
Static and Dynamic Analyses
for Reliable Concurrency

Stephen Freund
Williams College

Cormac Flanagan
UC Santa Cruz

•  Jaeheon Yi, UC Santa Cruz (now at Google)
•  Caitlin Sadowski, UC Santa Cruz (now at Google)
•  Tom Austin, UC Santa Cruz (now at San Jose State)
•  Tim Disney, UC Santa Cruz

•  Ben Wood, Williams College (now at Wellesley College)
•  Diogenes Nunez, Williams College (now at Tufts)
•  Antal Spector-Zabusky, Williams College (now at UPenn)
•  James Wilcox, Williams College (now at UW)
•  Parker Finch, Williams College
•  Emma Harrington, Williams College

Multicore CPUs

Concurrent Programming Models

•  Multiple threads, shared memory, sync

! Multithreaded programming is difficult.
-  schedule-dependent behavior
-  race conditions, deadlocks, atomicity violations, ...
- difficult to detect, reproduce, or eliminate

3	

…	

…
	

…
	
 …
	

Unshared:	

locals	
 and	

control	
 flow	

Shared:	

objects	
 and	

sta4c	
 fields	

pc	

pc	
 pc	

 x = 0;
 thread interference?
 while (x < len) {
 thread interference?
 tmp = a[x];
 thread interference?
 b[x] = tmp;
 thread interference?
 x++;
 thread interference?
 }

Single Thread

x++
Multiple Threads	

x++
is a non-atomic

read-modify-write

 x = 0;
thread interference?
 while (x < len) {
thread interference?
 tmp = a[x];
thread interference?
 b[x] = tmp;
thread interference?
 x++;
thread interference?
 }

 x = 0;
 thread interference?
 while (x < len) {
 thread interference?
 tmp = a[x];
 thread interference?
 b[x] = tmp;
 thread interference?
 x++;
 thread interference?
 }

Controlling Thread Interference:
#1 Manually

 x = 0;
thread interference?
 while (x < len) {
thread interference?
 tmp = a[x];
thread interference?
 b[x] = tmp;
thread interference?
 x++;
thread interference?
 }

 x = 0;
thread interference?
 while (x < len) {
thread interference?
 tmp = a[x];
thread interference?
 b[x] = tmp;
thread interference?
 x++;
thread interference?
 }

1  Inspect code

2 Identify where
interference
does not occur

Controlling Thread Interference:
#1 Manually w/ Productivity Heuristic

 x = 0;
thread interference?
 while (x < len) {
thread interference?
 tmp = a[x];
thread interference?
 b[x] = tmp;
thread interference?
 x++;
thread interference?
 }

 x = 0;
thread interference?
 while (x < len) {
thread interference?
 tmp = a[x];
thread interference?
 b[x] = tmp;
thread interference?
 x++;
thread interference?
 }

1  Assume no
interference

2 Use sequential
reasoning

•  Works some of the time, but subtle bugs...

Controlling Thread Interference:
#2 Enforce Race Freedom
•  Race Conditions

 two concurrent unsynchronized accesses, at least
one write

Thread A
...
t1 = bal;
bal = t1 + 10;
...

Thread B
...
t2 = bal;
bal = t2 – 10;
...

bal = t1 + 10

t1 = bal

bal = t2 - 10

t2 = bal

Thread A Thread B

Controlling Thread Interference:
#2 Enforce Race Freedom
•  Race Conditions

 two concurrent unsynchronized accesses, at least
one write

Thread A
...
t1 = bal;
bal = t1 + 10;
...

Thread B
...
t2 = bal;
bal = t2 – 10;
...

bal = t1 + 10

t1 = bal

bal = t2 - 10

t2 = bal

Thread A Thread B

Controlling Thread Interference:
#2 Enforce Race Freedom
•  Race Conditions

 two concurrent unsynchronized accesses, at
least one write

•  Races are correlated to defects
•  Race-freedom ensures sequentially-consistent

behavior, even on relaxed memory models
•  Static and dynamic analysis tools to detect races

•  But...

