Addendum to
Dynamic Partial-Order Reduction
for Model Checking Software

Cormac Flanagan
University of California at Santa Cruz
cormac@cs.ucsc.edu

Patrice Godefroid
Microsoft Research
pg@microsoft.com

On page 6 of our POPL ’2005 paper, we wrote that “sleep sets can be added exactly as described in [10]”. Specifically, sleep sets can be added to the algorithm of Figure 3 as follows:

- line 5 should be replaced with

 let \(E = \{ q \in \text{enabled}(\text{pre}(S,i)) \mid q = p \text{ or } \exists j \in \text{dom}(S) : j > i \text{ and } q = \text{proc}(S_j) \text{ and } j \rightarrow_s p \} \setminus \text{Sleep}(\text{pre}(S,i)) \);

- line 7 should be replaced with

 \[\text{if } \forall q \in \{ \text{enabled}(\text{pre}(S,i)) \setminus \text{Sleep}(\text{pre}(S,i)) \} \text{ \text{or} } \exists j \in \text{dom}(S) : j > i \text{ and } q = \text{proc}(S_j) \text{ and } j \rightarrow_s p \} \text{ \text{then} } \text{backtrack}(\text{pre}(S,i)) \text{ \text{else} } \text{PC}(S,j,p) \text{ \text{becomes}}: \]

The postcondition \(\text{PC}(S,j,p) \) then becomes:

\[
\forall q \in \{ \text{enabled}(\text{pre}(S,i)) \mid q = p \text{ or } \exists j \in \text{dom}(S) : j > i \text{ and } q = \text{proc}(S_j) \text{ and } j \rightarrow_s p \} \setminus \text{Sleep}(\text{pre}(S,i))
\]

The definition of \(PC(S,j,p) \) then becomes:

\[
\text{if } S \text{ is a transition sequence from } s_0 \text{ in } A_G
\text{ and } i = \max \{ i \in \text{dom}(S) \mid S_i \text{ is dependent and co-enabled with last}(s_0,p) \text{ and } i \not\rightarrow_s p \} \\
\text{ and } i \leq j
\text{ then}
\text{if } E(S,i,p) \neq \emptyset
\text{ then } \text{backtrack}(\text{pre}(S,i)) \cap E(S,i,p) \neq \emptyset
\text{ else } \text{PC}(S,j,p) = \text{enabled}(\text{pre}(S,i)) \setminus \text{Sleep}(\text{pre}(S,i))
\]

The postcondition \(\text{PC}(S,j,p) \) for \(\text{Explore}(S) \) becomes:

\[
\forall p \forall w : (\forall w_i \in [w] : w_i^1 \notin \text{Sleep}(\text{last}(S))) \Rightarrow \text{PC}(S,w,|S|,p)
\]

where \(\forall w_i \in [w] \) denotes the set of sequences \(w_i \) of transitions equivalent to \(w \) (i.e., transition sequences that are part of the same Mazurkiewicz’s trace – see [10] for details), and where \(w_i^1 \) denotes the first transition of \(w_i \).

In the presence of sleep sets, we use the following definition (similar notions are used in [9], for instance in Theorem 5.2):

Definition 1. A set \(T \subseteq T \) of transitions enabled in a state \(s \) is partially persistent in \(s \) iff, for all nonempty sequences \(w \) of transitions

\[
s_1 \rightarrow_1 s_2 \rightarrow_2 s_3 \ldots \rightarrow_{n-1} s_{n-1} \rightarrow_n s_n+1
\]

from \(s \) in \(A_G \) and including only transitions \(t_i \notin T \), \(1 \leq i \leq n \), and such that \(\forall w_i \in [w] : w_i^1 \notin \text{Sleep}(s) \), \(t_n \) is independent with all the transitions in \(T \).

