatofC[c], Alc, K, B[c, K])

The outer loop defines forwards or backwards calculation and each direction cal-
culates the same result. Also one can calculate the filtered image by first transforming into
the frequency domain, multiplying by a filter, and then transforming into the spatial do-
main. This is the Fourier edge transitions in FIGURE 10. Examples of operations that can
be calculated forwards or backwards include matrix product, grey scale dilation, convolu-
tion, and grey scale erosion. Below | define the example operators:

Matrix multiply

OperatofC[c], A[c, K], B[c, K]) = C[i, j] + A[i,Kk] x B[k, j] , (EQ 6)
Convolution
= C[i] + A[i—Kk] xB[K] , (EQ7)
Grey scale dilation
= Max(C[i], A[i—k] +B[K]) , (EQ8)
Grey scale erosion
= Min(C[i], A[i + k] -B[K]) . (EQ 9)

In fact, matrix multiply can be calculated on the Fourier transition, and perhaps di-
lation and erosion can as well. The operators generalize to higher dimensions. The exist-
ence of multiple ways to calculate the same result arise again and again. Other examples
include spatial warping Chapter Ill, volume rendering Chapters IV-V, ray tracing, and ra-
diosity [FOLE90]. If a new application has been implemented with an algorithm that uses
such transforms, then most likely there will be a variety of ways to calculate an equivalent
output. Examining an algorithm at this level of detail allows quick classification of ap-
proaches, identification of untried approaches, and analysis of the most effective approach
for the application at hand.

FIGURE 11 gives volume rendering’s transform graph. Each approach will be dis-
cussed in Chapters IlI-V, and application of this graph helped me to develop the algo-
rithms in this dissertation. The basic transitions, forward, backward, Fourier, are
applicable to many graphics and image processing algorithms. When designing algo-
rithms, each alternative should be investigated because memory cost, computer resources,
and module integration affect the best choice. The transition graph allows research with a
view of the entire application. Further, resource, time, and quality goals can guide an opti-
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mization tool. In the next section, 2.4, | describe how to verse algorithm design as an opti-
mization problem.

forward
backward

/\”52

v O3 i
| Fourier 32w

\

Existing Algorithms

V|03 gV |O3...— V|03

Multipass forward

V03— |02
* * Collapsed Representation Graph
C3 » C2

FIGURE 11 Volume Rendering Transform Graph

2.4  Automated Choices In Transform Graphs

The obvious approach is to solve an optimization problem with the application described
in terms of source destination paths labelled with complexity costs and empirical results.
This methodology allows graphics and image processing research to be assisted by speci-
fying important factors to minimize and the available resources. Available resources in-
clude

» computer systems performance, memory, I/O, and storage.
» time: interactive 30 frame/sec. or days to weeks available.

In a research environment applications are in development, and transition costs are
unknown. The output of the minimization includes the unknown costs in a meaningful
fashion and provides alternative transitions if available. Such an interactive tool formu-
lates its own information, prompts for the most useful information and speeds develop-
ment. Because graphics and image processing algorithms are edges, the novelty of this
approach is that it provides a framework within which to develop and validate/test com-
puter applications, a computer aided research (CAR) tool. The researcher enlists the com-
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puter to aid the critical thought process to prove or disprove hypotheses making parallel
computers more useful.

Using the dependency flow graph representation of the algorithm a single source
shortest paths can find the most efficient algorithms. Once the best path is chosen, efficient
machine code can be created. The best approach to maintain parallel performance is
through a slowdown compiler because of the difficulty in parallelizing sequential code as
discussed earlier.

Consider a transform graph with edges)E , and verticey . FIGURE 12
shows an example graph. Each vertex is a data representation, and each edge is the cost of
the transition from a vertex to another vertex. There is a full vector complement of costs
along each edge. Costs are time complexity, space complexity, empirical compute time,
etc. Example representations are spatial, frequency, Hough space, boundary representa-
tion, NURBS, URBS, triangles, and the multiple dimensions of these spaces. Example
costs are the fast Fourier transform, resampling, Radon transform, rendering, interpolat-
ing, surface fitting, volume rendering.

FIGURE 12 Transform Graph

The vectorse = (u V) are used to determine a minimum cost path from one vertex
to another. The transition from one vertex to another represents a software/hardware mod-
ule. From an earlier example, convolution, the representations are digital images. For a se-
rial algorithm the transition is the complexity of convolving which depends on the filter.
The researcher decides the filter type, image and filter sizes, and representations. But the
most efficient calculation edge may change when the compute platform, representation, or
filter, changes. The choice of the most efficient edge is left to an assisting tool in the
framework.

The transition graphs used will vary with cost type, transition direction, and com-
pute platforms involved. Because each compute platform will have different capabilities,
the problem changes simply to an optimization in a transition graph for each system. The
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comparison factor, true speedup, is calculated using the fastest sequential algorithm avail-
able.

2.5 Digression on Optimal Algorithms

For the PRAM optimality is the minimum amount of work required [GIBB88]. This in-
cludes a measure of the execution time, and the number of processors required. The cost
of the algorithm is the number of time steps required for the algorithm to complete

The efficiency is given as utilization = #®£ 's used in each time step, or work, the pro-
cessor time produce(n)T(n) . An algorithm may be time optimal, but work inefficient.

Definition 6 Optimal speedup. Linear speedup of the parallel program over the fastest
known sequential program.

Definition 7 Optimal run time. A lower bound dependent upon the model of computation.
Definition 8 Optimal space complexityo(n)  on the order of the input size.

Definition 9 Optimal efficiency. Work efficiency, or time for the parallel algorithm times
the number of processors equals the time for the fastest sequential algorithm.

Optimality is often determined by achieving lower bounds for combining data. For
example, if a calculation is associative and pair wise the lower boufdris [LEIG92].
For fixed network algorithms optimality can be measured by the bisection width, 1/0
bandwidth, and diameter of the network. For example a mesh without toroidal connections
has a lower bound on communication of data from ese to another thatis which
results from the diameter of the network. These measures are only rough guides for opti-
mality. Obviously you can do worse than optimal. For example, a mesh algorithm for con-
nected components i®(n2)  because the path of a fully snaking component [TANI9O].
And you may also do better such a@ogn) time sorting of binary numbers on a full bi-
nary tree with bisection width af [LEIG92]. Algorithms that beat the optimality criterion
given by the graph connectivity are the exception.

Optimality for the MCCM is determined by the network also. If communication is
one-to-one then the diameter of the networkis , the global communication cost. A mini-
mum for any algorithm that must combine global infodgG) . The communication cost
of the algorithm is expressible bg(n) = a+bL+cG whese is self communications,
local communications angd non conflicting global communications. An optimal MCCM
algorithm will use1G for each global value that must be exchangediand  for each local
value that must be accessed, plus the computational requirement which may be no less
than the PRAM’sT(n) . Reads to common locations may be done, but they are serialized.
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2.6 Summary and Discussion

By understanding how parallel algorithms are created, partial automation of the algorithm
design process is possible. First the most efficient approach is chosen from a dependency
flow graph representation of the algorithm which changes with platforms and resource im-
portance. Then the subroutines are compiled from a high level parallel language using
speedup through slowdown. These abstractions provide greater freedom and knowledge in
adapting parallel programs to machines. Because high level fully parallel programs are
scalable and generation portable, | can motivate the necessary software development of
languages and compilers. The long term goal of speedup through slowdown allows effi-
cient speedup of parallel algorithms and applications, and the dependency flow graph au-
tomated search will assist development of algorithms for applications, and improve
algorithm design.

The success of software tools for refining applications into parallel systems will
determine the success of the machine models. By using bridging models, algorithm de-
signers can quickly determine the efficiency of their algorithm, and hardware designers
understand the features that must be provided. My bridging model the mixed cost commu-
nication machine (MCCM) is useful in comparing PRAM algorithm’s actual implementa-
tion performance. In Chapters Ill and IV | use the MCCM to assess the network cost of
my PRAM algorithms and validate the results with performance measurements.

Both MIMD and SIMD can make general dramatic improvement through develop-
ment of slowdown software technologies. Through examination of the number of proces-
sors in parallel machines | demonstrated that parallelism has not greatly increased. |
advocate developing parallel machines with many more processors, high level algorithms,
and slowdown software technologies to help make parallelism more cost effective and
useful.



Chapter Il
Spatial Warping

In this chapter | present two new parallel image warping algorithms that are optimally effi-
cient with low and high order filters on the parallel random access machine (PRAM). The
simpler algorithm has concurrent reads and exclusive writes (for the CREW PRAM), and
the non-obvious algorithm has exclusive reads and exclusive writes (for the EREW
PRAM). | use the MCCM to provide a more accurate prediction of algorithm perfor-
mance. | show that the algorithms are optimal on the PRAM, and that the EREW PRAM
algorithm has optimal communication on the MCCM. MasPar MP-1 and MP-2 perfor-
mance measurements correlate with the MCCM 2D and 3D spatial warping predictions.

| review warping and classify algorithms into forwards and backwards methods in
Sections 3.1 and 3.2. Filters are discussed in Sections 3.3 and 3.4. My algorithms are dis-
cussed in Sections 3.5 to 3.8. Section 3.9 gives performance measurements and optimiza-
tion details. The chapter concludes in Section 3.10.

3.1  Background

Image warping is a spatial transform of an image called texture mapping, rubber sheeting
[WEIN90], coordinate transforms, and geometric correction [JAIN89]. Image warping can
be quite complex, such as quadratic and cubic transforms [SMIT87] [WEIN9OQ]
[WOLBS89]. | define two geometric spaces: the object space (OS), where the input image
resides, and the screen space (SS). The algorithm relates gpoint inpDSto in SS by a
transformT orp = T(p) . The inverse transformps= T-1(p’) . FIGURE 13 shows image

| being warped to image . In each space there is a rectangular coordinate system where
the images are represented by discrete sampjesy] Jpndl . The extent of valid
points is defined by a bounding box for each image, Band

T

e i

B, | B) J

O SS

FIGURE 13 Spatial Image Warping
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To calculate the discrete samplesipk, vy requires reconstruction of at points
which do not in general lie at ’'s samples. Quality versus cost trade-offs have resulted in
many approximations of reconstruction [BARR81] [BENN84] [CATM80] [FRASES85]
[PAET86] [SCHR91] [SMIT87] [TANA86] [WEIM80] [WEIN90]. Image warping is
done in a one pass transforyrdirect wargs, and multiple pass transformsyultipass
warps. Direct warps and multipass warps may be performed by serial or parallel algo-
rithms.

Image warping has many applications in computer graphics and image processing.
Computer graphics applications include texture mapping [HECKS86], ray tracing
[GLAS89], graphics design, and volume rendering [DREB88] [SCHR91]. | am interested
in warping primarily for volume rendering in Chapter 1V but my algorithms may also be
adapted to image processing applications such as correcting optical aberrations, image
registration [OWCZ89], image restoration [GOSH89] [YOKO86], and cartography.

3.2  Possible Image Warping Approaches

It is easy to get lost in the details of specific approaches. FIGURE 14 shows a classifica-
tion using the directed graph representation of warping. Each leaf is a different edge from
the warping flow graph representation, and algorithms are differentiated by four factors.

Separable:
multipass < [CATMB0][DREB88][HANR90]

. . SMIT87]
linear/scanline otation:
[WEIM8O][PAET86][SCHRI1],
on the fly multipass — Rotation: [TANAS86]
adjacent
direct ———  Orthogonal: [WEST90]
convolve
forward direct * Affine: Forward MCCMF (EREWF) *
nth order
multipass :
lookup table < . p General: [WOLB89]
direct ———————— General poly fit: [YOKO86]
polyfit
direct ———  * General: Backwards MCCMB (CREWB)*
nth order
on the fly
direct —— Texture Map: [FEIB80]
backward convolv
dPeGt ———— General: [WEIN90]
lookup table
direct ————— General: [GOSH89]
bezier patch
) direction 1) lookup tables 1) filter type IV) restrictions
FIGURE 14 Image Warping Classification Tree, (*) with new

algorithms: Backwards, Forwards, and Overlapped
Forwards



42

The first factorthe transform direction, is the data flow of the program. An algo-
rithm is forward mapping if data are passed by to the output [CATM80][DREB88]
[HANR9O] [SMIT87] [WEIM80][PAET86][SCHR91][TANA86][WEST90], or backward
mapping if output locations are inversed by  to the input where an appropriate value is
reconstructed [FEIB80][GOSHB89][WEIN90]. Forward or backward mapping is better de-
pending on the size and organization of the input and output, the transform, and the filter.

The second factolpokup tables saves time by pre-calculating transform coordi-
nates, filter coefficients, shading functions, and other values. A speed versus memory
trade-off, as well as added programming complexity, are the key issues in using a lookup
table. Image warping by lookup table is very general and efficient. A good description is in
[WEIN9Q]. See also [WOLB89][WOLB90][GOSH89][YOKOS86].

The third factorthe filter type, has the largest effect on efficiency, because more
accurate reconstruction requires more calculation. The most common computational opti-
mization for forward transforms is to decompose the transform, allowing regular scanline
access and, more efficiency for some architectures. See the multipass branches in FIGURE
14. Multipass warps are applied to decomposable transforms including rotations
[PAET86][SCHR91][TANAS8G][WEIM80], bicubic, and biquadratic warps [SMIT87].

But, multipass warps cannot perform higher order interpolation well.

The fourth factortransform restrictions, allows optimizations such as coordinate
calculations by differencing, efficient partitioning and job assignment. For example, re-
stricting 2D transforms to rotation allowed researchers to optimize by decomposing into
multiple passes of 2 or 3 matrices. A nonscaling sequence of shears [PAET86][SCHR91]
[TANASG] is,

T = {cose —sine} - {1 —tang/ ZM 1 ?Ml —tan8/ 2} _ (EQ 10)
sin® cosd 0 1 sin® 1 |0 1
A shear is a transform that operates on only one coordinate. Shears may scale (stretch or
shrink axes) or not scale (distances are preserved). Nonscaling shears have 1's along their
diagonals such as in (EQ 10). The scaling factor by which an affine transform changes
area is the magnitude of the determinantof [BARNSS]. | use the decomposition of (EQ
10) in my forward warp algorithm’s processor assignments of Section 3.6.2 and 3.6.3. Ad-
ditional decompositions include the scaling shear sequences in (EQ 11) and (EQ 12).

[CATMSO][PAETS6]:

7=|1 0 ||cosB-sind (EQ 11)
tand sed|| O 1

[TANAS6]:
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- | 1 0OfjcosH O ||1-tan® (EQ 12)
tan@ 0 sed|0 1

| have derived a deterministic formula to calculate a three pass sequence of pure shears for
both two dimensional and three dimensional transforms that are equiareal [MESE83]. Ro-
tation turns out to be a special case of my symbolic decomposition in Section 3.6.4.

| show that direct warps are nearly as efficient as multipass warps, generalize to
higher order filters, and have less aliasing (error). Direct parallel warps provide a trade-off
of speed versus filter quality. In Section 3.6 | describe the straightforward approach for the
CREW PRAM, and predict real machine cost by placing it on the MCCM of Chapter II.
Then an EREW PRAM algorithm is presented in Section 3.6.2 that is optimal on the MC-
CM. Sections 3.6.3 through 3.8 detail algorithm variants and implementation issues. Per-
formance measurements are presented in Section 3.9 and the chapter concludes in Section
3.10.

3.3  Warping Filters

| use polynomial interpolationn(h order) filters which include the zero-order hold (zoh)
and first-order hold (foh). The implementation and performance of these filters is widely
discussed [JAIN89][PRESSS88][FARI88]. | derive a polynomial interpolation algorithm of
Aitken’s using Neville’s organization [FARI88][PRESS88], for calculating a low order
piecewise polynomial fit. My algorithm is faster and more robust than the implementation
given by [PRESS88]. | also show that the most efficient higher dimensional expressions of
these filters is the tensor product approach.

When interpolating to a sequence (1D), image (2D), or surface (3D) several ap-
proaches can be taken. One approach is to fit a polynomial to the given points. A second
approach is to create a system of control points that determines a spline or bezier surface
that interpolates the points. A third approach is to create a least squares fit not attempting
to exactly interpolate the points because there may be significant error in them. A polyno-
mial fit avoids the overhead of creating control points and is reasonable for applications
where there is high confidence in the data. Aitken’s algorithm as presented by Farin
[FARI88] is repeated linear interpolation to compute a higher order polynomial interpola-
tion. The recursive evaluation is more efficient than the direct evaluation. A larger and
larger neighborhood of points calculates a higher order polynomial fit. The 1D polynomial
interpolation fits an orden  polynomial to+1  points. Starting with Farin’s expression
[FARISS]Y,

1. page 61, Equation 6.2 in Chapter 6, with  replacing pararhetter , replacing
r,andl replacingg because | work almost exclusively with intensities.
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| U —U g u—u -1 ol =1,..n
I(u) = ——1; (u)+ I, q(u); EQ 13
I( ) ui+|_ui i ( ) ui+|_ui |+1( ) % — 0’ ...,n—I ( Q )

| is the level of recursiom is the order of interpolation, and is the index of interpolated
points. Ig(u) is the intensity at locatian on thé order interpolation. For example a 3rd
order filter requires 4 points. One may reorganize the calculation by transforming the in-
terval (u;,,—u,) to the unitinterval by the substitutian = i [FARI&8T hen sim-

ply calculate -

i+l i

l(u) = (L—u)liHu) + U3 3(u);

A ORI (R (OB ()
A further simplification if the point coordinate system has unit spacing {u; = 1 ) is

u—u .
u = l—' . As a final form calculate,

(EQ14)

HOERI(OE:

u-—u I =1,...,n;
_ (EQ 15)

i 11 -1 . d
R ORI L =N

as a concise optimized solution for the interpolated point. FIGURE 15 shows the
pseudocode polynomial interpolation proceduogyint.

polyint(floatud[], float y[], int n, floatu)

inti,l;
float I[N];
fori =o0ton
Ii] = y[il ;
forl =1ton
fori =0ton-I
107 = 111+ =3 g+ 1 i)
returni[o] ;
FIGURE 15 n" order polynomial interpolation by Neville’s form of

Aitken’s algorithm

In FIGURE 15ua is the array of parameter locatiogs, is the function values at
those locationsy is the order of interpolation, and is the parameter location at which to
interpolate. If the coordinate system is not unit spacing replace wagh+ 1] —ua[i] as
shown in (EQ 14). For multidimensional interpolation a de Casteljau approach (multidi-
mensional recursion), while mathematically elegant, is less efficient than a tensor product

2. page 20, linear interpolation is invariant under affine domain transforms
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approach (operating on each dimension in turn). If each intermediate point is an evalua-
tion, the quadratic 2D interpolation takes 13 evaluations by deCasteljau formulation, and
12 by tensor product. For bicubic deCasteljau takes 34 and tensor product 30. For 3D qua-
dratic de Casteljau takes 45 and tensor product 39 evaluations. FIGURE 16 shows the
pseudo code tensor product polynomial interpolation procedure polyint2d. Polyint (FIG-
URE 15) is the subroutine used for 1D interpolation.

polyint2d(float *1x, float * ly, float *I, int m, int n, int offset, floau, floatv)

{
int j;
float Itmp[n+1];
for(j=0;j<=n;j++){
Itmp[j]= polyint(Ix,l,m,u);
I=I+offset; /* wrap around to the next row of interp*/
}
return(polyint(ly,Itmp,n,v); /* column to get final value*/
}
FIGURE 16 Tensor product 2D interpolation by Aitken’s algorithm

In FIGURE 161x andly are the parameter locations in thandy directions|| is a
pointer to a 2D array whose rows have offset number of elements. The order of interpola-
tion ismin thex direction and n in the y direction. The parameter locations at which to in-
terpolate are u in the direction andv in they direction. As a comparison of efficiency, |
compared [PRESSS88] interpolation routine, polint, that took 0.21 milliseconds per call
while polyint (FIGURE 15) took 0.05 milliseconds per call a 320% improvement. | ran the
2D functions with the Numerical Recipes Example routine (xpolin2.c) [VETT88] on a
Sun Sparc 2 using optimized gnu ¢ compiled code. Because the iterations calculate the
same points that [PRESS88] calculates, a crude error estimate may be provided as they do
by giving the difference between the last point and the previous point (error estifdgte=
I[1]). 3D filters are developed analogously by using 2D for each slice and a final 1D inter-
polation of the remaining dimensions. In general, tensor product polynomial interpolation
has

#int = /2(n+ 1)[(n+1)4-1] , (EQ 16)
interpolations for am'™ order filter ind dimensions.
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As an example of filter quality a 4x4 array of points is interpolated using a zero or-
der hold, a first order hold, a quadratic interpolation, and a cubic interpolation shown in
FIGURE 17.

FIGURE 17 Filter Quality Comparison (upper left: zero order hold,
upper right: first order hold, lower left: quadratic
interpolation, lower right: cubic interpolation)

For parallel implementation, polynomial interpolation is calculated at each proces-
sor. Processors access a neighborhood of points whose size depends on the order of inter-
polation. One can look at linear interpolation as an affine combination of point intensities.
The intensities; and, are combined according to their relative distances from each
point. The relative distances are ratios and-u) which multiply 1gnd as shown in
(EQ 17) and FIGURE 18.

[, = (1-u)l,+ul, (EQ 17)
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u (1-u)

FIGURE 18 Linear interpolation As Affine Combination

As an example consider bilinear interpolation, which is a 2D first order hold equiv-
alent to polyint2d in FIGURE 16 witin = n=1 . FIGURE 19, (EQ 18), and (EQ 19)
show the arrangement of the points and intermediate interpolated valuesi, and . Herel
interpolate in thex direction first getting amgl . Then | interpolatg in to get the final
value I(x,y) . The interpolation is calculated on the unit interval as described earlier. In
three dimensional reconstruction interpolation takes place in three orthogonal directions.
For higher order reconstruction, more intermediate points are calculated to create a single
point along each row of interpolation, and moving to the next orthogonal direction, the
same approach is followed. The derivation provides for varying the filter quality with
varying compute costs, and is simple and highly efficient for working with point sampled
images.

la = I tu(ly—1y)
lp = Ia+u(lz—1,) (EQ 18)
L(x,y) = T+ v(l,—1p)

X=X Y~ W%

4 Xj+1_JXj v Yi+1— Yk Q19
LalX Vs a1 la[Xj 410 Yicr 1l
X
(X, y)
L1[Xj i la 12X+ 10 Wi
FIGURE 19 Bilinear interpolation done in horizontal direction first

and then vertical direction
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3.4 Error Derivation Of Filtering Approaches

Computer algorithms and their filter characteristics can be modeled by the discrete time
system block in FIGURE 20 [DUDG84][JAIN89][CAST79]. The continuous to discrete
(C/D) module digitizes images. Examples are scanners, computed tomography machines,
and MRI scanners. The discrete to continuous (D/C) block is a computer display, printer,
or film recorder, and reconstructs a continuous image that one views. Because the D/C
block and one’s visual system can filter out differences between images quantitative anal-
ysis is restricted to the discrete time system block.

Discrete
- Time System
Anti-aliag gl C/D [—p h[n] |—» DIC
filter )
X[} Heioy | yIN] y(1)
T T
FIGURE 20 Complete Image Processing System

linear| (| res. on,| linear| Jlres. on | linear| y|I€S- O
shear| ] lshear || >|shear [>

PAET86, SCH90, TANA86 Multipass Warp Rotation

resample

rotated [

—»{ reconstruct -»

Forward and Backward Direct Warp

FIGURE 21 Block Diagram of Operations In 2D Warping Algorithm

Direct warps are superior filters to multipass warps, because of less aliasing and
less arithmetic error as shown in FIGURE 21. The multipass warp operation first recon-
structs or interpolates the data in a scanline direction using a linear interpolation filter.
Then the data is resampled on the shear coordinates. There are 3 passes of linear recon-
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struction followed by resampling on shear coordinates, with the shear coordinates and the
direction of linear reconstruction varying each time according to the angle and order of
shears. The direct filtering approach makes one pass reconstruction and resamples once.
Its block diagram system is also shown in FIGURE 21.

Ignoring aliasing, both filters are linear systems, but because the piecewise linear
reconstruction spreads frequencies, Nyquist’s criterion will be violated in resampling.
This happens because the reconstruction filter spreads the frequencies to an infinite range.
A linear system may be created by assuming the aliasing noise is additive error. If the error
is exactly known, the linearized system and the nonlinear system are equivalent. FIGURE
22 gives a linearized view of the multipass and direct rotation.

linear linear linear

error error
c,(r,s) error cy(r, S) c,(r,s)

PAET86, SCHR91, TANA86 Multipass Warp Rotation

th
n"' order
> ..
filter

C( r, S) error

Wittenbrink Direct Warp (MCCMF or MCCMB)

FIGURE 22 Linearized 2D Warp Systems

My derivation assumes that the original signal is bandlimited, and the first recon-
struction avoids aliasing. By reconstructing a bandlimited image the direct warp filter does
not alias, but additional amounts of noise/error will be introduced by the quantization ef-
fects and by the finite precision arithmetic. | will ignore quantization and precision errors
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in analysis noting that the multipass warp will suffer more than direct warping. FIGURE
23 gives 3D filters are (assuming [SCHR90] reduced freedom rotation of 5 passes.)

shear 1 shear 2 shear 3 shear 4 shear 5

S lin. W lin. w lin. @@_, lin. ,@@ lin. ,@@
c,(r, s, t)error cg(r, s, t)error c,(r,s, t)error c(r,s, t)efrorct(r, s, t)error

[SCHR90] Multipass Warp Rotation

> h(r, s, t)

C(I’, S, t) error
(n" order hold)

Direct Warp (MCCMF or MCCMB)

FIGURE 23 3D Linearized Warp Systems

The direct warp algorithm has less aliasing for aH}/mder hold. Assuming the
initial data was bandlimited the error is computable by the energy in the sidelobes of the
frequency response. The amount of error may be controlled by supersampling the original
data or by prefiltering the images or volume to further restrict the bandwidth of the data.

