

Experimenting with Pair Programming in the Classroom
Charlie McDowell, Brian Hanks, and Linda Werner

Computer Science Department, University of California
Santa Cruz, CA 95064

{charlie,brianh,linda}@cs.ucsc.edu

ABSTRACT
There is now a substantial body of evidence in support of the use
of pair programming in the classroom[3, 4, 10, 11, 13, 14]. Some
of the data is anecdotal and some is the result of formal
experiments. We are not aware of any published data that raises
concerns about allowing students to complete programming
projects using pair programming.

In this paper we present data from three studies performed at
UCSC. All three studies support the position that pair
programming results in more student learning.

Categories and Subject Descriptors
D.2.0 [Software Engineering]: General. K.5.1. [Computers and
Education]: Computer and Information Science Education–
computer science education.

General Terms
Experimentation, Human Factors

Keywords
Pair Programming, Extreme Programming

1. INTRODUCTION
Essentially all non-trivial software projects are collaborative
efforts. Most professional programmers, at least on occasion, look
over the shoulder of a colleague to help them solve a
programming problem. In recent years this informal and
occasional sharing of a workstation has become more formalized
and widespread, largely due to the development of extreme
programming (XP)[1]. All software developed using XP is
worked on collaboratively by a pair of developers. While
programming, the pair work side by side at a single workstation
with one person designated as the ‘driver’ and the other person as
the ‘observer’ or ‘navigator’. The driver has control over the
keyboard and mouse and is responsible for entering program
code. The observer role is not passive; observers watch for
potential defects and comment about programming approaches.
These roles are switched as the programming session continues.

Unlike software developed by professionals, most programs
written by college students are written by a single programmer, as
required by the instructor. The commonly held belief has been
that the students must write the programs on their own in order to

learn how to program. This belief includes the assumption that if
allowed to work with a partner one student might do all of the
work and the learning while the other student does neither.
Some classes, typically the more advanced classes, involve group
projects. But in most of these group projects, the collaboration is
limited to design and specification. The coding is generally done
by individual students and then integrated near the end of the
project.
This solitary programming approach has begun to change in
recent years with growing numbers of instructors requiring or
allowing students to use pair programming. Pair programming is
very different from a two-person team project. Historically, on a
team project the students would be encouraged to use divide and
conquer (e.g., you write the scanner and I’ll write the parser).
With pair programming all code is developed at a single
workstation with both students working together.

2. PREVIOUS STUDIES
Recent findings now question the long followed practice of
requiring students to complete programming projects
individually[3, 11, 14]. Although some of the findings are
anecdotal, others are the result of formal experimentation. The
published studies on pair programming in the classroom have
identified a number of reasons why instructors should allow their
students to use pair programming. These benefits include more
students passing the course, higher quality programs, less time to
complete programming projects, increased student satisfaction,
increased numbers of students continuing with a computer related
major, and possibly better exam scores (when drop rates are
factored in). The amount of benefit has varied due to different
classroom environments. The classes have ranged from
introductory programming classes[3, 11] to senior software
engineering classes[7, 14]. Another important variable is the type
of laboratory environment. In one experiment a significant portion
of the programming was done in a controlled or closed lab with
careful supervision of the pair programming process[14]. In
another the students received little or no direct supervision of the
pair programming process[2].
The nature of the experiments has also varied. In the ideal
scenario, students would be randomly assigned to work in pairs or
work alone. The students would otherwise receive the same
instruction and the instructor would not know who was pairing
and who was not. Such a scenario is impractical. In practice the
experiments have covered a range of methods. In one experiment
all students in the class were assigned to one of two groups
(pairing or individual)[14]. In other experiments all students in
one class were required to use pair programming and in another
offering of the same course students were not allowed to use pair
programming[3, 11]. In some of the classes described in this
paper students were simply allowed to use pair programming. We
also report on a small study in which volunteers were randomly
assigned to a pairing group and a non-pairing group. Needless to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ITICSE’03, June 30–July 2, 2003, Thessaloniki, Greece.
Copyright 2003 ACM 1-58113-672-2/03/0006…$5.00.

say, the types of conclusions that can be drawn differ for these
different methods. What the experiments all have in common is
that they all conclude that pair programming benefits students.