If \(\text{Sleep}(s) = \emptyset \), this definition coincides with the definition of persistent sets. Note that if \(T = \text{enabled}(s) \setminus \text{Sleep}(s) \), \(T \) is a partially persistent set in \(s \).

With sleep sets, Lemma 1 and Theorem 1 in the appendix remains the same except that “is a persistent set in \(s \)” has to be replaced by “is a partially persistent set in \(s \)” in both. From this modified Theorem 1, it follows from the proof of Theorem 2 in [10] that all deadlocks (terminating states) are visited by the combined algorithm using sleep sets.

For clarity and completeness, we include below those modified versions of Lemma 1 and Theorem 1 extended with sleep sets, as well as their proof.

Lemma 1. Whenever a state \(s \) reached after a transition sequence \(S \) is backtracked during the search performed by the algorithm of Figure 3, the set \(T \) of transitions that have been explored from \(s \) is a partially persistent set in \(s \), provided the postcondition \(\text{PC} \) holds for every recursive call \(\text{Explore}(S,t) \) for all \(t \in T \).

Proof. Let

\[
s = \text{last}(S)
T = \{ \text{next}(s,p) \mid p \in \text{backtrack}(s) \}
\]

If \(T \) is not \(\text{enabled}(s) \setminus \text{Sleep}(s) \), \(T \) is non-empty and we prove that \(T \) is a partially persistent set in \(s \) by contradiction: assume that there exist \(t_1, \ldots, t_n \notin T \) such that

1. \(S.t_1 \ldots t_n \) is a transition sequence from \(s_0 \) in \(A_G \) and
2. \(\forall w_i \in [t_1 \ldots t_n] : w_i^1 \notin \text{Sleep}(s) \) and
3. \(t_1, \ldots, t_{n-1} \) are all independent with \(T \) and
4. \(t_n \) is dependent with some \(t \in T \).
Let \(w = t_1 \ldots t_{n-1} \). By property of independence, this implies that \(t \) is enabled in the state \(\text{last}(S.w) \) and hence co-enabled with \(t_n \). Without loss of generality, assume that \(t_1 \ldots t_n \) is the shortest such sequence. We thus have that

\[
\forall 1 \leq i < n : i \rightarrow_{s.w} \text{proc}(t_n)
\]

(If this was not true for some \(i \), the same transition sequence without \(i \) would also satisfy our assumptions and be shorter.)

By definition, \(S.w \) is itself a transition sequence from \(s_0 \) in \(A_G \) and we have

\[
\text{next}(\text{last}(S.w), \text{proc}(t_n)) = t_n
\]

If \(\text{proc}(t) = \text{proc}(t_n) \) then

\[
t = \text{next}(\text{last}(S), \text{proc}(t))
= \text{next}(\text{last}(S.w), \text{proc}(t))
= t_n
\]

since \(t \) is independent with all the transitions in \(w \), contradicting that \(t_n \not\in T \). Hence \(\text{proc}(t) \neq \text{proc}(t_n) \).

Since \(t \) is in a different process than \(t_n \) and \(t \) is independent with all the transitions in \(w \), we have

\[
t_n = \text{next}(\text{last}(S.w), \text{proc}(t_n))
= \text{next}(\text{last}(S.w.t), \text{proc}(t_n))
= \text{next}(\text{last}(S.t.w), \text{proc}(t_n))
\]

Since \(t \in T \), \(t \) is executed from \(s \). Since \(\forall w_i \in [w] : w_i \not\in \text{Sleep}(s) \) and since \(t_1, \ldots, t_n \not\in T \) (i.e., none of those transitions are executed from \(s \)), none of the \(w_i \) transitions are in \(\text{Sleep}(\text{last}(S.t)) \) (by construction – see the rules for defining sleep sets in [10]).