Assuming the power spectral density of the ideal image is

2 2
W, (w) = /%%SE — w2 w2 < 9%55

2
- 2 5 VST
=0 W>|]2D

(EQ 20)

[PRAT78] derived the interpolation and resolution error for the nth order and gaussian fil-
ters given in TABLE 2. In (EQ 20)v, is the sampling frequency. The sinc is an ideal low
pass filter. The square is a zero order hold, the triangle is a first order hold and the bell is a
second order hold. The cubic b-spline is a 3rd order hold, and all of these filters can be cal-
culated by thepolyint2d algorithm in the previous section (FIGURE 16). The multipass
warp algorithm uses a triangle filter in three passes, and ignoring the effect of repeated
aliasing the filter error is the sum of three passes of triangle filters. This is a conservative
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estimate of the error because resampling after reconstruction in each pass severely aliases
the data. The “% Interpolation” error places the multipass filter between the square (zoh)
and the triangle (foh) which is supported by empirical filter comparisons in Chapter IV.

TABLE 2 2D Interpolation error and resolution error for separable
interpolation functions (Reproduced from [PRAT78])

Function % Resolution % Interpolation
Error Error
Sinc 0.0 0.0
Square 26.9 15.7
Triangle 44.0 3.7
Bell 55.4 1.1
Cubic B-spline 63.2 0.3
Gaussiaro,, = 3T/8 38.6 10.3
Gaussiaro,, = T/2 54.6 2.0
Gaussiaro,, = 5T/8 66.7 0.3
Multipass (3) 132.0 111

As interpolation error is reduced the resolution error grows. The amount of calcu-
lation required also goes up. Note that the amount of interpolation error in the direct filters
is more (zoh) or less (foh, soh, etc.) than the multipass approach, and the resolution error
of the multipass is greater than all of the direct filters.

3.5 Optimal RAM Image Warping Algorithm

The simplest algorithm to code is to iterate in SS and clip in OS, doing everything at the
point granularity. FIGURE 24 shows a simple algorithm that does not use differencing,
computes every point’s transform, and clips to upright rectangles in OS.
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J « RAMB-Simple( ,B, ,B; ,T1){
1) for allp’' O B; {

2) p=T(p)

3) If (p O B,) /* Upright Rectangle Clip FIGURE 25*/
4) J[ p'] = Reconstructiofp, I)
5) Else
J[p'] = Background
1
FIGURE 24 Simple to Code RAM Backwards Algorithm, o(n?) ,

T = (7M + 10A + 4Comp)n? , (RAMB-Simple)

Clipping is done by four comparisons of a point’s coordinates to the bounding box
of the image. | represent the bounding box as two points: the upper rightgaoeint and the
lower left pointpll . FIGURE 25 shows code for clipping to an upright rectangle.

Clip(p, pll, pur) {
1) inside = TRUE
2) if p, < pll, inside = FALSE

3) else ifp, > pur, inside = FALSE
4) else ifp, < pll, inside = FALSE
5) else ifp, > pur, inside = FALSE

6) return (nside )}

FIGURE 25 Clipping To Upright Rectangle

The optimal sequential warping algorithm is a basis for comparing parallel algo-
rithms. | argue that the following three observations can be used to determine an optimal
2D warping algorithm. The iteration can be performed at different granularity: point, scan-
lines, and polygons. And the clipping can be performed at different granularity: point,
scanlines, and polygons. Additionally the clipping can be performed in OS or SS.

Observation 1Clipping in object space is cheaper than clipping in screen space.

This observation holds, because screen space clipping requires clipping against hyper-
planes which is more expensive than clipping against an upright rectangle.

Observation 2Transforming points is more costly than differenéimpm.

This optimization is restricted, because differencing can only be done for affine trans-
forms.

3. differencing points calculates transforms by using several transformed points
and offsets for all other points.
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Observation 3Clipping by polygons is cheaper than clipping by lines which is cheaper
than clipping by points.

Clipping becomes an insignificant part of the processing when clipping at higher
granularity, because the overhead goes from clipping every point to clipping each scan-
line, to clipping one bounding polygon of the entire image.

Therefore by Observations 1, 2, and 3 the best alternative is to clip in object space,
use differencing for point calculations, and clip polygons. For parallel algorithms it de-
pends on the granularity or amount of parallelism available. | summarize and the costs of
clipping, transforms, and reconstruction below in TABLE 3 and TABLE 4.

TABLE 3 Sequential algorithm alternatives

Clipping How Clipping Where

Screen Space Object Space

Point n2(Rec.+ T + HC) n2(Rec.+ T + UC)

Line n2(Rec.+ T) +nHLC n?(Rec.+T)+nULC

Polygon n2(Rec.+ T)+HPC n?(Rec.+T)+UPC
TABLE 4 Terms Used in Algorithm Alternatives Table

Term Definition Cost

Rec. reconstruction Bilinear is3M+ 6A

T transform 4M +4A

HC hyperplane clipping 12M+ 16 A+ 4Comp.

ucC upright clipping 4Comp.

HLC hyperplane line clip

ULC upright line clip

HPC hyperplane polygon clip

UPC upright polygon clip

The difference in clipping cost is clipping each poit , each tine , or the bound-
ing box, 1 . Line and polygon clipping require a similar amount of work in SS and OS but

object space is slightly more efficient. For line and polygon clipping see [FOLE90]
[MAIL92].

The optimal sequential algorithm computes all object space point coordinates by
differencing, 2 additions, and the bilinear filter is calculated recursively with 3 multiplica-
tions and 6 additions ([CAST79]). FIGURE 26 gives the RAM backwards algorithm
(RAMB). Higher order filters are calculated using polyint2d (FIGURE 16). If the trans-
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form is not possible by using differences the algorithm will be slightly less efficient. Po-
lygonal clipping precalculates the bounding boxes, without affectingnthe
constants.

RAMB(I, B, B;, T-1) {
1) B; = T-1(B;) /* Inverse x-form the output image bounding box into the object space OS */
2) P; = Clip(B;, B,) /*Clip B; to the box of inpuB,
3) for all p’ O P, /* Compute by differencing to correspondingly, integer indgxed  */

J[ p'] = Reconstructiofp, |)

4)forallp’' 0P,

J[p'] = Background}

FIGURE 26

Optimal RAM Backwards Algorithm, o(n?)

T = (3M+8A)n2, (RAMB)

An examination of the sequential complexity shows that the higher quality filters
are available for a small cost. On real machines, if memory access is efficient then the
RAM algorithms will accurately indicate the performance, and one should use the higher
quality filter of the RAMB algorithm instead of a lower quality shear approach such as

[PAET86] or [CATM80]. See TABLE 5 for the sequential algorithm comparisons.

TABLE 5

3.6

Optimal parallel algorithms were defined in Chapter Il. | present here optimal parallel al-

Algorithms Inner Loop Cost

RAMB,

RAMB Rotation [PAET86] [CATM80]
Transform General Differencing 3 Pass Shear 2 Pass Shear
4M, 4A
Filter Bilinear Bilinear Linear Linear
3M, 6A 3M, 6A 3M, 6A 2M, 4A
Cost of Inner (7M, 10A)n2 | (3M, 8A)n2 (3M, 3A)n (4M, 2A)n
Loo ' '
P (3M, 6A)n2 (2M, 4A)n2
Quality of Filter || High High Lower Lowest

Optimal PRAM Image Warping Algorithms

gorithms for the CREW and EREW PRAMSs. They have timogl)
sors where eithes = r?

for amxn

image or= r?

using s
for a volume rof nx n

processing

proces-
. By
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optimality Definitions 1 and 2 the algorithms are optimal. The EREW algorithm also ex-
hibits optimal speedup on the MCCM, a network model with less power than the PRAM.

3.6.1 Optimal CREW PRAM Backwards Direct Warp Algorithm

For parallel image warping, one can partition the input object space (OS) for forward map-
ping or the output screen space (SS) for backward mapping approaches as discussed in
Chapter Il. The simpler algorithm is a SS backward mapping algorithm, called the CREW
PRAM backwards algorithm (CREWB). The CREWB algorithm is the backward direct
mapping branch in FIGURE 14. The algorithm is given below in FIGURE 27.

J « CREWB( ,B, ,B, , T-1){

1) for all output pixels’ )ind p' O B; , wheB; is the bounding boxof |,
do {

2) find the inverse transformed pixgd, = T-1(p') Tifne = 4M+ 4A )

3) if p U B, then (clip to the input image)T{me = 4Comp )

4) J[p'] = Reconstructiofp, 1) (Time = 3M+ 6A+ 2Rnd+ 4N )

5) else set)[ p'] to a background value.}

FIGURE 27 Backwards Algorithm (CREWB= Time = 23, MCCMB=
Time = 23+ &GN ford = 2 and n = 1)

This algorithm uses any  where the inverse transforin exists. For general in-
puts of T, numerical software can estimate the invertibilityrof to caution the user if the
transform is nearly singular. A singular matrix does not have an inverse. A condition num-
ber estimate could be calculated for the matrix [KAHA89], similar to what Matlab or
Mathematica [WOLF88] uses for matrix calculations. The inverse is analytically solvable
and typically stable for affine and orthogonal transforms without projections [FOLE9Q].
To compare filters the number of linear interpolations required was given in (EQ 13).

Assigning one processor per pixel, the filter complexityoiad +1) n(lfi+ 1)d-1
processors per pixel are used the filter complexity is Digtd) where both a de Casteljau
[FARI88] and a tensor product approach hade  steps. Using small order filters and more
samples than processors there is one or fewer processors per sample. Assuming the PRAM
has a processor per sample, the asymptotic complexity of the CREWB algorith)s :
and 0(1) whenn andi are small constants. The remaining constants are also small for
this algorithm. If additions £ ), multiplicationsv( ), roundingrd ), and comparisons
(cmp) have the same cost a 2D image warping with a fok (1 ) has 23 operations. FIG-
URE 27 shows the cost of each step. The complexity of the CREWB algorithm on the
MCCM using afoh and = 2 igime = 23+ 46N N , the congestion, varies with the trans-
form. The backwards algorithm with aff' order filter uses,

#pts = (n+1)d, (EQ21)
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points which requireSime = #ptNG to fetch. The MCCM shows the realistic high run

time, and if (#pt9 is considered constant the run time complexitg(s) on the MCCM.
In the next section | present a non-obvious EREW PRAM algorithm with congestion
N = 1 for an optimal MCCM run time ofo(1) . Because the MCCM is an abstract ma-

chineN ,G , and.  will vary for real machines.

3.6.2 Optimal EREW Forward Direct Warp Algorithm

The CREW PRAM backwards algorithm in FIGURE 27 is general. It can be used to warp
an image using any invertible transform, but suffers from inefficiency on actual machines
because of the concurrent reads illustrated by the MCCM costs. Restricting results in a
more efficient MCCM algorithm. In this section | present an optimal MCCM algorithm for
nonscaling affine transforms. Optimal MCCM complexity is defined as communication
efficiency as small as the diameter of the network. My algorithm is optimal on the MCCM,
and requires exactly one global communicatiomi®r . This efficiency results from a clev-
er processor assignment.

Processors choose output samples with a rule, then use local data to interpolate,
and reorder with an efficient one-to-one global communication. The rule is an assignment
of OS processors to SS samples. Reconstruction of SS samples is done in OS. Then the SS
samples are sent to their proper locations. Processors and their points are  in®@Sand in
SS. There is a duplicity of processor spaces, as processors are bothin OS ( ) and SS ().
Obviously nix, y] = [x,y] , but they are differentiated to more clearly describe the as-
signments. Processar chooses a processor to work for by the nonlinear mapping or rule,
M:mt - 1t . For example in 2D rotatiom  is

M = round SHround Sl—i,rouno( SHM)) , (EQ 22)
where the first shear to be applied is (from (EQ 10)),

SHT = 1 -tanB/2
0 1

Tﬂ _ Tx—nytane/ 1 _ (EQ 23)
Y Ty

SH, denotes a shear in the x direction. Further details on the processor mapping are in
Section 3.6.3. FIGURE 28 shows in object space (OS)and in the screen space (SS).
After choosing the processor to work for, processor calculates procegssor s inversed



57

point position by mapping between spaces,= T-() . Ppint  and mapping are
also shown in FIGURE 28.

distance

0OS

FIGURE 28 Nonlinear Mapping

Now, by using poinp,. 's coordinates, processor retrieves the neighboring inten-
sities of pointp,, , and interpolates them. For example in 2D bilinear interpolation the four
points surrounding,. are used in (EQ 15) witblyint2dof FIGURE 16. The points sur-
roundingp,, are guaranteed by my rule to be near neighbors in the mesh as shown in FIG-
URE 29. For higher order reconstruction a larger neighborhood is used. To insure
exclusive reads the neighboring values are read in directional phases to avoid conflicts,
such as (1) north, (2) northwest, (3) west, etc.

FIGURE 29 Near Neighbors In Mesh

The reconstruction create$p,,]  that lies at processor . In a finalstep, sends
J[p,] tom by a global send. Every processor is given a unigue to work for and the
global send is a one-to-one send. This permutation of writes guarantees the exclusive write
property of the algorithm. This algorithm is called the forward algorithm and is summa-
rized in FIGURE 30. Theorem 3.1 proves one-to-one propertieg of  and the neighbor-
hood properties of-M in Section 3.6.3.
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J -« EREWF( ,B, ,B; Tt M ){
1) Each OS processor calculates output processor to work for
If mOB, { T = rule(r) = M1t ( Time = 3Rnds+t 3M+ 3A)
2)If TU lies within processor array, or clip to output image,
If T OB, (Time = 4Comp) {

3) Calculate the inversed location of the output pixel/processor in the input
p = TI(1') (Time = 4M+ 2A)
4) Get local neighbors reading in directional phases to avoid conflicts

and reconstruct)[ p'] = J[1'] reconstructiofi neighbofs), p)
(by bilinear for 2DTime = 3L +3M +6A +2Rnd )
5) Processort sends thi 1T pixel value to procesSoiimd = 1G N

FIGURE 30 Forward Algorithm (EREWF= 30, MCCMF=
Time = (30+G+3L))

A 512x512 image rotated by 3and 45 is shown in FIGURE 31, and correspond-
ing m to r assignments for a 9x9 mesh are shown in FIGURE 32. The image is rotated
clockwise to the grey image orientation. Black dots indicate  and a line is drawnrfrom
to it . Clear dots with no lines from them are processors wheter . Gray dots are pro-
cessors who have been clipped.

FIGURE 31 512x512 35 and 45 image rotation pedrmed on the
MasPar MP-1.
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FIGURE 32 Processor assignments in a 9x9 mesh to calculate 35
(left) and 45 (rght) rotation

The MCCM complexity for the forward algorithm shows slightly more calcula-
tions but optimal communication. For example, rotation complexity is given in FIGURE
30 for the 2D foh after each step. Assuming each operatiom (Rnd, Comp ) is the same
cost, the time isTime = (30+G+3L) wher& and are the communication costs de-
scribed earlier. The forward algorithm is betterf+ G+ 3L <23+ 4GN , because global
communication is expensive, and/or there is congestion. The local reconstruction neigh-
borhood is enlarged without changing the global  cost. The overhead is the rule calcula-
tion to assign processors. The forward algorithm is better if the following inequality holds,

(RULE) <#ptdNG-L)—-(G-L) . (EQ 24)

RULE is the cost to evaluate the mapping (). The transform cost and reconstruction costs
are the same, an@#pts  is the number of points used in the reconstruction. This inequality
proves to be true for parallel machines with up to a 59% improvement exhibited on the
MasPar MP-1 (Section 3.9) for 2D images with foh and a 100% improvement with 3D us-
ing a foh.

The forward algorithm iso(1) on the MCCM, and therefore the forward image
warping algorithm is optimal.

3.6.3 Nonlinear Mapping Rules For Forward Algorithms

| prove that nonscaling affine transforms are calculable by the forward algorithm. Trans-
forms include translation, shearing, and rotation, (EQ 22). For translation, | round to inte-
ger coordinates by mappingv:n- w ,m/' = roundm +T,) s’ =roundm +T,)

i, = round, + T,) etc. The proof that translation and rounding gives a one-to-one assign-

ment is Lemma 3.1.
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Lemma 3.1Arbitrary translation and rounding is one-to-one.

Proof: Each whole number grid location is unique before the mapping, so two points
andg have coordinatgg #q, . If each pointis translated by the same amount, then the in-
tegral and fractional amount of both translations is the same. Therefore assignments re-
main unique after the translation and rounding. Higher dimensional translations are
proven by induction using the same argument for each dimension. [

Next | show that equiareal (including nonscaling affine) warps allow a one-to-one
nonlinear processor assignment, and further, using this mapping insures that filtering takes
place in local neighborhoods.

Theorem 3.1Equiareal warpg |def(T)| = +1 , can be decomposed into pure shears, and
shearing followed by rounding is both one-to-one and results in a point whose inversed
position is always within distance 1, in orthogonal directions.

Proof: There are 2 points to prove the correctness (1) that the mapping is one to one,
and (2) neighbors gf,, are near neighborstof . Point (1): Nonscaling affine maps are de-
composable into a sequence of translations, shears, and rotations, because they are invert-
ible. Translations are one-to-one by Lemma 3.1. A pure shear (no scaling) translates a
single coordinate. Each row (column/slice) is translated by a fixed amount, and therefore a
shear and round is one-to-one transform by Lemma 3.1 also. Rotation is decomposable
into a multistep shear, and beﬂause eachl\?hear IS one-to-one rotation is one-to-one.

(Mm%, ] — 100, ST) O (70, 3] = Xy, Yl = ol vl — 10, S1)

(™, i01,2 3)isone-to-one 0 M is one-to-one.

Point (2): The interpolation point is within the local neighborhood of the processor
if |(pr),—{ <1 and |(py),-T|<1. OS processor coordinates pass through two maps
(T-™m) to arrive at the interpolation point (see FIGURE 28). Translation is trivially within
distance one because the rule rounds to the nearest point. For rotation calculate the coordi-
nates of the interpolation point in terms of the OS coordinates, the rotation angle, and the
rounding errors. The distances between the processor and the point calculated in the and
y directions are nonlinear trigonometric equations. The distance for any angle is less than
1 for up to aroundoo , as calculated by,

0 :
(Pr) — T, = %tanz modO.%cose+ D + (xsinBmod0.5(1 — 2cosh) (EQ 25)

(Pr)y— TG, = %tang modo.% co<0 — sirkd + cosB) + (xsind modO.SElTsine + tang coseg . (EQ 26)

A series of translations, shears, reflections, and rotations achieves all equiareal maps,

therefore the may is one-to-one, and the distance propertiesnof do not violate the
neighborhood property for all equiareal maps. |
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Because of the complicated nature of the distance functions, a plot of distance
helps to convince. The functions are plotted from 180 . Two values okthe distance
(with different signs of second term), and the distance are superimposed in FIGURE 33.
This shows that the distance is strictly less than 1 for angles up to about . The func-
tions explode at8> because of the singularityane/2 . Decomposition usiteg?2 is
stable fromm/2 ta3r/2 complementing the tangent. A reflection about both axes results
in a decomposition witleot6/ 2

di st ance
1
0.5}
5 4 i angl e
-0.5¢
1 "M
FIGURE 33 Distance of Interpolation Point in x and .

3.6.4 Sequences of Nonscaling Transforms

The forwards algorithm can do any sequence of translations, rotations, or pure shears. The
rule is optimized by combining transforms where possible. For example in arbitrary cen-
tering of rotation the first two and last two matrices may be combined. The transform to
rotate about the poirt,,r,) and center the rotation in the output agotj) IS

T = T(g, c)R(O)T(-ry, —1y) (EQ 27)

Translations are(t, t,) , and the rotationrge) . To use the transform for a map-
ping M, round after each pass denotedToy with the bar above the transform pass. The
transform  after replacing R(8) by the pure shear matrices is

M = T(c, ¢,)SH,SHSH,T(-r,, -r,) . | premultiply the first translation into the first shear
SH,and the final translation into the last shes, . Recall that a point is postmultiplied
with the transform matrix so the first transformTg-r,, -r,) [FOLE9OQ]. The mapping be-
comesM = M3SHM; . This gives a three pass rule to calculate the processor mapping.

TransformM; is the rounding of values produced by
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100(10-r, 10 -r,

My = SHT(-, 1)) = |-a 1 0|0 1-r,| = |- Lar,—r|(EQ29
00XYo00 1 00 1
and similarly,
1 Oc,
M3 = l-a1c/- (EQ29)
001

Each of these matrices is sparse so many terms (0 or 1) do not require multiplica-
tion. My example of arbitrary centered rotation is calculated by,

1 = round Mzround SHround M;m))) . (EQ 30)

Concatenation of rotations, translations, shears, and scalings is possible with one-to-one
processor assignments, and therefore optimal communication. Scalings do not have a one-
to-one assignment, but if the scaling is decomposed from the general transform then the
remaining transforms are optimal. All of the manipulation can be done symbolically. |
have also derived a decomposition for any two dimensional or there dimensional equiareal
transform.

The general solutiorota 2 dimensional equiareal transform is calculated by solv-
ing a system of 5 equations with 3 unknowns. The unknowns are the coefficients in the 3
pass shearing operation. An equiareal transformation by definition has

a,; a0
a1 8yl

The other four equations are found by setting

ayy @, _ (1b|1 0|1bg (EQ 32)
ay, Ay 01|/b21l01

by = (ay,—1)/ay = (a8, —ay; + 1)/ (2,85, . A Special case is rotation, where
cosB —sinB , (EQ 33)
sin@ cosb
and b, = (cosB - 1)/(sinB) = —tanB/2 by insertion and reduction by the half angle formu-

la, b, = sinB, and b; = (cosB - 1)/ (sinB) = b, . This shows how to calculate the result giv-
en by [PAET86] [TANAS6].
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3.6.5 Optimal MCCM 3D Equiareal Algorithm

The beauty of the forward algorithm is that in 3D there is still only 1 global communica-
tion instead of(#ptg or more global communications by the backwards method (8 for tri-
linear interpolation, 27 for soh, and 256 for toh). With the first order hold there are 8
corners in a cube whose intensities are trilinearly interpolated. By using local neighbors
for the interpolation step the forward algorithm does 7 local MCCM communications. The
rotation algorithm is the same as given in FIGURE 30, where the constants differ because
of 3D transforms, fetching of additional local neighbors and 3D reconstruction.

The same decomposition approach used for 2D is used for 3D, and there are 10
equations with 9 unknowns,

a1 dgp Ag3 E
Ay Ayp Ay E =+l (EQ34)

A3y A3y Ag3|l]

de

0 1 byl|C1 1 00 1 dyy- (EQ 35)
00 1f|CaacCxlfj0o 0 1

ay; 5 A3 1b;, b5 1 O 1dy,dyg;
Ay1 Ay B3| ~

831 83 833

The solution from Mathematica(TM) is,

A3y —ayya31 T Ay1a3)
C31 = 831, C3p = , dy, = ac”

Co1 Co1 3z Cpas
do. = Cy1 + Ay3d31 —8p1833 _ Gz Qp3dz; + )y 833~ Cy + Q33 873833 b.. = a1 —Cy
23 = y O3 = —~— — T 103 = )
8,831 — Ap183; Co1 Coi(@p831—81837) 831 Cpidy Az

11 C21811837 ¥ Cp183181,— 831

1,8 + Cy1(8183; — a1183))
Az ag1(ap831 — A183,)

bl = —
3 c c,.(a,-a a..a
21 21( 22931 21 32)

, by =

(EQ 36)

This allows direct solution for a three pass nonscaling transform, which | use in the
rule calculation. It could also be used for a multipass warping provided the data could
move in 2 directions operating on “scanframes” if you will.

Most viewing transforms are rigid body transformations. | show how arbitrary ro-
tation, and then arbitrary translation and rotation are decomposesiinto  matrices. Reflec-
tion can be easily added. (EQ 37) shows 3D rotation as a concatenation of rotation about
each axix y ,and [FOLE9Q] p. 215.

cosy —siny O/ | cosp Osing||1 O 0
RAWR,(PR(B) = |siny cosy 0 1 0 ||0cosd—sind (EQ37)
0 0 1 |-sing 0 cosp| |0 sin® cosO
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This transformation is decomposed into pure shears. (EQ 38) gives a decomposition of
R.(0) , or rotation abouk by , into pure shear matrices. Rotation apout zand are done
likewise with the 2D decomposition developed by [PAET86] and [TANA86], and 9 matri-
ces result.

1 0 0 10 0 1 0 0|10 0
0 cosB —sinB| = |0 1 —tanB/2/|0 1 0|0 1—tanB8/2| (EQ38)
0 sin® cosB 00 1 0 sin6 1J|00 1

You can use all 8 shears, and also concatenate prior translations to provide arbi-
trary centering and flybys, or you can use just 6 shears from the decomposition in (EQ 35)
and (EQ 36).

Note that the decomposed matrices are not used for a multipass resampling, only
to calculate the permutationj . The order of the transformations does not result in poor
filtering or the bottleneck problem [SMIT87]. Any angle of rotation, or translation can be
performed in one pass without transposing the data. Different decompositions are used for
rotation because of the discontinuitytme/2 . In fact 90 degree rotations are done in one
pass, by a permutation of unsampled voxel values. After each shear operation the point co-
ordinate being operated upon is rounded to an integer coordinate maintaining the one-to-
one assignment. The operation for the right most matrix in (EQ 38) results in
M, = Roundy - ztan8/2) . Because only one coordinate is affected, and no scaling is used,
rounding chooses a unique coordinate.

