
Faceted Dynamic Information Flow
via Control and Data Monads

Thomas Schmitz1, Dustin Rhodes1, Thomas H. Austin2, Kenneth Knowles1,
and Cormac Flanagan1

1 U. C. Santa Cruz
2 San José State

Abstract. An application that fails to ensure information flow security
may leak sensitive data such as passwords, credit card numbers, or medi-
cal records. News stories of such failures abound. Austin and Flanagan[2]
introduce faceted values – values that present different behavior accord-
ing to the privilege of the observer – as a dynamic approach to enforce
information flow policies for an untyped, imperative λ-calculus.

We implement faceted values as a Haskell library, elucidating their
relationship to types and monadic imperative programming. In contrast
to previous work, our approach does not require modification to the lan-
guage runtime. In addition to pure faceted values, our library supports
faceted mutable reference cells and secure facet-aware socket-like commu-
nication. This library guarantees information flow security, independent
of any vulnerabilities or bugs in application code. The library uses a con-
trol monad in the traditional way for encapsulating effects, but it also
uniquely uses a second data monad to structure faceted values. To illus-
trate a non-trivial use of the library, we present a bi-monadic interpreter
for a small language that illustrates the interplay of the control and data
monads.

1 Introduction

When writing a program that manipulates sensitive data, the programmer must
prevent misuse of that data, intentional or accidental. For example, when one
enters a password on a web form, the password should be communicated to the
site, but not written to disk. Unfortunately, enforcing these kinds of information
flow policies is problematic. Developers primarily focus on correct functionality;
security properties are prioritized only after an attempted exploit.

Just as memory-safe languages relieve developers from reasoning about mem-
ory management (and the host of bugs resulting from its mismanagement), in-
formation flow analysis enforces security properties in a systemic fashion. In-
formation flow controls require a developer to mark sensitive information, but
otherwise automatically prevent any “leaks” of this data. Formally, we call this



property noninterference; that is, public outputs do not depend on private in-
puts3.

Secure multi-execution [9, 16, 23] is a relatively recent and popular informa-
tion flow enforcement technique. A program execution is split into two versions:
the “high” execution has access to sensitive information, but may only write to
private channels; the “low” execution may write to public channels, but cannot
access any sensitive information. This elegant approach ensures noninterference.

Faceted evaluation is a technique for simulating secure multi-execution with
a single process, using special faceted values that contain both a public view
and a private view of the data. With this approach, a single execution can
provide many of the same guarantees that secure multi-execution provides, while
achieving better performance.

This paper extends the ideas of faceted values from an untyped variant of
the λ-calculus [2] to Haskell and describes the implementation of faceted values
as a Haskell library. This approach provides a number of benefits and insights.

First, whereas prior work on faceted values required the development of a
new language semantics, we show how to incorporate faceted values within an
existing language via library support.

Second, faceted values fit surprisingly well (but with some subtleties) into
Haskell’s monadic structure. As might be expected, we use an IO-like monad
called FIO to support imperative updates and I/O operations. We also use a
second type constructor Faceted to describe faceted values; for example, the
faceted value 〈k ? 3 : 4〉 has type Faceted Int. Somewhat surprisingly, Faceted
turns out to also be a monad, with natural definitions of the corresponding
operations that satisfy the monad axioms [34]. These two monads, FIO and
Faceted, naturally interoperate via an associated product function [17] that
supports switching from the FIO monad to the Faceted monad when necessary
(as described in more detail below).

This library guarantees the traditional information flow security property of
termination-insensitive noninterference, independent of any bugs, vulnerabilities,
or malicious code in the client application.

Finally we present an application of this library in the form of an interpreter
for the imperative λ-calculus with I/O. This interpreter validates the expressive-
ness of the Faceted library; it also illustrates how the FIO and Faceted monads
flow along control paths and data paths respectively.

In summary, this paper contributes the following:

– We present the first formulation of faceted values and computations in a
typed context.

– We show how to integrate faceted values into a language as a library, rather
than by modifying the runtime environment.

3 We refer to sensitive values as “private” and non-sensitive values as “public”, as
confidentiality is generally given more attention in the literature on information flow
analysis. However, the same mechanism can also enforce integrity properties, such
as that trusted outputs are not influenced by untrusted inputs.



– We clarify the relationship between explicit flows in pure calculations (via
the Faceted monad) and implicit flows in impure computations (via the FIO
monad).

– Finally, we present an interpreter for an imperative λ-calculus with dynamic
information flow. The security of the implementation is guaranteed by our
library. Notably, this interpreter uses the impure monad (FIO) in the tra-
ditional way to structure computational effects, and uses the pure faceted
monad (Faceted) to structure values.

2 Review of Information Flow and Faceted Values

x = 〈k ? True : ⊥〉
do Naive NSU Fenton Faceted Evaluation

y <- newIORef True y = True y = True y = True y = True

z <- newIORef True z = True z = True z = True z = True

vx <- readIORef x − − − −
when vx pc = {k} pc = {k} pc = {k} pc = {k}

(writeIORef y False) y = 〈k ? False : ⊥〉 stuck ignored y = 〈k ? False : True〉
vy <- readIORef y − − −
when vy − − pc = {k}

(writeIORef z False) − − z = 〈k ? True : False〉
readIORef z − − −
Result: True stuck False 〈k ? True : False〉

Fig. 1. A computation with implicit flows.