Let \(i = |S| + 1 \). Consider the postcondition

\[
\text{PC}(S.t.w, i, \text{proc}(t_n))
\]

for the recursive call \(\text{Explore}(S.t) \). Clearly,

\[
i \not= \text{S.t.w} \text{proc}(t_n)
\]

(since \(t \) is in a different process than \(t_n \) and \(t \) is independent with \(t_1, \ldots, t_{n-1} \)). In addition, we have (by definition of \(E \)):

\[
E(S.t.w, i, \text{proc}(t_n)) \subseteq \{ \text{proc}(t_1), \ldots, \text{proc}(t_{n-1}) \} \cap \text{enabled}(s)
\]

Moreover, we have by construction:

\[
\forall j \in \text{dom}(S.t.w) : j > i \Rightarrow j \rightarrow_{S.t.w} \text{proc}(t_n)
\]

Hence, by the postcondition \(\text{PC} \) for the recursive call \(\text{Explore}(S.t) \), either \(E(S.t.w, i, \text{proc}(t_n)) \) is nonempty and at least one process in \(E(S.t.w, i, \text{proc}(t_n)) \) is in \(\text{backtrack}(s) \), or \(E(S.t.w, i, \text{proc}(t_n)) \) is empty and all the processes in \(\text{enabled}(s) \setminus \text{Sleep}(s) \) are in \(\text{backtrack}(s) \). In either case, at least one transition among \(\{ t_1, \ldots, t_n \} \) is in \(T \). This contradicts the assumption that \(t_1, \ldots, t_n \not\in T \).

\[\square \]

Theorem 1. Whenever a state \(s \) reached after a transition sequence \(S \) is backtracked during the search performed by the algorithm of Figure 3 in an acyclic state space, the postcondition \(\text{PC} \) for \(\text{Explore}(S) \) is satisfied, and the set \(T \) of transitions that have been explored from \(s \) is a partially persistent set in \(s \).

Proof. Let

\[
s = \text{last}(S)
T = \{ \text{next}(s, p) \mid p \in \text{backtrack}(s) \}
\]

The proof is by induction on the order in which states are backtracked.

(Base case) Since the state space \(A_G \) is acyclic and since the search is performed in depth-first order, the first backtracked state must be either a deadlock where no transition is enabled, or a state \(s \) where \(\text{enabled}(s) = \text{Sleep}(s) \) (i.e., all transitions enabled in \(s \) are in \(\text{Sleep}(s) \)). Therefore, in either case, the postcondition for that state becomes \(\forall p : \text{PC}(S, |S|, p) \), and is directly established by lines 3–9 of the algorithm of Figure 3.

(Inductive case) We assume that each recursive call to \(\text{Explore}(S.t) \) satisfies its postcondition. That \(T \) is a partially persistent set in \(s \) then follows by Lemma 1. We show that \(\text{Explore}(S) \) ensures its postcondition \(\text{PC} \) for any \(p \) and \(w \) such that \(S.w \) is a transition sequence from \(s_0 \) in \(A_G \) and such that \(\forall w_i \in [w] : w_i \not\in \text{Sleep}(last(S)) \).

1. Suppose some transition in \(w \) is dependent with some transition in \(T \). In this case, we split \(w \) into \(X.t.Y \), where all the transitions in \(X \) are independent with all the transitions in \(T \) and \(t \) is the first transition in \(w \) that is dependent with some transition in \(T \). Since \(T \) is a partially persistent set in \(s \), \(t \) must be in \(T \) (otherwise, \(T \) would not be partially persistent in \(s \)). Thus, \(t \) is independent with all the transitions in \(X \). By property of independence, this implies that the transition sequence \(t.X.Y \) is executable from \(s \). It also implies that \(t \) is one of the \(w_i \) transitions.

