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Multicore CPUs




Concurrent Programming Models

« Multiple threads, shared memory, sync

Unshared: Shared:
locals and objects and
control flow static fields

* Multithreaded programming is difficult.
- schedule-dependent behavior
- race conditions, deadlocks, atomicity violations, ...
- difficult to detect, reproduce, or eliminate



Multiple Threads Single Thread

1S a :jr-\ljc-ll;omic x+ +

read-modify-write

x =0; x = 0;

thread interference?

while (x < len) { while (x < len) {
thread interference?
tmp = a[x]; tmp = a[x];
thread interference?
b[x] = tmp; b[x] = tmp;
thread interference?
X++; X++;
thread interference?

} }




Controlling Thread Interference:
#1 Manually

X 0;
thread interference?
while (x < len) {
thread interference?
tmp = a[x];
thread interference?
b[x] tmp;
thread interference?

X++;

thread interference?

}

1 Inspect code

2 Identify where
interference
does not occur

—D

X 0;

while (x < len)

thread interference?

tmp = a[x];

thread interference?
b[x] = tmp;
X++;




Controlling Thread Interference:
#1 Manually w/ Productivity Heuristic

1 Assume no
x = 0; . x = 0;
thread interference? |nTerfer'ence
while (x < len) { while (x < len) {
thread interference? .
tmp = a[x]; 2 USZ SequenTlal tmp = a[x];
thread interference? "
reasonin
b[x] = tmp; g b[x] = tmp;
thread interference? —>
X++; X++;
thread interference?
} }

« Works some of the time, but subtle bugs...



Controlling Thread Interference:
#2 Enforce Race Freedom

 Race Conditions

two concurrent unsynchronized accesses, at least

ohe write

Thread A

tl = bal;
bal = t1 + 10;

Thread B

t2 = bal;
bal = t2 - 10;

/ Thread A

tl = bal

bal = t1 + 10

o

Thread B \

t2 = bal

bal = t2 - 10

/




Controlling Thread Interference:

#2 Enforce Race Freedom

 Race Conditions

two concurrent unsynchronized accesses, at least

ohe write

Thread A

tl = bal;
bal = t1 + 10;

Thread B

t2 = bal;
bal = t2 - 10;

/ Thread A

tl = bal

Thread B \

bal = t1 + 10

t2 = bal

o

bal = t2 - 10

/




Controlling Thread Interference:
#2 Enforce Race Freedom

 Race Conditions

two concurrent unsynchronized accesses, at
least one write

Races are correlated to defects

Race-freedom ensures sequentially-consistent
behavior, even on relaxed memory models

« Static and dynamic analysis tools to detect races

« But...



Controlling Thread Interference:

#2 Enforce Race Freedom

Thread A
acq(m) ;
tl = bal;
rel (m) ;

acq(m) ;
bal = t1 + 10;
rel (m) ;

Thread B

acq(m) ;

bal = bal - 10;

rel (m) ;

/,Thread A

Thread B <\\

acq(m)
tl = bal
rel (m)
acq(m)
bal = bal-10
rel (m)
acq(m)

bal = t1 + 10

rel (m)

o




Controlling Thread Interference:
#3 Enforce Atomicity

Atomic method must behave as if it executed serially,
without interleaved operations of other thread

void copy () {
x = 0;
thread interference?

while (x < len) {

thread interference?

tmp = a[x];

thread interference?

b[x] = tmp;
thread interference?
X++;

thread interference?




Controlling Thread Interference:
#3 Enforce Atomicity

Atomic method must behave as if it executed serially,
without interleaved operations of other thread

atomic void copy () {

}

x =0;
while (x < len) { f Can use sequential reasoning
~ in atomic methods
tmp = a[x];
b[x] = tmp;

* 90% of methods are atomic

X++;

}




Bohr: Static Analysis for Atomicity

class A {
int x
guarded by this;

atomic void m() {
synchronized ..

}

b

-

i Bohr k

/

&

v

N

X

Method
not
atomic

« Extension of Java's type system [TOPLAS'08]

« Input: Java code with
— traditional synchronization
— atomicity annotations
— annotations describing protecting lock for fields

* Theorem: In any well-typed program, all paths
through atomic methods are serializable




Theory of Reduction [Lipton 76]

acquire (m) . ..

