Static and Dynamic Analyses
for Reliable Concurrency

Cormac Flanagan Stephen Freund
UC Santa Cruz Williams College

Jaeheon Yi, UC Santa Cruz (now at Google)

Caitlin Sadowski, UC Santa Cruz (now at Google)
Tom Austin, UC Santa Cruz (now at San Jose State)
Tim Disney, UC Santa Cruz

Ben Wood, Williams College (now at Wellesley College)
Diogenes Nunez, Williams College (now at Tufts)

Antal Spector-Zabusky, Williams College (now at UPenn)
James Wilcox, Williams College (now at UW)

Parker Finch, Williams College
Emma Harrington, Williams College

Multicore CPUs

Concurrent Programming Models

« Multiple threads, shared memory, sync

Unshared: Shared:
locals and objects and
control flow static fields

* Multithreaded programming is difficult.
- schedule-dependent behavior
- race conditions, deadlocks, atomicity violations, ...
- difficult to detect, reproduce, or eliminate

Multiple Threads Single Thread

1S a :jr-\ljc-ll;omic x+ +

read-modify-write

x =0; x = 0;

thread interference?

while (x < len) { while (x < len) {
thread interference?
tmp = a[x]; tmp = a[x];
thread interference?
b[x] = tmp; b[x] = tmp;
thread interference?
X++; X++;
thread interference?

} }

Controlling Thread Interference:
#1 Manually

X 0;
thread interference?
while (x < len) {
thread interference?
tmp = a[x];
thread interference?
b[x] tmp;
thread interference?

X++;

thread interference?

}

1 Inspect code

2 Identify where
interference
does not occur

—D

X 0;

while (x < len)

thread interference?

tmp = a[x];

thread interference?
b[x] = tmp;
X++;

Controlling Thread Interference:
#1 Manually w/ Productivity Heuristic

1 Assume no
x = 0; . x = 0;
thread interference? |nTerfer'ence
while (x < len) { while (x < len) {
thread interference? .
tmp = a[x]; 2 USZ SequenTlal tmp = a[x];
thread interference? "
reasonin
b[x] = tmp; g b[x] = tmp;
thread interference? —>
X++; X++;
thread interference?
} }

« Works some of the time, but subtle bugs...

Controlling Thread Interference:
#2 Enforce Race Freedom

 Race Conditions

two concurrent unsynchronized accesses, at least

ohe write

Thread A

tl = bal;
bal = t1 + 10;

Thread B

t2 = bal;
bal = t2 - 10;

/ Thread A

tl = bal

bal = t1 + 10

o

Thread B \

t2 = bal

bal = t2 - 10

/

Controlling Thread Interference:

#2 Enforce Race Freedom

 Race Conditions

two concurrent unsynchronized accesses, at least

ohe write

Thread A

tl = bal;
bal = t1 + 10;

Thread B

t2 = bal;
bal = t2 - 10;

/ Thread A

tl = bal

Thread B \

bal = t1 + 10

t2 = bal

o

bal = t2 - 10

/

Controlling Thread Interference:
#2 Enforce Race Freedom

 Race Conditions

two concurrent unsynchronized accesses, at
least one write

Races are correlated to defects

Race-freedom ensures sequentially-consistent
behavior, even on relaxed memory models

« Static and dynamic analysis tools to detect races

« But...

Controlling Thread Interference:

#2 Enforce Race Freedom

Thread A
acq(m) ;
tl = bal;
rel (m) ;

acq(m) ;
bal = t1 + 10;
rel (m) ;

Thread B

acq(m) ;

bal = bal - 10;

rel (m) ;

/,Thread A

Thread B <\\

acq(m)
tl = bal
rel (m)
acq(m)
bal = bal-10
rel (m)
acq(m)

bal = t1 + 10

rel (m)

o

Controlling Thread Interference:
#3 Enforce Atomicity

Atomic method must behave as if it executed serially,
without interleaved operations of other thread

void copy () {
x = 0;
thread interference?

while (x < len) {

thread interference?

tmp = a[x];

thread interference?

b[x] = tmp;
thread interference?
X++;

thread interference?

Controlling Thread Interference:
#3 Enforce Atomicity

Atomic method must behave as if it executed serially,
without interleaved operations of other thread

atomic void copy () {

}

x =0;
while (x < len) { f Can use sequential reasoning
~ in atomic methods
tmp = a[x];
b[x] = tmp;

* 90% of methods are atomic

X++;

}

Bohr: Static Analysis for Atomicity

class A {
int x
guarded by this;

atomic void m() {
synchronized ..

