
Types for Safe Locking

Cormac Flanagan and Mart́ın Abadi
[flanagan|ma]@pa.dec.com

Systems Research Center, Compaq

Abstract. A race condition is a situation where two threads manipu-
late a data structure simultaneously, without synchronization. Race con-
ditions are common errors in multithreaded programming. They often
lead to unintended nondeterminism and wrong results. Moreover, they
are notoriously hard to diagnose, and attempts to eliminate them can
introduce deadlocks. In practice, race conditions and deadlocks are of-
ten avoided through prudent programming discipline: protecting each
shared data structure with a lock and imposing a partial order on lock
acquisitions. In this paper we show that this discipline can be captured
(if not completely, to a significant extent) through a set of static rules.
We present these rules as a type system for a concurrent, imperative
language. Although weaker than a full-blown program-verification cal-
culus, the type system is effective and easy to apply. We emphasize a
core, first-order type system focused on race conditions; we also consider
extensions with polymorphism, existential types, and a partial order on
lock types.

1 Races, Locks, and Types

Programming with multiple threads introduces a number of pitfalls, such as
race conditions and deadlocks. A race condition is a situation where two threads
manipulate a data structure simultaneously, without synchronization. Race con-
ditions are common, insidious errors in multithreaded programming. They often
lead to unintended nondeterminism and wrong results. Moreover, since race con-
ditions are timing-dependent, they are notoriously hard to track down. Attempts
to eliminate race conditions by using lock-based synchronization can introduce
other errors, in particular deadlocks. A deadlock occurs when no thread can
make progress because each is blocked on a lock held by some other thread.

In practice, both race conditions and deadlocks are often avoided through
careful programming discipline [5]. Race conditions are avoided by protecting
each shared data structure with a lock, and accessing the data structure only
when the protecting lock is held. Deadlocks are avoided by imposing a strict
partial order on locks and ensuring that each thread acquires locks only in in-
creasing order. However, this programming discipline is not well supported by
existing development tools. It is difficult to check if a program adheres to this
discipline, and easy to write a program that does not by mistake. A single unpro-
tected access in an otherwise correct program can produce a timing-dependent
race condition whose cause may take weeks to identify.

In this paper we show that this programming discipline can be captured
through a set of static rules. We present those rules as a type system for a
concurrent, imperative language. We initially consider a first-order type system
focused on race conditions. The type system supports dynamic thread creation
and the dynamic allocation of locks and reference cells. We then consider exten-
sions, such as universal and existential types, that increase the expressiveness of
the system. We also outline an extension that eliminates deadlock by enforcing
a strict partial order on lock acquisitions.

Since the programming discipline dictates that a thread can access a shared
data structure only when holding a corresponding lock, our type systems provide
rules for proving that a thread holds a given lock at a given program point. The
rules rely on singleton lock types. A singleton lock type is the type of a single
lock. Therefore, we can represent a lock l at the type level with the singleton
lock type that contains l, and we can assert that a thread holds l by referring to
that type rather than to the lock l. The type of a reference cell mentions both
the type of the contents of the cell and the singleton lock type of the lock that
protects the cell. Thus, singleton lock types provide a simple way of injecting
lock values into the type level.

A set of singleton lock types forms a permission. During typechecking, each
expression is analyzed in the context of a permission; including a singleton lock
type in the permission amounts to assuming that the corresponding lock is held
before evaluation of the expression. In addition, a permission decorates each
function type and each function definition, representing the set of locks that
must be held before a function call.

We study typechecking rather than type inference, so we do not show how
to infer which lock protects a reference cell or which permission may decorate
a function definition. We simply assume that the programmer can provide such
information explicitly, and leave type inference as an open problem.

There is a significant body of previous work in this area, but most earlier
approaches are either unsound (i.e., do not detect all race conditions) [22], deal
only with finite state spaces [7, 10, 12], or do not handle mainstream shared-
variable programming paradigms [1, 16]. In contrast, we aim to give a sound type
system for statically verifying the absence of race conditions in a programming
language with shared variables. We defer a more detailed discussion of related
work to section 7.

The next section describes a first-order type system for a concurrent, im-
perative language. Section 3 presents the operational semantics of the language,
which is the basis for the race-freeness theorem of section 4. Section 5 extends
the type system with universal and existential types. Section 6 further extends
the type system in order to prevent deadlocks. Section 7 discusses related work.
We conclude with section 8. For the sake of brevity, we omit proofs. Moreover,
we give the type systems of sections 5 and 6 without corresponding operational
semantics and correctness theorems. The operational semantics are straight-
forward. To date, we have studied how to extend the correctness theorem of
section 4 to the type systems of section 5, but only partially to that of section 6.

V ∈ Value = c | x | λpx : t. e
c ∈ Const = unit

x, y ∈ Var
e ∈ Exp = V

| e e
| refme | !e | e := e
| fork e
| new-lock x :m in e
| sync e e

s, t ∈ Type = Unit
| t →p t
| Refmt
| m

m, n, o ∈ TypeVar
p, q ∈ Permission = P(TypeVar)

Fig. 1. A concurrent, imperative language.