In traditional information flow systems, information is tagged with a label to
mark it as confidential to particular parties. For instance, if we need to restrict
pin to bank, we might write:

pin = 4321bank

To protect this value, we must prevent unauthorized viewers from observ-
ing it, directly or indirectly. In particular, we must defend against explicit flows
where a confidential value is directly assigned to a public variable, and implicit
flows where an observer may deduce a confidential value by reasoning about the
program’s control flow. The following code shows an explicit flow from pin to
the variable x.

pin = 4321bank

x = pin + 1

Taint tracking – in languages such as Perl and Ruby – suffices to track straight-



forward explicit flows; in contrast, implicit flows are more subtle. Continuing our
example, consider the following code, which uses a mutable IORef.

do above2K ← newIORef False

if (pin > 2000)

then writeIORef above2K True

else return ()

This code illustrates a simple implicit flow. After it runs, the value of above2K

will reflect information about pin, even though the code never directly assigns
the value of pin to above2K. There are several proposed strategies for handling
these types of flows:

1. Allow the update, but mark above2K as sensitive because it was changed
in a sensitive context. This strategy can help for auditing information flows
“in the wild” [15], but it fails to guarantee noninterference, as shown in the
Naive column of Figure 1 (note that the naive computation results in True

when x is True).

2. Disallow the update to above2K within the context of the sensitive con-
ditional pin. When enforced at runtime, this technique becomes the no-
sensitive-upgrade strategy [36, 1] illustrated in the NSU column of Figure 1.
Note that while this technique maintains noninterference, it also terminates
the program prematurely.

3. Ignore the update to above2K in a sensitive context, an approach first used
by Fenton [11]. This strategy guarantees noninterference by sacrificing cor-
rectness (the program’s result may not be internally consistent). We show
this strategy in the Fenton column of Figure 1.

Faceted values introduce a third aspect to sensitive data. In addition to the
sensitive value and its label, the following faceted value includes a default public
view of ‘0000’.

pin = 〈bank ? 4321 : 0000〉

Then, when we run the previous program with this faceted pin, the value of
above2K is 〈bank ? True : False〉. The bank sees the sensitive value True, but
an unauthorized viewer instead sees the default value False, giving a consistent
picture to the unauthorized viewer while still protecting sensitive data.

Label-based information flow systems reason about multiple principals by
joining labels together (e.g. 3A+4B = 7AB). In a similar manner, faceted evalua-
tion nests faceted values to represent multiple principals, essentially constructing
a tree4 mapping permissions to values:

〈k1 ? 3 : 0〉+ 〈k2 ? 4 : 0〉 = 〈k1 ? 〈k2 ? 7 : 3〉 : 〈k2 ? 4 : 0〉〉

4 Alternatively, a faceted value can be interpreted as a function mapping sets of labels
to values, and the syntax above as merely a compact representation.



Figure 1, adapted from Austin and Flanagan [2], demonstrates a classic code
snippet first introduced by Fenton [11]. The example uses two conditional state-
ments to evade some information flow controls. When this code runs, the private
value x leaks into the public variable z. We represent the input x, a confidential
boolean value, in faceted notation as 〈k ? False : ⊥〉 for false and 〈k ? True : ⊥〉
for true, where ⊥ means roughly ‘undefined’. Boolean reference cells y and z are
initialized to True; by default, they are public to maximize the permissiveness
of these values.

When the input x is 〈k ? False : ⊥〉, the value for y remains unchanged
because the first when statement is not run. Then in the second when statement,
y is still public, and thus z also remains public because it depends only on y.
Since no private information is involved in the update to z, all information flow
strategies return the public value False as their final result.

The case where the input x is 〈k ? True : ⊥〉 is more interesting, as illustrated
in Figure 1. Note that if the final value appears as True to public observers, then
the private value x has leaked. The strategies differ in the way they handle the
update to y in the first conditional statement. Since this update depends upon
the value of x, we must be careful to avoid the potential implicit flow from x to
y. We now compare how each approach handles this update.

In the Naive column of Figure 1, the strategy tracks the influence of x by
applying the label k to y. Regardless, y is false during the second conditional,
so z retains its public True value. Thus, under Naive information flow control,
the result of this code sample is a public copy of x, violating noninterference.

The No-Sensitive-Upgrade approach instead terminates execution on this up-
date, guaranteeing termination-insensitive noninterference, but at the cost of
potentially rejecting valid programs. Stefan et al. implement this strategy in
the elegant LIO library for Haskell [32]. Our work shares the motivations of
LIO, but extends beyond the No-Sensitive-Upgrade strategy to support faceted
values, thus enabling correct execution of more programs.

The Fenton strategy forbids the update to y, but allows execution to continue.
This approach avoids abnormal termination, but it may return inaccurate results,
as shown in Figure 1.

Faceted evaluation solves this dilemma by simulating different executions of
this program, allowing it to provide accurate results and avoid rejecting valid
programs. In the Faceted Evaluation column, we see that the update to y results
in the creation of a new faceted value 〈k ? False : True〉. Any viewer autho-
rized to see k-sensitive data5 can see the real value of y; unauthorized viewers
instead see True, thus hiding the value of x. In the second conditional assign-
ment, the runtime updates z in a similar manner and produces the final result
〈 k ? True : False 〉. In contexts with the k security label, this value will behave
as True; in other contexts, it will behave as False. This code therefore provides
noninterference, avoids abnormal termination, and provides accurate results to
authorized users.

5 That is, authorized to see data marked as sensitive to principal k.



3 Library Overview

We implement faceted computation in Haskell as a library that enforces infor-
mation flow security dynamically, using abstract data types to prevent buggy
or malicious programs from circumventing dynamic protections. In contrast, the
original formulation [2] added faceted values pervasively to the semantics of
a dynamically-typed, imperative λ-calculus. Because of the encapsulation of-
fered by Haskell’s type system, we do not need to modify the language se-
mantics. Our library is available at https://github.com/haskell-facets/

haskell-faceted.
Our library is conceptually divided into the following components:

– Pure faceted values of type a (represented by the type Faceted a).
– Imperative faceted computations (represented by the type FIO a), which can

operate on:

• faceted reference cells (represented by the type FioRef a), and
• facet-enabled file handles / sockets (represented by the type FHandle).