}

b

-

i Bohr k

/

&

v

N

X

Method
not
atomic

« Extension of Java's type system [TOPLAS'08]

« Input: Java code with
— traditional synchronization
— atomicity annotations
— annotations describing protecting lock for fields

* Theorem: In any well-typed program, all paths
through atomic methods are serializable

Theory of Reduction [Lipton 76]

acquire (m) . ..

. .. >< acquire (m) acquire (m)

tl = bal tl = bal tl = bal
><ba1=t1+10 bal = t1 + 10
bal = t1 + 10 .. >< release (m)
release (m) release (m) : ...

R Right-mover Acquire

L Left-mover Release

M Both-mover Race-Free Access

N Non-mover Racy Access

Serializable blocks have the pattern: R* [N] L*

Examples

void deposit(int n)
synchronlzed(m) {
= bal;

= +t1 + n-]
M

tl
bal

}

R

)

acquire (m)

L

acquire (m)

tl = bal

tl = bal

bal = t1 + n

bal = t1 + n

release (m)

~
e
/

release (m)

(R* [N]L*)

Examples

void deposit(int n) {
synchronized (m) {
tl = bal;

bal

tl + n;
} \/
}

acquire (m)

acquire (m)

tl = bal

tl = bal

bal = t1 + n

bal = t1 + n

release (m)

~
g
/

release (m)

void deposit(int n)

synchronized (m) M

}

synchronized (m) {<{R
tl + n;

}

bal

—]

\%
acquire (m) L'

tl = bal

R
M

release (m)

X

acquire (m)

Y.V

bal = t1 + n

M

release (m)

(R¥TN] L)

Dynamic Analysis for Atomicity

 Atomizer [POPL'04]
— based on reduction, abstracts ops as R/L/M/N
— leads to false alarms

* Other techniques: [Wang-Stoller 06], [Xu-Bodik-
Hill 06], [Hatcliff et al. 04], [Park-Lu-Zhou 09]

« Velodrome [PLDI 08]

— reason about serializability via happens-
before relation

— precise for observed trace, no false alarms

int x = 0;
volatile int b = 1;

Thread 1
while (true) {
loop until b == 1;
atomic {
x =x + 100;
b =2;
}
}
Thread 2

while (true) {

loop until b == 2;

atomic {
x =x - 100;
b=1;

Thread i accesses x
only when b == i

Execution
Trace

Thread 1
while (true) {

loop until b ==

atomic {

x =x + 100;

b = 2;

}

Thread 2
while (true) {

loop until b ==

atomic {

x =x - 100;

b=1;

.
14

.
14

atomic {

test b ==

tl = x

x =t1 + 100

b =2

test b == 2

test b ==

atomic {

test b == 1

t2 = x

t2 - 100

X
I

o
il
=

test b == 1

atomic {

tl = x

x = t1 + 100

b=2

test b ==

atomic {

t2 = x

x = t2 - 100

Happens-Before
Ordering on
Operations

* program order

test b ==

atomic {

tl = x

x =t1 + 100

v

test b == 2

test b ==

atomic {

t2 = x

test b == 1

A 4

A 4

t2 - 100

X
I

o
il
=

test b == 1

atomic {

tl = x

x = t1 + 100

b=2

A 4

test b ==

atomic {

t2 = x

x = t2 - 100

Happens-Before
Ordering on
Operations

* program order

* synchronization order

atomic {

tl = x

tl + 100

v

test b == 1

A 4

test b == 1

atomic {

tl = x

x = t1 + 100

test b

test b

test b

atomic {

t2 = x

A 4

t2 - 100

X
I

o
il
=

b=2

/

A 4

test b ==

atomic {

t2 = x

x = t2 - 100

Happens-Before
Ordering on
Operations

* program order

* synchronization order

e communication order

test b ==

atomic {

tl = x

x =t1 + 100

v

test b == 2

test b ==

atomic {

t2 = x

test b == 1

A 4

A 4

t2 - 100

X
I

o
il
=

test b == 1

atomic {

tl = x

x = t1 + 100

b=2

A 4

test b ==

atomic {

t2 = x

x = t2 - 100

Transactional
Happens-Before
Ordering

Theorem
Transactional HB order
has no cycles
if and only if
Trace is serializable