2 First-order Types against Races

We start by considering a first-order type system focused on race conditions,
and defer deadlock prevention to section 6. We formulate our type system for
the concurrent, imperative language described in figure 1. The language is call-
by-value, and includes values (constants, variables, and function definitions),
applications, and the usual imperative operations on reference cells: allocation,
dereferencing, and assignment. Although the language does not include explicit
support for recursion, recursive functions can be encoded using reference cells,
as described in section 2.2 below.

The language allows multithreaded programs by including the operation
fork e which spawns a new thread for the evaluation of e. This evaluation is
performed only for its effect; the result of e is never used. Locks are provided
for thread synchronization. A lock has two states, locked and unlocked, and
is initially unlocked. The expression new-lock x : m in e dynamically allocates
a new lock, binds x to that lock, and then evaluates e. It also introduces the
type variable m which denotes the singleton lock type of the new lock. The
expression sync e1 e2 is evaluated in a manner similar to Java’s synchronized
statement [14]: the subexpression e1 is evaluated first, and should yield a lock,
which is then acquired; the subexpression e2 is then evaluated; and finally the
lock is released. The result of e2 is returned as the result of the sync expression.
While evaluating e2, the current thread is said to hold the lock, or, equivalently,
is in a critical section on the lock. Any other thread that attempts to acquire the
lock blocks until the lock is released. Locks are not reentrant; that is, a thread
cannot reacquire a lock that it already holds. A new thread does not inherit
locks held by its parent thread.

2.1 The Type Rules

The type of an expression depends on a typing environment E, which maps
program variables to types, and maps type variables to the kind Lock (the kind

Judgments

E � � E is a well-formed typing environment
E � t t is a well-formed type in E
E � p p is a well-formed permission in E
E � s <: t s is a subtype of t in E
E � p <: q p is a subpermission of q in E
E ; p � e : t e is a well-typed expression of type t in E with p

Rules

∅ � � (Env ∅)

E � t x �∈ dom(E)

E, x : t � � (Env x)

E � � m �∈ dom(E)

E, m ::Lock � � (Env m)

E � �
E � Unit

(Type Unit)

E � s E � t E � p

E � s →p t
(Type Fun)

E � t E � m

E � Refmt
(Type Ref)

E, m ::Lock , E′ � �
E, m ::Lock , E′ � m

(Type Lock)

E � �
E � m for all m ∈ p

E � p
(Perm)

E � p E � q p ⊆ q

E � p <: q
(Subperm)

E � t

E � t <: t
(Sub Refl)

E � s1 <: t1
E � t2 <: s2

E � p <: q

E � (t1 →p t2) <: (s1 →q s2)
(Sub Fun)

E � �
E ; ∅ � unit : Unit

(Exp Unit)

E, x : t,E′ � �
E, x : t, E′ ; ∅ � x : t

(Exp x)

E, x : s ; p � e : t

E ; ∅ � λpx :s. e : s →p t
(Exp Fun)

E ; p � e1 : s →p t
E ; p � e2 : s

E ; p � e1 e2 : t
(Exp Appl)

E � m E ; p � e : t

E ; p � refme : Refmt
(Exp Ref)

E ; p � e : Refmt m ∈ p

E ; p �!e : t
(Exp Deref)

E ; p � e1 : Refmt
E ; p � e2 : t m ∈ p

E ; p � e1 := e2 : Unit
(Exp Set)

E ; ∅ � e : t

E ; ∅ � fork e : Unit
(Exp Fork)

E, m ::Lock , x : m ; p � e : t
E � p E � t

E ; p � new-lock x :m in e : t
(Exp Lock)

E ; p � e1 : m
E ; p ∪ {m} � e2 : t

E ; p � sync e1 e2 : t
(Exp Sync)

E ; p � e : t
E � p <: q E � t <: s

E ; q � e : s
(Exp Sub)

Fig. 2. The first-order type system.

of singleton lock types). The typing environment is organized as a sequence of
bindings, and we use ∅ to denote the empty environment.

E ::= ∅ | E, x : t | E, m ::Lock

We define the type system using six judgments. These judgments are de-
scribed in figure 2, together with rules for reasoning about the judgments. The
core of the type system is the set of rules for the judgment E ; p � e : t (read
“e is a well-typed expression of type t in typing environment E with permis-
sion p”). Our intent is that, if this judgment holds, then e is race-free and yields
values of type t, provided the current thread holds at least the locks described
by p, and the free variables of e are given bindings consistent with the typing
environment E.

The rule (Exp Fun) for functions λpx :s. e checks that e is race-free given
permission p, and then records this permission as part of the function’s type:
s →p t. The rule (Exp Appl) ensures that this permission is available at each call
site of the function. The rule (Exp Ref) records the singleton lock type of the
protecting lock as part of each reference-cell type: Refmt. The rules (Exp Deref)
and (Exp Set) ensure that this lock is held (i.e., is in the current permission)
whenever the reference cell is accessed. A single lock may protect several refer-
ence cells; in an obvious extension of our language, it could protect an entire
record or object.

The rule (Exp Fork) typechecks the spawned expression using the empty per-
mission, since threads never inherit locks from their parents. The rule (Exp Lock)
for new-lock x :m in e requires the type t of e to be well-formed in the original
typing environment (E � t). This requirement implies that t cannot contain the
type variable m, and hence the new-lock expression cannot return the newly
allocated lock. This constraint suffices to ensure that different singleton lock
types of the same name are not confused. It is somewhat restrictive, but we can
circumvent it by using existential types as described in section 5.2 below.