3.1 Pure Faceted Values: Faceted a

Figure 2 shows the public interface for the pure fragment of our library. This
fragment tracks explicit data flow information in pure computations.

type Label = String

data Faceted a

public :: a → Faceted a

faceted :: Label → Faceted a → Faceted a → Faceted a

bottom :: Faceted a

instance Monad Faceted

Fig. 2. Interface for the pure fragment of the Faceted library.

Our implementation presumes that security labels are strings, though leaving
the type of labels abstract is straightforward.

A value of type Faceted a represents multiple values, or facets, of type a.
To maintain security, the facets should not be directly observable; therefore, the
data type is abstract.

The function public injects any type a into the type Faceted a. It accepts
a value v of type a and returns a faceted value that behaves just like v for any
observer.



The function faceted constructs a value of type Faceted a from a label
k and two other faceted values priv and pub, each of type Faceted a. To any
viewer authorized to see k, the result behaves as priv; to all other observers, the
result behaves as pub (and so on, recursively).

The value bottom (abbreviated ⊥) is a member of Faceted a for any a, and
represents a lack of a value. bottom is used when a default value is necessary,
such as in a public facet. Any computation based on bottom results in bottom.

From faceted, we can define various derived constructors for creating faceted
values with minimal effort. For example:

makePrivate :: Label → a → Faceted a

makePrivate k v = faceted k (public v) bottom

makeFacets :: Label → a → a → Faceted a

makeFacets k priv pub = faceted k (public priv) (public pub)

The Monad instance for Faceted conveniently propagates security labels as
appropriate. For example, the following code uses Haskell’s do syntax to multiply
two values of type Faceted Int.

do x ← makeFacets "k" 7 1 -- <"k" ? 7 : 1>

y ← makeFacets "l" 6 1 -- <"l" ? 6 : 1>

return (x ∗ y) -- <"k" ? <"l" ? 42 : 7> : <"l" ? 6 : 1>>

Here, x is an Int that is extracted from (faceted "k" 7 1), either 7 or 1. The
Faceted monad instance automatically executes the remainder of the do block
twice (once for each possible value of x) before collecting the various results into
a faceted value. The situation is similar for y, so the final faceted value is a tree
with four leaves.

3.2 Faceted Reference Cells: FIO a and FioRef a

For the pure language of Section 3.1, information flow analysis is straightforward
because all dependencies between values are explicit; there are no implicit flows.
An implicit flow occurs when a value is computed based on side effects that
depend on private data, as in the following example, where x is an IORef with
initial value 0.

do if secret == 42 -- working in IO monad

then writeIORef x 1

else writeIORef x 2

readIORef x

The return value will be 1 if and only if secret == 42.
Suppose we opt to protect the confidentiality of secret by setting secret =

makePrivate k 42. The type of secret is now Faceted Int. Then our example
can be reformulated:

do n ← secret -- working in Faceted monad

return $ do if n == 42 -- working in IO monad



then writeIORef x 1

else writeIORef x 2

readIORef x

The outer do begins a computation in the Faceted monad, with the value 42

bound to n. This expression has type Faceted (IO Int), so it cannot be “run”
as part of a Haskell program. Thus, the pure fragment of our library described
so far prevents all implicit flows, even those that are safe.

Guided by the types, we seek a way to convert a value of type Faceted (IO a)
to a value of type IO (Faceted a). The latter could then be run to yield a value
of type Faceted a, where the facets account for any implicit flows.

data Branch = Private Label | Public Label

type PC = [Branch]

data FIO a

instance Monad FIO

runFIO :: FIO a → PC → IO a

prod :: Faceted (FIO (Faceted a)) → FIO (Faceted a)

data FioRef a

newFioRef :: Faceted a → FIO (FioRef (Faceted a))

readFioRef :: FioRef (Faceted a) → FIO (Faceted a)

writeFioRef :: FioRef (Faceted a) → Faceted a → FIO (Faceted ())

Fig. 3. Interface for FIO and FioRef.

Faceted IO computations take place in the FIO monad (the name is short
for “Faceted I/O”). Figure 3 shows the public interface for this fragment of the
library. When faceted data influences control flow, the result of a computation
implicitly depends on the observed facets; the implementation of FIO transpar-
ently tracks this information flow.

The Monad instance for FIO allows sequencing computations in the usual way,
so FIO acts as a (limited) drop-in replacement for IO. If fio1 and fio2 each have
type FIO Int, then the following expression also has type FIO Int.

do x ← fio1

y ← fio2

return (x ∗ y)

The function runFIO converts a value of type FIO a to a value of type IO a.
The side effects in this IO computation will respect the information flow policy.

runFIO takes one additional argument: an initial value for a data structure
called pc (for “program counter label”), which is used for tracking the branching



of the computation. To guarantee security, it may be necessary to execute parts of
the program multiple times – once for observers who may view k-sensitive data,
and again for observers who may not. During the former branch of computation,
the pc will contain the value Private k; during the latter branch, it will contain
Public k.

The pc argument to runFIO allows controlling the set of observers whose
viewpoints are considered during faceted computation. The empty pc, denoted
[], will force simulation of all possible viewpoints.

A value of type FioRef a (short for “facet-aware IORef”) is a mutable refer-
ence cell where initialization, reading, and writing are all FIO computations that
operate on Faceted values and that account for implicit flows accordingly.

Figure 3 presents the public interface to FioRef a, which parallels that of
conventional reference cells of type IORef a.

To write side-effecting code that depends on a faceted value, the Faceted

and FIO monads must be used together. The library function prod enables this
interaction.