Controlling Thread Interference:
#2 Enforce Race Freedom
Thread A
...
acq(m);
t1 = bal;
rel(m);

acq(m);
bal = t1 + 10;
rel(m);

Thread B
...
acq(m);
bal = bal – 10;
rel(m);

acq(m)

acq(m)

bal = bal-10

acq(m)

Thread A Thread B

t1 = bal

rel(m)

rel(m)

bal = t1 + 10

rel(m)

Controlling Thread Interference:
#3 Enforce Atomicity
Atomic method must behave as if it executed serially,

without interleaved operations of other thread

void copy() {
 x = 0;
 thread interference?
 while (x < len) {
 thread interference?
 tmp = a[x];
 thread interference?
 b[x] = tmp;
 thread interference?
 x++;
 thread interference?
 }
}

Controlling Thread Interference:
#3 Enforce Atomicity
Atomic method must behave as if it executed serially,

without interleaved operations of other thread

atomic void copy() {
 x = 0;
 thread interference?
 while (x < len) {
 thread interference?
 tmp = a[x];
 thread interference?
 b[x] = tmp;
 thread interference?
 x++;
 thread interference?
 }
}

•  Can use sequential reasoning
in atomic methods

•  90% of methods are atomic

•  Extension of Java’s type system [TOPLAS’08]
•  Input: Java code with

–  traditional synchronization
–  atomicity annotations
–  annotations describing protecting lock for fields

•  Theorem: In any well-typed program, all paths
through atomic methods are serializable

Bohr

class A {
 int x
 guarded_by this;

 atomic void m(){
 synchronized …
 …
 }
}

Bohr: Static Analysis for Atomicity

 Method
 not
 atomic

 acquire(m)

 t1 = bal

 bal = t1 + 10

 release(m)

...

...

 acquire(m)

 t1 = bal

 bal = t1 + 10

 release(m)

...

...

 acquire(m)

 t1 = bal

 bal = t1 + 10

 release(m)

...

...

Theory of Reduction [Lipton 76]

 Serializable blocks have the pattern: R* [N] L*

R Right-mover Acquire
L Left-mover Release
M Both-mover Race-Free Access
N Non-mover Racy Access

Examples

void deposit(int n) {
 synchronized(m) {
 t1 = bal;
 bal = t1 + n;
 }
}

R
M
M
L

acquire(m)

t1 = bal

bal = t1 + n

release(m)

...

...

... (R* [N] L*)

acquire(m)

t1 = bal

bal = t1 + n

release(m)

...

...

...

Examples

void deposit(int n) {
 synchronized(m) {
 t1 = bal;
 bal = t1 + n;
 }
}

void deposit(int n) {
 synchronized(m) {
 t1 = bal;
 }
 synchronized(m) {
 bal = t1 + n;
 }
}

R
M
L

R
M
L acquire(m)

 t1 = bal

 release(m)

R
M
L

R acquire(m)

 bal = t1 + n

 release(m)

M
L

 ...

 (R* [N] L*)

acquire(m)

t1 = bal

bal = t1 + n

release(m)

...

...

...

acquire(m)

t1 = bal

bal = t1 + n

release(m)

...

...

...

Dynamic Analysis for Atomicity
•  Atomizer [POPL’04]

– based on reduction, abstracts ops as R/L/M/N
–  leads to false alarms

•  Other techniques: [Wang-Stoller 06], [Xu-Bodik-
Hill 06], [Hatcliff et al. 04], [Park-Lu-Zhou 09]

•  Velodrome [PLDI 08]
– reason about serializability via happens-

before relation
– precise for observed trace, no false alarms

int x = 0;
volatile int b = 1;