atomic {
tl = x
x = tl1l + 100

test b == 1

A\ 4

test b == 1

A\ 4

atomic {
tl = x
x =t1 + 100
b =2

7 N\ TN

test b ==

A 4

test b ==

A 4

test b == 2

A\ 4

atomic {
t2 = x

= t2 - 100
=1

o X
(||

A\ 4

test b ==

v

atomic {
t2 = x
x = t2 - 100

Equivalent

Serial
Trace

test b ==

'

atomic {
tl = x
x = tl1l + 100
b =2

test b ==

test b == 1

test b ==

test b ==1

atomic {
t2 = x
x = t2 - 100

\ 4

atomic {
tl = x
x = tl1l + 100
b =2

S /7N

A\ 4

test b ==

L

atomic {
t2 = x
x = t2 - 100

Equivalent

Serial
Trace

test b ==

!

atomic {
tl = x
x = tl1l + 100
b =2

test b ==

test b ==

test b ==

test b == 1

atomic {
t2 = x
b4 t2 - 100
b=1

A

atomic {
tl = x
x = tl1l + 100
b =2

N\

test b ==

b

atomic {
t2 = x
x = t2 - 100

Atomicity
Violation

Thread 1
while (true) _{

21

)(loop untillb ==
atomic {
x =x + 100;
b = 2;
}
}
Thread 2

while (true) {
loop until b ==

atomic {
x =x - 100;
b=1;

.
14

atomic {

b =2

} \\\\\
test b ==
atomic {
v t2 = X
test b ==
atomic {
tl = x
x = tl + 100
b =2
}
x = t2 - 100
b=1
}

Cycle in transactional HB order
= trace is not serializable
= report atomicity violation

Controlling Thread Interference:
#3 Enforce Atomicity

Atomic method must behave as if it executed serially,
without interleaved operations of other thread

atomic void copy () {
x =0;
while (x < len) { f Can use sequential reasoning
~ in atomic methods
tmp = a[x];
b[x] = tmp;

}

* 90% of methods are atomic

X++;

} « Static and dynamic analyses

Controlling Thread Interference:
#3 Enforce Atomicity

void busy wait() {

e 10% of methods not atomic acq(m) ;

thread interference?

while ('test()) {

. thread interference?
* Local atomic blocks rel (m)
thread interference?
awkward acq (m)
thread interference?
L. . X++;
° ATOm|C|‘|'y PPOVldeS no thread interference?

information about thread |
interference

Controlling Thread Interference:

#3 Enforce Atomicity

}

atomic void copy () {

x = 0;

while (x < len) {

tmp = a[x];

b[x]

X+ \

tmp;

}

/Bimodal Semam‘ics\
\ increment

VS.

}

%

void busy wait() {
acq(m) ;
thread interference?

while ('test()) {
thread interference?
rel (m) ;

thread interference?
acq(m) ;

thread interference?
X++;

thread interference?

}

nhon-atomic
_ read-modify-write /

Controlling Thread Interference:
#4 Cooperative Multitasking

 Cooperative scheduler
performs context switches

only at yield statements yield
 Clean semantics ’
— Sequential reasoning valid yield
by default ... <
— ... except where yields yield

highlight thread interference L
yield

 Limitation: Uses only a single processor

Coopér'ative Scheduler
* Sequential Reasoning

« Except at yields

acq (m)

x =0

rel (m)

yield
barrier
yield

yield
acq(m)
Xx = 2
rel (m)
yield

Cooperative
Correctness

A

Yield-oriented

Programming

acq (m)
x =0
rel (m)
yield

=

/ Yield Correcfness:\
yields mark all
thread interference

S%

AN

- /

Preemptive Scheduler
* Full performance
* No overhead

acq(m)
x =0
rel (m)
yield barrier
- yield
yield acq (m)
X =
rel (m)
yield
> Preemptive
Correctness

Yield vs. Atomic

« Atomic methods are those with no yields

atomic void copy () { void busy wait() {
x =0; acqg(m) ;
thread interference?
while (x < len) { while ('test()) {
thread interference?
tmp = a[x]; rel (m) ;
thread interference?
b[x] = tmp; acq(m) ;
thread interference?
xX++; x++;
thread interference?
} }
} }