Using these library functions, our running example finally looks as follows.

do x ← newFioRef (public 0) -- working in FIO monad

prod $ do v ← secret -- working in Faceted monad

return $ if v == 42

then writeFioRef x (public 1)

else writeFioRef x (public 2)

readFioRef x

As hinted earlier, the inner do block has type Faceted (FIO (Faceted ()))

and so cannot compose with the other actions in the outer do block. To rectify
this, the function prod is enclosing the inner do block, converting it to type FIO

(Faceted ()).

In this example, the value read from x will be faceted k 1 0, which cor-
rectly accounts for the influence from secret. In section 4, we will explain the
machinery that implements this secure behavior.

3.3 Faceted I/O: FHandle

Faceted I/O differs from reference cells in that the network and file system,
which we collectively refer to as the environment, lie outside the purview of our
programming language. The environment has no knowledge of facets and cannot
be retrofitted. Additionally, there are other programs able to read from and write
to the file system. We assume that the environment appropriately restricts other
users of the file handles, and we provide facilities within Haskell to express and
enforce the relevant information flow policy.

Figure 4 shows the core of the public interface for facet-aware file handles,
type FHandle.

We support policies that associate with each file handle h a set of labels
viewh of type View. This view indicates the confidentiality for data read from



data FHandle

type View = [Label]

openFileFio :: View → FilePath → IOMode → FIO FHandle

closeFio :: FHandle → FIO ()

getCharFio :: FHandle → FIO (Faceted Char)

putCharFio :: FHandle → Faceted Char → FIO ()

Fig. 4. Interface for FHandle.

and written to h. Intuitively, if a view contains a label k, then that view is
allowed to see data that is confidential to k.

The function openFileFio accepts a view viewh along with a file path and
mode and returns a (computation that returns a) facet-aware handle h protected
by the policy viewh.

When writing to h via putCharFio, the view viewh describes the confiden-
tiality assured by the external environment for data written to h. In other words,
we trust that the external world will protect the data with those labels in viewh.

When reading from a handle h via getCharFio, we treat viewh as the confi-
dentiality expected by the external world for data read from h. In other words,
we certify that we protect the data received from h. For example, in the following
computation, the character read from h is observable only to views that include
labels "k" and "l".

do h ← openFileFio ["k", "l"] "/tmp/socket.0" ReadMode

getCharFio h

4 Formal Semantics

In this section, we formalize the behavior of the Haskell library as an operational
semantics and prove that it guarantees termination-insensitive noninterference.

Figures 5 and 6 show the formal syntax. The syntactic class t represents
Haskell programs, k is a label, and σ is a “store” mapping addresses a to values,
and mapping file handles h to strings of characters ch.

For ease of understanding, we separate the set of values into three syntactic
classes. FacetedValue contains values in the Faceted monad; FioAction contains
computations in the impure FIO monad; and Value contains both of these, as
well as ordinary values: closures, characters, labels, addresses, and handles.

We define the operational semantics with two big-step evaluation judgments.

– t ⇓ v means that the pure Haskell expression t evaluates to the value v.
– σ,A ⇓FIOpc σ′, v means that the Haskell program “main = runFIO A pc”

changes the store from σ to σ′ and yields the result v.



ch ∈ Character
k ∈ Label
t ∈ Term ::= x

| λx.t
| t t
| ch Character
| k Label
| F Faceted values

| returnFac t
| bindFac t t
| A FIO actions

F ∈ FacetedValue ::= public t | faceted t t t | bottom
A ∈ FioAction ::= returnFIO t | bindFIO t t | prod t

| newFioRef t | readFioRef t | writeFioRef t t
| getCharFio t | putCharFio t t

Fig. 5. Source syntax.

a ∈ Address
h ∈ Handle
t ∈ Term ::= . . . | v
v ∈ Value ::= F | A | λx.t | ch | k | a | h
E ∈ EvalContext ::= • t | bindFac • t
σ ∈ Store = (Address → Value) ∪ (Handle → String)

Fig. 6. Runtime syntax.

t ⇓ v Pure evaluation.

v ⇓ v [e-val]

t[x := t1] ⇓ v
(λx.t) t1 ⇓ v

[e-app]

t not a value
t ⇓ v1

E[v1] ⇓ v2
E[t] ⇓ v2

[e-ctxt]

returnFac t ⇓ public t
[e-ret]

t2 t1 ⇓ v
bindFac (public t1) t2 ⇓ v

[e-bind-p]

v = faceted t1 (bindFac t2 t4) (bindFac t3 t4)

bindFac (faceted t1 t2 t3) t4 ⇓ v
[e-bind-f]

bindFac bottom t ⇓ bottom
[e-bind-b]

Fig. 7. Semantics (part 1).



σ,A ⇓FIOpc σ, v Impure faceted computation.

t ⇓ v
σ, returnFIO t ⇓FIOpc σ, v

[f-ret]

t1 ⇓ A1

σ0, A1 ⇓FIOpc σ1, v1
t2 v1 ⇓ A2

σ1, A2 ⇓FIOpc σ2, v2

σ0, bind
FIO t1 t2 ⇓FIOpc σ2, v2

[f-bind]

t ⇓ public t′

t′ ⇓ A
σ,A ⇓FIOpc σ′, v

σ, prod t ⇓FIOpc σ′, v
[f-prod-p]

t ⇓ bottom

σ, prod t ⇓FIOpc σ, bottom
[f-prod-b]

t ⇓ faceted tk t1 t2
tk ⇓ k k ∈ pc

σ, prod t1 ⇓FIOpc σ′, v1

σ, prod t ⇓FIOpc σ′, v1
[f-prod-f1]

t ⇓ faceted tk t1 t2
tk ⇓ k k ∈ pc

σ, prod t2 ⇓FIOpc σ′, v2

σ, prod t ⇓FIOpc σ′, v2
[f-prod-f2]

t ⇓ faceted tk t1 t2
tk ⇓ k k /∈ pc k /∈ pc
σ0, prod t1 ⇓FIOpc∪{k} σ1, v1
σ1, prod t2 ⇓FIOpc∪{k} σ2, v2