Thread i accesses x
only when b == i

 Thread 1
while (true) {
 loop until b == 1;
 atomic {
 x = x + 100;
 b = 2;
 }
}

 Thread 2
while (true) {
 loop until b == 2;
 atomic {
 x = x - 100;
 b = 1;
 }
}

Execution
Trace

atomic {
 t1 = x
 x = t1 + 100

 b = 2

}

test b == 1

test b == 1
atomic {
 t1 = x
 x = t1 + 100
 b = 2
}

test b == 2

test b == 2

atomic {
 t2 = x

 x = t2 - 100
 b = 1
}

test b == 2

atomic {
 t2 = x
 x = t2 - 100

test b == 2

 Thread 1
while (true) {
 loop until b == 1;
 atomic {
 x = x + 100;
 b = 2;
 }
}

 Thread 2
while (true) {
 loop until b == 2;
 atomic {
 x = x - 100;
 b = 1;
 }
}

Happens-Before
Ordering on
Operations

atomic {
 t1 = x
 x = t1 + 100

 b = 2

}

test b == 1

test b == 1
atomic {
 t1 = x
 x = t1 + 100
 b = 2
}

test b == 2

test b == 2

atomic {
 t2 = x

 x = t2 - 100
 b = 1
}

test b == 2

atomic {
 t2 = x
 x = t2 - 100

test b == 2

!  program order

Happens-Before
Ordering on
Operations

atomic {
 t1 = x
 x = t1 + 100

 b = 2

}

test b == 1

test b == 1
atomic {
 t1 = x
 x = t1 + 100
 b = 2
}

test b == 2

test b == 2

atomic {
 t2 = x

 x = t2 - 100
 b = 1
}

test b == 2

atomic {
 t2 = x
 x = t2 - 100

test b == 2

!  program order

!  synchronization order

Happens-Before
Ordering on
Operations

atomic {
 t1 = x
 x = t1 + 100

 b = 2

}

test b == 1

test b == 1
atomic {
 t1 = x
 x = t1 + 100
 b = 2
}

test b == 2

test b == 2

atomic {
 t2 = x

 x = t2 - 100
 b = 1
}

test b == 2

atomic {
 t2 = x
 x = t2 - 100

test b == 2

!  program order

!  synchronization order

!  communication order

test b == 2

test b == 2

atomic {
 t2 = x

 x = t2 - 100
 b = 1
}

test b == 2

atomic {
 t2 = x
 x = t2 - 100

atomic {
 t1 = x
 x = t1 + 100

 b = 2

}

test b == 1

test b == 1

atomic {
 t1 = x
 x = t1 + 100
 b = 2
}

test b == 2

Theorem
 Transactional HB order
 has no cycles
 . if and only if
 Trace is serializable

Transactional
Happens-Before
Ordering

test b == 2

test b == 2

atomic {
 t2 = x
 x = t2 - 100
 b = 1
}

test b == 2

atomic {
 t2 = x
 x = t2 - 100

atomic {
 t1 = x
 x = t1 + 100
 b = 2
}

test b == 1

test b == 1

atomic {
 t1 = x
 x = t1 + 100
 b = 2
}

test b == 2

Equivalent
Serial
Trace

Equivalent
Serial
Trace

test b == 2

test b == 2

atomic {
 t2 = x
 x = t2 - 100
 b = 1
}

test b == 2

atomic {
 t2 = x
 x = t2 - 100

atomic {
 t1 = x
 x = t1 + 100
 b = 2
}

test b == 1

test b == 1

atomic {
 t1 = x
 x = t1 + 100
 b = 2
}

test b == 2

 Thread 1
while (true) {
 loop until b == 2;
 atomic {
 x = x + 100;
 b = 2;
 }
}

atomic {
 t2 = x

 x = t2 - 100
 b = 1
}

test b == 2

atomic {
 ...
 b = 2
}

test b == 2

atomic {
 t1 = x
 x = t1 + 100
 b = 2
}

Atomicity
Violation

X

 Thread 2
while (true) {
 loop until b == 2;
 atomic {
 x = x - 100;
 b = 1;
 }
}

Cycle in transactional HB order
⇒  trace is not serializable
⇒  report atomicity violation

Controlling Thread Interference:
#3 Enforce Atomicity
Atomic method must behave as if it executed serially,

without interleaved operations of other thread

atomic void copy() {
 x = 0;
 thread interference?
 while (x < len) {
 thread interference?
 tmp = a[x];
 thread interference?
 b[x] = tmp;
 thread interference?
 x++;
 thread interference?
 }
}

•  Can use sequential reasoning
in atomic methods

•  90% of methods are atomic

•  Static and dynamic analyses

Controlling Thread Interference:
#3 Enforce Atomicity

 void busy_wait() {
 acq(m);
 thread interference?
 while (!test()) {
 thread interference?
 rel(m);
 thread interference?
 acq(m);
 thread interference?
 x++;
 thread interference?
 }
}

•  10% of methods not atomic

•  Local atomic blocks
 awkward

•  Atomicity provides no
 information about thread
 interference

• 

Controlling Thread Interference:
#3 Enforce Atomicity

 atomic void copy() {
 x = 0;
 thread interference?
 while (x < len) {
 thread interference?
 tmp = a[x];
 thread interference?
 b[x] = tmp;
 thread interference?
 x++;
 thread interference?
 }
}

 void busy_wait() {
 acq(m);
 thread interference?
 while (!test()) {
 thread interference?
 rel(m);
 thread interference?
 acq(m);
 thread interference?
 x++;
 thread interference?
 }
}

Bimodal Semantics

increment
vs.

non-atomic
read-modify-write

Controlling Thread Interference:
#4 Cooperative Multitasking
•  Cooperative scheduler

performs context switches
only at yield statements

•  Clean semantics
–  Sequential reasoning valid

by default ...