3. THREE STUDIES AT UCSC
We have conducted a series of experiments on the use of pair
programming by students. Our studies differ from some other
studies in that our students received little or no supervision of
their pair programming. They did receive a brief explanation of
what pair programming is, and they were instructed to read a
paper on pair programming[12]. We have performed three related
but slightly different studies.

3.1. Study 1: Voluntary Pairing
Data for the first study was collected in winter 2001 on an
advanced programming course. The class consisted of 95 mostly
junior and senior computer science and computer engineering
students. The students were told about pair programming and
given the option to use pair programming throughout the quarter.
No monitoring of the pairing was performed and no additional
information was collected from the students. 44 students elected
to complete the programming assignments using pair
programming. The remaining 47 students worked alone. In most
cases the pairing students worked with the same partner for the
entire term.

3.2. Study 2: Randomized Pairing
Data for the second study was collected in winter 2002 on the
same course as study 1. The class consisted of 91 mostly junior
and senior computer science and computer engineering majors.
The study was designed as a one-factor randomized paired
comparison. Student volunteers were invited to participate.
Unfortunately the voluntary participation rate in the experiment
was very low. Only 19 students agreed to participate in the
experiment. Participation in the experiment meant being assigned
randomly to either a pair programming group (14 students) or a
work alone group (5 students). The grouping was designed to
balance the number of programs in each, not the number of
students. Students in the pairing group would be assigned a
partner and would change partners twice during the term. Fairly
early in the term two students in the pairing group dropped out of
the experiment but remained in the class.
In hopes of encouraging students to pair effectively, the students
in the pairing group were asked to evaluate their partner’s
effectiveness as a partner (not their overall programming ability)
in a manner similar to that of Williams et al.[11]. This partner
evaluation was part of the grade computation for the assignment
but done so that the students would not know how any individual
partner evaluated them.
We believe that concerns over the partner evaluation system may
have contributed to the low participation rate in the experiment.
This is supported by responses from the students on a
questionnaire at the end of the course. Students were asked if they
agreed or disagreed with the statement “I think asking students to
evaluate each other and have it affect their grade is a good way to
encourage students to pair effectively.” Only 1 strongly agreed, 4
agreed, 1 was neutral, 6 disagreed, and 0 strongly disagreed. In
addition, 4 students agreed with the statement “Looking back I
believe I sometimes gave my partner a higher score than they
deserved because I did not want to be responsible for giving them
a low grade in the class.” The remaining students were neutral (5),
disagreed (2), or strongly disagreed (1).

3.3. Study 3: Voluntary Pairing
Data for the third study was collected in spring 2002 on a
sophomore level abstract data types course required for all
computer science and computer engineering students. There were
102 students that completed at least one of the programming
assignments for the class. As with the first study, students in this
class were told about pair programming and allowed to use it for
the programming assignments. Students could use pair
programming for some, all, or none of the assignments. 58
students used pair programming at least once. In most cases when
students paired for more than one assignment they worked with
the same partner.
In addition to collecting data on the students’ performance in the
class, students were also asked to complete a questionnaire at the
beginning and the end of the class. The questionnaire included
questions about the student’s perception of their programming
ability.

4. RESULTS
In this section we present the results of the various studies. Our
focus has been on trying to determine the effect of pair
programming on student performance as measured by exam
performance and the quality of the programs they submit.

4.1. Final Exam Performance
Table 1 compares the final exam scores for pairing students with
non-pairing students in the three studies.