Yield vs. Atomic

« Atomic methods are those with no yields

atomic void copy () {
x = 0;

while (x < len) {

tmp = a[x];
b[x] = tmp;
X++;

}
}

 atomic is a method-
« yield is acode-leve

evel spec.
spec.

void busy wait() {
acq(m) ;

while ('test()) {

rel (m) ;
yield;
acq(m) ;

X++;

Non-Interference Design Space

Non-Interference Specification

+—

S atomic yield

E °

9| traditional sync . Yield-

S N qromicy: oriented
N vei serializability |
Lﬁ ana YSIS programm'ng
3| hewrun-time | transactional aur:\z:wu?llc
= cystems memery exclusion

Transactional Memory, Larus & Rajwar, 2007
Automatic mutual exclusion, Isard & Birrell, HOTOS '07

Multiple Threads Single Thread

1S a :jr-\lj:;omic x+ +

read-modify-write

x = 0; x = 0;

while (x < len) { while (x < len) {
thread interference?
tmp = a[x]; tmp = a[x];
thread interference?
b[x] = tmp; b[x] = tmp;
thread interference?
X++; X++;
thread interference?

} }

IS)’leld-Or'le.n‘red Single Thread
rogramming

{ 1nt t=x;
X++ vs. vield; X++
x=t+1l; }

x = 0; x = 0;

Whi;ie](.z-< len) { while (x < len) {
tmp = a[x]; tmp = a[x];
yield;

b[x] = tmp; Plx] = tup;
X++; X+t
} }

Yield-Oriented Programming Examples

class StringBuffer ({

synchronized StringBuffer append(StringBuffer sb) {

int len = sb.length()
yield;

// allocate space for len chars
sb.getChars (0, len, value, index);
return this;

}

synchronized void getChars(int, int, char[], int) {...}
synchronized void expandCapacity(int) {...}

synchronized int length() {...}

volatile int x; Version 1
void update x() {

x = slow f(x);

iy

N
\l’\ x No yield between

| accesses to x
P\)

Cooperative : Preemptive
Correctness /\ Vield Correctness | =3 Correctness

void update x() { Version 2
acquire (m) ;
x = slow_f(x);
release (m) ;

But...
Bad performance

SO\
P

Cooperative : Preemptive
Correctness /\ Yield Correctness | = Correctness

void update x() { Version 3

int fx = slow f(x);

acquire (m) ;
x = £x;
"release (m) ;

}

~

\l’\ x No yield between
. accesses fo X
 \)

Cooperative : Preemptive
Correctness /\ Vield Correctness | =3 Correctness

void update x() { Version 4

int fx = slow f(x);
yield; -
acquire (m) ;
x = £x;
“release (m) ;
}
~
Stale value
after yield
/

SO\
P

Cooperative : Preemptive
Correctness /\ Yield Correctness | = Correctness

void update x() { Version 5

int y = x; (test and retry)
for (;;) {

yield;

int fy = slow f(y):

if (x == y) {
x = fy; return;

T

}
y = X,

N
No yield between
accesses fo X

)

Cooperative : Preemptive
Correctness /\ Vield Correctness | =3 Correctness

void update x() {

int y = x;

for (;;) |
yield;
int fy = slow f(y):
acquire (m) ;
if (x == y) {

x = fy, release(m); return;

}
Yy = X,
release (m) ;

Version 6

Cooperative : Preemptive
Correctness /\ Vield Correctness | =3 Correctness

Do Yields Help?

« Hypothesis: Yields help code comprehension
and defect detection

« User study [Sadowski, Yi PLATEAU 2010]

« Methodology
— Web-based survey, background check on threads
— Two groups: shown code with or without yields
— Three code samples, based on real-world bugs
— Task: Identify all bugs

Do Yields Help?

Concurrency

All Samples bug Some other bug [Didn't find bug | Total
Yields 30 3 3 36
No Yields 17 6 21 44

Difference is statistically significant

Static Program Analysis
for Yield Correctness

JCC: Cooperability Checker for Java

class A {
int x;
void m()

yield

//@racy
{

synchronized..

}
}

/

JCC

~

/

« Input: Java code with
— traditional synchronization
— yield annotations
— annotations on racy variables (verified separately)

* Theorem:Well-typed programs are yield correct
(cooperative-preemptive equivalent)

-
« Extension of Java's type system

&

v

N

X

Missing
yield
at ...