–  ... except where yields
highlight thread interference

•  Limitation: Uses only a single processor

...

...

...
yield

...

...
yield

...
yield

...
yield

Yield Correctness:
yields mark all

thread interference

" ∧

Cooperative Scheduler
•  Sequential Reasoning
•  Except at yields

acq(m)
x = 0
rel(m)
yield

...
barrier
yield

...
yield

acq(m)
x = 2
rel(m)
yield

Cooperative
Correctness

Preemptive Scheduler
•  Full performance
•  No overhead

acq(m)
x = 0
rel(m)
yield

...
barrier
yield ...

yield acq(m)
x = 2
rel(m)
yield

Preemptive
Correctness

acq(m)
x = 0
rel(m)
yield

Yield-oriented
Programming

Yield vs. Atomic
•  Atomic methods are those with no yields

 atomic void copy() {
 x = 0;
 thread interference?
 while (x < len) {
 thread interference?
 tmp = a[x];
 thread interference?
 b[x] = tmp;
 thread interference?
 x++;
 thread interference?
 }
}

 void busy_wait() {
 acq(m);
 thread interference?
 while (!test()) {
 thread interference?
 rel(m);
 thread interference?
 acq(m);
 thread interference?
 x++;
 thread interference?
 }
}

Yield vs. Atomic
•  Atomic methods are those with no yields

•  atomic is a method-level spec.
•  yield is a code-level spec.

 atomic void copy() {
 x = 0;
 thread interference?
 while (x < len) {
 thread interference?
 tmp = a[x];
 thread interference?
 b[x] = tmp;
 thread interference?
 x++;
 thread interference?
 }
}

 void busy_wait() {
 acq(m);
 thread interference?
 while (!test()) {
 thread interference?
 rel(m);
 yield;
 acq(m);
 thread interference?
 x++;
 thread interference?
 }
}

Non-Interference Design Space

atomic yield

traditional sync
+

analysis

atomicity,
serializability

Yield-
oriented

programming

new run-time
systems

transactional
memory

automatic
mutual

exclusion

Non-Interference Specification

Po
lic

y
En

fo
rc

em
en

t

Transactional Memory, Larus & Rajwar, 2007
Automatic mutual exclusion, Isard & Birrell, HOTOS ’07

 x = 0;
 thread interference?
 while (x < len) {
 thread interference?
 tmp = a[x];
 thread interference?
 b[x] = tmp;
 thread interference?
 x++;
 thread interference?
 }

Single Thread

x++
Multiple Threads	

x++
is a non-atomic

read-modify-write

 x = 0;
thread interference?
 while (x < len) {
thread interference?
 tmp = a[x];
thread interference?
 b[x] = tmp;
thread interference?
 x++;
thread interference?
 }

 x = 0;
 thread interference?
 while (x < len) {
 thread interference?
 tmp = a[x];
 thread interference?
 b[x] = tmp;
 thread interference?
 x++;
 thread interference?
 }

Single Thread

x++
Yield-Oriented
Programming	

x++ vs.

 x = 0;
thread interference?
 while (x < len) {
thread interference?
 tmp = a[x];
thread interference?
 b[x] = tmp;
thread interference?
 x++;
thread interference?
 }

{ int t=x;
 yield;
 x=t+1; }

 x = 0;
 thread interference?
 while (x < len) {
 yield;
 tmp = a[x];
 yield;
 b[x] = tmp;
 thread interference?
 x++;
 thread interference?
 }

class StringBuffer {

 synchronized StringBuffer append(StringBuffer sb){
 ...
 int len = sb.length();

 ... // allocate space for len chars
 sb.getChars(0, len, value, index);
 return this;
 }

 synchronized void getChars(int, int, char[], int) {...}

 synchronized void expandCapacity(int) {...}

 synchronized int length() {...}

 yield;