Table 1: Final Exam Scores

Class Mean Median Std. dev n
Study1 pair 79.6 80.0 12.5 44
Study1 solo 81.9 81.4 12.1 47
Study2 pair 84.7 86.7 9.5 12
Study2 solo 78.2 76.7 8.1 5
Study3 pair 89.8 88.5 8.4 58
Study3 solo 93.3 95.0 11.4 43

In the two larger studies, the average final exam score was higher
for the students working individually, however, the difference was
never statistically significant.
In Study2 the pair group actually had a somewhat higher final
exam average. Because of the small sample size this difference is
not significant at the p=.1 level using ANOVA.
For Study3 we obtained data via a questionnaire at the beginning
of the class about students’ own perception of their programming
skill. The students that used pair programming were more likely
to have rated their programming ability at the start of the class as
poor or average than students working alone. This is consistent
with another study that found that students claiming to be strong
programmers “liked pair programming the least.”[8] This
difference was significant at the p=.05 level using a Chi-square
test. This would suggest that although self-proclaimed weaker
programmers are more likely to use pair programming, in the end
their exam scores are not significantly lower then the self-
proclaimed stronger programmers.

4.2. Programming Performance
Maybe the final exam does not accurately reflect what students
learn (or fail to learn) in the process of doing (or not doing) the
programming assignments. Unfortunately, we have not found a
practical way to evaluate students’ programming ability in a
controlled test situation beyond traditional exam questions and a
few relatively short “write a program to…” questions. These
programs are limited to a few tens of lines of code and must be
done with paper and pencil.
Beyond the tests, we have the programs submitted by the students.
Without question, some students get more help with their
programming assignments than others. This is true whether or not
the students use pair programming. In relatively large classes such
as the ones we have studied, students generally can get assistance
from graduate student teaching assistants or senior undergraduate
course assistants. We have found that a persistent weak student
can sometimes manage to produce a working program that they
could not reproduce unassisted. Pair programming in an open lab
provides an additional opportunity for students to have their name
on a program that they do not fully understand or could not
reproduce on their own. We believe the risk of a few irresponsible
students getting undeserved credit for some programming
assignments is more than offset by the benefits of pair
programming.
Recall that in the previous section we presented data suggesting
that students that perceive themselves as strong programmers
were less likely to voluntarily use pair programming than self-
perceived weak programmers. This would then suggest that the
programs produced by the pair programming students should be
weaker than those produced by the individual programmers. In
fact, the opposite is true.
Table 2 compares the total programming assignment portion of
the grade from the same classes discussed in the previous section.
Scores are only included for students that took the final exam. In
the two larger studies the average program score for students
using pair programming is higher than for individuals working
alone. These differences are both of practical significance and are
statistically significant using ANOVA with p < .005. For Study2,
although the pair scores are slightly higher, again due to the small
size of the study, this difference is not statistically significant.

Table 2: Program Total

Class Mean Median Std. dev.
Study1 pair 89.5 93.3 10.5
Study1 solo 80.2 80 16.6
Study2 pair 90.6 90.0 7.5
Study2 solo 89.7 88.3 10.0
Study3 pair 86.9 90 9.4
Study3 solo 76.7 80.7 20.1

4.3. Blind Evaluation of Program Quality
Some colleagues have raised concerns about the objectivity of the
programming assignment evaluations given that all scores
reported above were determined by individuals who knew
whether a pair or an individual produced the program. To
investigate the possibility of grader bias, we took a closer look at
the program scores.