 (Case 1.a) If \(t \) is the first transition of the \(w_i \) transitions of \(w \) to be executed in \(s \) and since none of those are in \(\text{Sleep}(last(S)) \), then \(\text{Sleep}(last(S.t)) \) does not contain any of the \(w_i \) transitions either (by the rules defining sleep sets in [10]). By applying the inductive hypothesis to the recursive call \(\text{Explore}(S.t) \) for the sequence \(X.Y \), we know

\[
\forall p : \text{PC}(S.t.X.Y, |S| + 1, p)
\]

which implies (by the definition of \(\text{PC} \)) that

\[
\forall p : \text{PC}(S.t.X.Y, |S|, p)
\]

Since \(t \) is independent with all the transitions in \(X \), we also have that

\[
\forall i \in \text{dom}(S.t.X.Y) : i \rightarrow_{S.t.X.Y} p \iff i \rightarrow_{S.X.t.Y} p
\]

Therefore, by definition,

\[
\text{PC}(S.t.X.Y, |S|, p) \iff \text{PC}(S.X.t.Y, |S|, p)
\]

We can thus conclude that

\[
\forall p : \text{PC}(S.X.t.Y, |S|, p)
\]

(Case 1.b) Otherwise, let \(t' \) be the first transition of the \(w_i \) transitions of \(w \) which is executed in \(s \) before \(t \). We thus have \(w = X.t.W.t'.Z \). Since \(t' \) is one of the \(w_i \) transitions, we know (by definition of \(w_i \)) that \(t' \) is independent of all transitions in \(X.t.W \).
The same reasoning as in the previous case 1.a can be applied to \(\text{Explore}(S.t') \) and the sequence \(X.t.W.Z \). We can thus prove that

\[
PC(S.t'.X.t.W.Z,|S|,p) \iff PC(S.X.t.W.t'.Z,|S|,p)
\]

and conclude again that

\[
\forall p: \; PC(S.w,|S|,p)
\]

2. Suppose that all the transitions in \(w \) are independent with all the transitions in \(T \) and \(p \in \text{backtrack}(s) \). Then

(a) \(\text{next}(s,p) \in T \);
(b) \(\text{next}(s,p) \) is independent with \(w \);
(c) \(p \) is a different process from any transition in \(w \);
(d) \(\text{next}(\text{last}(S.w),p) = \text{next}(\text{last}(S),p) \);
(e) \(\forall i \in \text{dom}(S): \; i \rightarrow_{S.w} p \iff i \rightarrow_{S} p \).

Thus, we have \(PC(S.w,|S|,p) \iff PC(S,|S|,p) \), and the latter is directly established by the lines 3–9 of the algorithm for all \(p \).

3. Suppose that all the transitions in \(w \) are independent with all the transitions in \(T \) and \(p \not\in \text{backtrack}(s) \). Pick any \(t \in T \). We then have that

(a) \(\text{proc}(t) \neq p \);
(b) \(t \) independent with all the transitions in \(w \);
(c) \(\text{next}(\text{last}(S.w),p) = \text{next}(\text{last}(S.t.w),p) \);
(d) \(\forall i \in \text{dom}(S): \; i \rightarrow_{S.w} p \iff i \rightarrow_{S.t.w} p \).

Thus, we have \(PC(S.w,|S|,p) \iff PC(S.t.w,|S|,p) \).

Since none of the \(w^1_i \) transitions are in \(\text{Sleep}(\text{last}(S)) \) and since none of those transitions are executed in \(s \), \(\text{Sleep}(\text{last}(S.t)) \) does not contain any of the \(w^1_i \) transitions either (by the rules defining sleep sets in [10]).

By applying the inductive hypothesis to the recursive call \(\text{Explore}(S.t) \), we know

\[
\forall p: \; PC(S.t.w,|S|+1,p)
\]

which implies (by the definition of \(PC \)) that

\[
\forall p: \; PC(S.t.w,|S|,p)
\]

which in turn implies

\[
\forall p: \; PC(S.w,|S|,p)
\]

as required.

Acknowledgements: We thank Katie Coons for pointing out that combining sleep sets with our POPL’2005 algorithm is not as immediate as originally thought and for helpful comments.