. .. >< acquire (m) acquire (m)

tl = bal tl = bal tl = bal
><ba1=t1+10 bal = t1 + 10
bal = t1 + 10 .. >< release (m)
release (m) release (m) : ...

R Right-mover Acquire

L Left-mover Release

M Both-mover Race-Free Access

N Non-mover Racy Access

Serializable blocks have the pattern: R* [N] L*



Examples

void deposit(int n)
synchronlzed(m) {
= bal;

= +t1 + n- ]
M

tl
bal

}

R

)

acquire (m)

L

acquire (m)

tl = bal

tl = bal

bal = t1 + n

bal = t1 + n

release (m)

~
e
/

release (m)

(R* [N]L*)



Examples

void deposit(int n) {
synchronized (m) {
tl = bal;

bal

tl + n;
} \/
}

acquire (m)

acquire (m)

tl = bal

tl = bal

bal = t1 + n

bal = t1 + n

release (m)

~
g
/

release (m)

void deposit(int n)

synchronized (m) M

}

synchronized (m) {<{R
tl + n;

}

bal

— ]

\%
acquire (m) L'

tl = bal

R
M

release (m)

X

acquire (m)

Y.V

bal = t1 + n

M

release (m)

(R¥TN] L)




Dynamic Analysis for Atomicity

 Atomizer [POPL'04]
— based on reduction, abstracts ops as R/L/M/N
— leads to false alarms

* Other techniques: [Wang-Stoller 06], [ Xu-Bodik-
Hill 06], [Hatcliff et al. 04], [Park-Lu-Zhou 09]

« Velodrome [PLDI 08]

— reason about serializability via happens-
before relation

— precise for observed trace, no false alarms



int x = 0;
volatile int b = 1;

Thread 1
while (true) {
loop until b == 1;
atomic {
x =x + 100;
b =2;
}
}
Thread 2

while (true) {

loop until b == 2;

atomic {
x =x - 100;
b=1;

Thread i accesses x
only when b == i



Execution
Trace

Thread 1
while (true) {

loop until b ==

atomic {

x =x + 100;

b = 2;

}

Thread 2
while (true) {

loop until b ==

atomic {

x =x - 100;

b=1;

.
14

.
14

atomic {

test b ==

tl = x

x =t1 + 100

b =2

test b == 2

test b ==

atomic {

test b == 1

t2 = x

t2 - 100

X
I

o
il
=

test b == 1

atomic {

tl = x

x = t1 + 100

b=2

test b ==

atomic {

t2 = x

x = t2 - 100




Happens-Before
Ordering on
Operations

* program order

test b ==

atomic {

tl = x

x =t1 + 100

v

test b == 2

test b ==

atomic {

t2 = x

test b == 1

A 4

A 4

t2 - 100

X
I

o
il
=

test b == 1

atomic {

tl = x

x = t1 + 100

b=2

A 4

test b ==

atomic {

t2 = x

x = t2 - 100




Happens-Before
Ordering on
Operations

* program order

* synchronization order

atomic {

tl = x

tl + 100

v

test b == 1

A 4

test b == 1

atomic {

tl = x

x = t1 + 100

test b

test b

test b

atomic {

t2 = x

A 4

t2 - 100

X
I

o
il
=

b=2

/

A 4

test b ==

atomic {

t2 = x

x = t2 - 100




Happens-Before
Ordering on
Operations

* program order

* synchronization order

e communication order

test b ==

atomic {

tl = x

x =t1 + 100

v

test b == 2

test b ==

atomic {

t2 = x

test b == 1

A 4

A 4

t2 - 100

X
I

o
il
=

test b == 1

atomic {

tl = x

x = t1 + 100

b=2

A 4

test b ==

atomic {

t2 = x

x = t2 - 100




Transactional
Happens-Before
Ordering

Theorem
Transactional HB order
has no cycles
if and only if
Trace is serializable

atomic {
tl = x
x = tl1l + 100

test b == 1

A\ 4

test b == 1

A\ 4

atomic {
tl = x
x =t1 + 100
b =2

7 N\ TN

test b ==

A 4

test b ==

A 4

test b == 2

A\ 4

atomic {
t2 = x

= t2 - 100
=1

o X
(||

A\ 4

test b ==

v

atomic {
t2 = x
x = t2 - 100




Equivalent

Serial
Trace

test b ==

'

atomic {
tl = x
x = tl1l + 100
b =2

test b ==

test b == 1

test b ==

test b ==1

atomic {
t2 = x
x = t2 - 100

\ 4

atomic {
tl = x
x = tl1l + 100
b =2

S /7N

A\ 4

test b ==

L

atomic {
t2 = x
x = t2 - 100




Equivalent

Serial
Trace

test b ==

!