Identifying Serializable Code

« Compute an effect for each stmt to summarize
how stmt interacts with other threads

R Right-mover Acquire

L Left-mover Release

M Both-mover Race-Free Access
N Non-mover Racy Access

» Serializable blocks have the pattern:
R* [N] L*

Identifying Yield-Correct Code

« Compute an effect for each stmt to summarize
how stmt interacts with other threads

R Right-mover Acquire

L Left-mover Release

M Both-mover Race-Free Access
N Non-mover Racy Access

Y YVYielding yield

* Yield-correct threads have the pattern:
((R* [NJL*) ¥)* (R* [N]L¥)

DFA for Yield-Correctness

* Trace is yield-correct if each thread
satisfies DFA

R

Concurrency Control and Recover in Database Systems, Bernstein, Hadzilacos, Goodman, 1987

Examples

void deposit(int n) R
synchronized(m) {JM

tl = bal ; /I’:
} _L;
yield; \L

synchronized (m) [<t__
bal = t1 + n; |R

} —
} M
L

((R* [NJL*) Y)* (R* [N]L*)

Traces

Preemptive

acquire (m)

Cooperative

acquire (m)

tl = bal

release (m)

acquire (m)

acquire (m)

tl = bal yield
release (m)
yield —>
>
yield —> yield
>
>

bal = t1 + n

yield

release (m)

yield

bal = t1 + n

release (m)

yield

yield

class TSP {
volatile int shortestPathlLength;

void searchFrom(Path path) {
if (path.length() >= shortestPathLength) return;

if (path.isComplete()) { \ Racy Read

if (path.length() < shortestPathLength)
shortestPathLength = path.length() ;

} else { \ Racy Write

for (Path c : path.children()) {

searchFrom(c) ;

class TSP {
Object lock;
volatile int shortestPathlLength; // lock held on writes

void searchFrom(Path path) {
if (path.length() >= shortestPathLength) return;

if (path.isComplete()) {
yield;
synchronized (lock) {
if (path.length() < shortestPathLength)
shortestPathLength = path.length() ;
}
} else {
for (Path c : path.children()) {
yield;
searchFrom(c) ;

class TSP {
Object 1lock;
volatile int shortes

class Path {
mover int length/()
mover boolean isComplete ()

void searchFrom(Path| }
if (path.length() one transaction that
commutes with other

if (path.isComplete thread operations

yield;
synchronized (lock) {
if (path.length() < shortestPathLength)
shortestPathLength = path.length() ;

}
} else {

for (Path c : path.children()) {
yield;
searchFrom(c) ;

class TSP {
Object 1lock;
volatile int shortestPathlLength; // lock held on writes

compound void searchFrom(Path path) {
if (path. shortestPathLength) return;

if (path.isComplete()) {
yield;
synchronized (lock) {
if (path.length() < shortestPathLength)
shortestPathLength = path.length() ;

series of transactions
that do not commute

}
} else {

for (Path c : path.children()) {
yield;
searchFrom(c) ;

class TSP {
Object 1lock;
volatile int shortestPathlLength; // lock held on writes

compound void searchFrom(Path path) {
if (path.length() >= shortestPathLength) return;

if (path.iscm) { N

yield;
synchronized (lock) {
if (path.length() < shortestPathLength)
shortestPathLength = path.length() ;

}

} else {
for (Path c : path.children()) {
yield;
searchFrom(c) ;

) (R* [NJL*) Y)® (R* [N]L¥)

class TSP {
Object lock;
volatile int shortestPathlLength; // lock held on writes

compound void searchFrom(Path path) { M: N
if (path.length() >= shortestPathlLength) return;
. . M
if (path.isComplete())—¢ —

yield; 4}X_
synchronized (lock) { R
if (path.length() < shortestPathLength)—- M: M
shortestPathLength = path.length(); d
} M: N
} else { LE_
for (Path c : path.children()) {
yield;
searchFrom(c) ;

) (R* [NJL*) Y)® (R* [N]L¥)

class TSP {
Object lock;
volatile int shortestPathlLength; // lock held on writes

compound void searchFrom(Path path) { M: N

4

if (path.length() >= shortestPathlLength) return;

if (path.isComplete()) %””///{&E

yield;
synchronized (lock) {
if (path.length() < shortestPathLength)
shortestPathLength = path.length() ;