The rule (Exp Sync) for sync e1 e2 requires that e1 yield a value of some
singleton lock type m, and then typechecks e2 with an extended permission that
includes the type of the newly acquired lock. The use of this synchronization
construct ensures that lock acquisition and release operations follow a stack-like
discipline, which significantly simplifies the development of the type system.

The rule (Exp Sub) allows for subsumption on both types and permissions.
If E � p <: q, then any expression that is race-free with permission p is also
race-free with the superset q of p.

2.2 Examples

For clarity, we present example programs using an extended language with in-
tegers, let -expressions, and a sequential composition operator (;). The program
P1 is a trivial example of using locks; it first allocates a lock and a reference
cell protected by that lock, and then it acquires the lock and dereferences the
cell. The program P2 is slightly more complicated. It first allocates a lock and

defines a function g that increments reference cells protected by that lock. It
then allocates two such reference cells, and uses g to increment both of them.
The type of g is ((Refm Int) →{m} Int); it expresses that the protecting lock
should be acquired before g is called.

P1
∆= new-lock x :m in

let y = refm1 in
sync x !y

P2
∆= new-lock x :m in

let g = λ{m}z :RefmInt. z :=!z + 1
y1 = refm1
y2 = refm2

in sync x (g y1; g y2)

Although the language does not include explicit support for recursion, we can
encode recursion using reference cells. This idea is illustrated by the following
program, which implements a server that repeatedly handles incoming requests.
The core of this server is a recursive function that first allocates a new lock x2

and associated reference cell y2, then uses y2 in handling an incoming request,
and finally calls itself recursively to handle the next incoming request.

new-lock x1 :m1 in
let y1 = refm1

(λ∅x :Unit. x) in
sync x1

y1 := λ∅x :Unit.
new-lock x2 :m2 in

let y2 = refm2
0 in

. . .
(!y1 unit);

(!y1 unit)

; Allocate a lock and a ref cell
; initialized to the identity function.
; Acquire the lock and set the ref cell
; to the recursive function.
; Allocate a local lock
; and a local ref cell.
; Use the local ref cell.
; Call the recursive function.
; Start the server running.

The type variable m2 denotes different singleton lock types at different stages of
the execution, but these different types are not confused by the type system.

2.3 Expressiveness

Although the examples shown above are necessarily simple, the first-order type
system is sufficiently expressive to verify a variety of non-trivial programs. In
particular, any sequential program that is well-typed in the underlying sequen-
tial type system has an annotated variant that is well-typed in our type sys-
tem. This annotated variant is obtained by enclosing the original program in
the context new-lock x : m in sync x [] (which allocates and acquires a new
lock of type m), annotating each reference cell with the type m, and annotat-
ing each function definition with the permission {m}. This approach can be
generalized to multithreaded programs with a coarse locking strategy based on
several global locks. It also suggests how to annotate thread-local data: writing
fork (new-lock x : m in sync x e) for spawning e and using x as the lock for
protecting thread-local reference cells in e.

The type system does have some significant restrictions: functions cannot
abstract over lock types, and the new-lock construct cannot return the newly

allocated lock; these restrictions are overcome in section 5. In addition, our type
system is somewhat over-conservative in that it does not allow simultaneous
reads of a data structure, even though simultaneous reads are not normally
considered race conditions, and in fact many programs use reader-writer locks
to permit such simultaneous reads [5]. We believe that adding a treatment of
reader-writer locks to our type system should not be difficult.

3 Operational Semantics

We specify the operational semantics of our language using the abstract machine
described in figure 3. The machine evaluates a program by stepping through a
sequence of states. A state consists of three components: a lock store, a reference
store, and a collection of expressions, each of which represents a thread. The
expressions are written in a slight extension of the language Exp, called Expr,
which includes the new construct in-sync. Since the result of the program is the
result of its initial thread, the order of the threads in a state matters; therefore,
we organize the threads as a sequence, and the first thread in the sequence is
always the initial thread. We use the notation Ti to mean the ith element of a
thread sequence T , where the initial thread is at index 0, and we use T.T ′ to
denote the concatenation of two sequences.

Reference cells are kept in a reference store σ, which maps reference locations
to values. Locks are kept in a lock store π, which maps lock locations to either
0 or 1; π(l) = 1 when the lock l is held by some thread. Reference locations
and lock locations are simply special kinds of variables that can be bound only
by the respective stores. For each lock location l, we introduce a type variable
ol to denote the corresponding singleton lock type. A lock store that binds a
lock location l also implicitly binds the corresponding type variable ol with kind
Lock ; the only value of type ol is l.

The evaluation of a program starts in an initial state with empty lock and
reference stores and with a single thread. Evaluation then takes place according
to the machine’s transition rules. These rules specify the behavior of the various
constructs in the language. The evaluation terminates once all threads have been
reduced to values, in which case the value of the initial thread is returned as the
result of the program. We use the notation e[V/x] to denote the capture-free
substitution of V for x in e, and use σ[r �→ V] to denote the store that agrees
with σ except at r, which is mapped to V .