The inverse used in determining the reconstruction point is numerically stable. In
fact equiareal transformations are by definition invertible. For arbitrary centered rotation
the transform is a product of translation matricasy vy, 2 , and the rotation matrix,
R(v, ¢ 6) . Rotate about the pointr,,r,,r,) and center the rotation in the output about
(cw €y ¢,) . The transformation given in (EQ 39) is decomposed and contracted into opera-
tions on single coordinates, and used to calculate

T = T(c, Cy, C,)R(Y, @, 8)T(-r,, Ty, -1, (EQ 39)

For arbitrary centered rotations the inversé  is easily calculated because rotation
R(W, ¢, 8) is orthogonal, meaning! = TT , and translations are inversed by negating their
values,

T1= (T(Cx1 Cyv Cz) R(LIJ, () e)T(_rxv _ry’ _rz))_l
= (T(_rx' _ryi _rz))_l(R(qu o, e))_l(T(Cx* Cy! Cz))_l -(EQ 40)
= T(rx! ry! rz)(R(LIJ! (p! e))T(T(_Cx1 _Cyr _Cz))
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The rotation matrix and a translation matrix are given in (EQ 41) and (EQ 42), and the
transpose of (EQ 41) is composed with the translations for calculating the inverse with the
minimum number of calculations.

(cospcosy) (— cosBsiny + cosP singsind) (cosy cosBsing + singsinB) 0
R(Y, @, 6) = (cospsiny) (cospcosh + singsinysinB)  cosBsin@siny — cospsin(—%Eé) 1)

(—sing) (cospsing) (cospcosh) 0
0 0 0
100c,
T(CX= Cyv CZ) = 0 1 0 Cy (EQ 42)
001c,
0001

In FIGURE 34 are 2 volume rotations showing the nto  processor assignments
with i covered by a black dot and connectedito by a line. The cube is rotated®by 25
about y 25/2 about x (left) and a 35about y 35/2 about x (right) with z axis up, y to the
left, and x to the right.

FIGURE 34 Processor assignments in a 5x5x5 volume to calculate
25/2, 25, 0 and 35/2,35,0 (x,y,z) rotations

3.6.6 Comparison to Previous 3D Techniques

There are several previous parallel 3D warping techniques [SCHR91][DREBSS]
[HANR9O]. Schroeder and Salem use a multipass warp with 5 scale shear passes on the
Thinking Machines CM-2 [SCHR91]. By restricting the 3D rotation to two axes of free-
dom and combining two adjacent direction shears only 5 shears are needed. Neighboring
voxel data locations are calculated through look up tables and resampling occurs in each
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pass. Because of multiple resampling steps more error is introduced, and the angles of ro-
tation are limited to 0-45 degrees to limit error. My algorithms do not have this limitation.

In TABLE 6 | have calculated roughly the MCCM complexity of Schroeder and
Salem’s algorithm and my algorithm with the restricted two axes rotation. Clipping was
ignored in TABLE 6 because Schroeder does not discuss it. The complexity of the algo-
rithms is essentially the same. Schroeder and Salem’s multipass waap+has 018+ 1G
or 29+ 1G of my direct warp. See rows one, two, and three of TABLE 6. My algorithm
uses more accurate filters with greater cost or less accurate filters for less cost, showing the
added complexity is essentially for the more accurate filters. The zoh has the least cost and
is simpler to program. Next in run time complexity is Schroeder and Salem’s algorithm,
but very nearly the same run time is the more accurate foh filter using the MCCMF algo-
rithm. The MCCMB algorithm is penalized by the congestion , but is the simplest to im-
plement. The forwards algorithm is slightly more complicated, but is the most efficient
with general filters.

TABLE 6 Performance Constants for Algorithms and filters with
restricted rotations

Filter 2D 3D

[SCHR91] Multipass linear 24+1G 40+1G
MCCMF zero order hold 18+1G 34+1G

first order hold 29+1G 61+1G

second order hold 61+1G 176+1G

third order hold 122+1G 666+1G
MCCMB zero order hold 10+1ING 18+1ING

first order hold 19+4NG 39+8NG

second order hold 46+9NG 137+27NG

third order hold 100+16NG 436+256NG

Drebin et al’s [DREB88] techniques have been generalized in Hanrahan’s
[HANR9OQ] three pass decomposition for 3D affine transforms, using scale shear matrices.
This is an extension of Smith's [SMIT87] 2D approach. Vezina et al. [VEZI92] have im-
plemented Hanrahan’s methods on the MasPar. This approach suffers from the same prob-
lems as Schroeder and Salem’s, multistep filter error and more work than directly
resampling. But Hanrahan’s method covers a larger number of warpings. Nonscaling
warpings are important, though, because combined with scaling algorithms they can
achieve more general transforms more efficiently.
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3.7  Scaling and Perspective

To perform 3D perspective and scaling | use spreads to achieve optimal MCCM algo-
rithms. See FIGURE 35 below. The viewing frustum delineates the edges of a new vol-
ume. Distortion of the volume is scaling in each column. The perspective view rays are
distorted to an orthogonal view volume. The orthogonal view volume is a highly efficient
distribution of data for z-buffering, max intensity, or compositing calculations performed
through parallel product evaluation (For parallel product and prefix see
[LEIG92][GIBB88][CORM90][KRUS85] and Chapter IV.

|
<= — .

Object Space
Screen Space
Distorted Volume
FIGURE 35 3D Perspective Volume Distortion

In each column a spread communicates after which processors reconstruct. Con-
sider expansion. Given PE'g  through ,thedata, , ,ilgnd are scaled up, or expand-
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ed. Data values, ang determine the intensities for all PE’s. There are two ways the
outputs are calculated.

LT, T Ty T T
I 15 '3¢

T, T Ty Ty T

scaled up

l l,

FIGURE 36 Scaling Of Data

1) Processors get this data directly and interpolate or 2) processors get the data
from someone else and interpolate for someone else. There is a continuum of load balanc-
ing with varying performance as shown in FIGURE 37. When the data is interpolated lo-
cally the PE’s have a lot of work. When all of the data is first sent, then the PE’s will incur
a large communication overhead.

Time
getalldata  gersome do all jobs local to data
interpolate send some and send
FIGURE 37 Trade-off curve of trading jobs versus communication

The optimal approach lies within these two extremes. Processors can get the data
to be interpolated on the MCCM mesh by either sending on local connections or through
the interconnection network (ICN). The use of a mixture of the two can also be advanta-
geous, and a decomposition of the communication into ICN and local sends is the optimal
approach.

The processor job assignment, or who sends, interpolates, receives, etc. is deter-
mined by a choice of the optimal decomposition of the communication patterns. Adjacent
columns of data communicate their values to allow interpolation. For the extreme expan-
sion of data in FIGURE 36 the data is sent along the mesh interconnections by a spread
operation. This broadcast is efficiently built into the MasPar [BLAN90] and the CM-2
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[THIN89]. The spread occurs in an aligned dimension of the multidimensional mesh of
the MCCM.

gy Tty lgly
PAPRPRPAPLD.
- |

Spread

FIGURE 38 Spreading To Distribute Data

Job assignment is done efficiently on algorithms on machines with fewer physical
processors than virtual processors. MC&yh takes advantage of the coherence of each
region’s scaling and matches processors communication and computation in a tiled cover-
age of the total job. FIGURE 39 shows tiled trapezoidal distortion with vertical tiles insur-
ing that communication and scaling are similar in a widely varying format. This load
balancing allows SIMD to achieve good performance with diverse requirements.
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FIGURE 39 Striped Allocation of Volume Warping Jobs

3.8 Virtualization

| have found that virtualization significantly affects performance. Virtualization is running
an algorithm written for  processors en  processors. FIGURE 40 and FIGURE 41 show
space subdivision for virtualization. In the forward transform algorithm, local communica-
tion is removed by overlapping boundaries of the virtual subimages stored on each proces-
sor. FIGURE 40 shows 2D virtualization with data in one processor highlighted. Only the
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global communication is performed. This is the EREW PRAM algorithm, but because of
the virtualization the final global send is no longer 1-to-1. | call this algorithm the MCCM-
simp overlapped forward algorithm (MCC},pOF).

| achieved further savings by not only processing at virtual subimage levels, but by
communicating at the virtual subimage level, and only transferring large amounts of data
in each global communication. Using this improvement an upright SS rectangle is calcu-
lated at each processor that lies near the original data. It's as if each processor is warping
his own small image. The data required for the calculation of the subimage is local and the
subimage is an upright rectangle that fills in the appropriate tile in the output. There are a
variable number of messages depending on the overlap of a processor’s data in the output.
This technique was used in the Proteus large granularity algorithm in Chapter IV. For
SIMD data parallel control is easier, and | found the subimage approach is more practical
for large granularity MIMD processing because only large messages are efficient.
distance

oS S
FIGURE 40 Virtualization Showing Overlapping Boundaries of
Subimages

| present two 3D virtualization techniques in FIGURE 41 illustrating with 16 pro-
cessors. Column virtualization is a natural extension of 2D virtualization, and increases
each processor’s storage in the dimension. This allows the 2D routines to be used itera-
tively for input and output, and for the overlapping routines. Slice and dice virtualization
assigns processors across all 3 dimensions. A factoring of the cube size is used, as is done
in FIGURE 41 where column i& = 2222 and slice and dice4s 212122 processors. For
the MasPar MP-1 a balanced 3D assignment wouldbe 242323 . Slice and dice re-
moves dependency of run time on rotation angle, but complicates processor to volume as-
signments, and also makes file /O more complicated. The application, proceeding and
following procedures, and the volume dimensions determine the best virtualization. |
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show in the results that slice and dice is important for maintaining constant run time with
arbitrary view angle freedom

Column Virtualization Slice and Dice Virtualization

FIGURE 41 Volume Virtualization Techniques on a 2D Mesh

To virtualize with either of the above schemes, | tile the volume similar to tiling an
image [WITT91]. Given a voxel addresg|y| x1 where the col, , ahck coordinates
arey,x, andz respectively, it may be decomposed into tiles. The address in the tile is
(i,j,k) . The dimensions of the tile arem,n 9 . FIGURE 42 shows a schematic of the

voxel space.

z (K)

- > X (i)
° m\,global coordinate
n (y,x,z) with address <z]y|x>

tile coordinate (r,s,t)
y (i) in tile coordinate (i,j,k)

FIGURE 42 3D Tile Notation

A rowsx colsx slicesvolume consists ofioxels = rows col$] slices elements. The vol-
ume is addressed by @ow, column slic¢ ~ address. The addressing is by slice, then row major
order. (y, x, 2 denotes any vox@l<sy<rows—1 0<x<cols—1 0<z<slices- 1 il@s are
also referenced in slice, row major order with  being the height, the widthpoand the
depth of the tile.
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The address calculations can be very efficiembws cols sligesm n , ,and are
powers of two. The Thinking Machines CM-2 [THIN89] provides built in virtualization
with power of 2 shapes, but the MasPar doesn't. A voxelyat, 2  stased at address
zrowsOcols+ytols+x, and if they are powers of 2 the address
address= z[towsOcols+y [tols+x = [Z|y| XJiS a concatenation of binary strings represent-
ing X, yandz

The volume consists of (rows/ m) [{cols/ n) [{slices’ 0) tiles. Thus a given voxel
(v, x 2 in an volume belongs to til¢r,s,t) ,where=|y/m] s=|xn] ,and |[z/ o] ,

and its address in the tile is given by, j,k) , where ymodm j = xmodn , and

k = zmodo. The addressz|y| 0 can be viewed as consisting of six paKrs|i|s| j0 where
bits representing are a concatenation of bits representingi and , is a concatenation of
s andj , andz is a concatenation akdljr <1  gives the tile addresskanid gives the

address in the tile. Finally, if an image is stored in a tiled form, then the address in the tiled
form is given by

tiled_address= t [fows[cols[b + r [ols[im Do+ s OmOnOo+ KO nid nri Ch+j = [|r|s|k|i| jO(EQ 43)

To create a tile address from a row major addres&thendj bit fields are gathered to the
right,

Qkirfi|s|jO~ Cris|kfi]jd (EQ 44)

To implement column virtualization with the notation introduced, the tile sizes are
chosen to cover the processor numbers. The tile address is the processor’s address, and the
address in a tile is the position within the virtual array. The virtualization in depth is cho-
sen to be completely virtualized, or= slices . Because of thistthe field is 0 bits, and the
k field is the number of bits needed to repregent . The transform is the following,

(Z| r|i|s| jO- [F[s|Z il jO0 (EQ 45)
Processori|sd has an array of valugs) j0 as shown in FIGURE 42.

For slice and dice virtualizatiom n , and are chosen to equally subdivide the
number of physical processors. In this casetthe field is a non zero number of bits and the
transform given in (EQ 44) is used.

With the transforms represented in (EQ 44) and (EQ 45) processor numbers and
virtual array coordinates can be calculated from voxel addresses and vice versa. For exam-
ple in 2D, the processor and virtual array coordinates can be calculated from a pixel coor-
dinates. | first define the number of virtual rows Byows = rows'm and virtual columns
by v_cols = colgn. Given pixel coordinatgy, x, 2  witlhaddress= |y xJ the processor
and virtual array coordinate can be calculated by,

proc = (y/v_rows) x nxproc+ x/v_cols (EQ 46)
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vir_array_add= (ymodv_rows) X v_cols+ xmodv_cols  (EQ 47)

But if all of these sizes are powers of 2 the same processor number and virtual ar-
ray address can be calculated much more efficiently replacing multiplications by left shifts
divisions by right shifts, and remainders by masking. The field lengths are represented
with a symbol such as. , meaning bits for field . A maskwith  bits in the least signif-

icant positions and zeros otherwise is givemiagkb)) . The calculations are,
proc = (y» by) «bg+ x> b, (EQ 48)
vir_array_add= (y&mask(b;)) « b; + x&mask(b;) . (EQ 49)

Such optimizations help by a constant amount, and the result of address and virtualization
optimizations are given in the next Section.

3.9 MasPar Performance Results

In this section | detail the decisions and procedures necessary for optimizing the code on
the MasPar MP-1 [BLAN9O0]. Four groups of programs were created for 2D rotations. | at-
tempted to make the implementation as efficient as the MasPar could allow. 3D implemen-
tation performance is also presented, and discusses optimization issues related to
virtualization. | implemented the MCCM,pB backward algorithm, the MCClupF
forward algorithm, the MCCM,,pOF overlapped forward algorithms, and some variants

on the MasPar. Timings for all of the variants are presented and discussed.

Performance measurements were taken on either a 1024 or 16384 SIMD processor
MP-1 whose peak performance is 26,000 MIPS (32 bit integer) and 1,200 MFLOPS (32
bit floating point). The architecture supports frame buffers through VME frame grabbers,
HIPPI connection, or through MasPar’s frame buffer (not available yet). Image display in
the current implementation is done on the X host. The processors are interconnected
through both a toroidally connected mesh with 23,000 Mbytes/sec peak bandwidth, and
through a general multistage crossbar router with 1,300 Mbytes/sec peak bandwidth. The
array controller provides a software accessible hardware timer that accurately captures the
elapsed run time.

3.9.1 Initial Forward and Backward Algorithms

The performance of the MasPar MP-1 algorithms correlates well with predicted MCCM
performance. | did not implement the multipass shear or the nonmoving multipass shear
[SCHR91] and refer the reader to the MCCM complexity comparison of Section 3.6.5.
MP-1s with 1024 and 16384 processors were used for performance measurements by
reading from the SIMD array controller’s timer. 100 timings for each angle were used, and
then 10 timings when confidence in the measurements increased. The forward and back-
ward algorithms were implemented with a first order hold and zero order hold.
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TABLE 7 gives timings for the initial implementation of 2D rotation. The pro-
grams for these timings used single precision (float) variables for interpolation fractions
and image coordinates. The pixels are stored as unsigned characters of 8 bits. Angles 5 to
85 degrees were run with 100 trials of each angle. The mean of the 100 trials was calculat-
ed during the measurement run. For 2D rotation, performance varies little with different
angles. FIGURE 43 shows the time versus angle for the forward and backward programs
using all image sizes from 32x32 to 2048x2048. In TABLE 7 the mean of the time for all
angles is given.

2D I mage Rotation
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FIGURE 43 Nearly Constant Run Time Versus Angle For 2D Image
Rotations, Bilinear Filter, Forward and Backward All
Sizes
TABLE 7 MasPar 2D Rotations (times in seconds) with
interpolation not mapped to unit interval, Bilinear Filter
size Backward Forward improvement
32x32 0.005723 0.004932 16.03%
64x64 0.01800 0.01316 36.77%
128x128 0.06735 0.04686 43.72%
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TABLE 7 MasPar 2D Rotations (times in seconds) with
interpolation not mapped to unit interval, Bilinear Filter

size Backward Forward improvement
256x256 0.265 0.1819 45.68%
512x512 1.055 0.7228 45.69%
1024x1024 4.216 2.887 46.03%
2048x2048 16.91 11.55 46.40%

The implemented algorithms are also linear in the problem size. As the number of
pixels is increased the time to process them increases by a linear amount. FIGURE 44
shows the average run times from TABLE 7 on a logarithmic time scale to remove the pix-
els squared term. The run times are clearly linear.
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FIGURE 44 Run Time Linear In The Number of Pixels, 2D Rotation,

Bilinear Filter
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3.9.2 Interpolation and Overlapping Optimizations

Further optimizations in the reconstruction filter yielded improvement for both algorithms.
The use of interpolation on the unit interval reduces the work for each linear interpolation.
Mapping to the unit interval was described in Section 3.3. An additional algorithmic im-
provement was removal of a large switch statement required in SIMD processing because
of the possible locations of the pixel being worked on. Because the current pixel in the for-
ward algorithm could be on any of four edges, in any of four corners, or in the center of
the virtual array, a switch statement was required to decide which communication to per-
form. Every processor was required to perform the entire switch statement. By storing an
overlapped amount of image on each processor, the pixel was guaranteed to be contained
within the processor’s virtual array. The added cost was copying the neighbors data before
hand, but this is very efficient because of the near neighbor connections, and the added
storage is negligible because of the dynamic storage overhead already increases the used
size to the power of 2 larger than the image. The overlapped image sizes allow the same
size images to be processed.

TABLE 8 gives the timings for each subroutine in the overlapped forward pro-
gram. The parser reads the user’s file names, image size, and rotation angle. The subrou-
tine pl_createimagés the parallel malloc of data on all of the processors, two images, one
for the input, and one for the output. The subroufrhereadimageds the slow process of
reading the image data from disk, across the VMEDbus, to the processors. The subroutine
pl_image_otakes the input data in unoverlapped form, and copies it to an array with over-
lapped storage, reading neighbors data as necessary. The final subroutine Slotatg is
or timing to resample the image. The rotate algorithm is focused on in this section. To
write the file to disk takes about the same amount of time as reading it in. The overlap cost
is small and the resampling savings is considerable.

These timings are for running the algorithm once, and show the performance pen-
alty of running code the first time. Look at the columps createimage land
pl_createimage 2The timings show that the first tima_createimageuns, it takes 40
times longer because of the penalty of loading the program into the array controller’s
memory. These factors were removed from the other timing results by running the subrou-
tines 100 times and averaging, or 11 times throwing out the first time and averaging.

TABLE 8 Overlapped Forward Rotation Subroutine Timings, 45
degree rotation

pl_createimagg pl_createimage| pl_readim| pl_image

1 > age o rotate

Size parser

32x32 0.082735 0.00863552 0.0002072 0.0708901 0.00027184 0.004387
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TABLE 8 Overlapped Forward Rotation Subroutine Timings, 45
degree rotation

Size parser pl_creeltteimage pl_cregteimage pl_gzaedim pI_in;age_ rotate
64x64 0.083327 | 0.0084488 0.00020752 0.11803 0.0004224  0.011879
128x128 0.0825923| 0.00834048 0.00020688 0.181399  0.00073088  0.041491
256x256 0.0828725| 0.00840512 0.00020656 0.506679  0.00143344 0.161324
512x512 0.0907654| 0.00843712 0.000208 3.09354 0.0031824  0.63p548
1024x1024| 0.0847466| 0.00844944 0.0002072 19.6275 0.00808344  2.592792

TABLE 9 gives timings for 2D centered rotations using the improved interpola-
tion, and the overlapped and switched forward program timings. The improvement of the
overlapped forward algorithm over the backward algorithm is 24% to 59% percent for all
angles. There is a greater improvement for the larger images. As in TABLE 7 the results in
TABLE 9 are the averages of each angle’s average. Run time remains linear with the prob-
lem size as illustrated in FIGURE 45 which shows the three 2D alternatives on a log scale
(lines, scale right vertical axis). The table shows the percent improvement of different al-
ternatives is constant for images larger than 256x256 due to virtualization.

TABLE 9 % Improvement and Run Times 2D Rotations (Run
times in seconds)
% Imp. Run Times
Image Size|| For. over Bad. O. For. over ©. For. Backward Forward O. Forward
Bac. over For.
32x32 11.12% 23.94% 10.93%| 0.00547059 0.00489659  0.00441376
64x64 33.41% 44.93% 8.63% | 0.01707747 0.01279988  0.01178P53
128x128 41.18% 54.18% 9.21% | 0.063684#1 0.04510853  0.04130R76
256x256 43.37% 56.97% 9.48% | 0.25039082 0.17464394  0.15951435
512x512 43.92% 57.94% 9.74% |  0.997820p9 0.69327718  0.63174306
1024x1024 43.86% 58.06% 9.86% 3.98377918 2.76904247  2.52040165
2048x2048 44.70% 58.89% 9.80% 16.19940P8 11.194726  10.1949947




78

2D I nmage Rotation

100 : . . . .
"rot2d.out" —<—
"rot2dr.out" -+--
"rot2drl.out" -8--
m
=}
c
o
(]
Q
%]
g
=
c
z
0. Ool 1 1 1 1 1
0 1 2 3 4 5 6
| mage Size
FIGURE 45 Run Times for 2D Rotation, Bilinear Interpolation on Unit Interval,

with Backward, Forward, and Overlapped Forward

3.9.3 Filter Complexity, Zero Order Hold

Because the communication is efficient, | also examined how the filter impacts perfor-
mance. A zero order hold was implemented. The number of interpolations is reduced from
3 to 0. FIGURE 46 shows a comparison of the zero order hold filters with several varia-
tions. Because of the rule overhead, a backwards zero order hold is fastest, as predicted
with the MCCM complexity examination. The rule is overkill, because the algorithm
needs to do overlapping, read a local value then send the value globally. The congestion of
a single fetch is small for the backwards algorithm, as the MasPar efficiently supports
small messages.

An interesting alternative sends the pixel value determined by the vule, , and
does not calculate the inverse transform. The image has nonlinear noise, and poor filter
quality, but every pixel is in the output! For this approach, every processor calcwates
and sends its pixel to that location. T variation is the most efficient when the virtual-
ization ratio is very small. This is because the communication is more efficient than back-
wards, but the rule has an overhead of rounding after each step which dominates for
images after virtualization of 4 to 1 (image of 64x64 or larger). Both the backwards zero
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order hold, and the forwards zero order hold calculate the same value. FIGURE 46 and
TABLE 10 give the run times.
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FIGURE 46 2D Rotations with Zero Order Holds, and Rule (Me)
Variant
TABLE 10 MasPar 2D Rotations (times in seconds) with Zero
Order Hold Filters and Rule (Me) Variant
size Backward Forward Rule Only (Me
32x32 0.003411 0.004089 0.002909
64x64 0.007454 0.01056 0.008107
128x128 0.02379 0.03647 0.02894
256x256 0.08893 0.1403 0.1124
512x512 0.34931 0.5549 0.4457
1024x1024 1.390 2.213 1.778
2048x2048 5.561 8.845 7.109
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3.9.4 Optimization By Power of 2 Virtualization, and Register Optimization

Another improvement in run time was achieved by using power of 2 size images to make
the address calculations in the virtualized images more efficient. For example, to calculate
a processor coordinate from a pixel coordinate requires division and remainder. If the im-
ages are powers of 2 the calculation can be done by binary shifts and masks, which is
much faster on the 4 bit simplified processor of the MasPar MP-1. See Section 3.8. | also
used as many register declarations in these variants as possible so as to avoid loads and
stores, which can become a significant overhead in the bit slice operation of the MasPar.
The resulting programs are restricted to images with sizes equal to a power of 2. This is
similar to the virtualization restrictions of the CM-2 [THIN89]. FIGURE 47 and TABLE

11 give the results for the address and register optimized programs. Their order of efficien-
cy is, from high efficiency to low efficiency is backwards zero order hold, forward bilinear,
and backwards bilinear. Therefore, the best bilinear approach remains the forwards algo-
rithm. Higher order filters will be more efficient with the forward algorithm as well. The
backwards algorithm is the most efficient approach with the simplest (zoh) filter. Through
modification of the MasPar executable, the largest image size possible was increased to
4096x4096 for these programs so an additional row is included in TABLE 11.
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FIGURE 47 2D Rotation, Power of 2 Addresses and Register
Optimization, Bilinear Interpolation Forward/Backward,
and Zero Order Hold Backward
TABLE 11 MasPar 2D Rotations (times in seconds) Power of 2 and
Register Optimized Versions
size Backward, O. Forward, Backwards, Zero
Bilinear Bilinear Order Hold
32x32 0.005253 0.004362 0.002847
64x64 0.016147 0.011228 0.006415
128x128 0.060026 0.038720 0.020897
256x256 0.235750 0.148841 0.078631
512x512 0.938320 0.588704 0.309550
1024x1024 3.749883 2.347833 1.233059
2048x2048 14.998778 9.383540 4.926640
4096x4096 60.001183 37.528438 19.702110
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3.9.5 Optimization Improvements

Each program variant was improved through successive optimizations. FIGURE 48 illus-
trates the improvement from the initial programs, to the unit interval interpolation optimi-
zations, to overlapping storage, and finally to addressing and register optimizations.
FIGURE 48 shows average run times for rotation of a 512x512 image. The fastest pro-
gram is the backwards zero order hold. The second fastest program is the forward bilinear
program, and the slowest is the backwards bilinear program. The forward zero order hold
and forwardMe variation are included at their time of development, near the unit interval
optimization step. They are faster than the bilinear filters, but not faster than the back-
wards zero order hold. This plot shows conclusively that the optimization steps signifi-
cantly improved the programs, but that the relative efficiency of the programs was not
affected. This supports using complexity models such as the MCCM to compare pro-
gram’s relative efficiencies.
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Backwards Zero Order Hold -2-- a
Forwards Zero Order Hold -x
0.4 Forwards Me -&- b
e
Initial unit interval overl ap storage add/ reg
Optimzation Step
FIGURE 48 Improvement of Each Program Variant for 512 x512

Image Rotation, Seconds Versus Optimization Step

For completeness the timings shown in FIGURE 48 are given in TABLE 12. FIG-
URE 48 gives the ranking of all 2D rotation variants. All of the 2D rotations vary linearly
with the number of pixels. There are eleven variants in all. FIGURE 49 gives their perfor-
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mance, but because of the log scaling it is very hard to distinguish different programs. This
figure highlights the fact that the optimizations are only constant improvements.

