
Proving correctness of a dynamic atomicity analysis in Coq

Caitlin Sadowski Jaeheon Yi Kenneth Knowles Cormac Flanagan
University of California at Santa Cruz

caitlin/jaeheon/kknowles/cormac@cs.ucsc.edu

Writing and reasoning about concurrent programs re-
mains notoriously difficult despite the proliferation of type
systems, static analyses, and dynamic analyses targeting
concurrent programs. There are examples of verified devel-
opments for concurrent languages and programs (Chou and
Peled 1996; Affeldt and Kobayashi 2004; Feng et al. 2007;
Hobor et al. 2008) but most analyses – especially dynamic
analyses – have not been subjected to mechanical rigor. We
report on our partial mechanization in Coq of the recently-
released Velodrome dynamic atomicity checker (Flanagan
et al. 2008).

Velodrome examines a trace of a program to ensure that
its atomic blocks are serializable. We specify the Velodrome
analysis using a multi-threaded operational semantics with
a collection of invariants relating the state of the analysis
data structures to properties of the program trace. On top
of an axiomatization of well-known facts about relations and
program traces, we prove that Velodrome accurately recon-
structs the transactional happens-before relation, the quo-
tient of the usual happens-before relation where operations
in the same transaction are identified. Although this proof is
still a work in progress, we were able to identify a bug in the
paper proof through the formalization process. An overview
of our architecture is shown in Figure 1. Building on some
utility code of Aydemir et al. (2008) we have written about
200 lemmas, 100 definitions, and a bit over 4000 lines of Coq
code.

Axiomatized 
Serializability 

Facts

Trace/
Transaction 

Lemmas

Trace-based 
Semantics

Transaction 
Definitions

Velodrome 
Proof

Figure 1. Module Organization

In contrast to work on calculi where binding structure
is the primary challenge, the most difficult part of our
language-agnostic trace-based approach is the complexity
of run-time invariants, which are more involved than type
preservation. As an example of the simplest of our invariants,
consider the following

Definition inv3
(alpha:trace) (phi:analysis_state) : Prop :=
forall C L U R W H x, phi = state C L U R W H ->
stores_recent W (is_write_op x) alpha x.

This states that the W component of the analysis state
stores, for each variable x and each thread, the ID of the
most recent transaction to write to x. We have five such
invariants using the higher-order predicate stores recent:
One each for the most recent read, write, lock release,
transaction begin, and transaction commit operations.

The more complex invariants relate the H component
of the analysis state, which is a compact representation
of the transactional happens-before relation, to the actual
happens-before relation. The following invariant states that
if operation a happens before b then the transaction of a is
reachable from the transaction of b in the graph represented
by H.

Definition inv7
(alpha:trace) (phi:analysis_state) : Prop :=

forall C L U R W H a b ta tb,
phi = state C L U R W H ->
happens_before_intransitive alpha a b ->
trans alpha a = Some ta ->
trans alpha b = Some tb ->
ta <> tb ->
reachable H ta tb .

In all, there are seven invariants over six operations. Of
these 42 cases, 15 are trivial, and five of the proofs remain
unfinished. Through many iterations, we have distilled an
expression of these invariants that lends itself well to mecha-
nized proof, and we hope to share our experience and receive
feedback on how to improve them further. In addition, we
intend to organize our collection of definitions and lemmas
into a reusable library for trace-based analyses, shaped by
interaction with other researchers interested in mechanizing
proofs of their concurrent programs and analyses.

A current snapshot of our code is available at
http://slang.soe.ucsc.edu/velodrome-coq.tar.gz

References
R. Affeldt and N. Kobayashi. A Coq library for verification

of concurrent programs. In LFM, pages 17–32, 2004.

B. Aydemir, A. Bohannon, B. Pierce, J. Vaughan, D. Vytin-
iotis, S. Weirich, and S. Zdancewic. Using proof assistants
for programming language research or, how to write your
next popl paper in coq, 2008. http://www.cis.upenn.
edu/~plclub/popl08-tutorial/.

C.-T. Chou and D. Peled. Formal verification of a partial-
order reduction technique for model checking. In TACAS,
pages 241–257, 1996.

X. Feng, R. Ferreira, and Z. Shao. On the relationship be-
tween concurrent separation logic and assume-guarantee
reasoning. In ESOP, pages 173 – 188, 2007.

C. Flanagan, S. N. Freund, and J. Yi. Velodrome: A
sound and complete dynamic atomicity checker for mul-
tithreaded programs. In PLDI, 2008.

A. Hobor, A. W. Appel, and F. Z. Nardelli. Oracle semantics
for concurrent separation logic. In ESOP, 2008.

1 2008/7/3