The transition rules are mostly straightforward. The only unusual rules are
the ones for lock creation and for sync expressions. To evaluate the expression
new-lock x :m in e, the transition rule (Trans Lock) allocates a new lock location
l and replaces occurrences of x in e with l. The rule also replaces occurrences of
m in e with the type variable ol. To evaluate the expression sync l e, the transi-
tion rule (Trans Sync) acquires the lock l and yields the term in-sync l e. This
term denotes that the lock l has been acquired and that the subexpression e is
currently being evaluated. Since in-sync l [] is an evaluation context, subsequent
transitions evaluate the subexpression e. Once this subexpression yields a value,

Evaluator
eval ⊆ Exp × Value

eval(e, V) ⇐⇒ 〈∅, ∅, e〉 −→∗ 〈π, σ, V.unit. · · · .unit〉
State space

S ∈ State = LockStore × RefStore × ThreadSeq
π ∈ LockStore = LockLoc ⇀ {0, 1}
σ ∈ RefStore = RefLoc ⇀ Value
l ∈ LockLoc ⊂ Var
r ∈ RefLoc ⊂ Var
T ∈ ThreadSeq = Exp∗

r

f ∈ Expr = V | f e | V f | refmf | !f | f := e | r := f
| fork e | new-lock x :m in e
| sync f e | in-sync l f

Evaluation contexts

E = [] | E e | V E | refmE | !E | E := e | r := E
| sync E e | in-sync l E

Transition rules

〈π, σ, T.E [(λpx : t. e) V].T ′〉 −→ 〈π, σ, T.E [e[V/x]].T ′〉 (Trans Appl)

〈π, σ, T.E [refmV].T ′〉 −→ 〈π, σ[r → V], T.E [r].T ′〉 (Trans Ref)
if r �∈ dom(σ)

〈π, σ, T.E [!r].T ′〉 −→ 〈π, σ, T.E [V].T ′〉 (Trans Deref)
if σ(r) = V

〈π, σ, T.E [r := V].T ′〉 −→ 〈π, σ[r → V], T.E [unit].T ′〉 (Trans Set)

〈π, σ, T.E [new-lock x :m in e].T ′〉
−→ 〈π[l → 0], σ, T.E [e[l/x, ol/m]].T ′〉 (Trans Lock)

if l �∈ dom(π)

〈π[l → 0], σ, T.E [sync l e].T ′〉
−→ 〈π[l → 1], σ, T.E [in-sync l e].T ′〉 (Trans Sync)

〈π[l → 1], σ, T.E [in-sync l V].T ′〉
−→ 〈π[l → 0], σ, T.E [V].T ′〉 (Trans In-Sync)

〈π, σ, T.E [fork e].T ′〉 −→ 〈π, σ, T.E [unit].T ′.e〉 (Trans Fork)

Fig. 3. The abstract machine.

Judgment

� S : t S is a well-typed state of type t

Rules

dom(π) = {l1, . . . , lj} dom(σ) = {r1, . . . , rk}
E = ol1 ::Lock , l1 : ol1 , . . . , olj ::Lock , lj : olj , r1 : Refn1

s1, . . . , rk : Refnk
sk

∀i ∈ 1..k. E ; ∅ � σ(ri) : si

|T | > 0 ∀i < |T |. E ; ∅ � Ti : ti

� 〈π, σ, T 〉 : t0

E ; ∅ � l : m E ; (p ∪ {m}) � f : t

E ; p � in-sync l f : t

Fig. 4. Additional judgment and rules for typing states.

the transition rule (Trans In-Sync) releases the lock and returns that value as
the result of the original sync expression. We say that an expression f is in a
critical section on a lock location l if f = E [in-sync l f ′] for some evaluation
context E and expression f ′.

The machine arbitrarily interleaves the execution of threads. Since different
interleavings may yield different results, the evaluator eval is a proper relation
and not simply a partial function.

We use the semantics to formalize the notion of a race condition. An expres-
sion f accesses a reference location r if there exists some evaluation context E
such that f = E [!r] or f = E [r := V]. A state has a race condition if its thread
sequence contains two expressions that access the same reference location. A
program e has a race condition if its evaluation may yield a state with a race
condition, that is, if there exists a state S such that 〈∅, ∅, e〉 �−→∗ S and S has a
race condition.

4 Well-typed Programs Don’t Have Races

The fundamental property of the type system is that well-typed programs do
not have race conditions. The first component of the proof of this property is a
subject reduction result stating that typing is preserved during evaluation. To
prove this result, we extend typing judgments from expressions in Exp to expres-
sions in Expr and then to machine states as shown in figure 4. The judgment
� S : t says that S is a well-typed state yielding values of type t.

Lemma 1 (Subject Reduction). If � S : t and S �−→ S′, then � S′ : t.