atomic {
tl = x
x = tl1l + 100
b =2

test b ==

test b ==

test b ==

test b == 1

atomic {
t2 = x
b4 t2 - 100
b=1

A

atomic {
tl = x
x = tl1l + 100
b =2

N\

test b ==

b

atomic {
t2 = x
x = t2 - 100




Atomicity
Violation

Thread 1
while (true) _{

21

)( loop untillb ==
atomic {
x =x + 100;
b = 2;
}
}
Thread 2

while (true) {
loop until b ==

atomic {
x =x - 100;
b=1;

.
14

atomic {

b =2

} \\\\\
test b ==
atomic {
v t2 = X
test b ==
atomic {
tl = x
x = tl + 100
b =2
}
x = t2 - 100
b=1
}

Cycle in transactional HB order
= trace is not serializable
= report atomicity violation




Controlling Thread Interference:
#3 Enforce Atomicity

Atomic method must behave as if it executed serially,
without interleaved operations of other thread

atomic void copy () {
x =0;
while (x < len) { f Can use sequential reasoning
~ in atomic methods
tmp = a[x];
b[x] = tmp;

}

* 90% of methods are atomic

X++;

} « Static and dynamic analyses




Controlling Thread Interference:
#3 Enforce Atomicity

void busy wait() {

e 10% of methods not atomic acq(m) ;

thread interference?

while ('test()) {

. thread interference?
* Local atomic blocks rel (m)
thread interference?
awkward acq (m)
thread interference?
L. . X++;
° ATOm|C|‘|'y PPOVldeS no thread interference?

information about thread |
interference




Controlling Thread Interference:

#3 Enforce Atomicity

}

atomic void copy () {

x = 0;

while (x < len) {

tmp = a[x];

b[x]

X+ \

tmp;

}

/Bimodal Semam‘ics\
\ increment

VS.

}

%

void busy wait() {
acq(m) ;
thread interference?

while ('test()) {
thread interference?
rel (m) ;

thread interference?
acq(m) ;

thread interference?
X++;

thread interference?

}

nhon-atomic
\_ read-modify-write /




Controlling Thread Interference:
#4 Cooperative Multitasking

 Cooperative scheduler
performs context switches

only at yield statements yield
 Clean semantics ’
— Sequential reasoning valid yield
by default ... <
— ... except where yields yield

highlight thread interference L
yield

 Limitation: Uses only a single processor



Coopér'ative Scheduler
* Sequential Reasoning

« Except at yields

acq (m)

x =0

rel (m)

yield
barrier
yield

yield
acq(m)
Xx = 2
rel (m)
yield

Cooperative
Correctness

A

Yield-oriented

Programming

acq (m)
x =0
rel (m)
yield

=

/ Yield Correcfness:\
yields mark all
thread interference

S%

AN

- /

Preemptive Scheduler
* Full performance
* No overhead

acq(m)
x =0
rel (m)
yield barrier
- yield
yield acq (m)
X =
rel (m)
yield
> Preemptive
Correctness




Yield vs. Atomic

« Atomic methods are those with no yields

atomic void copy () { void busy wait() {
x =0; acqg(m) ;
thread interference?
while (x < len) { while ('test()) {
thread interference?
tmp = a[x]; rel (m) ;
thread interference?
b[x] = tmp; acq(m) ;
thread interference?
xX++; x++;
thread interference?
} }
} }




Yield vs. Atomic

« Atomic methods are those with no yields

atomic void copy () {
x = 0;

while (x < len) {

tmp = a[x];
b[x] = tmp;
X++;

}
}

 atomic is a method-
« yield is acode-leve

evel spec.
spec.

void busy wait() {
acq(m) ;

while ('test()) {

rel (m) ;
yield;
acq(m) ;

X++;