TABLE 12 Improvement of Each Program Variant for 512x512
Image Rotation, Seconds Versus Optimization Step
Optimization
Steps
Variant Initial Unit Interval Overlap Addre_ss and
Storage Register
Backwards Bilinear 1.055036 0.996531 0.938320
Forward Bilinear 0.722759 0.693277 0.631743 0.588704
Forward Zero Order Hold 0.549814
Forward Me 0.440839
Backwards Zero Order 0.349311 0.309550
Hold
100 [ T . T T T
"A rot2d.out" —-—
"Arot2drl.out" —+-
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FIGURE 49 All 2D Rotation Variants Over All Image Sizes
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3.9.6 3D Rotation Performance and Implementation Results

For 3D, | implemented both column virtualization and slice and dice virtualization (FIG-
URE 41). Column virtualization does not have constant run time with angle of rotation.
Rotations of 0 to 45 degrees are reasonably efficient, but rotations of 45-85 degrees are not
as efficient because of communication congestion. FIGURE 50 shows the run times for a
volume size of 128x128x128 with the fastest variants of each filter: backwards zoh and
forwards foh. A small number of these timings are also given in TABLE 13.

The advantages of column virtualization, are that the image slices may be read in
with the same routines used for 2D processing, and the same overlap routines can be used.
The performance penalty results because 3D processing is being done on a mesh machine.
The performance penalty can be avoided by using rotations between 0 to 45 degrees and
doing full 90 degree transpositions for other filters. | don’t feel this is a good solution be-
cause it is similar to the multipass approaches, even if the filter quality is better.

Both the forward trilinear and backwards zoh timings are shown. In 3D the differ-
ence between a zoh and a foh is greater than in the 2D case, because there are 8 values in-
stead of 4 values to interpolate. Therefore, the differences between the forward trilinear
and the backward trilinear are exaggerated over the differences in the 2D bilinear filters.
By altering the virtualization to slice and dice | removed the dependence on angle but pro-
gramming and 1/O are complicated.

TABLE 13 Column Virtualization 3D Image Rotation 1k MP-1
Performance in Seconds

F':te Rotation Axes Image Size 0 20 40 60 80

foh About x 32x32x32 0.113783 0.120679 0.122798 0.1275f3 0.158y63
64x64x64 0.873327 0.925875 0.941115 0.962964 1.206174
128x128x128 | 6.944496 7.365861 7.479546 7.626624 9.616525
256x256x256 | 55.496932 58.839463 59.767284 60.697352 76.917359

foh Abouty 32x32x32 0.113784 0.124002 0.127627 0.146191 0.198402
64x64x64 0.873322 0.948982 0.983515 1.122743 1.496889
128x128x128 | 6.944496 7.545647 7.81749%4 8.949651 11.948496
256x256x256 | 55.496932 60.302461 62.466963 71.554257 95.339964

foh Aboutz 32x32x32 0.114852 0.124515 0.127035 0.125806 0.126879
64x64x64 0.874561 0.963425 0.96436Y 0.94815%1 0.959466
128x128x128 | 6.945591 7.713501 7.67730/7 7.5415R7 7.647887
256x256x256 | 55.496937 61.628235 61.243510 60.157255 60.790894

foh AboutX ,y, andz 32x32x32 0.113784 0.13041y 0.1438713 0.189(098 0.242284
64x64x64 0.873321 0.986322 1.09295» 1.454064 1.869899
128x128x128 | 6.944496 7.822128 8.678686 11.556266 14.97D083




85

TABLE 13 Column Virtualization 3D Image Rotation 1k MP-1
Performance in Seconds
Filte . .
" Rotation Axes Image Size 0 20 40 60 80

256x256x256 | 55.496932 62.520676 69.326421 92.388327 119.45221

zoh | About x 32x32x32 0.048917| 0.05651%  0.057643  0.06013  0.088B392
64x64x64 0.367715| 0.421055| 0.432319  0.449363  0.680601
128x128x128 | 2.931376| 3.338181 3.435066  3.556403  5.419631
256x256x256 | 23.499534 26.681865 27.493456 28.392862  43.382922

zoh | Abouty 32x32x32 0.048916| 0.058983  0.062746  0.078388  0.119829
64x64x64 0.367716 | 0.441973| 0.472276  0.601324  0.940745
128x128x128 | 2.931376| 3.507766  3.757546  4.797153  7.533232
256x256x256 | 23.499522 28.048093 30.038446 38.413253  60.420284

zoh | Aboutz 32x32x32 0.049982| 0.057913  0.055147  0.056251  0.056R50
64x64x64 0.368808 | 0.436837| 0.43135]  0.428977  0.442319
128x128x128 | 2.932458| 3.569854  3.506354  3.4918]5  3.474053
256x256x256 | 23.499522 28.5698Q8 28.116421 28.268908 28.102764

zoh | Aboutx ,y,andz | 32x32x32 0.04891¢  0.062139  0.072289  0.100700  0.158865
64x64x64 0.367717 | 0.469397| 0553640 0.791117  1.263828
128x128x128 | 2.931376| 3.743829  4.427272  6.3543]9  10.178167
256x256x256 | 23.499532 30.0156Q4 35.481798 51.011271 81.745668
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FIGURE 50 Column Virtualization on 1024 PE MP-1 Warping a

128x128x128 Volume

Slice and dice virtualization does indeed remove the dependence of run time on the
rotation angle for a one pass, any angle approach. Both the forwards and backwards algo-
rithms are more efficient for higher angles of rotation using slice and dice. FIGURE 51
and TABLE 14 show backwards first order hold, forwards first order hold, forwards zero
order hold, and backwards zero order hold, respectively. TABLE 15 shows the relative im-
provements between slice and dice virtualized algorithms. The separation of forwards over
backwards increases to 62% to 101%. The zoh is from 85% to 148% faster than the first
order hold, comparing the forwards foh to the backwards zoh. MCCM predictions, TA-
BLE 6, and the MasPar measurements correspond well, because the congestion for 2D is 7
and for 3D is 10 assuming normalized global communication casts,1 . The algo-
rithms are ranked according to the congestion and rule overhead. The backwards zero or-
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der hold is the fastest, followed by forwards first order hold, and as the number of points
used goes up the congestion becomes even more important.
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1.4} X 1
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FIGURE 51 Slice and Dice Virtualization on 16,384 PE MP-1
warping a 128x128x128 volume
TABLE 14 16K Processor MP-1 Slice And Dice Timings For
Warping, Seconds
vol size Mean Min Max
Back foh 32x32x32 0.019801 0.016054 0.028579
64x64x64 0.130724 0.090662 0.198416
128x128x128 | 1.006664 0.629505 1.53760(
256x256x256 | 7.976678 4.685603 12.3147Q4
Forward foh 32x32x32 0.012223 0.010403 0.014928
64x64x64 0.066698 0.056962 0.081431]
128x128x128 | 0.501673 0.429225 0.601604
256x256x256 | 3.977112 3.407390 4.749763
Forward zoh 32x32x32 0.011060 0.009243 0.01376pR
64x64x64 0.057393 0.047662 0.072114
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TABLE 14 16K Processor MP-1 Slice And Dice Timings For
Warping, Seconds
vol size Mean Min Max
128x128x128 | 0.427223 0.354747 0.527172
256x256x256 | 3.381126 2.810794 4.154151
Backward zoh 32x32x32 0.006591 0.005384 0.008076
64x64x64 0.028422 0.020378 0.037909
128x128x128 | 0.203063 0.140105 0.281743
256x256x256 | 1.602002 1.096583 2.223763
TABLE 15 Percent Improvement for 3D Slice and Dice Algorithms
on 16k Processor MP-1
Volume Size Forward over ZOH over FOH
Backward (FOH)
32x32x32 61.99% 85.44%
64x64x64 95.99% 134.67%
128x128x128 100.66% 147.05%
256x256x256 100.56% 148.25%

FIGURE 52 compares slice and dice to the column virtualization. Slice and dice
virtualization keeps the run time constant for any angle. Some of the column virtualization
timingsare also given in TABLE 17 to compare with those from TABLE 14.

Comparisons to [VEZI92] and [SCHR92] show that our resampling times are
about a factor of 4 slower than [VEZI92] and 1.3 to 5 times faster than [SCHR91] for rota-
tion only. See TABLE 16. The factor of 4 slowdown is clearly a result of the general router
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and mesh router mismatch, recall 1300 Mbytes/s versus 23,000 Mbytes sec. The router
start-up penalty and/or the rule overhead accounts for the rest of the difference.

TABLE 16 Rotation Only, From [VEZI92][SCHR91] Milliseconds
. ) Speedup vs.
m r vol siz Tim .
Compute ol size € Permutation Warp
[VEZI92] zoh 4 pass 16k pe MP-1 128x128x124 A9 0.241
16k pe MP-1 256x256x256 390 0.243
[VEZI92] foh 4 pass 16k pe MP-1 128x128x128 1B9 0.277
16-k pe MP-1 256x256x256 1107 0.278
[SCHR91] foh 5 pass| 64k pe CM-200 128x128x128 268 1.320
32k pe CM-200 128x128x128 5111 2.516
16k pe CM-200 128x128x128 1033 5.087
2 T T T T T T T T
1.8 + s
1.6 :
w 1.4 Col urm Backwar ds FOH XYZ —— -
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FIGURE 52 16k MP-1 MasPar Performance on 128x128x128
Volume Rotation, Slice and Dice compared to Column
Virtualization
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TABLE 17 16k MP-1 Column Virtualization 3D Image Warping
Performance in Seconds

Filter Rotation Axes | VWolume Size 20 40 60 80
Back foh About x 128x128x128 0.482388 0.495118 0.524356 0.675803
256x256x256 | 3.827529 3.9187771 4.057814 5.3121)r3
Abouty 128x128x128( 0.482790 0.5028741 0.571791 0.845904
256x256x256 | 3.820866 3.98416( 4.503583 6.7452[/8
About z 128x128x128( 0.497712 0.503362 0.497712 0.485640
256x256x256 [ 3.901328 4.041634 3.930743 3.9013p6

AboutX,y,andz | 128x128x128 0.520609 0.579541 0.864906 1.668463

256x256x256 | 4.047185 4.545814 6.88065B 13.093p13

Back zoh About x 128x128x128  0.229737 0.240114 0.2496p 0.391298
256x256x256 | 1.801486 1.888355 1.962068 3.1038p8
Abouty 128x128x128| 0.228393 0.247114 0.304206 0.559010
256x256x256 | 1.794471 1.943617 2.404857 4.4508p3
About z 128x128x128| 0.238539 0.245222 0.242995 0.238540
256x256x256 | 1.867224 1.955554 1.927851 1.8611p4

AboutX,y,andz | 128x128x128 0.248391] 0.307315 0.454092 1.543877
256x256x256 | 1.957220 2.4347171 3.59903¢ 12.357|759

3.10 Summary and Discussion

| presented new optimal direct warp algorithms for the CREW and EREW PRAMSs. The
EREW PRAM algorithm is restricted to equiareal transforms, but is more efficient than
the CREW algorithm in practice and can be used in conjunction with the more general al-
gorithm for other transforms. The parallel run time complexity of both algorithms is
O(nd) usingn(n+1)d-1 processors per sample(nd+1) using 1 processor per sample, or
0O(1) if filter complexity is considered constant ( is the order of the polynomial interpo-
lation reconstruction filter, andl  is the dimension of the image being warped.) The PRAM
complexities are the same, but on different strength machines. The MCCM more accurate-
ly predicts performance of existing machines. The backwards algorithogNg on the
MCCM whereN is congestion that varies with the transform. The forward direct warp is
0O(1) on the MCCM, and therefore optimal because of its efficient communication. The
MCCM directly maps to most commercial parallel processing machines, and therefore the
forward direct warp algorithm can achieve arbitrary image and volume rotations with low
communication costs. The forward algorithm works because of clever job assignment. The
nonlinear processor mapping assigns jobs to be close to where the original data lies, allow-
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ing efficient gathering of the results, and optimal implementation of local neighborhood
filters.

The forward algorithm works for all dimensions, and | presented results for 2D and
3D. Using a first order hold the EREW algorithm has up to a 59% improvement over the
CREW algorithm for 2D. Improvements of up to 100% were measured for 3D. 3D volume
rotations are important for scientific visualization of voxel data. My implementation of the
forward algorithm on the MasPar MP-1 is linear in problem size and fast enough for inter-
active (<1 second) visualization. 2 million voxels (128x128x128) are rotated in about half
of a second using 16384 processors and a first order hold. It takes only one fifth of a sec-
ond with a zero order hold. | also showed how virtualization techniques can severely affect
performance. Future research is necessary to generalize the forward algorithm to scaling
affine and other transforms.
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Chapter IV
Spatial Volume Rendering

In this chapter | present two new volume rendering algorithms that are optimally efficient
on the PRAM. The first algorithm uses a data parallel approach and warping from Chapter
[l for massively parallel architectures. The second algorithm uses large granularity mes-
sages for architectures that do not support small messages. Empirical error analysis sup-
porting the analysis in Chapter Il illustrates the quality advantage over existing parallel
methods, and the performance measurements show the new flexibility in view angles. The
performance measurements also confirm the flexibility of my direct warp algorithms
which can use many orders of filters efficiently.

| review volume rendering and develop the rendering equations in Sections 4.1. |
survey and classify existing algorithms in Section 4.2, then | present two new permutation
warping algorithms for volume rendering that achieve linear speedup in Sections 4.4
through 4.5. Empirical error analysis and Maspar and Proteus performance measurements
are given to confirm the speedup and tunable accuracy characteristics of the algorithms in
Section 4.6. The chapter concludes in Section 4.7.

4.1  Background

Volume rendering is transparency visualization of sampled three dimensional data
[KAJI84] [LEVOS8S8][KAUF91]. Samples, called voxels, are created by magnetic reso-
nance imaging, finite element analysis, computed tomography, and other applications. Vi-
sualization techniques are application dependent, and many applications are well suited by
traditional graphics using surface models [TIED90][UDUP90]. But, there are other appli-
cations that require semi-transparent, volume rendering. The transparency is used either
for effect, for example special effects in movies, or because the data are Lbasead to
segmer?t Applications that use transparency effects include photo realistic rendering of
clouds [KAJI84], creating contextual clues for medical imaging [LEVO89], and viewing

of multi-valued functions [KRUE90].

The lighting and shading calculation for transparency is solved by transport theory
[CHANGO]. Those who have extended the solution to non-homogeneous media call it vol-
ume rendering [BLIN82][KAJI84][KRUE9O][LEVO90][SABES88]. Because volume ren-
dering is computationally expensive, special purpose architectures have been developed to
improve performance [KAUF90][KAUF91b][GOLDS85][KAUF88]. Recently researchers

1. undersampled data where multiple frequencies are seen as the same frequency
2. To separate regions in an image as to their membership in desired sets
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have investigated algorithms for general purpose parallel computers, because they are
more widely used, can use enhanced shading and illumination models, and provide gener-
ation scalable solutions. Volume rendering is @(s) run time algorithm wéiere equals
the number of samples stored in the voluge, nx nx n . Because is very large, the run
time is great. For exampls,= 224 forz6x 256x 256 volume, and if each sample pointis
ared, green, bluey (opacity) tuple, the source volume is 64 Megabytes. Volume render-
ing is memory and compute bound. My volume rendering algorithms use the warping
techniques from Chapter Il and new techniques developed here to achieve linear speedup
on shared and distributed memory parallel machines. The error in direct volume rendering
versus multipass approaches is empirically investigated, showing the improvement of my
algorithm.

First, | review the particle lighting and shading models, Section 4.1.1. Then | sur-
vey existing volume rendering techniques classifying them by their viewing transform as
introduced in Chapter Il. The algorithms are described in Section 4.4. Complexity of the
parallel algorithms is discussed in Section 4.4, and filter quality and run time measure-
ments are given in Section 4.6.

4.1.1 \Volume Rendering Lighting and Shading Models

If a three dimensional function'(u, v w)  is prefiltered to avoid aliasing it can be sampled
provided the Nyquist criterion is satisfied for spatial frequengjes = 2f, , Where isthe
highest frequency contained in the volume,

1.1 1
VIx,y, 4 = VE= x, =y, = (EQ 50)
[ Y ] |:|fo fSyy szZD
fss fs, andfg are the sampling frequencies. Exampleg @f v, w) are X-ray attenuation,

radio pharmaceutical concentration, and proton density.

To render, the sampleg[x, v, 7 3 are classified and segmented to extract features
of interest. Segmentation separates regions of the volume into its components [JAIN89].
For example, density ranges can identify bone, skin, and other tissues with a segmentation
operator of V[x y, 4-Vv{<& , where&, is the scalar value of the chosen surfac& and is
the tolerance [DREB88]. The results are opacities ( ) and normals ( ) used to calculate
the lighting and shading in the volume. Both surface and particle lighting models are used
to render voxels.

3. [] brackets will be used to denote discrete functions and () parenthesis to denote
continuous functions.
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Then, samples are projected into a 2D image. A projection, , is defined as a map-
ping from object spaced)S ) to screenspass( 9% (T QS . Two common projections
are perspective and orthogonal. The process of volume rendering is shown in FIGURE 53.
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VXV 3 Segmented, Filtered I[x', y']
Iso-density Surface(s)
Scalar Field Image
FIGURE 53 Volume Visualization

The difficulty of projection is that many voxels in OS contribute to each pixel in
SS, therefore combining rules are defined on the volume. Also, the transformed voxels do
not match up with the pixel locations, and reconstruction and resampling of the projected
voxels are necessary. The combining operations are lighting and shading discussed in Sec-
tion 4.1.3. Projections are warps from Chapter 1l and high granularity warps developed in
this chapter.

4.1.2 Surface Lighting Models

One approach is to fit voxels with opaque surfaces. The surface normals ( ), material
propertiesk, ks ks ,and ),andcoloraf4 aog ) are used to calculate the shading in-
tensity. The lighting model sums scattengd  (ambient), diffyseN « L) (Lambertian),
and reflected, (cos6,) (specular) light. A lighting model is [FOLE90]

lsn = 1aKaO * Faglay[KgOan(N + L) + kOg, cod 8,]. (EQs5y

The material properties are determined by trial and error in this empirical lighting model.
f . IS the light source attenuation factey.  is the angle between the reflected light and the
view direction.,, is the intensity of the directional light sources, where the direction to
the light source is specified as . The model is calculated for 3 primary specular wave-
lengths with A = {red green blup . A lighting model may incorporate ambient, diffuse,
and specular or any combination. Also, depth cueing may be incorporated to divide down
the intensity of light as a function of the distance to the viewer.
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A shading model is the evaluation of this lighting equation. Rather than evaluate it
at all points on the surface if one uses a triangulated surface they can interpolate the colors
or normals to calculate colors between the vertices. Many variations on shading exist due
to the different ways in which normals may be calculated from voxels (z-buffer shading,
grey-level gradient shading, and adaptive grey-level shading [TIED90][KAUF91]) and the
lighting models calculated (constant, Gouraud, Phong, and Torrance-Sparrow [FOLE90]).

4.1.3 Particle Lighting Model

Particle lighting models are used to render transparent materials [BLIN82][KAJI84]
[LEVO89] [SABES88]. Transport theory of energy solves a system of interacting light
sources and particles that absorb, reflect, emit, and transmit light. Initially applied to the
modelling of stellar phenomena such as interstellar clouds and planetary rings
[BLIN82][CHANGO], transport theory is now applied to voxel visualization [KAJI84].
Methods to solve for the final intensity that reaches the eye has been the focus of graphics
researchers [BLIN82][DREB88] [GOLD88] [KAJI84] [KRUE9O] [LEVO90] [SABESS]
[UPSO88] [WEST90]. | define intensity, , as the radiant intensity (Watts) or amount of
measured light energy, not to be confused with luminance brightness (lumens), the per-
ceived intensity. Consider point light sources, , of intensity illuminating a variable den-
sity volume of particles. FIGURE 54 shows a sketch of the system.
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FIGURE 54 Single Level Scattering Particle Model

The densities, gradients, and lighting properties of particles determine the amount
of light reflected, absorbed, and scattered. Particles are quantified through their phase



97

function, a function which determines the direction and amount of reflected light. If the
particles have low albedo, or little reflection, then a single level of scattering is used to
model the light in the volume.

Kajiya [KAJI84] and others assume that the density of particles is low, therefore
the probability that there are no particles in a volume is modelled by a poisson process
[BLINB2][ESPO79],

P(OV) = eV, (EQ 52)

The parameteti, is the number of particles per unit volume ngwvd is the expected num-
ber of particles in the volume. Higher density models are derived by [ESPO79] and
[KAJI84]. At each point in the volume an intensity is emitted only if there are particles to
reflect, transmit, or emit light. All points therefore are attenuated by the expected number
of particles at that point in the volume. 1 use to denote the expected number of particles,
and the segmented function. Several researchers [BLIN82][KAJI84][SABESS][LEVO89]
do some fudging with the transport theory in the expression of the optical depth. It is ap-
propriate to look at the original sources such as [ESPO79] for clear understanding of the
many approximations taking place. Optical depth is the dimensionless attenuation of light
as it passes through the particles n,v of (EQ 52).

Define a(u, v, w) to be the probability density of an encounter at pgint, w)
Then for a poisson process the probability of encountering particles along path , allow-
ing the ray to pass is [ESPO79],

-I a(l’yd’
t(u, v, W) = P(k=0,1) = eJ . (EQ 53)

Light from a source reaches a point in the volume if it doesn’t encounter a particle to scat-
ter it. The probability of the ray being scattered as it proceeds from the source into the vol-
ume is (EQ 53) integrated along the illuminated ray or transparency. | consider any
modification of a(u,v, w) such as powering [SABES88], scaling [KAJI84], or mapping
[LEVO89] part of the classification. Ignore the constants given by other researchers, such
as absorption coefficient [KAJI84], particle volume [BLINN82][SABE88], and mean
cross sectional area for extinction [ESPO79][SABES88]. These constants are used to ratio-
nalize the poisson density that most researchers use.

The incident light energyl( ) of a light source at any point in the volume is simply
the product of the light source strength  and the transpargpayv, w) along the path
from the point to the light source,

ey (uy v w) = 1t (U, v, W) (EQ 54)

The intensity resulting from the interactions of light with the particles is the shading inten-
sity (Is). This interaction in surface graphics is described by the shading function. In trans-
port theory, interaction is described by the phase functoh (L) , a function of the view



98

direction (E ) and light source directiorL ( ). See FIGURE 54. The volume rendering
lighting model takes into account both the phase function of particle interaction and the
oriented surface interaction. Normals () within the volume are calculated as part of clas-
sification [LEVO89][KRUE90]. For multiple light sources the shading intensity is

Is(U, v, W) = ZShadian, N, Ly o, 1) . (EQ 55)
Yy

Kajiya [KAJI84] considers only the particle interaction (not surface) so the shading inten-
sity resulting from all light sources with incident light intensjty  is

Is(u, v, W) = ZILy(u, v, W)(®(E L)) , (EQ 56)
v

a function of the phase functiom(E (L) . The particles are chosen to be oriented along a
plane whose normal is determined by the particle gradient. The gradient is approximated
by central differences,

OVIi, j,k] =

%(V[i +1,j,k] =V[i—1, j,Kk]), %(V[i, j+ 1,k =V[i, j -1, K]), %(V[i, ik + 1] = V[i, j,k=1])
(EQ 57)

Or normals can be approximated in the two dimensional SS [KAUF91][TIED90].

For particle models this shading intensity is not what is emitted from that point in
the volume. The emitted intensity from any point in the volume is the product of the shad-
ing intensitiesig (u, v, w) and the probability that there is a particle there for the light to
bounce off of. This probability as | defined earliernis  the probability of an encounter. A
completely opaque surface emits all of the lights 1, but a semitransparent voxel emits
only the amount of light that will reflect or be transmitted by the patrticles,

le(u, v, W) = Ig(u, v, wa(u, v, w) . (EQ 58)

In FIGURE 55 I clarify the intensities, I, 15 ,and .Shown is the complete path
of light from source to eye. The light source has strength intensity , that travels along
pathl, and is attenuated along that path giving an incident intensity of . The incident en-
ergy interacts with the particles according to their shading or phase function and gives a
shading intensitys . The shading intensity scaled by the probability of there being a parti-
cle at that position creates the emitted intensity . The emitted intensity travels to the eye
attenuated by the transparengy  along the path . The intensity resulting from a single
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point in the volume iggt, . The ray intensity,,  is the sum of all points on that ray
through the volume.