σ0, prod t ⇓FIOpc σ2, faceted k v1 v2
[f-prod-f3]

t ⇓ F
a /∈ dom(σ)

v′ = 〈〈pc ? F : bottom〉〉
σ, newFioRef t ⇓FIOpc σ[a := v′], a

[f-new]

t ⇓ a
σ, readFioRef t ⇓FIOpc σ, σ(a)

[f-read]

t1 ⇓ a
t2 ⇓ F

σ′ = σ[a := 〈〈pc ? F : σ(a)〉〉]
σ, writeFioRef t1 t2 ⇓FIOpc σ′, v

[f-write]

t ⇓ h
pc is not visible to viewh

σ, getCharFio t ⇓FIOpc σ, bottom
[f-get-2]

t ⇓ h
L = viewh

pc is visible to L
ch1 . . . chn = σ(h)

σ′ = σ[h := ch2 . . . chn]

pc′ = L ∪ {k | k /∈ L}
v = 〈〈pc′ ? public ch1 : bottom〉〉

σ, getCharFio t ⇓FIOpc σ′, v
[f-get]

t1 ⇓ h
L = viewh

pc is visible to L
t2 ⇓ F

ch = L(F )
σ′ = σ[h := σ(h)ch]

σ, putCharFio t1 t2 ⇓FIOpc σ′, F
[f-put]

t1 ⇓ h
L = viewh

pc is not visible to L
t2 ⇓ F

σ, putCharFio t1 t2 ⇓FIOpc σ, F
[f-put-2]

Fig. 8. Semantics (part 2).



Figure 7 depicts the pure derivation rules. These rules describe a call-by-
name λ-calculus with opaque constants and two library functions: returnFac and
bindFac. These monad operators for Faceted are particularly simple because it
is a free monad: bindFac F v replaces the public “leaves” of the faceted value
F with new faceted values obtained by calling v.

Figure 8 shows the impure derivation rules. The FIO monad operations (de-
fined by [f-ret] and [f-bind]) are typical of a state monad. The pc annotation
propagates unchanged through these trivial rules.

The next five rules define prod, whose type is:

Faceted (FIO (Faceted a)) -> FIO (Faceted a)

The input, a faceted action, is transformed into an action that returns a faceted
value. This process is straightforward for public and bottom; the public con-
structor is simply stripped away to reveal the action underneath, while bottom

is simply transformed into a no-op. For faceted, the corresponding rule is [f-
prod-f3], where the process bifurcates into two subcomputations whose results
are combined into a faceted result value. However, there is no need to bifurcate
repeatedly for the same label k, so the bifurcation is remembered by adding k
(or k) to the pc annotation on each subcomputation. Subsequently, the opti-
mized rules [f-prod-f1] and [f-prod-f2] will apply. Rather than bifurcating
the computation, these rules will execute only the one path of computation that
is relevant to the current pc.

The remainder of Figure 8 shows the rules for creation and manipulation of
reference cells, and for input and output.

[f-new] describes the creation of a new faceted reference cell. To preserve
the noninterference property, the cell is initialized with a faceted value that hides
the true value from observers that should not know about the cell. The notation
〈〈• ? • : •〉〉 means:

〈〈∅ ? v1 : v2〉〉 = v1

〈〈{k} ∪ pc ? v1 : v2〉〉 = faceted k 〈〈pc ? v1 : v2〉〉 v2
〈〈{k} ∪ pc ? v1 : v2〉〉 = faceted k v2 〈〈pc ? v1 : v2〉〉

[f-read] and [f-write] read and write these reference cells. [f-read] is
simple because the values in the store σ will already be appropriately faceted.
To prevent implicit flows, [f-write] must incorporate the pc into the label of
the stored value stored.

The final rules handle input and output. Each must first confirm that the
file handle h is compatible with the current pc. The notation “pc is visible to L”
means

∀k ∈ pc, k ∈ L and ∀k ∈ pc, k /∈ L,

i.e. L is one of the views being simulated on the current branch of computation.
In [f-get], if pc is visible to L, then the first character ch1 is extracted from

the file. The result is a faceted value that behaves as ch1 for view L, but as



bottom for all other views. If pc is not visible to L, then [f-get-2] applies and
the operation is ignored; the result is simply bottom.

In [f-put], if pc is visible to L, then a character is appended to the end of the
file; otherwise, [f-put-2] applies and the operation is ignored. The appropriate
character ch must be extracted from the faceted value F using the projection
L(F ) defined below.

4.1 Termination-Insensitive Noninterference

We first define the projection L(v) of a faceted value v according to a view
L ∈ 2Label :

L(faceted k v1 v2) = L(v1) if k ∈ L
L(faceted k v1 v2) = L(v2) if k /∈ L

L(v) = v otherwise.

Similarly, we define the projection L(σ) of a store σ according to a view L:

L(σ)(a) = L(σ(a))

L(σ)(h) =

{
σ(h) if L = viewh

ε otherwise

where ε denotes the empty string. In words, the projected store maps each ad-
dress to the projection of the stored value, and the projected store maps each
handle either to the real file contents (if the viewer is viewh) or to ε.

With these definitions of projection, we can now define noninterference.

Theorem 1 (Termination-Insensitive Noninterference).
Assume:

L(σ1) = L(σ2) σ1, A ⇓FIO∅ σ′
1, v1 σ2, A ⇓FIO∅ σ′

2, v2

Then:

L(σ′
1) = L(σ′

2) L(v1) = L(v2).