Yield-Oriented Programming Examples

Cooperative
Correctness

Preemptive
Correctness Yield Correctness " ∧

volatile int x;

void update_x() {

 x = slow_f(x);

}

No yield between
accesses to xaaa

Version 1

Cooperative
Correctness

Preemptive
Correctness Yield Correctness " ∧

void update_x() {
 acquire(m);
 x = slow_f(x);
 release(m);
}

But...
Bad performance

Version 2

Cooperative
Correctness

Preemptive
Correctness Yield Correctness " ∧

void update_x() {
 int fx = slow_f(x);

 acquire(m);
 x = fx;
 release(m);
}

No yield between
accesses to xaaa

Version 3

Cooperative
Correctness

Preemptive
Correctness Yield Correctness " ∧

void update_x() {
 int fx = slow_f(x);
 yield;
 acquire(m);
 x = fx;
 release(m);
}

Stale value
after yield

Version 4

Cooperative
Correctness

Preemptive
Correctness Yield Correctness " ∧

void update_x() {
 int y = x;
 for (;;) {
 yield;
 int fy = slow_f(y);

 if (x == y) {
 x = fy; return;
 }
 y = x;
 }
}

No yield between
accesses to xaaa

Version 5
(test and retry)

Cooperative
Correctness

Preemptive
Correctness Yield Correctness " ∧

void update_x() {
 int y = x;
 for (;;) {
 yield;
 int fy = slow_f(y);
 acquire(m);
 if (x == y) {
 x = fy; release(m); return;
 }
 y = x;
 release(m);
 }
}

Version 6

Do Yields Help?

•  Hypothesis: Yields help code comprehension
and defect detection

•  User study [Sadowski, Yi PLATEAU 2010]

•  Methodology
–  Web-based survey, background check on threads
–  Two groups: shown code with or without yields
–  Three code samples, based on real-world bugs
–  Task: Identify all bugs

Do Yields Help?

StringBuffer Concurrency bug Some other bug Didn’t find bug Total

Yields 10 1 1 12
No Yields 1 5 9 15

All Samples Concurrency
bug Some other bug Didn’t find bug Total

Yields 30 3 3 36

No Yields 17 6 21 44

Difference is statistically significant

Static Program Analysis
for Yield Correctness

•  Extension of Java’s type system
•  Input: Java code with

–  traditional synchronization
–  yield annotations
–  annotations on racy variables (verified separately)

•  Theorem:Well-typed programs are yield correct
(cooperative-preemptive equivalent)

JCC

class A {
 int x; //@racy
 void m() {
 …
 yield
 synchronized…
 …
 }
}

JCC: Cooperability Checker for Java

 Missing
 yield
 at ...

•  Compute an effect for each stmt to summarize
how stmt interacts with other threads

•  Serializable blocks have the pattern:
 R* [N] L*

Identifying Serializable Code

R Right-mover Acquire
L Left-mover Release
M Both-mover Race-Free Access
N Non-mover Racy Access

•  Compute an effect for each stmt to summarize
how stmt interacts with other threads

•  Yield-correct threads have the pattern:
 ((R* [N] L*) Y)* (R* [N] L*)

Identifying Yield-Correct Code

R Right-mover Acquire
L Left-mover Release
M Both-mover Race-Free Access
N Non-mover Racy Access
Y Yielding yield

precommit postcommit

 R L

L | N

error

R | N

Y Y

Concurrency Control and Recover in Database Systems, Bernstein, Hadzilacos, Goodman, 1987

DFA for Yield-Correctness
•  Trace is yield-correct if each thread

satisfies DFA

Examples

void deposit(int n) {
 synchronized(m) {
 t1 = bal;
 }
 yield;
 synchronized(m) {
 bal = t1 + n;
 }
}

R
M
L

R
M
L

Y

 ((R* [N] L*) Y)* (R* [N] L*)

Traces

 acquire(m)

 ...

 ...

 t1 = bal

 release(m)

 ...

 yield

 ...

 yield

 ...

 acquire(m)

 bal = t1 + n

 yield

 release(m)

 release(m)

 yield

 ...

 ...

 ...