Independently of the type system, locks provide mutual exclusion, in that two
threads can never be in a critical section on the same lock. The judgment �cs S

Judgments

M �cs f f has exactly one critical section for each lock in M
�cs S S is well-formed with respect to critical sections

Rules

e ∈ Exp

∅ �cs e

M �cs f
f ′ = f e | V f | | refmf | !f

| f := e | r := f | sync f e

M �cs f ′

M �cs f

M� {l} �cs in-sync l f

∀i < |T |. Mi �cs Ti

M = M0 � · · · �M|T |−1

∀l ∈ M. π(l) = 1

�cs 〈π, σ, T 〉

Fig. 5. Additional judgments and rules for reasoning about critical sections.

says that at most one thread is in a critical section on each lock in S (see figure 5).
According to Lemma 2, the property �cs S is maintained during evaluation.

Lemma 2 (Mutual Exclusion). If �cs S and S �−→ S′, then �cs S′.

Lemma 3 says that a well-typed thread accesses a reference cell only when it
holds the protecting lock.

Lemma 3. Suppose that E ; ∅ � f : t, and f accesses reference location r. Then
E ; ∅ � r : Refms for some lock type m and type s. Furthermore, there exists lock
location l such that E ; ∅ � l : m and f is in a critical section on l.

This lemma implies that states that are well-typed and well-formed with
respect to critical sections do not have race conditions.

Lemma 4. Suppose � S : t and �cs S. Then S does not have a race condition.

We conclude that well-typed programs do not have race conditions.

Theorem 1. If ∅ ; ∅ � e : t then e does not have a race condition.

5 Second-order Types against Races

Although the first-order type system of section 2 is applicable to a variety of
multithreaded programs, there are many race-free programs that it cannot verify.
This section describes extensions that allow the verification of more complex
programs. These extensions rely on polymorphism and type abstraction, which
are fairly easy to incorporate into a type-based approach such as ours.

Extended syntax
V ∈ Value = . . . | Λm ::Lock . V
e ∈ Exp = . . . | e[m]

s, t ∈ Type = . . . | ∀m ::Lock . t

Additional rules

E, m ::Lock � t

E � ∀m ::Lock . t

E, m ::Lock � s <: t

E � (∀m ::Lock . s) <: (∀m ::Lock . t)

E, m ::Lock ; ∅ � V : t

E ; ∅ � Λm ::Lock . V : (∀m ::Lock . t)

E ; p � e : (∀m ::Lock . t) E � n

E ; p � e[n] : t[n/m]

Fig. 6. Extending the first-order type system with universal types.

5.1 Polymorphism over Lock Types

The first-order type system does not permit functions parameterized by lock
types. To overcome this limitation, we extend the type system to include poly-
morphism, as described in figure 6. The only unusual aspect of this extension
is that we require the body of a polymorphic abstraction to be a value. This
restriction avoids the need to annotate polymorphic abstractions with permis-
sions, since the trivial evaluation of a value requires only the empty permission.
(If needed, we can still include a non-value expression in a polymorphic abstrac-
tion by wrapping the expression in a function definition.)

Examples The following program P3 defines a polymorphic function for incre-
menting a reference cell. The function abstracts over both the reference cell and
the type of the lock protecting the reference cell, and the caller is responsible for
acquiring that lock. The program P4 is similar, except that the lock is acquired
inside the increment function.

P3
∆= let g = Λn ::Lock .

λ{n}z :RefnInt.
z :=!z + 1

in new-lock x :m in
let y = refm0 in

sync x (g[m] y)

P4
∆= let g = Λn ::Lock .

λ∅w :n.

λ∅z :RefnInt.
sync w (z :=!z + 1)

in new-lock x :m in
let y = refm0 in

g[m] x y

5.2 Existential Quantification over Lock Types

All our type systems require that the result type of new-lock x :m in e be a well-
formed type in the environment of the new-lock expression. This requirement
forbids returning the type variable m out of the scope of its binding new-lock
expression, and hence unfortunately excludes some useful programming patterns.

Extended syntax

V ∈ Value = . . . | pack m ::Lock = n with V
e ∈ Exp = . . . | open e as m ::Lock , x : t in e

s, t ∈ Type = . . . | ∃m ::Lock . t

Additional rules

E, m ::Lock � t

E � ∃m ::Lock . t

E, m ::Lock � s <: t

E � (∃m ::Lock . s) <: (∃m ::Lock . t)

E � n E ; ∅ � V [n/m] : t[n/m]

E ; ∅ � pack m ::Lock = n with V : (∃m ::Lock . t)

E ; p � e1 : (∃m ::Lock . t)
E, m ::Lock , x : t ; p � e2 : s

E � s

E ; p � open e1 as m ::Lock , x : t in e2 : s

Fig. 7. Extending the first-order type system with existential types.

For example, consider a multithreaded implementation of binary trees. To reduce
lock contention, the implementation may protect each node with a separate lock.
The node allocation routine thus needs to create a fresh lock, say of type m, and
return a new node of type m × Refmα × Refmα, where α is the type of the node’s
children. But including m in the return type implies lifting it out of its binding
new-lock expression, and is forbidden by the type system.

We circumvent this restriction by noting that the caller of the allocation
routine does not care which singleton lock type is used to protect the node. The
caller requires only that there exist some lock type m such that the node has type
m × Refmα × Refmα. This insight suggests the use of existential types for typing
such programs. It is straightforward to extend the type system with existential
types, as outlined in figure 7. The type rules closely follow the conventional
rules for existential types [6]. In the rule for pack , the lock type n is hidden and
replaced with the type variable m in the resulting existential type (∃m ::Lock . t).
We do not explicitly allow for renaming in the rule for open , since renaming can
be accomplished using α-conversion, if necessary.