4.3.1. Study2 Program Evaluation

As part of our evaluation of the programs for Study2, after the
class was over we did an anonymous reevaluation of the programs
for the next to last assignment. We felt that the next to last was
likely to be most representative. It was a relatively complex
program and not so near the end of the course that burnout or end
of term conflicts with other classes might affect student
performance. Each submission was stripped of any comments or
other marks that would indicate who the author or authors were
and whether or not an individual or a pair wrote the program. The
programs were evaluated on a purely objective functionality scale
and a relatively objective style scale. In addition, the programs
were ranked from best to worst using a totally subjective
evaluation we called the “holistic” evaluation.
The holistic ranking of the programs (done without knowledge of
the pairing/non-pairing status of the programs) was obtained by
making a single pass over the 11 programs after having computed
functionality and style scores for each program. The holistic
ranking for the programs was computed 3 times, twice by C.
McDowell (the instructor for the class) separated by more than a
month, and once by B. Hanks (who has more than 15 years
experience as a software professional). Instead of assigning a
holistic score, the programs were placed into a ranking as they
were read.
The holistic evaluation took in a wide range of program features.
For example, one program ended up with a much lower holistic
ranking than functionality ranking. Although this program largely
satisfied the functional requirements, it was very poorly designed,
lacked polymorphism (a key concept for the assignment), had
many nearly identical methods, used sequences of if statements
without an else when an if-else-if-else was called for, and
contained a huge number of fields.
On the other hand, another program received a much higher
holistic ranking than functionality ranking. That program elicited
very few comments from the reviewers. The program was
generally well designed with some weakness in the choice of
variable names and in the comments.
Because of the small number of programs (6 pairs and 5
individuals), no real conclusions can be drawn from the numbers;
however, we did note one surprising finding. The holistic
evaluation resulted in higher average rankings for the pair
programs whereas the functionality and style rankings favored the
individual programs. Table 3 shows the average rankings for the
11 programs. The differences were not significant but they did
cause us to wonder if students working in pairs would be less
likely to make the types of errors that resulted in the lower holistic
evaluations for the non-pairing programs we observed in this
small set.

Table 3: Study2 - Average Rank (11 is highest, 1 is lowest)

 Functionality Style Holistic
Pair 5.7 5.9 6.9
Solo 6.4 6.1 4.9

The holistic ranking in the table is the average of the three holistic
rankings that were performed. For all three holistic rankings, the
pair programs on average moved up more than 1 rank and the solo
programs moved down more than one rank. This is shown in

Table 4, where F is the functionality ranking and H1-H3 are the
three holistic rankings (H1 and H2 were two separate evaluations
by C. McDowell, and H3 was by B. Hanks).

Table 4: Study2 - Average Change in Rank (highest rank is 11
so positive values mean movement to higher rankings)

 H1-F H2-F H3-F
Pair 1.3 1.0 1.5
Solo -1.6 -1.2 -1.8

4.3.2. Study1 Program Evaluation
This discrepancy between the holistic ranking and the more
objective (but less thoughtful) functional ranking led us to look at
a larger set of programs. For this, one of the authors went back
and carefully re-evaluated all submissions of the next to last
programming assignment from Study1. The results of this
evaluation are shown in Table 5. The table shows the average
scores based purely on functionality (0-10) and an overall score
(0-10) that took into consideration style, design, and other
measures of program quality. Again the pair programming
students came out ahead by a statistically significant amount. For
both functionally and overall, using ANOVA the differences are
significant with p < .01.
The number of programs completed by individuals shown in
Table 5 exceeds the number of individuals listed in Table 1. The
numbers differ because students were allowed to optionally pair
on an assignment by assignment basis (most paired consistently),
and also because some students did not turn in the assignment.
Although the Study1 data in Table 5 does not corroborate our
observed discrepancy between functionality and overall scores
seen for Study2, this could be due to our inability to holistically
rank the larger set of 69 programs.

Table 5: Study1 Anonymous Program Evaluation

 Mean Median Std. dev. n
Functionality Pair 8.8 9 0.5 16
Functionality Solo 6.6 8 3.1 53
Overall Pair 7.9 8.3 1.7 16
Overall Solo 5.8 7 2.9 53

4.3.3. Related Study Program Evaluation
We also did a similar anonymous evaluation of a random sample
of 20 programs from two sections of a beginning programming
class reported on in a separate paper[3]. We were trying to
determine if there was some identifiable characteristic of
programs produced by pairs that was not found in programs
produced by individuals (beyond the obvious fact that the
programs produced by the pairs were far more likely to function
correctly).
The problem with this plan was that the students in the two
sections had similar but different programming assignments. The
reviewer (one of the authors) did not know which programming
assignment was completed by pairs, but was aware that the overall
homework scores for the pairing students were significantly
higher than for the non-pairing students. If provided with a truly
random sample of programs, the reviewer would have quickly
noticed that one set contained far more non-working programs,