 ...

 yield

 ...

 yield

 acquire(m)

 t1 = bal

 release(m)

 yield

 acquire(m)

 bal = t1 + n

 release(m)

 yield

Preemptive Cooperative

class TSP {
 Object lock;
 volatile int shortestPathLength; // lock held on writes

 void searchFrom(Path path) {
 if (path.length() >= shortestPathLength) return;

 if (path.isComplete()) {

 synchronized(lock) {
 if (path.length() < shortestPathLength)
 shortestPathLength = path.length();
 }
 } else {
 for (Path c : path.children()) {

 searchFrom(c);
 }
 }
 }
}

Racy Read
Non-Racy Read

Racy Write

class TSP {
 Object lock;
 volatile int shortestPathLength; // lock held on writes

 void searchFrom(Path path) {
 if (path.length() >= shortestPathLength) return;

 if (path.isComplete()) {
 yield;
 synchronized(lock) {
 if (path.length() < shortestPathLength)
 shortestPathLength = path.length();
 }
 } else {
 for (Path c : path.children()) {
 yield;
 searchFrom(c);
 }
 }
 }
}

class TSP {
 Object lock;
 volatile int shortestPathLength; // lock held on writes

 void searchFrom(Path path) {
 if (path.length() >= shortestPathLength) return;

 if (path.isComplete()) {
 yield;
 synchronized(lock) {
 if (path.length() < shortestPathLength)
 shortestPathLength = path.length();
 }
 } else {
 for (Path c : path.children()) {
 yield;
 searchFrom(c);
 }
 }
 }
}

class Path {
 mover int length() ...
 mover boolean isComplete() ...
 ...
}

one transaction that
commutes with other

thread operations

class TSP {
 Object lock;
 volatile int shortestPathLength; // lock held on writes

 compound void searchFrom(Path path) {
 if (path.length() >= shortestPathLength) return;

 if (path.isComplete()) {
 yield;
 synchronized(lock) {
 if (path.length() < shortestPathLength)
 shortestPathLength = path.length();
 }
 } else {
 for (Path c : path.children()) {
 yield;
 searchFrom(c);
 }
 }
 }
}

series of transactions
that do not commute

class TSP {
 Object lock;
 volatile int shortestPathLength; // lock held on writes

 compound void searchFrom(Path path) {
 if (path.length() >= shortestPathLength) return;

 if (path.isComplete()) {
 yield;
 synchronized(lock) {
 if (path.length() < shortestPathLength)
 shortestPathLength = path.length();
 }
 } else {
 for (Path c : path.children()) {
 yield;
 searchFrom(c);
 }
 }
 }
} ((R* [N] L*) Y)* (R* [N] L*)

M N

class TSP {
 Object lock;
 volatile int shortestPathLength; // lock held on writes

 compound void searchFrom(Path path) {
 if (path.length() >= shortestPathLength) return;

 if (path.isComplete()) {
 yield;
 synchronized(lock) {
 if (path.length() < shortestPathLength)
 shortestPathLength = path.length();
 }
 } else {
 for (Path c : path.children()) {
 yield;
 searchFrom(c);
 }
 }
 }
} ((R* [N] L*) Y)* (R* [N] L*)

M; N

M
Y
R

M; M
M; N

L

class TSP {
 Object lock;
 volatile int shortestPathLength; // lock held on writes

 compound void searchFrom(Path path) {
 if (path.length() >= shortestPathLength) return;

 if (path.isComplete()) {
 yield;
 synchronized(lock) {
 if (path.length() < shortestPathLength)
 shortestPathLength = path.length();
 }
 } else {
 for (Path c : path.children()) {
 yield;
 searchFrom(c);
 }
 }
 }
} ((R* [N] L*) Y)* (R* [N] L*)

M; N

M

M

Y
N

(Y;N)*

class TSP {
 Object lock;
 volatile int shortestPathLength; // lock held on writes

 compound void searchFrom(Path path) {
 if (path.length() >= shortestPathLength) return;

 if (path.isComplete()) {
 yield;

 if (path.length() < shortestPathLength)
 shortestPathLength = path.length();

 } else {
 for (Path c : path.children()) {
 yield;
 searchFrom(c);
 }
 }
 }
} ((R* [N] L*) Y)* (R* [N] L*)