}
} else { AM
for (Path c : path.children())

yield;

Y
searchFrom(c) ; Y:N)*

) (R* [NJL*) Y)® (R* [N]L¥)

class TSP {
Object 1lock;
volatile int shortestPathlLength; // lock held on writes

compound void searchFrom(Path path) { M: N

4

if (path.length() >= shortestPathlLength) return;

if (path.isComplete()) %””///{&E

yield; ﬁl

if (path.length() < shortestPathLength)<<{]X]Q_
shortestPathLength = path.length(); d
M. N
} else {

for (Path c : path.children()) {
yield;
searchFrom(c) ;

) (R* [NJL*) Y)® (R* [N]L¥)

class TSP {
Object 1lock;
volatile int shortestPathlLength; // lock held on writes

compound void searchFrom(Path path) {
yield;
if (path.length() >= shortestPathLength) return;

if (path.isComplete()) {
yield;
synchronized (lock) {
if (path.length() < shortestPathLength)
shortestPathLength = path.length() ;

}
} else {

for (Path c : path.children()) {
yield;
searchFrom(c) ;

class TSP {
Object 1lock;
volatile int shortestPathlLength; // lock held on writes

compound void searchFrom(Path path) {

if (path.length() >= ..shortestPathLength) return;

AR

if (path.isComplete()) {

. .synchronized(lock) {
if (path.length() < shortestPathLength)
shortestPathLength = path.length() ;

}
} else {

for (Path c : path.children()) {

. .searchFrom# (c) ;

} e

Conditional Effects

class StringBuffer {
int count;

}

}

non-mover R
synchronized int length() { _ﬂéﬁzz::::::::/M
return count;

‘IL

non-mover R
synchronized void add(String s) { —

M

}

L

}

StringBuffer sb; /éﬁﬁﬁﬁi::
synchronized (sb) {

if (sb.length() < 10)— |
sb.add ("moo") ;

X

—\Z|Z P

Conditional Effects

class StringBuffer ({ this
int count; hot this
held held
this ? mover : non-mover R M
synchronized int length() { — M M
return count;
) L) [m
this ? mover : non-mover R M
synchronized void add(String s) { —
. .. M M
}
} L M

}

StringBuffer sb; /éﬁﬁﬁﬁﬁ::

synchronized (sb) {
if (sb.length() < 10)— |
sb.add ("moo") ;

v

= =l v

series of transactions
that do not commute

Full Effect Lattice

one transaction that
does not commute

SR T
s

CY

one transaction that commutes with
AF other thread operations

Pr'ogr'am Size Apnotatfon Anotation
(LOC) Time (min.) Count
java.util.zip.Inflater 317 9 4
java.util.zip.Deflater 381 7 8
java.lang.StringBuffer 1,276 20 10
java.lang.String 2,307 15 5
java.io.PrintWriter 534 40 109
java.util.Vector 1,019 25 43
java.util.zip.ZipFile 490 30 62
sparse 868 15 19
tsp 706 10 45
elevator 1,447 30 64
raytracer-fixed 1,915 10 50
sor-fixed 958 10 32
moldyn-fixed 1,352 10 39
Total 13,570 231 490
Total per KLOC 17 36

Number of Interference Points
P rogram No A‘romlc Unintended
Spec \ Race A‘romuc Race | Yield Yields
java.util.zip.Inflater e / 0 0
Ja7" Interference at: \\/ ence at: 0
jav 1
Jav| - field accesses field accesses 0
jav| < all lock acquires \ 6ck acquires 9
jav] *+atomic method calls 106 S e - 1
jov | 105| 8| 53] 30 0
spa In hon-atomic mefhods/ 98 48 14 6 0
Tsp 445 0
454 :
elevator Fewer Interference Points:
raytracer-fixed 565 .
. Easier to Reason about Codel
sor-fixed 249
moldyn-fixed 983

I Total per KLOC

Dynamic Program Analysis
for Yield Correctness

Copper
[PPOPP 11]

yield;

acquire (m) ;

while (x>0) {
release (m) ;

acquire (m) ;
}
assert x==0;
release (m) ;
yield;

yield

acquire (m)

test x > 0

yield

release (m)

acquire (m)

x =1

release (m)

acquire (m)

test x > 0

yield

release (m)

yield

Copper

* Build
Transactional
Happens-Before
— program order
— sync. order
— comm. order

v

yield

¥

acquire (m)