and realized it was the set from the non-pairing class. Instead of
abandoning the evaluation, we selected programs from the non-
pairing class so that the ratio of fully functioning, partially
functioning, and non-functioning programs was the same for both
samples. We did this by separating the non-pairing programs into
three groups: fully functioning, partially functioning, and non-
functioning. We then randomly selected the appropriate number
of programs from each group.
The result of this exercise was that the programs in each group
were comparable in every respect that we examined. This is
remarkable when you consider that 48% of the pair programs
were fully functioning but only 12% of the individually written
programs were fully functioning. To see if this was an anomaly
just for this assignment, we also looked at the percentages of
fully/partially/non-functioning programs for the third
programming assignment (of 5 assignments total). The data on
percentages of fully functioning programs for both assignments 3
and 4 (out of 5 total) is shown in Table 6.

Table 6: Percentage of fully/partially/non-working programs.

Fully Partially Not working
Pair 3rd 61% 13% 26%
Solo 3rd 37% 7% 55%
Pair 4th 48% 32% 20%
Solo 4th 12% 12% 76%

This suggests that students who pair program in an introductory
programming class are likely to produce results comparable to
those of the best students in a class where students are not allowed
to pair.

4.4. Time Spent Programming
The one area where our results differ from some previously
published studies is in the area of time spent programming. For
Study2 we asked students to report the amount of time they spent
completing the programming assignments. We found no
significant difference in the amount of time spent working on
programming assignments between students working in pairs and
students working alone. This contrasts with other reports of pair
programming requiring about the same total amount of
programmer time for programs developed by pairs and programs
developed by individuals (amounting to about one-half as much
time spent programming for a member of a pair compared to a
programmer working alone)[6, 14]. There are a number of
possible explanations for this difference.
We did not provide any type of automated logging tool. The
students were simply asked to keep a written log of the time spent
and report the total time when they submitted the programs. While
there is no reason for us to believe that students intentionally
exaggerated the amount of time spent, it is clear that many
students did not keep accurate records. We believe that many
students did not track time spent while working on their
assignments, but instead tried to remember it when they needed to
turn in their work. Examples of poor data reporting include
situations where partners reported different amounts of time spent
together, and time logs where the number of hours spent is always
a multiple of 5.
Although the average time reported by an individual working in a
pair was 75% of the average time reported by an individual
working alone, because of the small sample size (n=17) the

difference is not significant. In addition, the students changed
partners every other assignment. Williams et. al report that the
difference in total time for pairs relative to individuals decreases
as the pair works together longer[9].

5. CONCLUSION
We believe that previous studies and the above data indicate that
students should be (at the least) allowed to use pair programming.
Previous studies have shown that the use of pair programming in
CS1 improves pass rates and retention in the major[4, 5].
Although additional benefits may accrue to faculty and students
when pair programming is done in a closed lab, when pairs are
assigned, and where students evaluate their partners, simply
allowing students to use pair programming results in higher
quality programs with no demonstrable disadvantages. The
hypothesis that more students pass simply because of higher
program scores (thanks to their partner) is inconsistent with our
data showing no significant difference in exam scores between
pairing and non-pairing students.
We believe that the vast majority of students will learn more
working with a partner to create a quality working program than
they would struggling on their own to create a non-working
program. Our data clearly show that the programs produced by
students working in pairs are significantly better than the
programs produced by individuals for the same or comparable
assignments.
Further study is needed to resolve the inconsistency between our
data on the amount of time students spend on programs and that
of some other studies. We also need to try and understand how
much additional benefit is accrued from some of the more costly
aspects of pair programming suggested by others, such as more
supervision of the pair programming process, partner evaluations,
and changing partners versus working with the same partner. In
the mean time, we hope more instructors will take the first step
and at least let their students voluntarily pair.