M; N

M
Y

M; N
M; N

class TSP {
 Object lock;
 volatile int shortestPathLength; // lock held on writes

 compound void searchFrom(Path path) {
 yield;
 if (path.length() >= shortestPathLength) return;

 if (path.isComplete()) {
 yield;
 synchronized(lock) {
 if (path.length() < shortestPathLength)
 shortestPathLength = path.length();
 }
 } else {
 for (Path c : path.children()) {
 yield;
 searchFrom(c);
 }
 }
 }
}

class TSP {
 Object lock;
 volatile int shortestPathLength; // lock held on writes

 compound void searchFrom(Path path) {

 if (path.length() >= ..shortestPathLength) return;

 if (path.isComplete()) {

 ..synchronized(lock) {
 if (path.length() < shortestPathLength)
 shortestPathLength = path.length();
 }
 } else {
 for (Path c : path.children()) {

 ..searchFrom#(c);
 }
 }
 }
}

class StringBuffer {
 int count;

 non-mover
 synchronized int length() {
 return count;
 }

 non-mover
 synchronized void add(String s) {
 ...
 }
}

StringBuffer sb;
synchronized (sb) {
 if (sb.length() < 10)
 sb.add("moo");
}

Conditional Effects

R

L
M

R

L
M

N
N

R

L

N

N

Conditional Effects
this
held

this
not
held

class StringBuffer {
 int count;

 this ? mover : non-mover
 synchronized int length() {
 return count;
 }

 this ? mover : non-mover
 synchronized void add(String s) {
 ...
 }
}

StringBuffer sb;
synchronized (sb) {
 if (sb.length() < 10)
 sb.add("moo");
}

M
M

R

L

M

M
M

M

M
M

R

L
M

R

L
M

Full Effect Lattice

one transaction that commutes with
other thread operations

series of transactions
that do not commute

one transaction that
does not commute

Program
Size
(LOC)

Annotation
Time (min.)

Anotation
Count

java.util.zip.Inflater 317 9 4
java.util.zip.Deflater 381 7 8
java.lang.StringBuffer 1,276 20 10
java.lang.String 2,307 15 5
java.io.PrintWriter 534 40 109
java.util.Vector 1,019 25 43
java.util.zip.ZipFile 490 30 62
sparse 868 15 19
tsp 706 10 45
elevator 1,447 30 64
raytracer-fixed 1,915 10 50
sor-fixed 958 10 32
moldyn-fixed 1,352 10 39
Total 13,570 231 490
Total per KLOC 17 36

Program
Number of Interference Points	

Unintended
Yields

No
Spec Race Atomic

Atomic
Race Yield

java.util.zip.Inflater 36 12 0 0 0 0
java.util.zip.Deflater 49 13 0 0 0 0
java.lang.StringBuffer 210 81 9 2 1 1
java.lang.String 230 87 6 2 1 0
java.io.PrintWriter 73 99 130 97 26 9
java.util.Vector 185 106 44 24 4 1
java.util.zip.ZipFile 120 105 85 53 30 0
sparse 329 98 48 14 6 0
tsp 445 115 437 80 19 0
elevator 454 146 241 60 25 0
raytracer-fixed 565 200 105 39 26 2
sor-fixed 249 99 128 24 12 0
moldyn-fixed 983 130 657 37 30 0
Total 3,928 1,291 1,890 432 180 13
Total per KLOC 289 95 139 32 13 1

Interference at:

•  all field accesses
•  all lock acquires

Interference at:

•  racy field accesses
•  all lock acquires

Interference at:

•  racy field accesses
•  all lock acquires
•  atomic method calls

in non-atomic methods

Interference at:

•  yield points

Fewer Interference Points:
Easier to Reason about Code!

Interference at:

•  field accesses
•  all lock acquires
•  atomic method calls

in non-atomic methods

Dynamic Program Analysis
for Yield Correctness

 yield

 acquire(m)

 x = 1

 release(m)

 yield

 ... release(m)

 acquire(m)

 test x > 0

 release(m)

 yield

 acquire(m)

 test x > 0

 ...

 yield

Copper
[PPOPP 11]

yield;
acquire(m);
while(x>0) {
 release(m);

 acquire(m);
}
assert x==0;
release(m);
yield;

 yield

 acquire(m)

 x = 1

 release(m)

 yield

 ... release(m)

 acquire(m)

 test x > 0

 release(m)

 yield

 acquire(m)

 test x > 0

 ...

 yield

Copper

•  Build
Transactional
Happens-Before
– program order
– sync. order
– comm. order

 yield

 acquire(m)

 x = 1

 release(m)

 yield

 ... release(m)

 acquire(m)

 test x > 0

 release(m)

 yield

 acquire(m)

 test x > 0

 ...

 yield

Copper

•  Build
Transactional
Happens-Before

•  Yields mark
transaction
ends

•  Cycles indicate
missing yields

Copper

yield;
acquire(m);
while(x>0) {
 release(m);
 yield;
 acquire(m);
}
assert x==0;
release(m);
yield;

 acquire(m)
 read x
 release(m)
 yield acquire(m)

 x = 1
 release(m)
 yield

 ...
 yield

 acquire(m)
 read x
 release(m)
 ...