Non-Interference Design Space

Non-Interference Specification

+—

S atomic yield

E °

9| traditional sync . Yield-

S N qromicy: oriented
N vei serializability |
Lﬁ ana YSIS programm'ng
3| hewrun-time | transactional aur:\z:wu?llc
= cystems memery exclusion

Transactional Memory, Larus & Rajwar, 2007
Automatic mutual exclusion, Isard & Birrell, HOTOS '07




Multiple Threads Single Thread

1S a :jr-\lj:;omic x+ +

read-modify-write

x = 0; x = 0;

while (x < len) { while (x < len) {
thread interference?
tmp = a[x]; tmp = a[x];
thread interference?
b[x] = tmp; b[x] = tmp;
thread interference?
X++; X++;
thread interference?

} }




IS)’leld-Or'le.n‘red Single Thread
rogramming

{ 1nt t=x;
X++ vs. vield; X++
x=t+1l; }

x = 0; x = 0;

Whi;ie](.z-< len) { while (x < len) {
tmp = a[x]; tmp = a[x];
yield;

b[x] = tmp; Plx] = tup;
X++; X+t
} }




Yield-Oriented Programming Examples

class StringBuffer ({

synchronized StringBuffer append(StringBuffer sb) {

int len = sb.length()
yield;

// allocate space for len chars
sb.getChars (0, len, value, index);
return this;

}

synchronized void getChars(int, int, char[], int) {...}
synchronized void expandCapacity(int) {...}

synchronized int length() {...}



volatile int x; Version 1
void update x() {

x = slow f(x);

iy

N
\l’\ x No yield between

| accesses to x
P\ )

Cooperative : Preemptive
Correctness /\ Vield Correctness | =3 Correctness




void update x() { Version 2
acquire (m) ;
x = slow_f(x);
release (m) ;

But...
Bad performance

SO\
P

Cooperative : Preemptive
Correctness /\ Yield Correctness | = Correctness




void update x() { Version 3

int fx = slow f(x);

acquire (m) ;
x = £x;
"release (m) ;

}

~

\l’\ x No yield between
. accesses fo X
 \ )

Cooperative : Preemptive
Correctness /\ Vield Correctness | =3 Correctness




void update x() { Version 4

int fx = slow f(x);
yield; -
acquire (m) ;
x = £x;
“release (m) ;
}
~
Stale value
after yield
/

SO\
P

Cooperative : Preemptive
Correctness /\ Yield Correctness | = Correctness




void update x() { Version 5

int y = x; (test and retry)
for (;;) {

yield;

int fy = slow f(y):

if (x == y) {
x = fy; return;

T

}
y = X,

N
No yield between
accesses fo X

)

Cooperative : Preemptive
Correctness /\ Vield Correctness | =3 Correctness




void update x() {

int y = x;

for (;;) |
yield;
int fy = slow f(y):
acquire (m) ;
if (x == y) {

x = fy, release(m); return;

}
Yy = X,
release (m) ;

Version 6

Cooperative : Preemptive
Correctness /\ Vield Correctness | =3 Correctness




Do Yields Help?

« Hypothesis: Yields help code comprehension
and defect detection

« User study [Sadowski, Yi PLATEAU 2010]

« Methodology
— Web-based survey, background check on threads
— Two groups: shown code with or without yields
— Three code samples, based on real-world bugs
— Task: Identify all bugs



Do Yields Help?

Concurrency

All Samples bug Some other bug [ Didn't find bug | Total
Yields 30 3 3 36
No Yields 17 6 21 44

Difference is statistically significant




Static Program Analysis
for Yield Correctness



JCC: Cooperability Checker for Java

class A {
int x;
void m()

yield

//@racy
{

synchronized..

}
}

/

JCC

~

/

« Input: Java code with
— traditional synchronization
— yield annotations
— annotations on racy variables (verified separately)

* Theorem:Well-typed programs are yield correct
(cooperative-preemptive equivalent)

-
« Extension of Java's type system

&

v

N

X

Missing
yield
at ...