6. ACKNOWLEDGEMENTS
We want to thank J. Fernald, T. Raffill , and P. Tantalo for their
help. This work was undertaken as part of C. McDowell’s
participation in the Carnegie Academy for the Scholarship of
Teaching and Learning, and was partially funded by a National
Science Foundation grant, EIA-0089989. Any opinions, findings,
and conclusions or recommendations expressed in this paper are
those of the authors and do not necessarily reflect the views of the
National Science Foundation.

7. REFERENCES

[1] Beck, K. Extreme Programming Explained: Embrace

Change. Addison-Wesley, Reading, Mass, 2000.
[2] Bevan, J., Werner, L. and McDowell, C., Guidelines for

the Use of Pair Programming in a Freshman
Programming Class. in 15th Conference on Software
Engineering Education and Training, (Covington, KY,
USA, 2002), IEEE Computer Society, 100-107.

[3] McDowell, C., Werner, L., Bullock, H. and Fernald, J.,
The Effects of Pair-Programming on Performance in an
Introductory Programming Course. in 33rd SIGCSE
Technical Symposium on Computer Science Eduation,
(Northern Kentucky, 2002), ACM Press, 38-42.

[4] McDowell, C.E., Werner, L.L., Bullock, H. and
Fernald, J., The Impact of Pair Programming on Student
Performance and Pursuit of Computer Science Related
Majors. in International Conference on Software
Engineering, (Portland, Oregon, USA, 2003).

[5] Nagappan, N., Williams, L., Ferzli, M., Wiebe, E.,
Yang, K., Miller, C. and Balik, S., Improving the CS1
Experience with Pair Programming. in 34th SIGCSE
Technical Symposium on Computer Science Eduation,
(Reno, Nevada, 2003), ACM Press, 359-362.

[6] Nosek, J.T. The Case for Collaborative Programming.
Communications of the Acm, 41 (3). 105-108.

[7] Sanders, D. Student Perceptions of the Suitability of
Extreme and Pair Programming. Computer Science
Education (to appear).

[8] Thomas, L., Ratcliffe, M. and Robertson, A., Code
Warriors and Code-a-Phobes: A Study in Attitude and
Pair Programming. in 34th SIGCSE Technical
Symposium on Computer Science Eduation, (Reno,
Nevada, 2003), ACM Press, 363-367.

[9] Williams, L., Kessler, R.R., Cunningham, W. and
Jeffries, R. Strengthening the Case for Pair
Programming. IEEE Software, 17 (4). 19-25.

[10] Williams, L. and Upchurch, R.L., In Support of Student
Pair-Programming. in 32nd SIGCSE Technical
Symposium on Computer Science Education, (Charlotte,
NC, USA, 2001), 327-331.

[11] Williams, L., Wiebe, E., Yang, K., Ferzli, M. and
Miller, C. In Support of Pair Programming in the
Introductory Computer Science Course. Computer
Science Education, 12 (3). 197-212.

[12] Williams, L.A. and Kessler, R.R. All I Really Need to
Know About Pair Programming I Learned in
Kindergarten. Communications of the ACM, 43 (5).
108-114.

[13] Williams, L.A. and Kessler, R.R., The Effects of "Pair-
Pressure" and "Pair-Learning" on Software Engineering
Education. in 13th Conference on Software Engineering
Education and Training, (Austin, TX, USA, 2000),
IEEE Computer Society, 59-65.

[14] Williams, L.A. and Kessler, R.R. Experiments with
Industry's "Pair-Programming" Model in the Computer
Science Classroom. Computer Science Education, 11
(1). 7-20.

	INTRODUCTION
	PREVIOUS STUDIES
	THREE STUDIES AT UCSC
	Study 1: Voluntary Pairing
	Study 2: Randomized Pairing
	Study 3: Voluntary Pairing

	RESULTS
	Final Exam Performance
	Programming Performance
	Blind Evaluation of Program Quality
	Study2 Program Evaluation
	Study1 Program Evaluation
	Related Study Program Evaluation

	Time Spent Programming

	CONCLUSION
	ACKNOWLEDGEMENTS
	REFERENCES