Eye Light Source
| =1ty vl
e /‘EW
P [y
[e]
o o
o [e]
[e]
lg =l o °
a0 =t
o lg =1 ,®(ELL) V(uy, V?W)

For a specific pointr,s, 1)

FIGURE 55 Intensity calculation for one point in the volume

To summarize, the intensity,,, , of a view ray is equal to the sum of the contribu-
tions at all points along the ray,

liay = J’E:Vt(l)ls(l)a(l)dl . (EQ 59)

This is a line integral along a path from pomit to pof  shown in FIGURE 54. The
final intensity of the view ray is the product of the transparency, shaded intensity, and the
volume density (expected number of particles). Kajiya [KAJI84] uses numerical Rydberg
integration to calculate the intensities and transparencies; others use rectangular rule inte-
gration to be described shortly.

(EQ 59) defines the lighting and shading model in terms of a low albedo (reflectiv-
ity) shading or phase function. If higher albedo particles are modelled, the solution of the
scattering equation becomes more involved. The solution depends on many paths of scat-
tering and not the single path illustrated in FIGURE 54. A perturbation theory solution is
derived by Kajiya to model high albedo particle clouds. Multiple scattering effects in a
volume have been proposed [KAJI84], but at this time are not practical for interactive vi-
sualization. Kajiya shows that multiple scattering is useful for rendering clouds but sim-
pler methods are often adequate for other applications.
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The low albedo model, (EQ 59), is further simplified [LEVO90] by ignoring the
inter-particle shadowing along lines of illumination. Calculgtgu, v, w) directly at each
point ignoring the attenuation of the light through the volume. (Let, v, w) = 1, .) This
is how Drebin, Levoy, and Sabella perform volume rendering. The algebraic formulations
they use are numerical integration of (EQ 59) by the rectangular rule. Consider samples
along each view rayv = 1tow where the shading intensities and opacities have already
been computed. The discrete formulation of (EQ 59) is [SABESS]

w-1

—-) a[m]

W
| ray = Zem” lg[wla[w] . (EQ 60)
w=1

Which may be reformulated to

w w—1
lray = z | w]afw] |_| galm (EQ 61)
w=1 m=1

Levoy gives an alternative development reaching (EQ 61) by starting with a dis-
crete system. The models are the same but the discrete model derivation clarifies the re-
sults. Refer to FIGURE 56 which considers effects along the view ray. The volume is
modelled as a varying density emitter with a single level of scattering. The light is attenu-
ated in the view direction, where two effects are considered. Depth-cueing attenuates the
intensity as an inverse of the distance from the viewer, and particles block rays from vox-
els behind them. Each sub slab is considered separately by using a conditional probability
that slabs between the eye and the current slab will block the illumination from the slab.

Eye W=l eee W=W XX) w=W
n@—an
FIGURE 56 Volumetric compositing calculations

Consider the contribution of slalkb = w . If all slabs in frontvehave no patrticles,
w has an intensity only if the view ray hits a particlewn .| can quantify the events: have-
no-particles, and hits-a-particle, by probabilities. In FIGURE 56, the probability that slabs
{1,w-1} have no particles is evaluation of (EQ 52) for the cylindrical ray volume

Vi w-1- The probability that the ray hits a particle in cylindrical volurne, IS
1-P(0V,) . So the joint probability of these events, the probability the shading intensity
reaches the eye, iSP(QV, ,_1)(1-P(QV,)) . The resulting intensity from slab is

then just the shading intensity times the probability that there are no particles in slabs
1...(w-1) and there is one patrticle in slab
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The discrete transparency is often approximated by the taylor series expansion of
the exponential ast[m] = e O(1-a[m]) , whengm] andm] are probabilities in
the range[o, 1] . Levoy’s approximation is the expected number of particles in the cylin-
drical volume a[w] = (1-P0;V,)) , which is summed over the entire unit volume of FIG-
URE 56. The volume terms drop ost' = €™ . Sabella, Blinn, and Kajiya use the density
as the expected number of particles (EQ 59). The sum of all slab’s contributions is given in
(EQ 61) derived earlier.

Compositing is evaluation of (EQ 61), and there are several alternatives. Images
are composited from front to back (or back to front) carrying both the intensity and the
opacity to each sub-slab. A running product and sum is calculated adding the contributing
factor of each sub-slab until for each ray a final intensity is calculated. | express the com-
bined results as emitted intensitieg[w] , the starting intensity[ag (EQ 55) or (EQ
56), and the initial density or opacity agw] . Note that the combined opacities are denot-
ed asa; . and similarly for the transparencies. A front-to-back recursive solution of (EQ

i
61) in terms of the transparency; 1-a  , is

lelw] = Te[w=1] +Ig[wlafw]t, _plw=1] ,  (EQ62)

towlWl =t woylw-1](1-afw]) . (EQ63)
A substitution ot = 1-a can be made to derive the equations in terms of the opacity, |,

lelw] = lglw=1] +Igwlafw](1-a; w-ylw=1]) , (EQ64)

oy wIWl = ay w-ylw=1]+a[w](1-oy _pylw=1]) . (EQe5)

For all of the abover = 1..w . Such an algebraic evaluation rule is called compositing
[FOLE90] and is used in other graphics applications such as animation. The transparency
equations ((EQ 62) and (EQ 63)) are more efficient than the opacity equations ((EQ 64)
and (EQ 65)). When compositing back-to-front the incremental transparencies or opacities
do not need to be maintained,

le[w] = Igwlafw] + 1 [w+ 1] (1—-a[w]), w=W..1 . (EQ66)

Other combining rules have proven useful for volume rendering such as the maximum in-
tensity, the sum of the two highest intensitigg, +1,., , or the standard deviation of the
intensities [LAUB90]. Other simplifications include binary voxel rendering where the
voxels are opaque or transparent [FRIE85][KAUF88].

4.2  Algorithm Development Methodology and Existing Approaches

Volume rendering is a transform based algorithm. Because of this, all view transform al-
ternatives can be investigated in the directed graph paradigm of Chapter Il. | separate the
algorithm into three separate steps to clarify design choices, then classify existing ap-
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proaches. An optimal sequential algorithm is described, after which parallel algorithms
and their optimal approaches are discussed.

Volume rendering is concisely represented as the data parallel algorithm in FIG-
URE 57 with terms defined in TABLE 18. For each step points lie in: (Step 1) object space
(OS)p, (Step 2) 3D screen space ($S) , and (Step 3) 2D screen spage,(SS) . The do-
main of points in each space is defined by bounding Byll8,, , Band . The three steps
are: (1) the preprocessing stage (PPS), (2) the volume warping stage (VWS), and (3) the
compositing stage (CS).

Il 1~ Transparency_Volume_Render(l", T, classify shading ) {
Np = normafV)
PPS o, = classify(V, Npy) O(pOBy)
lsp = shadindNp, Ep, Cpy, 00, 1)
VWS Uy lgy = T(ap Iy O(p' OBy)
CSs g, = Jﬁ,it(l)ls(l)u(l)dl O(py' OBg9
}

FIGURE 57 Data Parallel Volume Rendering Algorithm

TABLE 18 Terms in algorithm

p point in original volume spad®S

Np normal at poinp ifOS

Iipy direction to light source at poipt

a, opacity at poinp ir0S

I's, shading intensity at poirgt

p' point in volume screen spa&S,,

a opacity at pointp’ irfS G,y

| sy resampled shading intensity at popit  Sig
T transformationOS -~ S&

|, intensity of ray at poinp'y, in 2D image spd8&  created from intensities,
and opacities along th&/  ray at
all points 'y, o w -

By, bounding hull of volume data

By bounding hull of transformed volume data

Bgs bounding hull of 2D screen space image

The PPS calculates normals , opacitigs , and initial shaded intengjties . The
VWS transforms the initial shading intensitieg ~ and the opacitjes  to the 3D screen
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space by resampling. The CS evaluates the view ray line integrals to get the 2D screen
space pixel intensities,,

FIGURE 58 shows the VWS and CS alternatives intermixed as transitions from
three dimensional OS to two dimensional SS. Essentially calculation may be done for-
ward, backward, multipass forward, surface fitting, or through Fourier techniques. The CS
has different freedoms for sequential algorithms such as back-to-front (EQ 66) or front to
back (EQ 62) to (EQ 65), and in parallel there are multiple ways of compositing. | discuss
parallel compositing in Section 4.4 and in Appendix B, but first | explain and discuss the
existing volume rendering approaches. Other surveys of volume rendering are
[GOLD85][KAUF91][WILHI1][ELVI9Z].

forward

backward

/\HDZ

v|os Fourier

N o)
V|03 _pVv|O3...— V|03

Multipass forward

Existing Algorithms

FIGURE 58 Volume Rendering Transform Graph

4.2.1 Backward Warping Algorithms-Ray Tracing

Ray tracing is a backwards transform algorithm. FIGURE 59 shows backwards warping,
or ray tracing, where a ray passes from the eye through pixel into the volume. The pix-
el intensity depends on the contributions of poipts  thropgh [BLINN82][KAJI84]
[KRUE9O0][LEVO90][LEVO90d][SABES8S8]. The sample poinis,...p’,, are reconstruct-
ed, typically by trilinear interpolation (such as in [LEVO89]). Reconstruction samples are
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composited as described in the previous section in (EQ 62) and (EQ 63). Backward warp-
ing is also used in opaque voxel rendering [JACK88][KAUF88][WILH92].

)
Voxels T-1
)
Pixel
View 1T
4 olo—o—o Py . Py
Ray P'w Pa
Dy Eye
olumeScreen  [point Sample -
FIGURE 59 Viewing Frustum For Ray Tracing

Techniques to reduce the amount of work in ray tracing including hierarchical enu-
meration, adaptive termination, and bounding hulls. Hierarchical enumeration is the cre-
ation of multiple representations of the volume data so that empty or homogeneous areas
are traversed quickly. If space is divided into octants, and the octants are subdivided into
octants, a pyramidal structure is created. See FIGURE 60 below. Levoy uses this approach
[LEVO90] and stores the multiple representations. See also [DANS92]. Meagher
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[MEAG91] creates a single octree representation that holds all of the data, and uses for-
wards algorithms to display.

'%

D @

FIGURE 60 Octree Space and Graph Representation

Adaptive ray termination [LEVO90] stops processing a ray when the full opacity is
reached. If you traverse the ray from front to back when the opacity of the ray has accumu-
lated to a threshold you stop processing that ray. Danskin and Hanrahan have developed
variance octrees and importance sampling for hierarchical enumeration and adaptive ter-
mination [DANS92]. Another speedup is bounding hulls that surround objects of interest.
The hull is used to test ray intersections in deciding whether to continue processing the
ray. For animation a space-time-hull further reduces rays [GLASS88]. Ray tracing pro-
vides for incorporating geometric primitives [LEVO90c] which are useful for three dimen-
sional perception.

Parallelism has also been used to speedup backward mapping algorithms. Nieh and
Levoy [NIEH92], Yoo et al. [YOO91], Challinger [CHAL92], and Montani et al.
[MONT92] have developed parallel backwards algorithms. Nieh and Levoy use a shared
memory machine (Stanford DASH) where arbitrary memory requests are satisfied by the
system. Challinger [CHAL92] also uses a shared memory machine (BBN TC2000). Mem-
ory congestion and storage overhead are the primary disadvantages, but the architectural
strength of the DASH gives nearly linear speedup. Yoo et al. implemented a backwards al-
gorithm on Pixel Planes 5, a distributed memory machine, and because of network conges-
tion elected to replicate the data set on every processor. This results in high performance
(See TABLE 20), but limits the amount of data that can be rendered. Montani et al. en-
countered similar difficulties on the nCube, where clusters of processors get copies of the
data set, and data must also be sent on request resulting in both memory limitations and
network congestion. Backwards parallel algorithms require lots of storage or lots of ran-
dom accesses of voxels. Yoo et al. and Nieh and Levoy reduce storage by using a compact-
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ed 32 bit voxel representation, a grey scale 8 bit voxel value combined with 1 bit of octree
information and a 2 byte compressed normal value.

4.2.2 Forward Algorithms-Compositing

Forward algorithms send volume elements into the screen. As discussed in Chapter Il, for-
ward algorithms are the opposite of the backwards algorithms, and one iterates over OS
samples rather than SS samples. Approaches include the multipass forwards, forwards
wavefront, and forwards splatting. Surface fitting transforms data forward also, but is dis-
cussed in 4.2.3.

P
(4
Voxel o
Pixels
FIGURE 61 Forward Mapping of Voxels into Pixels

The multipass forward approach has been taken by [FRIE85][LENZ86]
[DREB88][HANR9O][WEST90][SCHR91][CAME92][VEZI92][KABA92][WRIG92].
Parallel multipass forwards approach [DREBB88] [SCHR91] [VEZI92] [KABA92]
[WRIG92] use a decomposition of the viewing transform into shears for low network con-
gestion, but they suffer from lower filter quality and view angle restrictions. Essentially
multipass algorithms cannot calculate the same quality or variety of images that back-
wards warping can.

Theforwards wavefronapproach [CAME92] works on SIMD machines with sim-
ple interconnection networks, such as a token ring [SCHR92], and gives better filter quali-
ty than the multipass methods. Limitations are similar to the multipass methods where
view angles are restricted, and the filter quality is not as good as because of a post projec-
tion resampling. Perspective projection is not possible, and the technique suffers from net-
work congestion as well [SCHR92].

Forwards splattingalgorithms [WEST89][WEST90][LAUR91] have been de-
scribed as easily parallelizeable. A voxel is splatted [WEST90] into the screen and a cu-
mulative image is saved. Splatting techniques suffer from ordering noise because of the
unavoidable overlap in the splatted kernels [WEST90][WILH91b][WEST92]. Similar to
ray tracing, general viewpoints require random accessing of the screen, resulting in con-
gested writes. An implementation without view angle freedom by Elvins [ELVI92] uses
sequential compositing limiting speedup. Opaque forward algorithms do not have order-
ing problems, and are very efficient [MEAG84][MEAG91][GEME90].
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4.2.3 Surface Fitting

Surface fitting matches a surface to voxels during segmentation and classification
[GALL89][LOREBST]. the technique is similar to the creation of contours from two dimen-
sional data. Marching cubes [LORE87] creates a triangulated surface from an iso-density
segmentation of the voxel data. The voxel's corners are inside or outside of the surface for
256 different possibilities2 ). A look up table accessed by the 8 bit corner decision word
specifies triangle(s) to generate. Due to the large number of triangles generated follow on
processing may prune triangles from the representation [SCHR92][TURK92].

Saving previously calculated intersections as you march along, and even using re-
duced resolution volumes improves performance. The memory accessing is relatively effi-
cient, because only 4 slices need be held in memory to compute the gradients. The
resulting image triangles are rendered directly in a traditional graphics pipeline (such as a
z-buffer and Phong shading pipeline.) Parallelizing marching cubes is straight forward by
object space assignment. A recent study is [HANS92] which gives Thinking Machines
CM-2 performance to create an isodensity surface of triangles from volumetric data.
Hansen et al. do not discuss the rendering speeds. is classification of the point samples to
isosurfaces. Surface fitting [WILH92][CLIN88] with points instead of triangles is more
efficient (TABLE 19 [CLIN88]) but resolution is lost.

4.2.4 Reprojection and Fourier Volume Rendering

Reprojection, or Fourier volume rendering [MALZ91][DUNN9O][LEVO92] creates 2D
renderings from 3D frequency information. Through application of the Fourier slice theo-
rem [KAK88] a plane of the volume’s spectral (frequency) information creates a shadow-
gram of the entire 3D data set. This approach is fast because 2D frequency data creates 3D
spatial information. There are similar techniques in the spatial domain
[HARR78][JAFF82]. Chapter V more fully describes this approach.

4.2.5 Existing Methods Performance Summary

TABLE 19 lists special purpose architectures that use opaque voxel algorithms. Because
these machines are determining isosurfaces, they compete directly with the surface fitting
algorithms such as marching cubes [LORES87]. All of the special purpose machines, ex-
cept the Insight system [MEAG85][MEAG91], use image space normal calculation which
is inaccurate [TIED90]. High frame rates are achieved through volume size limitations and
restricted voxel formats. The performance of each architecture is shown in frames per sec-
ond. Performance of 10 f/s [OHAS85], 16f/s [GOLD85], and 35 f/s [KAUF88] are notable
for parallel architectures, but higher quality shading with a uniprocessor architecture
achieves 5 f/s [MEAG91] with newer technology. The results are hard to compare, but im-
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proved algorithms have resulted in speedups while demand for more features has reduced

performance.
TABLE 19 Opaque Voxel Algorithm Architecture Performance?
Transform Shading Perf. \Voxe Prototype \Volume Proc.
Cube backwards, | image nor-| 35 f/s 8bits | 18 mem- | 512 3
[KAUF88] orthogonal mal ory
Insight II/ forward block and | 5f/s, 1-16 Insight I, | 512x512x | 1
[MEAG84] volume 250k pix- | bits Insight Il | 90, up to
[MEAG91] normal, els/s 80Mb
[GEME9Q] depth cued octree
PARCUM lI backward image nort 1/38 to 1, or MC68020 | 5123 1hit, | 4
[JACKS8S8] mal, 1/110 f/s | 8bit emulation | or 256
diffuseand 8bit
specular
Voxel Proces- | forward, arb. | image nor-| 16 f/s 4bit | 64 2563 64 +
sor (GODPA) | rotation and | mal 8+ 1P
[GOLD85] scaling
3DP* forward, per- | image nor-| 10 f/s, app. | software | 256° 256+
[OHASS5] spective mal estimated | depen | simulated 255+1
dent
iso-surface backward/ NA (/4.5 + 32 Sparc 1 256x256x| 1
generation forward to polygon bits 113
with octrees render rend.) f/s
[WILH92]
point alg. forward/sur- | volume 2-.5fls Unkn | on GE 64x64x93 | 1
[CLIN8S] face normal, own 9800 to
smooth scanner 256x256x
93
[MONT92] backward Unknown | 0.1945f/§  Unkn NCube-2 | 97x97x11 | 128
own Model 6 to
6410 350x250
[HANS92] surface NA 14-68 | NA | CM-2, 64%-256° | 65536
conver- to trian-
sions/sec- gles
ond

a. Partially adapted from [KAUF90] which is also published as [KAUF91b]

b. Denotes multiple types of processors 64 of type 1, 8 of type 2, and 1 controller
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With the need for more sophisticated shading and lighting models grew the need
for more processing power. Performance studies have been almost entirely on general pur-
pose and graphics machines. | list in TABLE 20 parallel and sequential performance num-
bers for transparency rendering. Direct comparison of results is difficult, because of the
variation in shading, data set sizes, resolution of voxels and images, and generality of al-

gorithms.

TABLE 20 Transparency Voxel Algorithm Architecture Performance
Transform Shading Perf. Voxel  Prototype Volume Proc.
[KAJI84] Spherical High 7x10°to | Unkn | VAX 11/ 16°, 1
Harmonic | albedo 2.8x10* | own | 780,I1BM | 128x128x16
fls 4341 to 512
[LEVO90] | backwards phong .008-.33| 32 Sun 4/280 | 72x60x33tq 1
fls bits 256,
256° to 512
[DREB88] | forward, phong .017 f/[s | 32 bit | Pixar 256° 4 SIMD
multipass ([LEVO9 | r,0,b, | Computer
0d] a
[LEVO90d | backwards | volume A17-.017 | 8 DEC 256x256x 1
] normal, fls (1- bytes | 3100/Sun | 128, 51%
phong 10f/s) 4/280 image
[SCHR91] | forward, Unknown | .609-6.32| Unkn | CM-2 64-128%to, | 16k -
multipass fls own 642-256 64k
(pure shear) SIMD
[NIEH92] | backward Phong 1.18-11.132 Dash 128 to 48
fls bits 209256° | MIMD
to 416
[VEZI92] forward, unknown .288-11.6| Unkn | MasPar 322t0 32, 16384
multipass fls own | MP-1 256%to 256 | SIMD
(scale
shear)
[YOO91] | backward, | Phong 15 f/s 32 | Pixel 128 to 16
trilinear bit$* | Planes-5 | 640x512 MIMD
images
[YOO91] backward Phong 1.4fls 64bit,| Pixel 128 to 16
trilinear color | Planes-5 | 640x512 MIMD
images +
SIMD
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TABLE 20 Transparency Voxel Algorithm Architecture Performance
Transform Shading Perf. Voxel  Prototype Volume Proc.
[CAME92] | forward unknown 10 f/s unkng DAP 510 128x128x64] 1024
wavefront wn SIMD
[CHAL92] | backward unknown .084 fis NA BBN 100x120x16| 100
TC2000 | to512 MIMD
[CHAL92] | forwards unknown 0.38 fls NA BBN 100x120x16| 100
TC2000 | to51Z MIMD
[SCHR92b | wavefront pre shaded 1.09-17)9grey | CM-2 64° and 16384,
] fls scale, 128 or
color 32768
SIMD
[SCHR92b | wavefront pre shaded 2.58-35/7grey Princeton | 128 and 1024
] fls scale, | Engine 256° SIMD
color
[STRE92] | forward grey scale| 42-.18f/$  unkncCray 643-5128 8
wn YMP-8 MIMD
Chapter IV | permuta- | max 17-3.44]| 8bit | Proteus 32256°t0 | 16
tion warp- f/sP 256 MIMD
ing
Chapter IV | permuta- | max 71-6.66| 8 bit | Proteus 32256%t0 | 32
tion warp- f/sC 2567 MIMD
ing
Chapter IV | permuta- | max .89-155f/| 8 bit | MasPar | 32-256°to | 16384
tion warp- s MP-1 322256 SIMD
ing

a. 8 bit gradient magnitude, 13 bit normal, 1 bit octree
b. No preprocessing or data structure optimization
c. No preprocessing or data structure optimization

Even with parallelism, performance is only up to 15 f/s [YOO91] using restricted
volume sizes and voxel formats. Higher rates can be achieved with restricted viewpoints
[SCHR92b], but achieving higher performance requires simply more processing power. |
show in Sections 4.5.1 and 4.5.2 algorithms that allow full linear speedup with the flexibil-
ity of the backwards warping algorithms. | call them permutation warping because they
use non conflicting communication. Sequential algorithms are discussed briefly next.
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4.3  Optimal RAM Volume Rendering Algorithm

The optimal RAM volume rendering algorithm has been shown by Malzbender to be Fou-
rier volume renderingo(RlogR)  [MALZ91]. The output imagefs rays, the volume is

S = rowsx colsx slicessamples, and the number of samples along each view nay is . But
Fourier volume rendering does not allow surface shading. The optimal spatial volume ren-
dering algorithm is Levoy’'so(S) . Assume that Rw . In fact forward, backward, and
surface fitting are allo(s) because they require visiting all voxel points. The only addi-
tional savings are data dependent including the hierarchical data sets, adaptive termina-
tion, and bounding hulls mentioned earlier. So a simple straightforward RAM algorithm is
given in FIGURE 57, iterating over each volume sample point to shade, warp, and com-
posite. The forward or backward approach is better depending on the data set size. See
Chapter 3 for clarification of the optimal RAM warping approaches. [WILH91] Suggests
that ray tracing is easier to implement, but splatting is slightly more efficient. Of course
splatting is inaccurate in the accumulation of opacities because of ordering problems.

4.4  Optimal PRAM Volume Rendering Algorithm

| examine each of the three steps of the data parallel algorithm to explain the PRAM effi-
ciency. ThepPPs is the calculation of opacities and of the initial volume intensities,
These operations take constant time and thereforecass for the RAM and for the
PRAM opacities and shaded intensities are calculated in parallel once the normals are
available. Since preprocessing consists of simple point operatons ( ) processors divide up
the work too(s/ P fori<P<sS,whichiso(1) fop=s .

The complexity for warping is als@(1) for constant factor sized neighborhoods,
and o(nd) for maximal sized windows where s the order of reconstruction. Constant
order filters are quite accurate and therefore the PRAM complexity is typically to
warp, but can reaclo(nd)  for the most accurate filters. Fast high order filtering requires
n(n+1)d-1 processors per voxel, whetle is the dimension of the imagepand is the order
of interpolation in each dimension. Further speedup by assigning more processors to each
sample point does not result in further linear speedup, because of the mesh of trees
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[LEIG92] structure of the filter. FIGURE 62 shows the diminishing speedup return as
more processors are added.

Speedup
300

250
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50
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FIGURE 62 speedup as the number of processors is increased from
P = 1 to 32x 36 for an n = 32 order interpolation, d = 2.

The number of steps in the parallel evaluation of the filter is,

d-1 n
#par timesteps= (Mw (EQ 67)
2.2
Using the number of interpolations, Chapter Il (EQ 16), and the number of time steps, the
speedup can be calculated,

#int
#par timesteps

The amount of work being done is the number of interpolations. The efficiency is the work
divided by the product of the time and number of processors,

Speedup= (EQ 68)

#int

Efficiency = o rfimestere

(EQ 69)

The efficiency drops off as more and more processors are idled. The warping stage can be
speeded up using more processors through mesh of trees calculation, but the returns de-
crease. Filters used in Chapter Il and in this Chapter are the zero order hold and first order
hold, and will be assumed constant complexity with one processor per sample.

The compositing stage, CS, is calculated by a general techniqoeraifel prod-
uct[KRUSS85][LEIG92]. The run time complexity for data independent (data locations are
known before processing begins)dglogw) , andfgr= O(W/log W) the product calcu-
lation is work efficient. To apply the parallel product algorithm to compositing, | prove
that compositing is an associative operatdramma 4.1

To simplify the notation in the proof | change briefly to subscripts, where emitted
intensities arej.,, = Ig[w] , the initial shading intensities agg = 1w] , and the initial
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opacities aren,, = a[w] .| use the classified opacity labelled at eachdevel . (EQ 62) and
(EQ 63) in a more concise subscript notation to composite two innages and are,

g = 150 (EQ 70)
leij = lgit gt (EQT1)
t; = ti(l—aj). (EQ 72)

As beforea is the opacity, isthe transparengy, is the combined emitted inten-
sity, andig; is the shading intensity at leyel . | now prove that compositing by (EQ 70),
(EQ 71), and (EQ 72) of three images by any associative groupings is the same. A short
hand for compositing is = l,oved; [DREBS8S].