Identifying Serializable Code

« Compute an effect for each stmt to summarize
how stmt interacts with other threads

R Right-mover Acquire

L Left-mover Release

M Both-mover Race-Free Access
N Non-mover Racy Access

» Serializable blocks have the pattern:
R* [N] L*




Identifying Yield-Correct Code

« Compute an effect for each stmt to summarize
how stmt interacts with other threads

R Right-mover Acquire

L Left-mover Release

M Both-mover Race-Free Access
N Non-mover Racy Access

Y YVYielding yield

* Yield-correct threads have the pattern:
((R* [NJL*) ¥)* (R* [N]L¥)



DFA for Yield-Correctness

* Trace is yield-correct if each thread
satisfies DFA

R

Concurrency Control and Recover in Database Systems, Bernstein, Hadzilacos, Goodman, 1987



Examples

void deposit(int n) R
synchronized(m) {JM

tl = bal ; /I’:
} _L;
yield; \L

synchronized (m) [<t__
bal = t1 + n; |R

} —
} M
L

((R* [NJL*) Y)* (R* [N]L*)




Traces

Preemptive

acquire (m)

Cooperative

acquire (m)

tl = bal

release (m)

acquire (m)

acquire (m)

tl = bal yield
release (m)
yield —>
>
yield —> yield
>
>

bal = t1 + n

yield

release (m)

yield

bal = t1 + n

release (m)

yield

yield




class TSP {
volatile int shortestPathlLength;

void searchFrom(Path path) {
if (path.length() >= shortestPathLength) return;

if (path.isComplete()) { \ Racy Read

if (path.length() < shortestPathLength)
shortestPathLength = path.length() ;

} else { \ Racy Write

for (Path c : path.children()) {

searchFrom(c) ;



class TSP {
Object lock;
volatile int shortestPathlLength; // lock held on writes

void searchFrom(Path path) {
if (path.length() >= shortestPathLength) return;

if (path.isComplete()) {
yield;
synchronized (lock) {
if (path.length() < shortestPathLength)
shortestPathLength = path.length() ;
}
} else {
for (Path c : path.children()) {
yield;
searchFrom(c) ;



class TSP {
Object 1lock;
volatile int shortes

class Path {
mover int length/()
mover boolean isComplete ()

void searchFrom(Path| }
if (path.length() one transaction that
commutes with other

if (path.isComplete thread operations

yield;
synchronized (lock) {
if (path.length() < shortestPathLength)
shortestPathLength = path.length() ;

}
} else {

for (Path c : path.children()) {
yield;
searchFrom(c) ;



class TSP {
Object 1lock;
volatile int shortestPathlLength; // lock held on writes

compound void searchFrom(Path path) {
if (path. shortestPathLength) return;

if (path.isComplete()) {
yield;
synchronized (lock) {
if (path.length() < shortestPathLength)
shortestPathLength = path.length() ;

series of transactions
that do not commute

}
} else {

for (Path c : path.children()) {
yield;
searchFrom(c) ;



class TSP {
Object 1lock;
volatile int shortestPathlLength; // lock held on writes

compound void searchFrom(Path path) {
if (path.length() >= shortestPathLength) return;

if (path.iscm ) { N

yield;
synchronized (lock) {
if (path.length() < shortestPathLength)
shortestPathLength = path.length() ;

}

} else {
for (Path c : path.children()) {
yield;
searchFrom(c) ;

) (R* [NJL*) Y)® (R* [N]L¥)



class TSP {
Object lock;
volatile int shortestPathlLength; // lock held on writes

compound void searchFrom(Path path) { M: N
if (path.length() >= shortestPathlLength) return;
. . M
if (path.isComplete())—¢ —

yield; 4}X_
synchronized (lock) { R
if (path.length() < shortestPathLength)—- M: M
shortestPathLength = path.length(); d
} M: N
} else { LE_
for (Path c : path.children()) {
yield;
searchFrom(c) ;

) (R* [NJL*) Y)® (R* [N]L¥)



class TSP {
Object lock;
volatile int shortestPathlLength; // lock held on writes

compound void searchFrom(Path path) { M: N

4

if (path.length() >= shortestPathlLength) return;

if (path.isComplete()) %””///{&E

yield;
synchronized (lock) {
if (path.length() < shortestPathLength)
shortestPathLength = path.length() ;

}
} else { AM
for (Path c : path.children())

yield;