In other words, if we run a program with two starting stores that are identical
under the L projection, then the resulting stores and values will be identical
under the L projection.

The proof is available in the extended version of this paper [29].

5 Application: A Bi-Monadic Interpreter

To demonstrate the expressiveness of the Faceted library, we present a monadic
interpreter for an imperative λ-calculus, whose dynamic information flow secu-
rity is guaranteed by the previous noninterference theorem.

The interesting aspect about this interpreter is that it uses two distinct mon-
ads.



– The FIO monad captures computations (called Actions in the code), and
is propagated along control flow paths in the traditional style of monadic
interpreters.

– The Faceted monad serves a somewhat different purpose, which is to encap-
sulate the many views of the underlying RawValue. Unlike FIO, this monad
is propagated along data flow paths rather than along control flow paths.

Even though the interpreter’s use of the Faceted monad is non-traditional,
faceted values need exactly this monad interface – particularly considering the
necessity of the monad-specific operation

join :: Faceted (Faceted a)→ Faceted a

which, for the Faceted monad, naturally combines two layers of security labels
into a single layer.

5.1 The Interpreted Language

The source language is an imperative call-by-value λ-calculus whose abstract
syntax is defined in Figure 9. The language has variables, lambda abstractions,
applications, and primitive constants for manipulating reference cells, performing
I/O, and creating private values.

data Term =

Var String -- Lambdas

| Lam String Term

| App Term Term

| Const Value -- Constants

Fig. 9. Syntax for the bi-monadic interpreter.

To ensure that private characters are not printed to the output stream, our
implementation opens the stream using the empty view.

5.2 Implementation

Figure 10 shows the core of the interpreter, the function eval. As usual, it
takes an environment and a term and returns an action, which has type Action

= FIO (Faceted RawValue). The RawValue type includes characters, mutable
references, and closures.

The most interesting code is the case for an application App t1 t2 (lines
15-19 in Figure 10). As usual, we use a do block (in the FIO monad) to compose
the sub-evaluations of t1 and t2 into faceted values v1 and v2. To extract each



1 -- Runtime data structures.

2 data RawValue =

3 CharVal Char -- Characters

4 | RefVal (FioRef Value) -- Mutable references

5 | FnVal (Value → Action) -- Functions

6 type Value = Faceted RawValue

7 type Action = FIO Value

8 type Env = String → Value

9
10 -- Interpreter.

11 eval :: Env → Term → Action

12 eval e (Var x) = return $ e x

13 eval e (Lam x t) = return $ return $ FnVal $ λv →
14 eval (extend e x v) t

15 eval e (App t1 t2) = do v1 ← eval e t1 -- working in FIO monad

16 v2 ← eval e t2

17 prod $ do

18 FnVal f ← v1 -- working in Faceted monad

19 return $ f v2

20 eval e (Const v) = return v

21
22 -- Constants.

23 private :: RawValue

24 private = FnVal $ λv →
25 return $ faceted "H" v bottom

26 ref :: RawValue

27 ref = FnVal $ λv → do -- working in FIO monad

28 ref ← newFioRef v

29 return $ return $ RefVal ref

30 deref :: RawValue

31 deref = FnVal $ λv → prod $ do -- working in Faceted monad

32 RefVal ref ← v

33 return $ readFioRef ref

34 assign :: RawValue

35 assign = FnVal $ λv1 →
36 return $ return $ FnVal $ λv2 → prod $ do -- working in Faceted monad

37 RefVal ref ← v1

38 rv2 ← v2

39 return $ do -- working in FIO monad

40 writeFioRef ref v2

41 return v2

42 printChar :: RawValue

43 printChar = FnVal $ λv → prod $ do -- working in Faceted monad

44 CharVal c ← v

45 return $ do -- working in FIO monad

46 h ← openFileFio [] "output.txt" AppendMode

47 putCharFio h (return c)

48 closeFio h

49 return v

Fig. 10. The bi-monadic interpreter eval function.



underlying function (FnVal f) from the faceted value v1, we enter a second do

block (this time in the Faceted monad), and then apply f to v2 to yield a
result of type Action = FIO (Faceted RawValue), which the return (on line
19) then injects into type Faceted (FIO (Faceted RawValue)), completing the
Faceted do block (lines 17-19). Finally, the prod function on line 17 coordinates
the two monads and simplifies the type to FIO (Faceted RawValue), which
sequentially composes with the previous sub-evaluations of t1 and t2.

The remaining language features are provided by the constants below the
interpreter itself: private, ref, deref, assign, and printChar. As for App,
these constants must use prod to perform their services securely.

let x = ref (private true) in

let y = ref true in

let z = ref true in

let vx = deref x in

if (vx) {

assign y false

}

let vy = deref y in

if (vy) {

assign z false

}

deref z

Fig. 11. A sample program for the interpreter. For ease of reading, we assume the
availability of standard encodings for let and boolean operations.

Figure 11 expresses our running example from Figure 1 as a program p in
the interpreted language (with some additional syntactic sugar); running the
program runFIO (eval env p) [] yields the expected result:

faceted "H" (public true) (public false)

6 Related Work

Most information flow mechanisms fall into one of three categories: run-time
monitors that prevent a program execution from misbehaving; static analysis
techniques that analyze the whole program and reject programs that might leak
sensitive information; and finally secure multi-execution, which protects sensitive
information by evaluating the same program multiple times.