Lemma 4.1Compositing is associativ@ ¢ over g,)over g5 = 1 ,0ver(l g,overl g3)

Proof. Given initial opacitiesg; , and shading intensitieg, , the initial emitted intensities
and transparencies are,

g1 = Qylg lgx = Oalsy lgs = Ol
(EQ73)
t, = (1-ay) t, = (1-0ayp)
Two associative groupings for compositing 3 images are
(Ig,0overgy)over gy 2 I over(lg,over g5)
A B (EQ74)

Evaluation of the transparencies and intensities of teams Band shows that they are
equal,

A,
le12 = letovers = Te1t lE2ls
tio = tigverz = Uil
le123 = lE120vers = 11+ 1oty +1gstats
B,

le2s = le2overs = g2 t stz

le123 = letoveras = len + (Ig2 + 1gsto)ty
= lgp+ gty +lgstyty

Ul E(loverover3 =1 Elover( 2over3 [

For more layers of images compositing is associative by induction on Lemma 4.1.
Because compositing is not commutative it must be evaluated in a strict order, but it is an
acceptable operation for parallel product. Lest one tries to relax the order of evaluation (as
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is done in some splatting techniques [WEST90] [WILH91b]) consider the following con-
straint,

Lemma 4.2Compositing is not commutativa ;over ,) # (1 ,over ;)

Proof:

le12 = letoverz = le1 t g2ty

le21 = leaovers = leatlgats = leala +lg;
i E(loverd z E(2overl)

In (Ig,over,) I, is attenuated by, andif.,overg,) Iz, isattenuatedpy . The results
are not the same, therefore compositing is not commutative. |

Theorem 4.1 Parallel compositing isO(logw) and sequential compositing is O(W),
where W is the number of sample points along a view ray.

Proof. I ,, = Ig0verg0overg,...1¢, by Lemma 4.1 can be combined through any associa-
tivity. Assign 2 sample points to each processor, composite, and the number of points is
halved. Continue this process of halving the number of sample points until the final ray in-
tensity is calculated. (See FIGURE 63.) The time complexity is the depth of the tree which
is logw. If done sequentially there ane-1  compositing evaluations or O(W). =

Constant factors for additions and multiplications using binary tree compositing
areaw-2-[logw] multiplications andw -2 additionstotake ,and 1tp  when
is a power of 2. If there are not a power of 2 image levels, then the tree may be balanced to
the back edge to reduce the number of incremental transparencies calculated. The most ef-
ficient sequential method, ignoring data dependent optimizations is back-to-front where
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no incremental transparency or opacity updates are performed gwng multiplica-
tions anckw -2 additions. (See Appendix B for details.)
504 I 50, | 5303 cee | 550

t1 = (l_al) t2 = (1_02) t3 = (1_03) LI ) tl = (]__al)
1 2 3 4 5 6 7 8

NN NSNS

I E12s t12 I E34 t34 I E56 t56 I E78 t78
\/ \/
l E1234 t1234 I E5678 t5678
IEl...8= tl...8
FIGURE 63 Fully Parallel Compositing

Spatial volume rendering, as FIGURE 57 shows, requires combining of all factors
along the ray (CS). No ray surface intersections are found. Compositing is not usually
computed in parallel [DREB88][LEVO90b][SCHR90]. If there are enough processors, all
rays are computed in parallel, and the intensities and opacities can be calculated in parallel
Special purpose architectures have been proposed for parallel compositing
[FOLE9O][MALZ90]. Several general purpose machine’s interconnection networks per-
form parallel product [THIN89][BLAN9O].

Theorem 4.2Parallel Volume Rendering is an optimal parallel algorithm by definition 6,
7, 8, and 9 (Chapter Il) fop = O(S/log§  processors on CREW and EREW PRAMs.

Proof. The preprocessing stage is point operations, reads require only neighboring data
which is accessed in directional phases. Time(s’ P) sfor sample points.

By Theorem 3.1 warping is calculable with exclusive reads ano(& P) for rig-
id body transforms. By partitioning object space subcubes are warped in data parallel or
overlap fashion. If rigid body transforms are used the volume’s extents remain constant
and the overlap of any source subcube in image space subcubes is fixed to at most 12 other
cubes. Either a constant number of subcubes are intersected (overlap approach), or the col-
lision of messages is restricted to a small constant (data parallel approach).

Subcubes are then composited local to each process@(frpP) work. The par-
allel product then operates on local frames. The local frames must be combined through a
parallel product evaluation. The number of samples, starting ®ith. = R/(P,P,) sam-
ples at each processor, is halved at each increment, FIGURE 64. The run time differs de-
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pending on the number of processors, eithelr <R BRdP< RW . The total work is
always R(P,-1) , where, is the ray sampling or initial number of subframes.

For 1<P<R each processor remains busy for all compositing and time is
O(R(P,-1)/P) = O(S/ P) . For R< P< RW, processors are idled at some point during
compositing. Two terms are one for all processors busy which e®als-1 . The sub-
frames are halved until there is one sample in the subframe. Theteyare 109S;ame re-
maining composites, enough single sample composites to combime all  samples. The
time for compositing the subframesss,,.—1+10gP,—109Same ~ Bme<P,

The total compositing time wheR<P< S i9(S/ P+logP,/S.med  Which equals
O(S/ P+logP) . Compositing achieves linear speedup®ot O(S/log 9

Each stage PPS, VWS, and CS dgs/ P fer= O(S/log 9 , therefore linear
speedup is achieved over the fastest sequential algorithms which(aye (Definition 6,
Definition 9). O(S) storage is used for optimal space complexity (Definition 8). The lower
bound for computation on an EREW PRAMIgn  for inputs and the run time of the
fastest algorithnP>s imgw which is below the lower bound (Definition 7). |

LD —— &
Dpn == &

LD '=—=— "%

LD —=— =
FIGURE 64 Halving of Frames During Parallel Product for

Compositing

FIGURE 65 summarizes the overall complexity. Here | show with varying
amounts of virtualization, the speedup. Because all three steps of the algorithm parallelize
ideally from P = 1 to O(S/logg processors there is linear speedup. Parallel product
thresholds aD(logw) shown fer = SO RwW . Using more and more processors does allow
more accurate filters for reconstruction.
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O% + log P% O(logW)
S/logW

Speedup o)

P =0(Slog9

1 R S
- Parallel Compositing
Sequential - Parallel Product with dominates
Idling Machine outsize:

Processors Problem

FIGURE 65 Overall Volume Rendering Complexity

The amount of parallelism for the volume rendering algorithm can be broken down
into 4 regions. The first region is parallek P< R . Processors are assigned subcubes that
they preprocess, warp, and composite. Each processor stays busy through the parallel
product calculations. Run time B3(S/P)

The second region is work efficient parallel product
R<P<S P = O(S/log9 . Now processors are idled during the final steps of com-
positing. Wherp = s half of the working processors are idled upon each step. Run time is
O(S/ P+logP) .

The third region is non work efficient because processors become idled during
compositing and efficiency starts to drop off of linear speedy®; P+ logP)

The fourth region is fully parallel witit>S providing the fastest algorithm possi-
ble, with multiple processors per voxel, but compositing dominates so run time is
O(logw) , determined by the number of sample points along a ray.
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4.5  Permutation Warping For Parallel Volume Rendering

Permutation warping is essentially a processor assignment technique that provides a gen-
eral approach for efficient parallel transform algorithms. Permutation warping is better
than prior parallel algorithms because it is simultaneously memory efficient, processor ef-
ficient, general, and accurate. The algorithm (FIGURE 66), calculates the same image as
FIGURE 57, but gives specific memory layout and communication requirements neces-
sary for the EREW PRAM. Processorgr,s, t] ON (natural or whole numbers are as-
signed sample pointg[x y, 4 00 requirilg= S  processors. Processor locations are on
a whole number lattice, and samples are a discrete sanplyng of(space

l oyl 1 — Permutation_Volume_Rend&f (I, T, classify shading ) {
1.0) PPS, calculate,, |g,
2.0) VWS, Processar  does:
2.1) Calculate processor assignments= M (1)
2.2) Calculate reconstruction poipf, = T1(p';;)
2.3) Perform resampling of,  and,

2.4) send resampled values to SS procegsors
3.0) CS, calculate ray intensities,  with parallel product.

}

FIGURE 66 Permutation Warping Parallel Volume Rendering
Algorithm

Step 1.0 is the same as the PPS in FIGURE 57. Processors classify and shade by
reading necessary neighboring data in directional phases, east, northeast, north, northwest,
etc.

In Step 2, the view transform poings to points py= T(p) . Resampling is

required because the discrete rays do not line up with transformed vpxelsy', z]1 ON
This results from allowing general viewpoints. Either viewpoints can be restricted, or any
viewpoint can be supported by randomly accessing vogglg, k] that surround the in-
versed SS pointp(x y, 2 = T-X(p'[r,s, t]) . This backwards (ray tracing) solution is done
by the warping from Chapter Ill. The assignment is guaranteed to be one-to-one, Theorem
3.1 Chapter lll. FIGURE 67 illustrates the transformations calculated by a single proces-
sor. The OS and SS are separated, the OS on the left and the SS on the right. First the pro-
cessormr,s, ] shown as a circle in the OS lattice calculates who to resample for in Step
2.1 of the algorithm (FIGURE 66). The result is labelled processor

[r',s,t'] = M(r(r,s, t]) and the logical connection is shown by the dotted line in FIG-
URE 67. Next, processorn calculates the inversed point position mof :

pe(X Y, 2 = T(mr,s,t']) Iin Step 2.2. The inverse transformation is shown by a solid
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line labelledT-! . The point at which to perform reconstructiomjgx, y, 2 and is shown
as an asterisk * in FIGURE 67.

T-1
T =p
i
SS
oS T e
FIGURE 67 Transformations and Communications in Permutation

Warping for a Single Voxel

Processort readsthe valuesgf and of its neighboring processors. The num-
ber of neighbors used determines the filter order. A zero order hold reads only one neigh-
boring voxel, the closest one {9, . A first order hold, or trilinear interpolation, reads 7
neighboring voxels surrounding, , and FIGURE 67 shows processor 's 7 neighbors as
cubes. To avoid conflicts each processor reads in directional stages.

The final step in the VWS, Step 2.4, is sending the reconstructed values to , by
an explicit send in the MCCM(r,s,t] tor[r,s,t'] or by writing to a unigue memory
location in the EREW PRAM.

To understand the advantage of this extra work FIGURE 68 shows all communica-
tions taking place in parallel. There are no conflicts. The OS processor bounding box is
green, and the forward warped version is also given as green in the SS. The SS processor
bounding box is red in both spaces. Of course processors are both OS proaessors and SS
processorst  withmr,s, t] = [r,s,t] . This is shown by those processors who interpo-
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late for themselves, the blue processors in the interior where communications arcs are not
drawn.

color photograph inserted

FIGURE 68 Volume Transformations in Parallel

Also, see FIGURE 69 where the OS and SS have been properly merged, and the
communication that is taking place can be seen to be nontrivial. The Viewing transforma-
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tion is a rotation of the cube by 15 degrees abput and 15/2 degreeszabout . Permutation
warping calculates a one pass resampling.

color photograph inserted

FIGURE 69 Transformation with OS and SS Merged

The final step in the algorithm, step 3, combines resampled intensities and opaci-
ties using parallel product evaluation. Binary tree combining computes products for any
associative operator @ ),01,0...01,, [KRUS85]. Compositing\eri; ) is associa-
tive. Numerical integration is also associative.

The processor assignment calculatedrby M(m) works for any equiareal trans-
form, det(T) = +1 . The equiareal transform is,

a1 A2 Ag3 1bj,byg|1 O 1d;,dygs
81 8 83 = |0 1 by |Ca1 1 0[O0 1 dy- (EQ 75)
A3; A3y A33 0 0 1][CuCs2lj00 1

(EQ 75) is solved symbolically for coefficients,{ b,g by Cp Cyy C3p dip dyy  ,aBd )
in Chapter Ill. Note that the decomposed matrices are not used for a multipass resampling,

whereTran is a composed pretranslation and postranslation so only three rounding steps
occur for a total of seven rounds for any equiareal transform.
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The inverse used in determining the reconstruction point is numerically stable, be-
cause equiareal transforms are by definition invertible. For arbitrary centered transforms
use a product of translation matricesan(x, v, 2) , and the equiareal trangform . Trans-
form about the pointr,,r,,r,) and center the transform abaut,, c,)

For arbitrary centered rotations the inversé is easily calculated because rotation
R(W, ¢, 8) is orthogonal, meaning? = TT , and translations are inversed by negating their
values,

T = (T(c, ¢y IR, ¢, B)T (=1, =1y, —1,)) ™
= (T(=ry =Ty =) HRW, ¢, 8)) (T (¢, €y €))L . (EQT6)
= T(re 1y 1R, 9 6))T(T(=¢,, -, —C,))
The rotation matrix and a translation matrix are given in (EQ 77) and (EQ 78), and the

transpose of (EQ 77) is composed with the translations for calculating the inverse with the
minimum number of calculations.

(cospcosyp) (— coBsiny + cosy singsind) (cosy cosdsing + singsinB) 0
R(Y, @, 6) = (cospsiny) (cospcosd + singsinysing)  cosBsingsiny — cosPsin® 0

(EQ77)
(—sing) (cospsinB) (cospcosh)
0 0 0
100c,
1

T(cec,c) = 0108 (EQ 78)
001c,
0001

45.1 Data Parallel Virtualization

To apply permutation warping without a processor for each sample point can be thought of
asv virtual processors running ®x v  processors. With current technology an algorithm

designer has<P<RW processors)y is the number of rays times samples on each ray. |
have found that a data parallel approach uses permutation warping very efficiently.

| conserve as much storage as possible and calculate the correct image. The con-
stant space requirements a&rerR/ P23 farP<RW  where isthe number of processors.
When the number of processors equals the number of SS saspiasw the virtual al-
gorithm becomes the nonvirtual algorithm FIGURE 66.

To virtualize | make an assignment Bf  processors togshe voxels> I then
samples are replicated to several processors. | evaluate the rule only once per processor so
the cost ofM is amortized over the virtual sub volumes. The assignment maintains the
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communication efficiency. OS voxel points are assigned to processor id’s by an address til-
ing. Address tiling in three dimensions is an extension of two dimensional tiling tech-
niques [BLIN9O] [WITT91]. FIGURE 70 shows how to calculate the tiled version of a
slice, row major addressed volume,[@kK|r|i|s| j0- &|r|s|ki|jO

slice row column
A A4 A
. T [ KT Fr T i ] s [ ] |
tile ﬁ{ﬂ
wk = ly tiled
processor id address
in subvolume
FIGURE 70 Three Dimensional Tiling To Calculate Processor

Identification and Subvolume Addresses from
(row, column slice¢ Coordinates.

Such virtualization is amenable to a wide variety of architectures such as mesh
[BLAN9O], hypercube [SOMA91], and multistage interconnection networks. FIGURE 73
shows how machines with 16 processors are virtualized into a three dimensional volume.
Each dimension gets approximatel?  cuts.

The algorithm is the same as that in FIGURE 66, except now processors have more
points to iterate oves/ P points each. In step 1, 2| @ for loop is added fa&/ P points
do, and the only challenging part is that the screen space assigned to each processor
shrinks after each parallel product evaluation so they all remain assigned. FIGURE 72
shows the processors start with 1/4 of the screen, then get 1/8, and finally 1/16. The SS
samples being calculated are unique, and in the EREW PRAM there will be no conflicts,
but because of virtualization processors may receive more than one message. The density
of messages across the network is the same if the slice and dice virtualization is used and
communication remains efficient.

The data parallel algorithm requires storing an entire resampled volume. The
source volume is not duplicated, but a 1 voxel overlap may be stored at each processor to
avoid any local communication for the warping stage. In the worst case all resampled
points are communicated, but in any communication period there is small congestion, and
for any filter, only the final interpolated point is sent. All compositing takes place in the SS
processors along preferred communication directions of the architecture. When there are
enough processors for every data point the communication is one-to-one so this algorithm
scales smoothly for machines which support fine message granularity. The algorithm uses
exclusive reads and writes or a small amount of communication congestion.
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Object Screen
Space Space

Step 2.0
Resample
z

View Volume

Overlapped View
Virtualization Parallel Product
Cubes
FIGURE 72 Steps of Virtual_Permutation_Volume_Render,

Virtualized SubVolumes to SubFrames to Final Image

4.5.2 High Granularity Virtualization

In high granularity machines such as Proteus [SOMA91] a message for each resampled
point cannot be sent efficiently. | use instead an algorithm that takes advantage of the high
virtualization ratio and sends large messages. There is no overlapped storage, and each
processor completely render’s it's subframe to the aligned SS, then subframes are sent to
SS processors. Each processor can overlap at most 18 SS subvolumes. Then 18 messages
can be sent. For Proteus, there are currently only 8 clusters of 4 Intel i860’s. The volume is
partitioned eight ways, and the screen is partitioned eight ways. There are only seven mes-
sages to be sent, and each cluster sends the messages without conflict because the SS par-
titioning is fixed, the OS partitioning is fixed, and the cluster may or may not have to send

a value to the particular area of the screen.

In step 1) as in the Permutation_Volume_Render FIGURE 66, is preprocessing.
Each processor calculates the opacities and shaded intensities for a subvolume assigned
through slice and dice virtualization.

In step 2.1), the VWS, processors calculate the inversed coordinate frame. Step
2.2) warp each point by differencing.
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Reconstructions are composited into temporary subframes using local data, alter-
nating warping and compositing, steps 2.4 and 3.1. The number of subframes depends
only upon the overlap of your data in the SS. Traversal is determined from the SS ray di-
rections, and the subvolume data of the processor is randomly accessed as needed. Once
the subframes are completed, they are sent to the aligned screen space (step 3.2) where
further compositing takes place. This send requires sending parts of the calculated sub-
frame to several processors.

In step 3.2 subframes are combined. The final frame is distributed across all of the
processors, and every processor remains busy compositing data. FIGURE 74 shows Steps
2.4 and 3.1, 3.2, and 3.3 of the algorithm. Various physical processor layouts were shown
in FIGURE 71 which correspond to the same OS spatial layout. The subvolumes are used
as temporary storage while combining.

layl 1 < HighGrain_Permutation_Volume_Rendér(" ;T classify shading ) {
1.0) PPSx
2.0) VWS
2.1) For each subcube calculate overlap into SS to choose messages
2.2) Calculate subcube coordinags = T-(p',)

2.3) Choosing and iteration start point at back corner of cube
For each sample in subcube {
2.4) reconstructTmp[a , Isy] = Reconstructiop ]

(CS) 3.1) Composite into subframg, = Isp,ap, +lg, (1-ay) }

3.2) Rounds of Permutation send of temporary subframes
3.3) Parallel product compositing of subframes

}

» lsp calculated

FIGURE 73 High Granularity Permutation Algorithm for P < RW,
Image order resampling storage O(R) .

The large granularity algorithm, FIGURE 73 and FIGURE 74, stores only tempo-
rary subframes, and is very memory efficient. The trade-off is that is more involved to cal-
culate the messages to be sent, and the boundaries of those messages. Fewer values are
communicated also, because compositing is partially done in the OS. The algorithm uses
exclusive reads and writes which can be implemented on distributed or shared memory
machines.

Both algorithms calculate compositing through a product evaluation. A parallel
product evaluation [KRUSS85], is work efficient up o= O(n/ P+ logP) processors in the
view depth dimension. The product evaluation is a speed limit for the time when parallel
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machines get millions of processors. But for now input volume sizes and architectures are
clearly in the linear speedup region shown in FIGURE 65.

OS——»Rounds of _>§[s)

Permutations Step 3.3
4 Step 2.4 & Step 3.1

M@N@

o ¥ =
0% ==
%> 3

> »ozoj;ito‘é

/:»‘i"

awt
‘0 )
@.

Parallel Product

Aligned
View Volume
SubVolumes SubFrames

Overlapped
Virtualization
Cubes
Final Image
FIGURE 74 High Granularity Rounds of Permutation Sends

4.6 MasPar and Proteus Performance Results

| have implemented the data parallel algorithm on the MasPar MP-1 [BLAN90] and the
high granularity algorithm on Proteus [SOMAO91]. In this section | show filter quality and
time and trade-offs, followed by performance measurements.

Multipass shears and direct warping are not equivalent. Because each resampling
stage loses the original data, a shear filtering approach has more resolution error and inter-
polation error than a comparable direct filter (See [PRAT78] for one pass filters). After a
shear all that is stored is the new samples, hence a multipass shear is not equivalent to tri-
linear interpolation. | demonstrate here the quantitative difference in the filters. FIGURE
77 shows the empirical error in my direct warp compared to the multipass shearing. | show
direct warps using zero order hold, trilinear interpolation, and shearing with linear interpo-
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lation. The multipass method has more error than the trilinear reconstruction in all cases. |
used two test objects to calculate the reconstruction error: a cube of 65535 intensities and
a sphere whose intensities are zero at the edge and 65535 at the center. 16 bit intensities
were used. The volumes were 128x128x128 voxels with the sphere and cube centered and
of diameter/width 64. A Sun Sparc 2 was used to calculate the comparison to ease imple-
mentation of the shearing approach. The errors were calculated by differencing each sam-
ple point for an altered viewpoint with the analytically defined cube or sphere. Absolute
errors were summed on each ray. FIGURE 77 is the error in rotating 45 degrees about all
three axes simultaneously.

TABLE 21 shows the mean of the summed error for all rays in an image for the
volumes resampled. The mean error varies little with rotation angle, and the mean for all
measured cases from 5 degrees to 45 degrees is given. The trilinear is clearly better than
shearing, but the zero order hold is the same as the trilinear for the cube and worse than tri-
linear and shearing for the sphere. This results from the frequency content of the volumes.
The cube is a step function and has infinite frequencies. The zero order hold maintains the
resolution very well. Because of the high frequencies, the multipass approach has repeated
aliasing steps which degrades the reconstruction considerably.

TABLE 21 Mean of the Measured Absolute Summed Error over all rays for 45

degree rotation about all axes.

% worse than % worse than
Cube o Sphere .
trilinear trilinear
zoh 48370 0% 4079 14689
multipass 64068 329 775 198¢
trilinear 48385 0% 260 0%

The cube has sharp edges and high frequencies so errors were higher. FIGURE 75 shows the maximum error
for the three approaches versus rotation angle about all angles simultaneously. The cube is not frequency
limited, and the zero order hold does very well, because it can preserve resolution better than the other fil-
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ters. The trilinear is more accurate though, as in the sphere case. FIGURE 76 shows the maximum error for
any ray rendering the sphere at different view angles.

1. 2e+06 T T T
Cube shearing max —
Cube zoh max ©
Cube trilinear nmax -+--
le+06
>
& 800000
>
5]
S 600000 |-
s
i
§ 400000
200000
0 Il Il Il Il Il Il Il Il
0 5 10 15 20 25 30 35 40 45
X, Y, and Z Rotation Angle (Degrees)
FIGURE 75 Maximum Error in Reconstruction of Cube

FIGURE 76 shows the maximum error for any ray rendering the sphere at different
view angles. FIGURE 77 shows the error in a direct warp using zero order hold and trilin-
ear interpolation compared to the multipass shearing. The multipass method has more er-
ror than the trilinear reconstruction in all cases. The mean error for all rays in the image
remains the same across view angles. FIGURE 77 shows how error is placed in the figure,
with error ramped from the maximum errors. The trilinear filter has low error across the
whole image. The zero order hold has more error on the sphere than the multipass shear,
but less error on the cube. The zero order hold is useful because it is inexpensive to calcu-
late.
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FIGURE 77 OMAX
Error for 45x45x45 rotations,
Top: Zero Order Hold, Middle: Multipass, Bottom
Trilinear
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The mean error for all rays in the image remains the same across view angles. FIG-
URE 77 shows how error is placed in the figure, with error ramped from the maximum er-
rors in the pseudo colored images. The range of error is from 0 to 217719 (shear highest
error) for the cube and zero to 41886 for the sphere (zoh highest error). TABLE 22 shows
the mean and max errors for the 45, 45, 45 degree rotation.

TABLE 22 Absolute summed error on rays for 45, 45, 45 degree rotation (See
FIGURE 77)
Cube Sphere
mean max mean max
zoh 48372 131070 397y 41886
multipass 65028 217719 80p 10648
trilinear 48309 172078 259 3501

The trilinear filter has low error across the whole image. The zero order hold has more er-
ror on the sphere than the multipass shear, but less error on the cube. The zero order hold
is useful because it is inexpensive to calculate.

Visual differences on application data illustrate the qualitative differences. My
multipass implementation could not process the medical data because of memory limita-
tions. Max intensity is useful because it is simple, and works on volumes which contain a
lot of noise. FIGURE 78 shows the noise inherent in the MR angiography data. A compar-
ison of the filter quality using a trilinear and a zero order hold with max intensity are given
for a magnification of the 256x256x28 data to a 512x512 image using 8X magnification.
The filter difference on these medical image is readily apparent.
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color photograph inserted

FIGURE 78 Data with Ramp to Show Noise

color photographs inserted

FIGURE 79 8X magnification, Zero Order Hold/ Trilinear
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This empirical study shows how a direct warp has improved filter characteristics
over multipass shear approaches of [SCHR91] and [VEZI92]. The direct warp calculates
reconstruction filters identical to ray tracing of sequential algorithms. Next | present per-
formance measurements.

4.6.1 MasPar Implementation

Performance measurements were taken on the MasPar MP-1 [BLAN9O]. | briefly review
the architecture, and then discuss implementation details. The MasPar used for the perfor-
mance study was a 16384 SIMD processor MP-1 whose peak performance is 26,000
MIPS (32 bit integer) and 1,200 MFLOPS (32 bit floating point). The architecture sup-
ports frame buffers through VME frame grabbers, HIPPI connection, or through MasPar’s
frame buffer (not available yet). Image display in the current implementation is done on
the X host. The processors are interconnected through both a toroidally connected mesh
with 23,000 Mbytes/sec peak bandwidth, and through a general multistage crossbar router
with 1,300 Mbytes/sec peak bandwidth. The array controller provides a software accessi-
ble hardware timer that accurately captures the elapsed run time.

