
1

1

Beyond Reduction ...

2

Busy Acquire

atomic void busy_acquire() {
while (true) {
if (CAS(m,0,1)) break;

}
}

if (m == 0) {
m = 1; return true;

} else {
return false;

}

3

Busy Acquire

atomic void busy_acquire() {
while (true) {
if (CAS(m,0,1)) break;

}
}

CAS(m,0,1) CAS(m,0,1) CAS(m,0,1)

(fails) (fails) (succeeds)

4

Non-Serial Execution:

Serial Execution:

Atomic but not reducible

CAS(m,0,1) CAS(m,0,1) CAS(m,0,1)

(fails) (fails) (succeeds)

CAS(m,0,1)

(succeeds)

5

alloc
boolean b[MAX]; // b[i]==true iff block i is free
Lock m[MAX];

atomic int alloc() {
int i = 0;
while (i < MAX) {

acquire(m[i]);
if (b[i]) {

b[i] = false;
release(m[i]);
return i;

}
release(m[i]);
i++;

}
return -1;

} 6

alloc

acq(m[0]) test(b[0]) rel(m[0]) acq(m[1]) test(b[1]) rel(m[1])b[1]=false

2

7

alloc is not Atomic

There are non-serial executions with no
equivalent serial executions

8

m[0] = m[1] = 0; b[0] = b[1] = false;

t = alloc(); || free(0); free(1);

void free(int i) {
acquire(m[i]);
b[i] = true;
release(m[i]);

}

9

Non-Serial Execution:

Serial Executions:

loop for b[0]
t = 1

free(0) loop for b[1]free(1)

loop for b[0] free(0)loop for b[1] free(1)

loop for b[0]free(0) free(1)

t = -1

t = 0

loop for b[0]free(0) free(1)
t = 0

m[0] = m[1] = 0; b[0] = b[1] = false;

t = alloc(); || free(0); free(1);

10

Extending Atomicity

Atomicity doesn't always hold for methods
that are "intuitively atomic"
– serializable but not reducible (busy_acquire)
– not serializable (alloc)

Examples
– initialization
– resource allocation
– wait/notify

– caches
– commit/retry transactions

11

Pure Code Blocks

Pure block: pure { E }
– If E terminates normally, it does not update

state visible outside of E
–E is reducible

Example
while (true) {

pure {
acquire(mx);
if (x == 0) { x = 1; release(mx); break; }
release(mx);

}
}

12

Purity and Abstraction

A pure block's behavior under normal
termination is the same as skip

Abstract execution semantics:
– pure blocks can be skipped

acq(m) test(x) rel(m)

acq(m) test(x) rel(m)

skip

3

13

Abstraction

Abstract semantics that admits more behaviors
– pure blocks can be skipped
– hides "irrelevant" details (ie, failed loop iters)
–

Program must still be (sequentially) correct in
abstract semantics

Abstract semantics make reduction possible

14

Busy Acquire

atomic void busy_acquire() {
while (true) {
pure { if (CAS(m,0,1)) break; }

}
}

15

Abstract Execution of Busy Acquire

atomic void busy_acquire() {
while (true) {
pure { if (CAS(m,0,1)) break; }

}
}

CAS(m,0,1) CAS(m,0,1) CAS(m,0,1)

skip skip CAS(m,0,1)

(Concrete)

(Abstract)

(Reduced Abstract) 16

alloc
atomic int alloc() {

int i = 0;
while (i < MAX) {

pure {
acquire(m[i]);
if (b[i]) {

b[i] = false;
release(m[i]);
return i;

}
release(m[i]);

}
i++;

}
return -1;

}

17

Abstract Execution of alloc

acq(m[0]) test(b[0]) rel(m[0]) acq(m[1]) test(b[1]) rel(m[1])b[1]=false

skip acq(m[1]) test(b[1]) rel(m[1])b[1]=false

(Abstract)

(Reduced Abstract)

18

Abstract semantics admits more executions

Can still reason about important properties
– "alloc returns either the index of a freshly

allocated block or -1"
– cannot guarantee "alloc returns smallest possible

index"
• but what does this really mean anyway???

Abstraction

skip acq(m[1]) test(b[1]) rel(m[1])b[1]=false

(Abstract)

free(0) free(1)

4

19

To Atomicity and Beyond ...

20

21

Commit-Atomicity

Reduction
– Great if can get serial execution via commuting

Reduction + Purity
– Great if non-serial execution performs extra

pure loops

Commit Atomicity
– More heavyweight technique to verify if some

corresponding serial execution has same behavior
• can take different steps

22

Checking Commit Atomicity

Run normal and serial executions of program
concurrently, on separate stores
Normal execution runs as normal
– threads execute atomic blocks
– each atomic block has commit point

Serial execution
– runs on separate shadow store
– when normal execution commits an atomic block,

serial execution runs entire atomic block serially
Check two executions yield same behavior

23

Commit-Atomic

commit
atomic block

...

...

Normal execution

Serial execution

compare
states

24

Preliminary Evaluation

Some small benchmarks
– Bluetooth device driver

• atomicity violation due to error
– Busy-waiting lock acquire

• acquire1: 1 line of code in critical section
• acquire100: 100 lines of code in critical section

Hand translated to PROMELA code
– Two versions, with and without commit-atomic
– Model check with SPIN

5

25

Performance: Bluetooth device driver

Bluetooth driver benchmark

10

100

1000

10000

100000

1000000

2 3 4 5 6

Number of Threads

Si
ze

 o
f s

ta
te

 s
pa

ce

Normal
Commit-Atomic

26

Performance: acquire1 and acquire100

Busy-waiting lock acquire

100

1000

10000

100000

1000000

2 3 4 5 6 7

Number of threads

Si
ze

 o
f s

ta
te

 s
pa

ce

acquire1: normal
acquire1: commit-atomic
acquire100: normal
acquire100: commit-atomic

27

Summary

Atomicity
– concise, semantically deep partial specification
– aka serializability

Reduction
– lightweight technique for verifying atomicity
– can verify with types, or dynamically
– plus purity, for complex cases

Commit-Atomicity
– more general technique

28

Summary

Atomicity
– concise, semantically deep partial specification

Reduction
– lightweight technique for verifying atomicity

Commit-Atomicity
– more general technique

Future work
– combine reduction and commit-atomic
– generalizing atomicity

• temporal logics for determinism?