Y
searchFrom(c) ; Y:N)*

) (R* [NJL*) Y)® (R* [N]L¥)



class TSP {
Object 1lock;
volatile int shortestPathlLength; // lock held on writes

compound void searchFrom(Path path) { M: N

4

if (path.length() >= shortestPathlLength) return;

if (path.isComplete()) %””///{&E

yield; ﬁl

if (path.length() < shortestPathLength)<<{]X]Q_
shortestPathLength = path.length(); d
M. N
} else {

for (Path c : path.children()) {
yield;
searchFrom(c) ;

) (R* [NJL*) Y)® (R* [N]L¥)



class TSP {
Object 1lock;
volatile int shortestPathlLength; // lock held on writes

compound void searchFrom(Path path) {
yield;
if (path.length() >= shortestPathLength) return;

if (path.isComplete()) {
yield;
synchronized (lock) {
if (path.length() < shortestPathLength)
shortestPathLength = path.length() ;

}
} else {

for (Path c : path.children()) {
yield;
searchFrom(c) ;



class TSP {
Object 1lock;
volatile int shortestPathlLength; // lock held on writes

compound void searchFrom(Path path) {

if (path.length() >= ..shortestPathLength) return;

AR

if (path.isComplete()) {

. .synchronized(lock) {
if (path.length() < shortestPathLength)
shortestPathLength = path.length() ;

}
} else {

for (Path c : path.children()) {

. .searchFrom# (c) ;

} e



Conditional Effects

class StringBuffer {
int count;

}

}

non-mover R
synchronized int length() { _ﬂéﬁzz::::::::/M
return count;

‘IL

non-mover R
synchronized void add(String s) { —

M

}

L

}

StringBuffer sb; /éﬁﬁﬁﬁi::
synchronized (sb) {

if (sb.length() < 10)— |
sb.add ("moo") ;

X

—\Z|Z P




Conditional Effects

class StringBuffer ({ this
int count; hot this
held held
this ? mover : non-mover R M
synchronized int length() { — M M
return count;
) L) [m
this ? mover : non-mover R M
synchronized void add(String s) { —
. .. M M
}
} L M

}

StringBuffer sb; /éﬁﬁﬁﬁﬁ::

synchronized (sb) {
if (sb.length() < 10)— |
sb.add ("moo") ;

v

= =l v




series of transactions
that do not commute

Full Effect Lattice

one transaction that
does not commute

SR T
s

CY

one transaction that commutes with
AF other thread operations




Pr'ogr'am Size Apnotatfon Anotation
(LOC) Time (min.) Count
java.util.zip.Inflater 317 9 4
java.util.zip.Deflater 381 7 8
java.lang.StringBuffer 1,276 20 10
java.lang.String 2,307 15 5
java.io.PrintWriter 534 40 109
java.util.Vector 1,019 25 43
java.util.zip.ZipFile 490 30 62
sparse 868 15 19
tsp 706 10 45
elevator 1,447 30 64
raytracer-fixed 1,915 10 50
sor-fixed 958 10 32
moldyn-fixed 1,352 10 39
Total 13,570 231 490
Total per KLOC 17 36




Number of Interference Points
P rogram No A‘romlc Unintended
Spec \ Race A‘romuc Race | Yield Yields
java.util.zip.Inflater e / 0 0
Ja7" Interference at: \\/ ence at: 0
jav 1
Jav| - field accesses field accesses 0
jav| < all lock acquires \ 6ck acquires 9
jav] *+atomic method calls 106 S e - 1
jov | 105| 8| 53] 30 0
spa In hon-atomic mefhods/ 98 48 14 6 0
Tsp 445 0
454 :
elevator Fewer Interference Points:
raytracer-fixed 565 .
. Easier to Reason about Codel
sor-fixed 249
moldyn-fixed 983

I Total per KLOC




Dynamic Program Analysis
for Yield Correctness



Copper
[PPOPP 11]

yield;

acquire (m) ;

while (x>0) {
release (m) ;

acquire (m) ;
}
assert x==0;
release (m) ;
yield;

yield

acquire (m)

test x > 0

yield

release (m)

acquire (m)

x =1

release (m)

acquire (m)

test x > 0

yield

release (m)

yield




Copper

* Build
Transactional
Happens-Before
— program order
— sync. order
— comm. order

v

yield

¥

acquire (m)

¥

test x > 0

v

¥

yield

release (m)