My implementation in MPl.a C like parallel language, uses the slice and dice vir-
tualization discussed, and virtualizes processors across all three dimensions. The neigh-
boring processors do not need to be accessed in the resampling step by providing a 1 voxel
overlap of volume storage on each processor. This allows the octant wherein the interpola-
tion point lies to be accessed by a random access in each processor’s local array avoiding
the need for a costly case decision in the SIMD language. The storage overhead does not
affect the size of volumes that can be processed, because there is a slight overhead for dy-
namic memory allocation. The data is loaded directly from disk into the slice and diced
overlapped array.

The zero order hold is most efficiently calculated without using permutation warp-
ing, and | therefore use a backwards calculation and no overlapping for the zoh. The first
order hold uses the rule calculation for a significant advantage over the backwards algo-
rithm. My implementation takes advantage of the MasPar instruction ScanMax. Once each
processor composites its subcube, ScanMax composite across z in segments to finish each
parallel product of each ray with one instruction. The over operator can be done similarly
using the Scan operator to create the proper transparency at each processor, and then doing
a parallel addition.

A max intensity parallel product operator was used to generate like sized
(32x32x32 to 32x32) byte images. Sizes of 3@ 256’ were processed. Measurements
given are the average of multiple runs at each angle. FIGURE 80 shows the run times to
render a 128x128x128 byte volume to a 128x128 image. See TABLE 23. The rotation
only times are given in FIGURE 80 also showing how the resampling for rotation takes the



135

majority of the time. The many lines for each filter show rotation about x, rotation about y,
rotation about z, and rotation about x, y, and z.
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FIGURE 80 Nearly Constant Run Time Versus Angle
TABLE 23 16k Processor MP-1 128x128x128 Volume Rendering Times in
Milliseconds
Filter | Rotation Axes 0 20 40 60 80
Foh About x 434.235 482.359 496.150 504.567| 533.15¢4
Abouty 434.235 485.119 493.886 497.846 537.06
About z 434.811 498.804 508.437 512.326 543.372
AboutX,y,andz | 434.235 502.090 508.438 520.601 606.616
Zoh About x 145.060 185.513 196.245 205.139 236.90f
Abouty 145.060 186.502 192.709 199.392 237.332
About z 145.614 205.881 213.413 221.776 239.916
About X, Yy, andz 145.060 206.853 212.068 224.002 252.644

By using a single decomposition of the rotation all of the rotation angles can be ef-
ficiently calculated with tunable (zoh, trilinear, or cubic) filters. There is no artificial barri-
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er at 45 degrees as with the multiple pass approaches, and with a decomposition the uses
reflected inputs to the matrix the cotangent can be used instead of the tangent, to maintain
stability for angles 90 degrees to 180 degrees.

FIGURE 81 gives the mean run time across all angles, and using the min and max
as error bars, for different volume sizes. See TABLE 23 and TABLE 24. Note that the per-
formance is tightly bounded for each volume. The performance is predictable. The effec-
tiveness of direct warps lies in the performance filter tunability. The zero order hold takes
from 73% to 146% less time than the first order hold, and can be used for interactive per-
formance in viewing the larger volumes. The trilinear interpolation, or first order hold, has
comparable performance to the multipass warps but is more accurate. FIGURE 79 shows
the filter quality tuning for the foh and zoh. Comparisons to [VEZI92] and [SCHR92]
show that my resampling times are about a factor of 4 slower than [VEZI92] and 1.3 t0 5
times faster than [SCHR91] for rotation only. See TABLE 25.
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FIGURE 81 Run Times Versus Volume Size for the 16384 processor
MP-1

The factor of 4 slowdown is clearly a result of the general router and mesh router
mismatch, recall 1300 Mbytes/s versus 23,000 Mbytes sec. But the communication con-
gestion is low for the permutation warp. Using the rotation speed of 0, 0, 0 degrees in TA-
BLE 23 the congestion is 19% to 29% of the run time for the rule algorithm, first order
hold. The congestion is 40% to 43% for the backwards algorithm, or zero order hold, but
for that simple filter the overhead of the rule calculation makes a backwards algorithm
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more efficient. The router start-up penalty and/or the rule overhead account for the rest of
the difference.

A comparison to other performance numbers in the literature reveals that there is
intense competition for constant factor speedups TABLE 20. Because of the wide varia-
tion in view transforms, voxel formats, shading, preprocessing, and image sizes direct
comparisons are difficult. The closest comparisons are to [VEZI92][SCHR91][SCHR92]
who use similar voxel sizes. Comparison of resampling times shows that direct filters cost
more (4 times more, [VEZI92]) but the direct filter is superior to the shear locally then
send approach [SCHR91] with up to a 5 times speedup depending on the machine com-
pared to. The forward wavefront approach [SCHR92] trades view angle freedom for high
performance and a 1.35 speedup over my work TABLE 20.

The architecture strongly controls the algorithm features and performance. Shared
memory of the Dash [NIEH92] or full data replication [YOO91] provide the highest per-
formance arbitrary view solutions. But these approaches cannot be used on data parallel
machine such as the MasPar MP-1/MP-2, CM-2, and CM-200. | have through permutation
warping provided improved quality and view angle freedom for data parallel machines.

TABLE 24 16K Processor MP-1 Slice And Dice Timings For Warping Only,
Milliseconds. Reconstruction to align and resample byte voxels with
orthographic view.

vol size Mean Min Max
Forward foh 32x32x32 12.228 10.403 14.9p3
64x64x64 66.698 56.962 81.431
128x128x128 501.677 429.225 601.604
256x256x256 3977.112 3407.390 4749.763
Backward zoh 32x32x32 6.591 5.384 8.0[6
64x64x64 28.422 20.378 37.909
128x128x128 203.064 140.105 281.743
256x256x256 1602.002 1096.583 2223.7/62
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TABLE 25 Rotation Only, From [VEZI92][SCHR91] Milliseconds
Computer vol size Time Pefnl'?ﬁtea(:ilcj)a \\//?/.arp
[VEZI92] zoh 4 pass 16k pe MP-1 128x128x12§ A9 0.241
16k pe MP-1 256x256x256 39D 0.243
[VEZI92] foh 4 pass 16k pe MP-1 128x128x128 189 0.277
16-k pe MP-1 256x256x256 1107 0.278
[SCHR91] foh 5 pass| 64k pe CM-200 128x128x128 268 1.320
32k pe CM-200 128x128x128 511 2.516
16k pe CM-200 128x128x128 1033 5.087
TABLE 26 Percent Performance Improvement for Different filters using Using

Permutation Warping on 16k Processor MP-1

Volume Size ZOH over FOH
32x32x32 73%
64x64x64 126%
128x128x128 143%
256x256x256 1469

My implementation on the MasPar allows rendering with changing viewpoints of

130 frames/second for 32x32x32 volumes to 32x32 images and 75 frames/second for
higher quality trilinear reconstruction. Volumes of size 128x128x128 can be rendered in
4.8 frames/second with a zoh and 2.0 frames/second with a trilinear filter. | did not use
transparency shading, but max intensity, but for rough comparison this improves on previ-
ous MasPar results [VEZ192] by a factor of 2, and because of the better filters used there is
less error. Another important advantage, as illustrated in FIGURE 80, is that the run time
is the same across all view angles. This is a significant improvement over previous algo-
rithm work, and also exploits the network strengths of the MasPar. Rendering on Proteus
can be compared roughly to Pixel Planes 5 [FUCH89] which also uses i860’s, and my al-
gorithm on Proteus does not require storage replication.

| think that any parallel computer with a network strong enough to support permu-
tations would achieve a rate dependent solely on the compiler or coding efforts, and a first
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implementation of the algorithm would not have communication congestion, but might be
computation inefficient. Various timings on the MasPar MP-1 with 1K and 16K proces-
sors, the MP-2 with 4K processors, and Proteus with 16 processors follows.

TABLE 27 Volume Rendering Times For 1K MP-1, Seconds
Filters vol size Mean Min. Max
Trilinear 32x32x32 0.143146 0.116181 0.247137%
64x64x64 1.088516 0.885357 1.922671
128x128x128 8.651044 7.027133 15.303813
256x256%x256 69.061064 56.129872 122.29240
Zero Order Hold 32x32x32 0.073746 0.051313 0.16832p
64x64x64 0.557138 0.379754 1.326254
128x128x128 | 4.442529 3.014020 10.646267
256x256%x256 35.589276 24.132464 85.505345
TABLE 28 4K MP-2 Column Virtualization Timings for 128x128x128 Volume,
Seconds
Filter Mean Min Max
First Order Hold | 1.342751 0.827207 4.23384p
Zero Order Hold|  0.852031 0.391235 3.56463p
TABLE 29 Proteus Run Times, all output images are 256x256, Seconds
vol size 32 PE’s 32 PE’s 1PE 1PE
Tril Zoh tril Zoh
32x32x32 0.161 0.15(¢ 0.241L 0.097
64x64x64 0.291 0.204 1.76D 0.5534
128x128x128 1.044 0.498 13.846 3.8Y0
256x256%x256 4.3169 1.411 95.064 24.5pP3
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TABLE 30 4K MP-2 Slice and Dice Timings for 128x128x128 Volume,
Seconds
Filter Mean Min Max
First Order Hold | 1.123582 0.889419 1.23052]
Zero Order Hold| 0.560859 0.338280 0.751107

4.6.2 Proteus Implementation

Proteus is a scalable MIMD (multiple instruction multiple data) parallel computer origi-
nally intended for computer vision. The strong interconnection network provides fast 1/0
necessary for interactive visualization [SOMA91]. The machine, shown in FIGURE 71,
has from 32 to 1024 processors, with 32 processors to a group. Each group has an aggre-
gate I/0O of 16*250M bits/second.

A prototype group with 32 Intel i860’s has been implemented. The Intel i860 is a
40MHz/Mips processor with built in floating point capability 80 peak MFlops, 8k byte on
chip data cache, and 4k byte on chip instruction cache. Each cluster has 4 i860’s. Each
i860 has 1 Mbyte of external cache accessible by 160Mbyte/sec bus. The cluster’s shared
memory is 8 Mbytes of DRAM upgradeable to 32 Mbytes, and has a 40 Mbyte/sec bus.
Each cluster is controlled by a 33 MHz Intel 1960 which sets up communication and han-
dles interrupts freeing the i860’s for computation. A group has 8 clusters of 4 i860’s for 32
processors and 2.560 peak GigaFlops. FIGURE 71 shows the physical layout of 32 pro-
cessors in eight clusters labelled @r . The interconnection network is a bit serial
crossbar with single link transfer rates of 250 Mbits/second which achieve a throughput of
roughly 20 Mbytes/second. A frame buffer is interfaced through the serial links so a
256x256 byte image can be refreshed at 1280 frames/second, a 1024x1024 byte image at
80 frames/second, and a 32 bit/pixel 1024x1024 image at 20 frames/second. The current
implementation uses the communication interface board as the frame buffer. Display is
done through a Sun server.

FIGURE 71 also shows the spatial layout of the 8 clusters assigned voxel data. The
network communicates cluster to cluster so the partitioning is done by clusters. The data
set is not replicated. Each communication uses a permutation which the crossbar intercon-
nection network (ICN) provides. Within each cluster, the four processors render one fourth
of the subimage being calculated. Because the cluster composites locally resampled data,
only 7 messages are sent. Data sending is started before all of the local computation is
complete, and compositing begins before all of the data has been transmitted.
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| implemented the high granularity algorithm on the Proteus Supercomputer
[SOMAO91]. Two different reconstruction filters are used, a first order hold and a zero or-
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der hold. Direct warps support high order filters more effectively. Max intensity ray com-

bining is used, and different shading is possible with the same filters. MR angiography
images were used after being window and leveled to 8bits/voxel. Images created were
8bits/pixel. All measurements were taken using multiple runs of the code, and averaging.

FIGURE 83 shows the Proteus volume rendering algorithm’s run time versus vol-
ume size (TABLE 29). The output image is 256x256 for all volume sizes. Speedup is giv-
en in TABLE 31. Proteus provides a speedup of 24.

TABLE 31 Speedup Versus for 32 Processors
Volume Size Trilinear Zoh
64x64x64 6.05 2.73
128x128x128 13.24 7.80
256x256x256 22.03 17.38

4.6.3 Comparison of Proteus With Existing Methods

My algorithm calculates backwards viewing, use tunable filters, and have limited conges-
tion and memory overhead for efficiency. The efficiencyois/ P) run times) stor-
age fors = Rw samples to render with  rayg, samples per rayPon  processors.
Measured performance is strongly controlled by the implementation. My numbers are near
those of comparable powered machines, and | don’t use data dependent optimization. The
important result of this study is efficient arbitrary viewpoint rendering with distributed
volumes. Different shading, preprocessing, and voxel sizes make results difficult to com-
pare guantitatively (TABLE 19 and TABLE 20). Qualitatively | have shown that explicit
distribution of source data is efficient and that parallel product can allow scaling proces-
sors beyond the number of rays.

Comparison numbers for [VEZI92][YOO91]
[CAME92][CHAL92][SCHR91][STRE92][NIEH92] and [SCHR92] are included for tim-
ing reference. My frame rates are 2 frames/second for 128x128x128 volumes and 0.7
frames/second for 256x256x256 volumes. | am able to visualize volumes of size
512x512x128 of byte voxels. This uses 32 Megabytes leaving 32 Megabytes for program
code and other variables. The total memory capacity of Proteus is 64 Megabytes (8
Mbytes per cluster) and can be increased to 32 Mbytes/cluster with higher density
DRAMs. The performance in millions of voxels per second ranges from 3 to 12. This
compares to the 31.77 Mvoxels/second of [SCHR92], 23.30 Mvoxels/second of
[NIEH92], and 21.18 Mvoxels/second of [STRE92].
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4.7  Summary and Discussion

| presented optimal EREW PRAM algorithms for volume rendering, and demonstrated
their efficiency on parallel machines. General reconstruction filters provide time/quality
trade-offs not possible in previous parallel approaches making parallel implementations
more useful for volume rendering. Volume rendering is ideally parallelizeable with linear
speedup. Theoretically, volume rendering can be a constant run time algapithm , pro-
vided that the network can composite all of the ray samples. As parallelism grows, parallel
prefix and parallel product are more valuable for volume rendering. But, today’s machines
fall well into the linear speedup regioh = O(S/log9 S, is the number of samples taken
to create the output image.

Volume rendering costs are linked to the data structures and representations, be-
cause of the high compute and storage costs. Volumes, while conceptually simple, do not
provide the fastest visualization. Octrees, amalgams, and transparent surfaces can improve
efficiency. In fact few applications require explicit voxelization, only the effects of light in
semitransparent media, which boundary surfaces can represent.

Regardless of the data structure, object space partitioning gives easy parallel as-
signment shown by my parallel algorithms. | have shown SIMD and MIMD results and
found more important differences lie in the supported message granularity.

The data parallel version can be ported to massively parallel general purpose com-
puters and the high granularity version can be implemented on less parallel machines. This
fact, and the ability to change combining rules, shading, or reconstruction filters, shows
that permutation warping achieves high efficiency with great flexibility on general ma-
chines. Special purpose machines cannot offer this flexibility in shading, combining, and
filter choices. My streamlined communication supports many filters for truly useful and
general algorithms. My algorithms also support arbitrary viewpoints efficiently. Before
these results, researchers thought general viewpoints were inefficient. Permutation warp-
ing proves this not to be the case.

My implementation on the MasPar allows rendering with changing viewpoints of 5
frames/second and 2 frames/second for higher quality trilinear reconstruction
(128x128x128 volumes). This improves on previous results
[DREBB88][SCHR91b][VEZI92][KABA92][WRIG92] because of the better filters used,
and | illustrated the filter differences. Permutation warping is also memory efficient, and
the data parallel algorithm requiress S memory and the high granularity algorithm re-
quiress+ R/( RP,) . The practical effect is larger data sets can be rendered, and on Proteus
and the MasPar | rendered2x 512x 128 volumes3af  Megabytes. On Pixel Planes 5
[YOO91], for example, network inefficiency required storing the volume on every proces-
sor, limiting data sizes to28® . My algorithms are simultaneously tunable for filter quality,
communication efficient, space efficient, and general. Providing sequential algorithm fea-
tures in an efficient parallel algorithm is a most significant contribution.
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Chapter V
Fourier Volume Rendering

In this chapter | review Fourier volume rendering and discuss possible algorithm improve-
ments, and recent developments by other researchers.

5.1  Background

Fourier volume rendering [MALZ91][DUNN90][LEVO92] uses transitions to and from

the frequency representation of a volume for rendering. Because the majority of volume
data is created by the use of the projection slice theorem [KAK88], it was clear to several
researchers that Fourier volume rendering held promise. This approach is fast because 2D
frequency data creates 3D spatial information. There are similar techniques in the spatial
domain [HARR78][JAFF82].

dg(P)
° q
d(X, w D@(q) ©)
- >
u
\'
|
FIGURE 84 Fourier Slice Theorem, projection top, spectra bottom

The approach is as follows. Compute the three dimensional Fourier transform of
the volumev(r, s, ty saving calculation and storage by using the 3D real Hartley transform
[BRACS86]. The Hartley transform is more efficient because the data is not complex but re-
al. Given the Fourier transfora(f) , the Hartley transfergn) IS

H(f) = Freal(f)_Fimag.(f)v (EQ79)
and the three dimensional Hartley transform is,
H(u, v, w) = ﬁmﬁmﬁmv(“& tycag 2t(ur + vs+ wi)drdsdt (EQ 80)

wherecas$) = cosd + sind .
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Then, by the Fourier slice theorem [KAK88], any planar slice through the origin of
the spectraH(u, v, w) is the Hartley transform of the projection of the volwpes, t) at
that same angle whevev'  is a 2D plane oriented at angle in the spectral volume.

FIGURE 84 illustrates the Fourier slice theorem, whe(ie 6) is the transmitted

intensity, d(p,8) = Iog[l(;"e)} is the projected density that passes through the object.

The transmitted density’s spectra represents one line of spectral information for the entire
object. 1, is the incident beam intensity, distance along detector array, and the line

q = Ju2+v2. Reversing the projection and going from the spedbrgg) to the density
d(x, y) calculates the line integral or shadowgralmp, 6) = J‘_”wd(x y)dl

From a three dimensional specti(u, v, w) represents the Hartley transform of an
angle of projection, and an inverse transform of a slice calculates the projection itself. The
inverse Hartley transform is

1(x,y) = ﬁmH(u',v')cas( (u'x + Vy))du'dv' . (EQ 81)
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FIGURE 85 Fourier Volume Rendering

Malzbender [MALZ91] has implemented a Fourier approach, and shown higher
efficiency than backward mapping algorithms. The difficulty that he runs into is in resam-
pling and reconstruction in the Fourier domain, a problem also seen by [DUNN9O0].
Malzbender found the filtering to reconstruct the planar slica @i v, w) was more costly

than the inverse fast Hartley transform™ , a direct analog of the fast Fourier transform.
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FIGURE 85 shows the transformation process. The rabbit in the upper left is the spatial
model, voxels. The Hartley transform, HT, computes a 3D spectra. By sampling and re-
construction a 2D plane of spectra through the origin is obtained in the lower left. Differ-

ent plane orientations create projections in different directions. The inverse Hartley

transform,HT-1 , computes a 2D plane of intensitigs, y) , that is a shadowgram of the
original data. The shadowgram represents attenuation and is like an artificial X-ray. The
speed of the process is obvious because the 2D plane selection and inverse Hartley trans-
form work with only a slice of data. This contrasts with both forward mapping, backward
mapping, and surface fitting algorithms that work with a full volume of data.

Because the Fourier slice theorem dictates that a line integral through the volume
is formed it may not be possible to achieve hidden surface and surface shaded renderings.
Nevertheless reprojection is valuable for medical and speed critical applications.

5.2  Possible Fourier Volume Rendering Approaches

| had proposed to perform Fourier volume rendering using the Radon transform, and sev-
eral architectures have surfaced to compute the Radon transform [CURR92]. Important is-
sues for Fourier volume rendering have turned out to be how to get anisotropic shading,
and how to avoid aliasing artifacts. Levoy has implemented an algorithm that uses gradient
volumes in orthogonal directions to give directional shading results. The results are some-
what ambiguous because of the view independent shading model. The computational ad-
vantage is somewhat reduced because four precalculated volumes are used for rendering
instead of one.
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FIGURE 86 Volume Rendering Transform Graph

For those applications that do not require directional shading, such as MR angiog-
raphy, Fourier volume rendering is ideal. In MR angiography because data is collected in
the frequency domain, rendering is even more direct, because a spatial representation does
not have to be created until a projection angle is chosen. A three dimensional fast Hartley
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transform takeso(Slog§ work [DUDGB84]. The two dimensional inverse would take
O(RlogR) for each projection. This can be fully parallelized fotiogR) parallel run time.
The fastest algorithms, usirgj= R processors for Fourier volume renderiogdgr) :
andpP = s for spatial volume rendering 3(logw) . But the Fourier volume rendering al-
gorithm works with less data, and therefore with a comparable number of processors is
faster. Usingp=R processors for both, Fourier rendering is stilbgRr) while spatial
rendering isO(S/ R = O(w) for a clear advantage.

Polar coordinate transforms may ease the resampling problem. Because the recon-
struction, or resampling, is the costliest step, reducing the resampling cost is important. By
sufficient prefiltering, a high quality polar coordinate representation of the volume can be
created, which allows less expensive spatial reconstruction following projection. Survey of
the literature reveals that polar coordinates are often used in derivation of circularly sym-
metric function transforms or the Hankel transform [JAIN89]. A fast polar coordinate
transform is difficult to derive because the sampling geometry is not separable like rectan-
gular coordinates.

00 TI2TT
g(r, e, (P) = J’J’J’G(S o, q;)ei2nsr[cos®cose+ sin@sinb cos(¢—P)] 525in@OdsdO dd (EQ 82)
000

FIGURE 87 Polar coordinates

The Radon transform is generalized Hough transform, which can be adapted for
rendering purposes. The Radon transform is the projection of spatial data [JAIN89], but
how to create anisotropic, or directional lighting effects is unclear.

5.3  Summary and Discussion

There are intriguing possibilities for development of frequency representation both for fil-
tering and rendering of sampled data sets. Researchers are skeptical about the develop-
ment of anisotropic shading in Fourier methods [MALZ90b], but Fourier rendering
provides the fastest asymptotic run time complexity method for both sequential and paral-
lel volume rendering algorithms.



Chapter VI
Conclusions

In this dissertation | have presented an algorithm design framework, and several new algo-
rithms for optimal parallel volume rendering. My framework is a collection of the knowl-
edge used in developing algorithms. A directed graph representation allows working with
algorithms at a high level using representations and algorithms as building blocks. Be-
cause of the multiplicity in transform calculations, including spatial warping and volume
rendering, the most efficient algorithms were derived using my methodology. Such an ap-
proach creates more portable and flexible algorithms using abstractions where resource
and efficiency trade-offs are easier to make. My volume rendering algorithms are optimal
because they achieve linear speedup, are memory efficient, and achieve lower bounds on
the EREW PRAM. My algorithms are also practically efficient and implementation on
SIMD (MasPar) and MIMD (Proteus) confirm the complexity analysis.

6.1  Applying the Framework to Other Algorithms

Evaluating algorithms before coding is important and the bridging model that | intro-
duced, the MCCM, allows designers to evaluate parallel algorithms. Intended to be used as
an engineering tool, the MCCM is simple, and adds communication costs and a general
network topology to the PRAM. | used the directed graph representation and the MCCM
to develop parallel warping and volume rendering algorithms. The MCCM run time com-
plexity accurately matched the MasPar and Proteus performance measurements.

For any application many algorithms will work, but by setting clear goals, using
knowledge of resources and parameters, one can design efficient algorithms. An important
contribution of this dissertation is development of parallel algorithms that give the same fi-
delity as sequential algorithms, and that are portable to existing parallel computers. Algo-
rithms designers should not have to give up features to use parallel computers. My new
parallel warping and volume rendering algorithms achieve linear speedup with unprece-
dented flexibility in view angles, reconstruction filters, and image fidelity. In the future,
portable algorithms will be easier to develop, because slowdown compilers provide a tech-
nology for efficient portability. Efficiently parallelized algorithms are portable, machine
scalable, problem size scalable, and generation scalable.

6.2 Designing Parallel Warping Algorithms

My parallel spatial warping algorithms ai®@(1)  with a processor per sample. The exclu-
sive read exclusive write (EREW) algorithm is restricted to equiareal transforms, but
joined with the CREW algorithm can down sample or up sample to achieve more general
transforms. Because an EREW PRAM algorithm strictly limits interaction of processors,
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the EREW algorithm turns out to be much more efficient than the concurrent read algo-
rithm. The MCCM makes these differences explicit.

| also illustrated how to slow down the algorithm for machines with fewer proces-
sors than samples. Any parallel computer with a general interconnection network can effi-
ciently warp an image witho(s/ P run time, far  processors and samples. On the
MasPar, slice and dice virtualization, and a 1 sample boundary overlap on each processor
kept the density of messages low for any rigid body two dimensional or three dimensional
warp.

Other parallel warping algorithms relied primarily on multipass warp techniques
[PAET86][TANA8G][SCHR91][HANR90] which have poorer filter quality. Higher order
transforms are possible with multipass warps, but my algorithms provide a two pass algo-
rithm, one with scaling, and the other equiareal, for a good mix of generality, filter quality,
and efficiency.