RoadRunner Framework for Dyanamic Concurrency Analyses
[PASTE ’10, github]

Error: ... Java
Bytecode

T1: acq(m)
T1: read(x)
T2: write(y)
T1: rel(m)

Event
Stream Back-end

Tool Instrumented
Bytecode

Standard JVM

Abstract State

Instrumenter

Monitor

Others: Sofya [KDR 07], CalFuzzer [JNPS 09]

RoadRunner

Copper Results

program	
 LLOC	
 No	
 Analysis	

Atomic	

Methods	

Yields	

sparse	
 712	
 196	
 49	
 0	

sor	
 721	
 134	
 49	
 3	

series	
 811	
 90	
 31	
 0	

crypt	
 1083	
 252	
 55	
 0	

moldyn	
 1299	
 737	
 64	
 3	

elevator	
 1447	
 247	
 54	
 3	

lufact	
 1472	
 242	
 57	
 3	

raytracer	
 1862	
 355	
 65	
 3	

montecarlo	
 3557	
 377	
 41	
 1	

hedc	
 6409	
 305	
 76	
 2	

mtrt	
 6460	
 695	
 25	
 1	

raja	
 6863	
 396	
 45	
 0	

colt	
 25644	
 601	
 113	
 13	

jigsaw	
 48674	
 3415	
 550	
 47	

Fewer	
 interference	
 points:	
 	

less	
 to	
 reason	
 about!	

Interference at:

•  field accesses
•  all lock acquires
•  atomic method calls

in non-atomic methods

Interference at:

•  all field accesses
•  all lock acquires

Interference at:

•  yield points

Yield Correctness:
yields mark all

thread interference

" ∧

Cooperative Scheduler
•  Sequential Reasoning
•  Except at yields

acq(m)
x = 0
rel(m)
yield

...
barrier
yield

...
yield

acq(m)
x = 2
rel(m)
yield

Cooperative
Correctness

Preemptive Scheduler
•  Full performance
•  No overhead

acq(m)
x = 0
rel(m)
yield

...
barrier
yield ...

yield acq(m)
x = 2
rel(m)
yield

Preemptive
Correctness

acq(m)
x = 0
rel(m)
yield

Yield-oriented
Programming

Summary
•  Race freedom

–  code behaves as if on sequentially consistent machine

•  Atomicity
–  code behaves as if atomic methods executed serially

•  Yield-oriented programming
–  code behaves as if run on cooperative scheduler
–  sequential reasoning ok, except at yields (1-10/KLOC)
–  http://users.soe.ucsc.edu/~cormac/coop.html

•  Other analyses for yield correctness
•  Other non-interference properties: determinism, …

•  Deterministic schedulers, record-and-replay
•  Other programming models/hardware platforms

Summary

•  Race freedom
–  code behaves as if on sequentially consistent memory model

•  Atomicity
–  code behaves as if atomic methods executed serially

•  Yield-oriented programming
–  use traditional synchronization & multicore hardware

–  document all interference with yields

–  static analyses check interference only at yields

–  code behaves as if run on cooperative scheduler

–  sequential reasoning ok, except at yields (1-10/KLOC)

–  http://users.soe.ucsc.edu/~cormac/coop.html

Summary

•  Race freedom
–  code behaves as if on sequentially consistent memory model

•  Atomicity
–  code behaves as if atomic methods executed serially

•  Yield-oriented programming
–  code behaves as if run on cooperative scheduler

–  sequential reasoning ok, except where yields document
thread interference (1-10/KLOC)

–  http://users.soe.ucsc.edu/~cormac/coop.html

Future Directions

•  Other analyses for yield correctness
•  Other non-interference properties

–  determinism, …

•  Deterministic schedulers
•  Record-and-replay
•  Other programming models

–  domain-specific

–  multicore and distributed programming