Examples Some of the following examples use product, sum, and recursive
types, which are easily added to the type system, as in [6]. Values of these
additional types are manipulated by the following operations: 〈e1, . . . , en〉 creates
a value of a product type, whose components are retrieved by the operations first ,
second , etc.; inLeft creates a value of a sum type, whose component is retrieved
by asLeft ; inRight and asRight behave in a similar manner; and fold and unfold
convert between a recursive type µα. t and its unfolding t[(µα. t)/α].

The following expression P5 provides a simple example of using existential
types. This expression has type ∃m ::Lock . (m × RefmInt), and it returns a pair
consisting of a lock and a reference cell protected by that lock. The expression
P6 opens P5 and retrieves the value of the reference cell.

P5
∆= new-lock x :n in

let y = 〈x, (refn0)〉 in
pack m ::Lock = n with y

P6
∆= open P5 as

m ::Lock , y : (m × RefmInt) in
sync first(y) !second(y)

For a more realistic example, we reconsider how to implement binary trees
using a separate lock to protect each node. In this implementation, a leaf node is
represented simply as unit, and an interior node is represented as a triple, using
an existential type to hide the type of the protecting lock. The type of a binary
tree is thus:

T
∆= µα. (Unit + ∃m ::Lock . (m × Refmα × Refmα))

Some typical routines for manipulating binary trees are:

leaf : T
∆= fold(inLeft(unit))

alloc-node : T →∅ (T →∅ T) ∆= λ∅l :T .

λ∅r :T .
new-lock x :n in

pack m ::Lock = n with
fold(inRight(〈x, refnl, refnr〉))

left-child : T →∅ T
∆= λ∅x :T .

open asRight(unfold(x))
as m ::Lock , y : (m × RefmT × RefmT)
in sync first(y) !second(y)

6 Preventing Deadlocks

The type systems described so far ensure that well-typed programs do not have
race conditions. However, these programs may still suffer from other errors, in
particular deadlocks.

We formalize the notion of deadlock using the operational semantics of fig-
ure 3. An expression f requests a lock l if f = E [sync l e]. A state is deadlocked
if there is a cycle of threads in the state such that each thread requests a lock
held by the next thread in the cycle. More precisely, a state S = 〈π, σ, T 〉 is
deadlocked if there exist lock locations l0, . . . , ln and indices d0, . . . , dn−1 of T
such that n > 0, l0 = ln, and for each 0 ≤ i < n, thread Tdi is in a critical
section on li and requests lock li+1. A program e may deadlock if its evaluation
may yield a deadlocked state, that is, if there exists a deadlocked state S such
that 〈∅, ∅, e〉 �−→∗ S.

Judgments (in addition to those of figure 2)

E � m :: (m1, m2) m is in the interval (m1, m2) in E
E � m1 ≺ m2 m1 is less than m2 in E
E � (m1, m2) (m1, m2) is a well-formed, non-empty interval in E

Rules (partial list)

E � � m �∈ dom(E)
E � (m1, m2)

E, m :: (m1, m2) � �

E, m :: (m1, m2), E
′ � �

E, m :: (m1, m2), E
′ � m :: (m1, m2)

E � � E � m :: (m1, m2)
m1 ∈ m1

E � m1 ≺ m

E � � E � m :: (m1, m2)
m2 ∈ m2

E � m ≺ m2

E � � E � m

E � m ≺ �
E � � E � m

E � ⊥ ≺ m

E � m1 ≺ m E � m ≺ m2

E � m1 ≺ m2

E � �
∀m1 ∈ m1. ∀m2 ∈ m2. E � m1 ≺ m2

E � (m1, m2)

m1 ⊆ m2

E � L2 ≺ L1 or L1 = L2

E � 〈m1, L1〉 <: 〈m2, L2〉

E ; 〈m, L〉 � e : Refmt m ∈ m

E ; 〈m, L〉 �!e : t

E ; 〈m, L〉 � e1 : Refmt
E ; 〈m, L〉 � e2 : t m ∈ m

E ; 〈m, L〉 � e1 := e2 : Unit

E ; 〈∅,⊥〉 � e : t

E ; 〈∅,�〉 � fork e : Unit

E, m :: (m1, m2), x : m ; p � e : t
E � p E � t

E ; p � new-lock x :m :: (m1, m2) in e : t

E ; 〈m, L〉 � e1 : m E � L ≺ m
E ; 〈m ∪ {m}, m〉 � e2 : t

E ; 〈m, L〉 � sync e1 e2 : t

Fig. 8. Extending the type system for deadlock elimination (highlights).

In practice, deadlocks are commonly avoided by imposing a strict partial
order on locks, and respecting this order when acquiring locks [5]. Next we
capture this discipline by embodying it in an extension of our type system.