6.3 Designing Parallel Volume Rendering Algorithms

Warping algorithms are useful for volume rendering, because they generalize to any di-
mensional image and in fact there are greater advantages with higher dimensional images.
For example two dimensional improvement is as high as 59% and three dimensional im-
provement is up to 100%. | compare existing parallel volume rendering algorithms
grouped into four categories determined by their viewing transforms: backwards, multi-
pass forwards, forwards wavefront, and forwards splatting.

Existing backwards parallel volume rendering algorithms have general reconstruc-
tion filter support, but restrict platforms or data set sizes. Existing multipass algorithms are
very efficient, but restrict viewpoints and reconstruction filter quality. Forwards wave front
algorithms have higher quality projection filters, but require post processing, and limit
view points similar to the multipass approaches. Forwards splatting algorithms have filter-
ing error from out of order compositing [WILH91]. My algorithms calculate backwards
viewing, use tunable filters, and have limited congestion and memory overhead for opti-
mal efficiency. The efficiency i©(S/P) runtime)(S)  storage £ RwW  samples to
render withR raysw samples perray, en processors. My fastest EREW spatial volume
rendering algorithm isd(logw)  which can be improved upon by using stronger networks.

6.4 Future Research

There are several research areas touched upon in this dissertation: parallel algorithm de-
sign, volume rendering techniques, and parallel software methods. Each area has impor-
tant open research problems.
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| showed how transition graphs are a starting point for global optimization of algo-
rithms. The algorithms developed in this dissertation were discovered by using the transi-
tion representation, investigating the alternatives, and working hard on those edges that
represented the best features and performance. Automation of the transition choices and
automated postulation of transitions is one topic. Optimization techniques and algorithm
representations are the first issues to investigate.

There is much research left for constant factor speedups in volume rendering such
as ray termination, bounding hulls, adaptive sampling, and adaptive quadrature. A distrib-
uted algorithm using my permutation warping, and optimizations such as adaptive sam-
pling, ray termination, and bounding hulls would provide the best of both parallel speedup
and data dependent optimizations. Another important research area is effective bench-
marks and standard data sets for comparison of volume rendering hardware, algorithms,
and packages.

Extension of the warping techniques to free form deformations (FFD’s) [SEDES86]
would provide parallelism for interactive solid modelling. Because of the unique subset of
FFD's that are volume preserving, | believe that an optimal warping algorithm exists for
them. Additionally FFD’s would allow interactive viewing of sampled data, such as shear-
ing away material instead of simply changing the transparency. This interactivity could
provide a better understanding of the 3D nature of the data than possible before.

| have highlighted important research for parallel software. Slowdown compilers
can provide unprecedented parallel code portability. Although the development costs are
high, standards, and widespread use would provide longevity currently missing in parallel
software. Missing technologies for slowdown include general efficient communication de-
composition, control of slackness or multithreading bounds necessary for efficiency, and
accepted parallel languages. Effective progress requires collaboration and standards.

My investigation of parallel volume rendering has been fruitful, and points to im-
portant problems in parallel algorithms research. | have developed optimal parallel volume
rendering algorithms, and introduced a methodology to control the decision space when
designing parallel algorithms. Further generalization of my approach can increase accessi-
bility of parallel computing.
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albedo

alias

anisotropic medium

bilinear

brightness
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data dependent

data independent

EREW
equiareal
frustum
globbing
initial prefix

intensity
isotropic medium

Appendix A
Glossary

A map from one space to another that preserves ratios of distances
and parallel lines, but does not preserve angles.

Reflectiveness or proportion of light reflected from a particle versus
the light impinging.

Multiple frequencies are seen as the same frequency because of in-
adequate sampling or reconstruction.

The phase function is dependent upon more than just the phase an-
gle, such as gradient within a volume or the direction of a surface.

A first order hold in two dimensions that has a cross tgrm

The perceived intensity of an object, not to be confused with inten-
sity the measured intensity of an object. Brightness is different than
intensity because of the psychological and physiological factors in
perception.

See PRAM.
See PRAM.

For parallel algorithms, it is when the location of the data is given,
but is not known apriori. Typically a linked list of values, and you
are given only the head.

For parallel algorithms, when the data are strictly found by location
and doesn’t vary with the input.

See PRAM.

A transformm  whose determinant satisfieg) = +1 [MESES3].
Viewing pyramid formed by projecting the screen into object space.
Slang for grouping together, a way to describe virtualizing jobs.

Evaluation of all partial products of an associative operator. Exam-
ples are calculation of carries in addition, and compositing for vol-
ume rendering.

I , or radiant intensity, the amount of measured light energy.

Phase function or reflectance function depends only upon the phase
angle.



linear transform
moire

MCCM

opacity

optical depth

optimal efficiency

optimal run time
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A map from one vector space to another that preserves linear com-
binations.

Beat patterns that arise if the image contains periodicity that are
close to half the sampling frequency.

Mixed cost communication machine. A theoretical machine similar
to a PRAM, but takes into account the interconnectivity and com-
munication costs.

a , the density of matter, or a measure of how opaque an object is.
Values are frond ta . See transparency.

Describes amount of attenuation as light passes through a particular
volume.

Work efficiency, or time for the parallel algorithm times the number
of processors equals the time for the fastest sequential algorithm.

For the model of computation is typically a lower bound given the
strength of the machine.

optimal space complexity

optimal speedup

perf.

parallel prefix
phase angle
pixel

PRAM

RAM

segment
shear

O(n) on the order of the number of input elements.

Linear speedup of the parallel program over the fastest known se-
guential program.

Performance, the speed of execution, such as frames/second.
Evaluation of an initial prefix operation done in parallel.
The angle between incident light and emitted/reflected light.

Picture element. The individual point light sources in a raster dis-

play.

Parallel random access machine. A parallel theoretical machine
model that has multiple processors that are strictly synchronized,
and memory is readable by random access. The memory is typically
restricted by disallowing concurrent reads or concurrent writes. The
typical variants are:

CRCW - concurrent read concurrent write

CREW - concurrent read exclusive write

EREW - exclusive read exclusive write

Random access machine. A theoretical machine used to develop se-
guential algorithms by comparing their asymptotic run times.

Separate regions in an image as to their membership in desired sets.

A transform that affects only one coordinate.
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slackness

speedup

The amount of excessive parallelism in an application which allows
for bundling of processing for better asymptotic bounds on theoret-
ical machines. See [VALI9O0Db].

The ratio of execution time without the improvement over the time
with the improvement.

toroidally connected Connected by modulus wrap around.

transform

transparency
tril.

volume rendering

voxel

warping

The process of sending a point, image, or object into another space,
commonly meaning a geometric transform of a coordinate. Can
also mean calculating an alternative representation of an image
such as the frequency representation calculated by the discrete Fou-
rier transform.

t , the clearness of an object. It equals , and varies from to

Trilinear, a first order hold in three dimensions called that has a
cross term okyz .

Creating a 2D image from 3D voxels using transparency/opacity ef-
fects.

Volume element, an abbreviation analogous to pixel. A volumetric
data element within an image data cube.

Spatial image transform such as rotation.



Appendix B
Derivation of Compositing
Complexity

2.1  Background

There are many ways to compute volumetric compositing for a single ray of sample po-
sitions. | derive the complexity of each alternative, and show the most efficient sequential
and parallel methods. Compositing combines two image intensities taking into account
their opacity, or opaqueness, ability to block light. The image in front will partially block
out the image behind depending on its opacity vatue, , which ranges from O te . if

the image behind will be completely occluded and will not contribute anything.

A stack of images can be processed back-to-front, front-to-back, or any position
within the stack. Trade-offs in partial updates, parallelism, and algorithmic optimizations
create different complexities for each method. The asymptotic complexity is the same for
the sequential methods(w) , whewe, isthe number of images in the stack, and the par-
allel approaches are(logw) , but differences in constant notation allow for selecting the
most efficient method. Sequentially the best is back-to-front, but if using adaptive ray ter-
mination then front-to-back must be used. In parallel, binary tree compositing is the most
efficient, and a front-to-back progressive deepening may be used.

Compositing can use opacity or transparency based equations. A view ray passes
through the stack of images and the final intensity of each ray is dependent upon all of the
images. The ray’s intersection with each image is a sample point in the volume considered
a leaf of a tree. The internal nodes of the tree denote compositing calculations. Additional-
ly, at each internal node not only the composited intensity is calculated, but also a com-
bined transparency or opacity to be used in following computations. Five methods are
presented described and the constant complexity is derived for each method. The five
methods are front-to-back [LEVO90], back-to-front [LEVO90], binary-tree fully parallel,
binary-tree front-to-back, and sum of attenuated emittances. | conclude by comparing the
complexities of all of the methods. | show that calculating with transparencies is more ef-
ficient in all methods except back-to-front where it has the same complexity. It is therefore
prudent to use transparency, especially in the parallel evaluation methods. | also claim my
three parallel methods have optimal efficiency, and allow for different approaches varying
communication and/or ray processing termination conditions. Adaptive ray termination
may reduce the amount of computation and is described in section 1.3 and section 2.5.
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2.2  Back To Front Compositing

| derive the compositing complexity step by step. The first step is to premultiply the shad-
ing intensity at each sample with the opacity to give an emitted intensity,

(lg =1g0),i OW, (EQ 83)

where | define the opacity( ), shading intensity (), sample location ( ), and the number

of sample levelsW ). If samples are combined from back to front intensities are calculated
using,

lg; = lg +1g(1-0) (EQ 84)

a; = a;+a(1-ay), (EQ 85)

wherei is the image in front and is the image behind. Combine firstwhe and the
(W-1)*" sample point, then the.,_,w intensity is combined with ffve- 2)" sample

point and so on. FIGURE 88 shows how the compositing is performed. Each sample point
is a leaf of the tree, and each internal node represents both an intensity, and the computa-
tion to calculate that intensity.

front back

back-to-front

FIGURE 88 Back-To-Front Compositing Tree

FIGURE 89 shows an example compositing 4 image samples along one ray,
W = 4. Assume the preprocessing stage of the algorithm provides the shading intensity,
|5, and opacitiesy; . Samples are labelled 1 to 4 with sample 1 at the front of the volume
and sample 4 at the rear of the volume in FIGURE 89. Step 1 is the premultiplication to
calculate the emitted intensities. Step 2 is the compositing of images (3) and (4). Step 3 is
compositing image (2) with the previously combined (34) image. Step 4 is combining im-
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age (1) with the (234) result. Notice that the updated opacities aren’'t used, and therefore
did not need to be calculated.

Stepl i = aylg le, = Gl lgs = O3l leq = Odlgy w mult.
Step 2 leas = leg+ lgg(1—as)

Ogy = Ozt 0,(1—ay)
Step 3 IE234 = |E2+|E34(1_a2)

Oy = O+ 0g(1—0 .
290 = o+ a1 =00) W-1 composited
Step 4 l'ews T le?t lgg4(1—0tp) intensities.

Olipgq = Op+ Qpg(l—01y)

FIGURE 89 Back-To-Front Compositing Calculations

Because the opacities don’t need to be updated the complexity is the same using
either opacity or transparency. The number of calculations necessary is  multiplications
for the emitted intensity calculation, Step 1, and-1 compositing operations, or the
number of non-leaf nodes in the compositing tree, FIGURE 88. the cost of a compositing
emitted intensities is 2 additions and 1 multiplication, (EQ 84). The totahis 1 multi-
plications anccw -2 additions. This seems to be the most efficient way to composite, so
why consider other methods? For sequential implementations a substantial savings may be
achieved by using adaptive ray termination [LEVO90][DANS92]. This is a method for ter-
minating processing on a ray once the ray becomes more opaque than a selected threshold.
Adaptive ray termination can only be done when processing from front-to-back because
the final intensity is a result from all objects in the volume and any ray may be occluded.
Back-to-front cannot determine occlusion until the processing reaches the front of the vol-
ume. Also, progressive refinement [FOLE90] must be done by traversing the ray from
front-to-back. This allows incrementally updating of an image that immediately represents
an approximation of the image, and incremental improvements occur as each ray is further
processed.

2.3 Front To Back Compositing

Front to back compositing allows adaptive ray termination and/or progressive refinement
during the computation of an image. Calculate emitted intensities from samples exactly as
shown in the previous section, but we change the order. This requires calculating a com-
posited opacity which is used in following computations. FIGURE 90 shows front-to-back
compositing with circled nodes representing those nodes at which we must also calculate a
composited opacity value. FIGURE 91 shows the calculations taking place in FIGURE 90.
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front back

front-to-back

O -denotes opacity calculation

FIGURE 90 Front To Back Compositing Tree

Stepl i =ayly lg = aylg, e T Galg s = Ul w mult.

I =g, tle,(1-ay)

Step2 12 R ! w-1 i
p g, = o+ ay(1l—ay) composites
Step 3 le1ps = leppt 1eg(1—0yy)

W-2 updates
Opp3 = O+ 0g(1—0yp) P

Step 4 le1254 = Te123* TE4(1—0123)
FIGURE 91 Front-To-Back Compositing Calculations
There arew initial premultipliesw-1 intensity composites, awmd 2 opacity

composites. Again an intensity, or opacity, composite takes 2 additions and 1 multiply.
The total for front-to-back compositing using opacityns (2w —3) multiplications and
2(2w-3) additions, for a total oBw -3 multiplications andwv -6  additions. Saving
transparency calculations= 1-a  when computing intensities saves additions for a
total of 3w -4 additions. As described earlier compositing with transparencies is more ef-
ficient. Compositing versed in terms of transparency replacing (EQ 84) and (EQ 85) is,

ey = e+ let (EQ 86)

t; = tt;. (EQ87)
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Transparency calculations are included in the initialization,
t = (1-0y). (EQ 88)

FIGURE 92 shows computing the premultiplied emitted intensity, the transparen-
cies, and then compositing from front-to-back calculating the tree in FIGURE 90.

Step 1 g, = aylg lg, = Qylg, lg, = O3l les = Aulgy w mult.

tp = (1-a) th,=(1-0y) t3=(1-0ay) wW-1 add.

Step > lgp, = Tgg et

_ W-1 composites
t12 - tltz p

le123 = lerat lEsti2

Step 3 tps = tols -2 updates
Step 4 le1234 = TE123+ TEgtizs
FIGURE 92 Front-To-Back Compositing with Transparency

The complexity isw multiplications and/—1  additions for step 1 and1 com-
posited intensities for steps 2-4 and-2 updated transparencies for steps 2 and 3. The to-
tals are w+w-1+wW-2=3w-3 multiplications and (W-1)+(W-1) = 2wW-2
additions. Transparency compositing is more efficient than opacity compositing, but pro-
cessing is not always sequential. | discuss parallel compositing in the next Section.

2.4  Parallel Binary Tree Compositing

Compositing is associative (See Chapter IV) and can be calculated optimally in a binary
tree fashion. This is true because of arbitrary groupings shown below by the “over” opera-
tor [DREB88]. 4 image intensities can be grouped in any associative fashion.

1. back-to-front: 1=(I11 over (12 over (I3 over 14)))
2. front-to-back: I=(((11 over 12) over I3) over 14)
3. binary-tree: 1= ((I11 over 12) over (13 over 14))

Each method computes the same value. In parallel the associative groupings allow variety
as in the sequential cases. | ignore communication costs and derive the constant notation
complexity for each method.
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Taking the associative groupings of three images to combine them pair wise may
be done by either ((I11 over 12) over I3), or (I1 over (12 over I3))Wf is a power of 2 there
is no choice. From the derivation of the back-to-front and front-to-back schemes | showed
that internal nodes that are near the front require updated transparencies (opacities) and in-
ternal nodes on the back edge of the tree do not. | represent the two groupings of three im-
ages in FIGURE 93.

front back front back
1 2 3 1 2 3

¥/ N

O -denotes opacity calculation

FIGURE 93 Binary Tree Compositing Associative Alternatives

Updating transparencies is avoided by placing as many internal nodes as possible
along the back edge of the tree as shown by the right tree in FIGURE 93. Using right to
left pair wise groupings does this. The complexity of binary tree compositing is therefore
precomputed emitted intensities (leafs), composited intensities (internal nodes), and up-
dated transparency updates (circled nodes). Thergvare leaves, andwence  premulti-
plies and for both opacity and transparency calculations. Awdd1 additions for
transparency calculations when compositing by transparency. The number of internal
nodes is alwaysv-1 . This is the number of intensity compositing calculations. The depth
of the tree for any number of leave¢ [imgWw] . Clustering the non updates to the full
side of the tree there will always béogw] internal nodes that do not require incremental
transparency (or opacity) updates. This includes the root. All other internal nodes do up-
dates. There are/-1-[logWw] nodes performing updates. For transparency the update in-
volves,t; = t;t; , 1 multiplication. For opacity the update involves = a; + a;;(1-a;) , 1
addition and 1 multiplication, whe-a,) is saved during intensity calculations. The to-
tal cost for transparency &  emitted intensity initializations; 1 transparency initial-
izations, W—-1 intensity composites, ane/—1—[logW| transparency updates. This
reduces to W+ (W-1)+(W-1-[logW]) = 3W—-2—[logW] multiplications and
(W-1)+(W-1) = 2w -2 additions.

The total cost for opacity is premultiplication + intensity composite + opacity up-
dates, W+ (W=1)+(W-1-[logW1]) = 3W—-2—[logW]| multiplications and
2(W-1)+(W-1-[logW1) = 3W-3-[logW] additions.



173
2.5 Front-To- Back Binary Tree Compositing

The binary tree method may be balanced in ways not intended to reduce the number of in-
termediate transparency (opacity) calculations. For example, an unbalanced tree gives a
trade-off between adaptive ray termination and parallel computation. The updated inter-
mediate transparency (opacities) in this case can be delayed until the terminate condition
is evaluated saving operations upon termination. The front-to-back calculations in binary
tree fashion are done as shown in FIGURE 94.

\Y

?
< thresh? < thresh” < thresh?
Step 1 Step 2
O -denotes opacity calculation Step 3
FIGURE 94 Front-To-Back Parallel Compositing

FIGURE 94 shows leaping into the samples by doubling the number of samples
each time, and by updating the incremental transparencies (opacities) in each previous tree
only after the threshold has been tested. Step 1 does not update the opacity, but step 2 does
(See circle) because the termination condition failed. The costs for parallel compositing
are still the intensity calculations, which remain unchangad: 1 multiplications and
2w -2 additions, only the number of transparency (opacity) updates changes. The number
of carry-forward opacity-calculations cannot be calculated by a closed form equation.

Givenw sample points, a tree is formed by taking pairs starting from the left and
building a binary tree. The depth of the tree is, as mentioned earbgvy | and the num-
ber of internal nodes i&-1 . Define an update node as the internal nodes of the tree ex-
cluding all nodes along the right most path to the root. Also exclude the root. For the right
balanced tree the number of non update nodes is aliveys | , but for left balanced trees
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it is not as simple. Example trees far  equal to 2, 3, 4, and 5 are given below with updat-
ed nodes circled.

front 1 - back

1 2 31 23 4 1 23 4 5

O -denotes opacity calculation

FIGURE 95 Update Node Problem

A closed form equation is not possible, but a dynamic programming approach can
calculate the number for any , and further the update nodes will always be bounded by

(# update nodes "8%"1_1_Tlogw7]) which is just the number of update nodes in the full
binary tree with a number of nodes greater than or equal to our own. This is the number of
internal nodes2™®"'-1  minus the number of internal nodes along the right branch

[logW1. The number can be found by bit counting. The exact form for\any is the sum-
mation

[logW —1] _
#update nodes W—-1— Z (W-1)/2", (EQ 89)
i=0
using integer division. (EQ 89) adds the bits in the binary1 word, which determines
directly the number of full binary sub trees in the tree.

| use the upper bound of""'-1-Tlogw] update nodes. The total number of
calculations for opacity updates is2°"1_1_[logw multiplications and
2°9W1_1 _Tlogw] additions. The combined intensity and opacity calculations are
2w + 29T _2 _Tlogw] multiplications and 2w + 2/ _3_logw] additions. To sim-

plify discussion define the intensity computation minimum boundvasL compositing
operations, and front-to-back binary-tree compositing incurs an additional

291 _1_llogw] opacity updates.

Compositing with transparency,= 1-a , gives slightly different results. The
number of compositing operations remains the same, but the costs of initialization, com-
positing, and updates differs. The compositing cost changes to 1 addition and 1 multiplica-
tion using the transparency equations, (EQ 86), and the cost of updating a transparency
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requires only a single multiplication, (EQ 87). So, by using all of the previous results de-
rived for opacity compositing, the number of compositing operatioms-g . The number
of transparency updates is the same as the number of opacity updates giving
<2!"9WI_1_T1ogw] multiplications for an upper bound, or (#update nodes) (EQ 89)
for exact results. The totals for initialization, compositing, and updates are
(W) +(W=1) +2""WT_1_Tlogw] = 2w+ 21 _2 _Tlogw] multiplications  and
(W-1)+(W-1) = 2w -2 additions.

2.6  Sum of Attenuated Emittances Approach

The line integral can be evaluated in other parallel fashion by calculating the intensity of
each sample point as seen by the eye. From the line integral equation

| = ﬁjt(m OV (EQ 90)
it is possible to derive a direct evaluation formula

= lgg gty +lgstity H gttt (EQ91)

This has the same complexity as the binary tree method, and in fact is done in binary tree
fashion, but different communication is used. It requires communicating the opacities/
transparencies to the levels preceding your local level. You can add the  samples attenu-
ated emittances in a binary tree fashion. Which approach is more efficient is determined
by the communication.
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Create the sum of attenuated emittances by performing the transparency calcula-
tions and then combining. For example, FIGURE 96 shows 4 images being sequentially
processed.

lg, = aqlg le, = Oylg, les = Oglgs leg = Oulgy w mult.
t, = (1-a) t, = (1-a,) 3= (1-ay) w-1 add.
t, = tit
o wW-2 mult.
to)3 = tiols
w-1 add.
leray = leg ¥ tilep * ol g +linslgy W—-1 mult.
FIGURE 96 Sum of Attenuated Emittances Sequential Calculations

The intensity of the rayie ., is the sum of the first image’s intensity, unattenuated
as there is nothing blocking it, and the sum of all of the following image intensities which
are attenuated by specific amounts. Totalsveirew-2+w -1 = 3W-3 multiplications
andw-1+W-1 = 2w -2 additions. The above technique is not fully parallel because the
creation of the transparencies requires sequential communication.

If instead calculation is done as shown in FIGURE 97, the calculation is fully par-
allel and limited only by the speed of the parallel aatply

lg, = aglg le, = Oylg, les = Oglgg leq = Oulgy w mult.
ti, = (1-ay))(1-a,)
mult.
leray = leg ttilEp Tl g T o3l W-1 add.
wW-1 mult.
FIGURE 97 Sum of Attenuated Emittances Parallel Calculation

This has the same complexity as binary-tree compositing.afThe  values must be

retrieved from all previous images, which may be slow. Also the product calculations for
the transparencies will be not as efficient as binary tree approaches but perhaps the com-
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munication network can calculate the products in a scan [THIN89][BLAN90] type opera-
tion. In fact, | use this approach in my MasPar implementation.

2.7  Summary and Discussion

For sequential methods, back-to-front is the most efficient but does not allow adaptive ray
termination or progressive refinement. To do this a slightly higher cost method is front-to-
back, which saves calculation if only part of the ray is processed.

For parallel methods | combine samples in binary fashion. Without a power of 2
number of samples update costs are minimized by associative groupings that place many
internal nodes along the back of the tree. Balancing the tree forward allows mixing paral-
lel progressive refinement and parallel evaluation.

An alternative evaluation directly calculates local transparencies and sums up all of
the results. This sum of attenuated emittances approach may be more efficient than binary
tree compositing depending on the communication overhead. The constant notation com-
plexities are summarized below. FIGURE 98 shows all methods for five images. Notice
again that internal nodes are intensity composite step, and circled nodes are opacity/trans-
parency updates, and + nodes denote addition for the sum of attenuated emittances ap-
proach.

The number of updates is the biggest variance in the respective methods. It is also
more efficient to calculate with transparencies. The update costs are shown in TABLE 34
and TABLE 35. The total costs are shown in tables TABLE 36 and TABLE 37.

TABLE 32 Initialization costs

emitted intensity premultiply 1 multiplication
transparency only transparency calculation 1 addition

TABLE 33 Number of Intensity Compositing Steps

All MethodsW — 1

TABLE 34 Compute Cost, Update Cost

intensity opacity transparency
1M, 2A 1M, 2A 1M
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TABLE 35 Number of Composites for Updates to transparency/opacity
method cost
back-to-front none
front-to-back W-2
binary-tree W—1-[logW]

binary-tree, front-to-back <2 °"W1_1_Tlogw] or (EQ 89)
sum of attenuated emittances

W-2
TABLE 36 Multiplications for All Methods
Method Transparency/Opacity

back-to-front 2W-1
front-to-back 3wW-3
binary-tree 3W—-2—-[logW|
binary-tree, front-to-back
<2w+ 2T 5 _rlogw

sum-of-atten. 3W-3
TABLE 37 Additions for All Methods
Method Transparency Opacity
back-to-front 2W -2 2W -2
front-to-back 2W -2 AW -6
binary-tree 2W -2 3W-3—[logW]
binary-tree, front-to-back
2W-2 <ow+2MWT _3_Tlogw
sum-of-atten. 2W -2 NA

The tables show clearly that the number of multiplications is the same for both the
transparency and opacity calculation approaches. Opacity approaches require more addi-
tions for opacity updates, such as in the front-to-back, and binary-tree methods. | recom-
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mend using transparency, both because of its simplicity in expression and reduced
calculation for both sequential and parallel algorithms.

front back  f b f b
back-to-front front-to-back binary-tree
+ +
+
] +
binary-tree sum of attenuated
front-to-back emittances

O -denotes opacity/transparency update

Y -composite intensity
¥ -summation only

FIGURE 98 Compositing Methods
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