¥

test x > 0

v

¥

yield

release (m)

W

|

acquire (m)

¥

x =1

¥

release (m)

acquire (m)

¥

test x > 0

|

¥

yield

release (m)

¥

¥

¥

yield

W

¥

Copper

* Build

Transactional
Happens-Before

* Yields mark
transaction

ends

* Cycles indicate
missing yields

v

yield

¥

acquire (m)
test x > 0

release (m)

acquire (m)
test x > 0

release (m)

yield

v

yield

/

|

\

acquire (m)
x =1

release (m)

yield

v

Copper

yield;

acquire (m) ;

while (x>0) {
release (m) ;

yield;
acquire (m) ;
}
assert x==0;

release (m) ;
yield;

yield

l

acquire (m)
read x
release (m)
yield

/

l

acquire (m)
read x
release (m)

acquire (m)
x =1
release (m)
yield

\

RoadRunner Framework for Dyanamic Concurrency Analyses
[PASTE 10, github]

f N\
Standard JVM
RoadRunner
[Tool API
InS'I'r'umenTed :l Monit¢ abstract class Tool {
void create (NewThreadEvent e)

BYTCCOde void acquire (AcquireEvent e)

/— 4 void release (ReleaseEvent e)

void access (AccessEvent e)

ﬁ A <t GCE }...

E class Copper extends Tool {

[Instrumenter] \ - handlers for synchronization / access events
- data to store about program state

}

N alin Y,
|

Java EI"I"OP: ceo

Bytecode

Others: Sofya [KDR 07], CalFuzzer [TNPS 09]

Copper Results

program LLOC No Ana\lysis 'I?/T(e)tmhlcfgy YieId%
>Parse /12 Interference at: N
SC’r/In’rer'fer'ence at: ence at:
ser « yield points
cry| o field accesses _ /]d accesses
mo| * all lock acquires 64| < all lock acquires)
elet *atomic method calls 54
lufg , 57 3
rayt\\m non-atomic methods / - 3
montecarlo |3557 377 ‘
hedc 6409 305 Fewer interference points:
mtrt 6460 695 less to reason about!
raja 6863 396 p
colt 125644 1601 _ L3

igsaw ____ [ase7a 3415

Coopér'ative Scheduler
* Sequential Reasoning

« Except at yields

acq (m)

x =0

rel (m)

yield
barrier
yield

yield
acq(m)
Xx = 2
rel (m)
yield

Cooperative
Correctness

A

Yield-oriented

Programming

acq (m)
x =0
rel (m)
yield

=

/ Yield Correcfness:\
yields mark all
thread interference

S%

AN

- /

Preemptive Scheduler
* Full performance
* No overhead

acq(m)
x =0
rel (m)
yield barrier
- yield
yield acq (m)
X =
rel (m)
yield
> Preemptive
Correctness

Summary

Race freedom ﬂ

— code behaves as if on sequentially consistent machine
Atomicity

— code behaves as if atomic methods executed serially
Yield-oriented programming

— code behaves as if run on cooperative scheduler

— sequential reasoning ok, except at yields (1-10/KLOC)
— http://users.soe.ucsc.edu/~cormac/coop.html

Other analyses for yield correctness

Other non-interference properties: determinism, ..
Deterministic schedulers, record-and-replay
Other programming models/hardware platforms

Summary

* Race freedom
— code behaves as if on sequentially consistent memory model
* Atomicity
— code behaves as if atomic methods executed serially
« Yield-oriented programming
— use traditional synchronization & multicore hardware
— document all interference with yields
— static analyses check interference only at yields
— code behaves as if run on cooperative scheduler
— sequential reasoning ok, except at yields (1-10/KLOC)

— http://users.soe.ucsc.edu/~cormac/coop.html

Summary

* Race freedom

— code behaves as if on sequentially consistent memory model
* Atomicity

— code behaves as if atomic methods executed serially
 Yield-oriented programming

— code behaves as if run on cooperative scheduler

— sequential reasoning ok, except where yields document
thread interference (1-10/KLOC)

— http://users.soe.ucsc.edu/~cormac/coop.html

Future Directions

Other analyses for yield correctness

« Other non-interference properties

— determinism, ...

 Deterministic schedulers

Record-and-replay

Other programming models
— domain-specific

— multicore and distributed programming