Our extended type system relies on annotations that specify a lock ordering.
Whenever we introduce a singleton lock type, we must specify an appropriate
order between that lock type and the other lock types in the program. If m1 and
m2 are sets of lock types, then we use the notation m :: (m1, m2) to mean that
the lock type m is greater than each lock in m1 and is less than each lock in m2.
Thus the interval (m1, m2) specifies a kind. In the extended language, we use
kinds of the form (m1, m2) instead of the kind Lock :

V ∈ Value = . . . | Λm :: (m1, m2). V
| pack m :: (m1, m2) = n with V

e ∈ Exp = . . . | new-lock x :m :: (m1, m2) in e
| open e as m :: (m1, m2), x : t in e

s, t ∈ Type = . . . | ∃m :: (m1, m2). t
| ∀m :: (m1, m2). t

The type system ensures that locks are acquired in the appropriate order
using the notion of a locking level . A locking level L is either a particular lock
type, in which case any greater lock can be acquired, or ⊥, in which case all
locks can be acquired, or �, in which case no lock can be acquired. We extend
permissions to include a locking-level component, so a permission is a pair of
a lock set and a locking level. The trivial, empty permission is 〈∅,�〉, and the
initial permission (of forked threads and of the main program) is 〈∅,⊥〉.

We extend the typing environment E to map type variables to intervals
(m1, m2). The judgment E � m1 ≺ m2 expresses that m1 is less than m2; the
judgment E � (m1, m2) expresses that (m1, m2) is a well-formed, non-empty
interval; and the judgment E � m :: (m1, m2) expresses that the lock type m is
in the interval (m1, m2). In a well-formed environment, the ordering constraints
on lock variables induce a strict partial order.

The necessary modifications to the type rules are outlined in figure 8. Most
of the rules are straightforward adaptations of earlier rules. The rule for fork
initializes a newly spawned thread with the locking level ⊥, since that thread
is free to acquire any lock. The rule for sync ensures that locks are acquired in
increasing order. Collectively, the type rules check that threads respect the strict
partial order on locks, as required by the discipline for preventing deadlocks.

7 Related Work

Race conditions and deadlocks have been studied for decades, for example in
the program-verification literature. In this section, we mention some of the work
most closely related to ours.

Warlock [22] is a system for detecting race conditions and deadlocks statically.
Its goals are similar to those of our type system. The major differences are that
Warlock is an implemented system applicable to substantial programs, and that

Warlock may fail to detect certain race conditions. This unsoundness is partly
due to the target language (ANSI C), and partly due to two other difficulties that
are overcome by our system. First, Warlock works by tracing execution paths,
but it fails to trace paths through loops or recursive function calls. Second,
Warlock appears to merge different locks of the same type, and so may fail to
detect inconsistent locking.

Aiken and Gay [2] also investigate static race detection, in the somewhat
different setting of SPMD programs. They present a system that has been used
successfully on a variety of SPMD programs. Synchronization in these programs
is performed using barriers. Since a barrier is a global operation not associated
with any particular variable in the program, they do not develop machinery for
tracking the association between reference cells and their protecting locks.

A number of analyses have been developed for concurrent languages such as
CML [20]. Nielson and Nielson [19] present an analysis that predicts process and
channel utilization and uses this information for optimization. Their analysis is
based on the notion of behaviors, which are similar to our permissions. Colby [9]
also presents an analysis that infers information about channel usage. Neither
work treats race conditions or deadlocks.

Kobayashi [16] presents a first-order type system for a process calculus. His
type system has a deadlock-free subset, and uses the notion of time tags, which
are similar to our locking levels. Although Kobayashi considers some sophisti-
cated determinism properties, he does not address race conditions directly.

Abramsky, Gay, and Nagarajan [1] present another type-based technique for
avoiding deadlocks. Their work is based on interaction categories inspired by
linear logic. It emphasizes issues of type structure, rather than their application
to a specific programming language.

Dwyer and Clarke [11] describe a data-flow analysis for verifying certain
correctness properties of concurrent programs, for example mutual exclusion on
particular resources. The authors suggest that their analysis is not well suited for
detecting global properties such as deadlock. Avrunin et al. [4] describe a toolset
for analyzing concurrent programs. This toolset has been used for detecting race
conditions and deadlocks in a variety of benchmarks, on a case-by-case basis.

Savage et al. [21] describe Eraser, a tool for detecting race conditions and
deadlocks dynamically (rather than statically, as in our method). Although quite
effective, Eraser may fail to detect certain race conditions and deadlocks because
of insufficient test coverage. In general, static checking and testing are comple-
mentary, and they should both be used in the development of reliable software.
Hybrid approaches (like that of the Cilk Determinator [8]) seem promising.

There is a large amount of work on model-checking of concurrent programs,
particularly focused on finite-state systems (e.g., [7, 10, 12]). Recently, Godefroid
has applied model-checking techniques to C programs [13]; his approach, state-
less state-space exploration, relies on dynamic observation rather than static
analysis.

The permissions that we use are similar to effects [15, 17, 18] in that the
permission of an expression constrains the effects that it may produce. Much

work has been done on effect reconstruction [3, 23–25]. It may be possible to
adapt these inference methods in our setting in order to remove the need for
explicit lock annotations.

8 Conclusions

This paper describes how a type system can be used for avoiding two major
pitfalls of multithreaded programming, namely race conditions and deadlocks.
Our approach requires annotating programs with locking information. We be-
lieve that this information is usually known to competent programmers and
often implicit in documentation. However, it may be worthwhile to investigate
algorithms for inferring the annotations. Such algorithms would be helpful in
tackling larger examples and in extending our techniques to programming lan-
guages more realistic than the one treated in this paper. Also helpful would be
a mechanism for escaping from our type system when it proves too restrictive.
We leave those issues for further work.