Dynamic techniques dominated much of the early literature, such as Fenton’s
memoryless subsystems [11]. However, these approaches tend to deal poorly with
implicit flows, where confidential information might leak via the control flow of
the program; purely dynamic controls either ignore updates to reference cells



that might result in implicit leaks of information [11] or terminate the program
on these updates [36, 1]; both approaches have obvious problems, but these
techniques have seen a resurgence of interest as a possible means of securing
JavaScript code, where static analysis seems to be an awkward fit [10, 15, 13,
18].

Denning’s work [6, 7] instead uses a static analysis; her work was also in-
strumental in bringing information flow analysis into the scope of programming
language research. Her approach has since been codified into different type sys-
tems, such as that of Volpano et al. [33] and the SLam Calculus [14]. Jif [21]
uses this strategy for a Java-like language, and has become one of the more
widespread languages providing information flow guarantees. Sabelfeld and My-
ers [26] provide an excellent history of information flow analysis research prior
to 2003. Refer to Russo [25] for a detailed comparison of static and dynamic
techniques.

Secure multi-execution [9] executes the same program multiple times repre-
senting different “views” of the data. For a simple two-element lattice of high and
low, a program is executed twice: one execution can access confidential (high)
data but can only write to authorized channels, while the other replaces all
high data with default values and can write to public channels. This approach
has since been implemented in the Firefox web browser [5] and as a Haskell
library [16].

Rafnsson and Sablefeld[23] show an approach to handle declassification and
to guarantee transparency with secure multi-execution.

Zanarini et al. [35] notes some challenges with secure multi-execution; specif-
ically, it alters the behavior of programs violating noninterference (potentially
introducing difficult to analyze bugs), and the multiple processes might produce
outputs to different channels in a different order than expected. They further
address these challenges through a multi-execution monitor. In essence, their
approach executes the original program without modification and compares its
results to the results of the SME processes; if output of secure multi-execution
differs from the original at any point, a warning can be raised to note that the
semantics have been altered.

Faceted evaluation [2] simulates secure multi-execution by the use of spe-
cial faceted values, which track different views for data based on the security
principals involved6. While faceted evaluation cannot be parallelized as easily,
it avoids many redundant calculations, thereby improving efficiency [2]. It also
allows declassification, where private data is released to public channels. Austin
et al. [3] exploit this benefit to incorporate policy-agnostic programming tech-
niques, allowing for the specification of more flexible policies than traditionally
permitted in information flow systems.

Li and Zdancewic [19] implement an information flow system in Haskell, em-
bedding a language for creating secure modules. Their enforcement mechanism

6 Faceted values are closely related to the value pairs used by [22]; while intended as
a proof technique rather than a dynamic enforcement mechanism, the construct is
essentially identical.



is dynamic but relies on static enforcement techniques, effectively guaranteeing
the security of the system by type checking the embedded code at runtime. Their
system supports declassification, a critical requirement for specifying many real
world security policies.

Russo et al. [24] provide a monadic library guaranteeing information flow
properties. Their approach includes special declassification combinators, which
can be used to restrict the release of data based on the what/when/who dimen-
sions proposed by Sabelfeld [28].

Deviese and Piessens [8] illustrate how to enforce information flow in monadic
libraries. A sequence operation e1 >> e2 is distinguished from a bind opera-
tion e1 >>= e2 in that there are no implicit flows with the >> operator. They
demonstrate the generality of their approach by applying it to classic static [33],
dynamic [27], and hybrid [12] information flow systems.

Stefan et al. [31] use a labeled IO (LIO) monad to guarantee information
flow analysis. LIO tracks the current label of the execution, which serves as an
upper bound on the labels of all data in lexical scope. IO is permitted only if it
would not result in an implicit flow. It combines this notion with the concept of a
current clearance that limits the maximum privileges allowed for an execution,
thereby eliminating the termination channel. Buiras and Russo[4] show how
lazy evaluation may leak secrets with LIO through the use of the internal timing
covert channel. They propose a defense against this attack by duplicating shared
thunks.

Wadler [34] describes the use of monads to structure interpreters for effectful
languages. There has been great effort to improve the modularity of this tech-
nique, including the application of pseudomonads [30] and of monad transformers
[20]. Both of these approaches make it possible to design an interpreter’s com-
putation monad by composing building blocks that each encapsulate one kind
of effect. Our bi-monadic interpreter achieves a different kind of modularity by
using separate monads for effects and values. The use of a prod function, which
links the two monads together, is originally described by Jones and Duponcheel
[17].

7 Conclusion

We show how the faceted values technique can be implemented as a library
rather than as a language extension. Our implementation draws on the previous
work to provide a library consisting primarily of two monads, which track both
explicit and implicit information flows. This implementation demonstrates how
faceted values look in a typed context, as well as how they might be implemented
as a library rather than a language feature. It also illustrates some of the subtle
interactions between two monads. Our interpreter shows that this library can
serve as a basis for other faceted value languages or as a template for further
Haskell work.

Acknowledgements



This research was supported by the National Science Foundation under grants
CCF-1337278 and CCF-1421016.

References

[1] Thomas H. Austin and Cormac Flanagan. “Efficient Purely-dynamic In-
formation Flow Analysis”. In: PLAS ’09. ACM Press, 2009.

[2] Thomas H. Austin and Cormac Flanagan. “Multiple Facets for Dynamic
Information Flow”. In: POPL ’12. New York, NY, USA: ACM Press, 2012,
165–178.

[3] Thomas H. Austin et al. “Faceted Execution of Policy-agnostic Programs”.
In: PLAS ’13. New York, NY, USA: ACM Press, 2013, 15–26.

[4] Pablo Buiras and Alejandro Russo. “Lazy Programs Leak Secrets”. In: ed.
by Hanne Riis Nielson and Dieter Gollmann. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, Jan. 2013, pp. 116–122.

[5] Willem De Groef et al. “FlowFox: A Web Browser with Flexible and Precise
Information Flow Control”. In: CCS ’12. New York, NY, USA: ACM Press,
2012.