W

|

acquire (m)

¥

x =1

¥

release (m)

acquire (m)

¥

test x > 0

|

¥

yield

release (m)

¥

¥

¥

yield

W

¥




Copper

* Build

Transactional
Happens-Before

* Yields mark
transaction

ends

* Cycles indicate
missing yields

v

yield

¥

acquire (m)
test x > 0

release (m)

acquire (m)
test x > 0

release (m)

yield

v

yield

/

|

\

acquire (m)
x =1

release (m)

yield

v




Copper

yield;

acquire (m) ;

while (x>0) {
release (m) ;

yield;
acquire (m) ;
}
assert x==0;

release (m) ;
yield;

yield

l

acquire (m)
read x
release (m)
yield

/

l

acquire (m)
read x
release (m)

acquire (m)
x =1
release (m)
yield

\




RoadRunner Framework for Dyanamic Concurrency Analyses
[PASTE 10, github]

f N\
Standard JVM
RoadRunner
[ Tool API
InS'I'r'umenTed :l Monit¢ abstract class Tool {
void create (NewThreadEvent e)

BYTCCOde void acquire (AcquireEvent e)

/— 4 void release (ReleaseEvent e)

void access (AccessEvent e)

ﬁ A <t GCE }...

E class Copper extends Tool {

[ Instrumenter ] \ - handlers for synchronization / access events
- data to store about program state

}

N alin Y,
|

Java EI"I"OP: ceo

Bytecode

Others: Sofya [KDR 07], CalFuzzer [TNPS 09]



Copper Results

program LLOC No Ana\lysis 'I?/T(e)tmhlcfgy YieId%
>Parse /12 Interference at: N
SC’r/In’rer'fer'ence at: ence at:
ser « yield points
cry| o field accesses \_ /]d accesses
mo| * all lock acquires 64| < all lock acquires )
elet *atomic method calls 54
lufg , 57 3
rayt\\m non-atomic methods / - 3
montecarlo |3557 377 ‘
hedc 6409 305 Fewer interference points:
mtrt 6460 695 less to reason about!
raja 6863 396 p
colt 125644 1601 _ L3

igsaw ____ [ase7a 3415




Coopér'ative Scheduler
* Sequential Reasoning

« Except at yields

acq (m)

x =0

rel (m)

yield
barrier
yield

yield
acq(m)
Xx = 2
rel (m)
yield

Cooperative
Correctness

A

Yield-oriented

Programming

acq (m)
x =0
rel (m)
yield

=

/ Yield Correcfness:\
yields mark all
thread interference

S%

AN

- /

Preemptive Scheduler
* Full performance
* No overhead

acq(m)
x =0
rel (m)
yield barrier
- yield
yield acq (m)
X =
rel (m)
yield
> Preemptive
Correctness




Summary

Race freedom ﬂ

— code behaves as if on sequentially consistent machine
Atomicity

— code behaves as if atomic methods executed serially
Yield-oriented programming

— code behaves as if run on cooperative scheduler

— sequential reasoning ok, except at yields (1-10/KLOC)
— http://users.soe.ucsc.edu/~cormac/coop.html

Other analyses for yield correctness

Other non-interference properties: determinism, ..
Deterministic schedulers, record-and-replay
Other programming models/hardware platforms



Summary

* Race freedom
— code behaves as if on sequentially consistent memory model
* Atomicity
— code behaves as if atomic methods executed serially
« Yield-oriented programming
— use traditional synchronization & multicore hardware
— document all interference with yields
— static analyses check interference only at yields
— code behaves as if run on cooperative scheduler
— sequential reasoning ok, except at yields (1-10/KLOC)

— http://users.soe.ucsc.edu/~cormac/coop.html



Summary

* Race freedom

— code behaves as if on sequentially consistent memory model
* Atomicity

— code behaves as if atomic methods executed serially
 Yield-oriented programming

— code behaves as if run on cooperative scheduler

— sequential reasoning ok, except where yields document
thread interference (1-10/KLOC)

— http://users.soe.ucsc.edu/~cormac/coop.html




Future Directions

Other analyses for yield correctness

« Other non-interference properties

— determinism, ...

 Deterministic schedulers

Record-and-replay

Other programming models
— domain-specific

— multicore and distributed programming