For sequential languages, standard type systems provide a means for express-
ing and checking fundamental correctness properties. We hope that type systems
such as ours will play a similar role in the realm of multithreaded programming.

Acknowledgments

Comments from Mike Burrows, Rustan Leino, and Mark Lillibridge were helpful
for this work.

References

1. S. Abramsky, S. Gay, and R. Nagarajan. A type-theoretic approach to deadlock-
freedom of asynchronous systems. In Theoretical Aspects of Computer Software,
volume 1281 of Lecture Notes in Computer Science, pages 295–320. Springer-
Verlag, 1997.

2. A. Aiken and D. Gay. Barrier inference. In Proceedings of the 25th Symposium on
Principles of Programming Languages, pages 243–354, 1998.

3. T. Amtoft, F. Nielson, and H. R. Nielson. Type and behaviour reconstruction for
higher-order concurrent programs. Journal of Functional Programming, 7(3):321–
347, 1997.

4. G. S. Avrunin, U. A. Buy, J. C. Corbett, L. K. Dillon, and J. C. Wileden. Au-
tomated analysis of concurrent systems with the constrained expression toolset.
IEEE Transactions on Software Engineering, 17(11):1204–1222, 1991.

5. A. D. Birrell. An introduction to programming with threads. Research Report 35,
Digital Equipment Corporation Systems Research Center, 1989.

6. L. Cardelli. Type systems. Handbook of Computer Science and Engineering, pages
2208–2236, 1997.

7. A. T. Chamillard, L. A. Clarke, and G. S. Avrunin. Experimental design for
comparing static concurrency analysis. Technical Report 96-084, Department of
Computer Science, University of Massachusetts at Amherst, 1996.

8. G.-I. Cheng, M. Feng, C. E. Leiserson, K. H. Randall, and A. F. Stark. Detecting
data races in Cilk programs that use locks. In Proceedings of the 10th Symposium
on Parallel Algorithms and Architectures, pages 298–309, 1998.

9. C. Colby. Analyzing the communication topology of concurrent programs. In ACM
Symposium on Partial Evaluation and Semantics-Based Program Manipulation,
pages 202–213, 1995.

10. J. C. Corbett. Evaluating deadlock detection methods for concurrent software.
IEEE Transactions on Software Engineering, 22(3):161–180, 1996.

11. M. B. Dwyer and L. A. Clarke. Data flow analysis for verifying properties of
concurrent programs. Technical Report 94-045, Department of Computer Science,
University of Massachusetts at Amherst, 1994.

12. L. Fajstrup, E. Goubault, and M. Raussen. Detecting deadlocks in concurrent
systems. In CONCUR’98: Concurrency Theory, volume 1466 of Lecture Notes in
Computer Science. Springer-Verlag, 1998.

13. P. Godefroid. Model checking for programming languages using VeriSoft. In Pro-
ceedings of the 24th Symposium on Principles of Programming Languages, pages
174–186, 1997.

14. J. Gosling, B. Joy, and G. Steele. The Java Language Specification. Addison-
Wesley, 1996.

15. P. Jouvelot and D. Gifford. Algebraic reconstruction of types and effects. In
Proceedings of the 18th Symposium on Principles of Programming Languages, pages
303–310, 1991.

16. N. Kobayashi. A partially deadlock-free typed process calculus. In Proceedings of
the 12th Annual IEEE Symposium on Logic in Computer Science, pages 128–139,
1997.

17. J. M. Lucassen and D. K. Gifford. Polymorphic effect systems. In Proceedings of
the ACM Conference on Lisp and Functional Programming, pages 47–57, 1988.

18. F. Nielson. Annotated type and effect systems. ACM Computing Surveys,
28(2):344–345, 1996. Invited position statement for the Symposium on Models
of Programming Languages and Computation.

19. H. R. Nielson and F. Nielson. Higher-order concurrent programs with finite com-
munication topology. In Proceedings of the 21st Symposium on Principles of Pro-
gramming Languages, pages 84–97, 1994.

20. J. H. Reppy. CML: a higher-order concurrent language. In ACM ’91 Conference
on Programming Language Design and Implementation., pages 293–305, 1991.

21. S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. E. Anderson. Eraser: A
dynamic data race detector for multi-threaded programs. ACM Transactions on
Computer Systems, 15(4):391–411, 1997.

22. N. Sterling. Warlock: A static data race analysis tool. In USENIX Winter Technical
Conference, pages 97–106, 1993.

23. J.-P. Talpin and P. Jouvelot. Polymorphic type, region and effect inference. Journal
of Functional Programming, 2(3):245–271, 1992.

24. M. Tofte and J.-P. Talpin. Implementation of the typed call-by-value lambda-
calculus using a stack of regions. In Proceedings of the 21st Symposium on Princi-
ples of Programming Languages, pages 188–201, 1994.

25. M. Tofte and J.-P. Talpin. Region-based memory management. Information and
Computation, 132(2):109–176, 1997.