[6] Dorothy E. Denning. “A Lattice Model of Secure Information Flow”. In:
Communications of the ACM 19.5 (May 1976), 236–243.

[7] Dorothy E. Denning and Peter J. Denning. “Certification of programs for
secure information flow”. In: Communications of the ACM 20.7 (1977),
504–513.

[8] Dominique Devriese and Frank Piessens. “Information Flow Enforcement
in Monadic Libraries”. In: TLDI ’11. New York, NY, USA: ACM Press,
2011, 59–72.

[9] Dominique Devriese and Frank Piessens. “Noninterference through Secure
Multi-execution”. In: Symposium on Security and Privacy. Los Alamitos,
CA, USA: IEEE, 2010.

[10] Mohan Dhawan and Vinod Ganapathy. “Analyzing Information Flow in
JavaScript-Based Browser Extensions”. In: ACSAC. IEEE, 2009.

[11] J. S. Fenton. “Memoryless Subsystems”. In: The Computer Journal 17.2
(1974), pp. 143–147.

[12] Gurvan Le Guernic et al. “Automata-based Confidentiality Monitoring”.
In: In ASIAN’06: the 11th Asian Computing Science Conference on Secure
Software. 2006.

[13] Daniel Hedin and Andrei Sabelfeld. “Information-flow security for a core
of JavaScript”. In: CSF. IEEE, 2012.

[14] Nevin Heintze and Jon G. Riecke. “The SLam Calculus: Programming
with Secrecy and Integrity”. In: POPL. ACM, 1998.

[15] Dongseok Jang et al. “An empirical study of privacy-violating information
flows in JavaScript web applications”. In: ACM Conference on Computer
and Communications Security. 2010.

[16] Mauro Jaskelioff and Alejandro Russo. “Secure Multi-execution in Haskell”.
In: PSI’11. Berlin, Heidelberg: Springer-Verlag, 2012, 170–178.



[17] Mark P. Jones and Luc Duponcheel. Composing Monads. Tech. rep. Re-
search Report YALEU/DCS/RR-1004. Yale University, 1993.

[18] Christoph Kerschbaumer et al. “Towards Precise and Efficient Information
Flow Control in Web Browsers”. In: Trust and Trustworthy Computing
Conference. Springer, 2013.

[19] Peng Li and Steve Zdancewic. “Encoding Information Flow in Haskell”.
In: CSFW ’06. Washington, DC, USA: IEEE Computer Society, 2006, 16–.

[20] Sheng Liang, Paul Hudak, and Mark Jones. “Monad Transformers and
Modular Interpreters”. In: Proceedings of 22nd ACM Symposium on Prin-
ciples of Programming Languages. New York: ACM Press, 1995.

[21] Andrew C. Myers. “JFlow: Practical Mostly-Static Information Flow Con-
trol”. In: Symposium on Principles of Programming Languages (POPL).
ACM, 1999.

[22] François Pottier and Vincent Simonet. “Information Flow Inference for
ML”. In: ACM Trans. Program. Lang. Syst. 25.1 (Jan. 2003), 117–158.

[23] W. Rafnsson and A. Sabelfeld. “Secure Multi-execution: Fine-Grained,
Declassification-Aware, and Transparent”. In: Computer Security Founda-
tions Symposium (CSF), 2013 IEEE 26th. June 2013.

[24] Alejandro Russo, Koen Claessen, and John Hughes. “A Library for Light-
weight Information-flow Security in Haskell”. In: Haskell ’08. New York,
NY, USA: ACM, 2008, 13–24.

[25] Alejandro Russo and Andrei Sabelfeld. “Dynamic vs. Static Flow-Sensitive
Security Analysis”. In: CSF ’10. Washington, DC, USA: IEEE Computer
Society, 2010, 186–199.

[26] Andrei Sabelfeld and Andrew C. Myers. “Language-based information-flow
security”. In: Journal on Selected Areas in Communications 21.1 (2003),
pp. 5–19.

[27] Andrei Sabelfeld and Alejandro Russo. “From Dynamic to Static and
Back: Riding the Roller Coaster of Information-flow Control Research”.
In: PSI’09. Berlin, Heidelberg: Springer-Verlag, 2010.

[28] Andrei Sabelfeld and David Sands. “Declassification: Dimensions and Prin-
ciples”. In: Journal of Computer Security 17.5 (Oct. 2009), 517–548.

[29] Thomas Schmitz et al. “Faceted Dynamic Information Flow via Control
and Data Monads”. In: University of California, Santa Cruz, Tech. Rep.
UCSC-SOE-16-01 (2016).

[30] Guy L. Steele Jr. “Building Interpreters by Composing Monads”. In: POPL
’94. Portland, Oregon, USA: ACM, 1994.

[31] Deian Stefan et al. “Flexible Dynamic Information Flow Control in Haskell”.
In: Haskell ’11. New York, NY, USA: ACM, 2011, 95–106.

[32] Deian Stefan et al. Flexible dynamic information flow control in Haskell.
Vol. 46. 12. ACM, 2011.

[33] Dennis Volpano, Cynthia Irvine, and Geoffrey Smith. “A sound type sys-
tem for secure flow analysis”. In: Journal of Computer Security 4.2-3
(1996), 167–187.



[34] Philip Wadler. “The Essence of Functional Programming”. In: POPL ’92.
Albuquerque, New Mexico, USA: ACM, 1992.

[35] Dante Zanarini, Mauro Jaskelioff, and Alejandro Russo. Precise Enforce-
ment of Confidentiality for Reactive Systems. 2013.

[36] Stephan Arthur Zdancewic. “Programming languages for information se-
curity”. PhD thesis. Cornell University, 2002.


