
The Impact of Pair Programming on Student Performance,
Perception and Persistence

Charlie McDowell and Linda Werner
Computer Science Department

University of California, Santa Cruz
{charlie,linda}@cs.ucsc.edu,

Heather E. Bullock and Julian Fernald
Psychology Department

University of California, Santa Cruz
{hbullock,jfernald}@cats.ucsc.edu

Abstract

This study examined the effectiveness of pair
programming in four lecture sections of a large
introductory programming course. We were particularly
interested in assessing how the use of pair programming
affects student performance and decisions to pursue
computer science related majors. We found that students
who used pair programming produced better programs,
were more confident in their solutions, and enjoyed
completing the assignments more than students who
programmed alone. Moreover, pairing students were
significantly more likely than non-pairing students to
complete the course, and consequently to pass it. Among
those who completed the course, pairers performed as
well on the final exam as non-pairers, were significantly
more likely to be registered as computer science related
majors one year later, and to have taken subsequent
programming courses. Our findings suggest that not only
does pairing not compromise students’ learning, but that
it may enhance the quality of their programs and
encourage them to pursue computer science degrees.

1. Introduction
In recent years, the growth of extreme programming

(XP) has brought considerable attention to collaborative
programming. Developed over a fifteen year period by
Kent Beck and his colleagues, Ron Jeffries and Ward
Cunningham[1], XP is a computer software development
approach that credits much of its success to the use of pair
programming by all programmers, regardless of
experience[2]. The pair programming dimension of XP
requires that teams of two programmers work
simultaneously on the same design, algorithm, code, or
test. Sitting shoulder to shoulder at one computer, one
member of the pair is the “designated driver,” actively
creating code and controlling the keyboard and mouse.
The “non-driver” constantly reviews the keyed data in
order to identify tactical and strategic deficiencies,
including erroneous syntax and logic, misspelling, and
implementations that don't map to the design. After a
designated period of time, the partners reverse roles. Code

produced by only one partner is discarded, or reviewed
collaboratively before it is integrated.

Computer science faculty are increasingly
experimenting, either formally or informally, with pair
programming in the classroom. All of the published
studies to date indicate that pair programming has a
positive impact on some aspect of student performance or
enjoyment, while none have demonstrated that student
learning is compromised[2-4]. Nevertheless, many
instructors continue to require students to complete
programming assignments independently. Presumably,
continued reliance on solo programming in academic
settings is rooted in instructor concern that one of the
partners in a pair will not learn as much as they would if
they completed the assignment alone. In the worst case,
one member of the pair might do essentially all of the
work. Although this would not be “pair programming,” it
is often difficult, if not impossible, to monitor how
students actually spend their programming time and how
closely they are following the pairing protocol.

Previously, we reported on preliminary data from two
of the four introductory programming sections discussed
in this paper[3]. We found that a greater percentage of
students who were required to use pair programming
made it to the final exam, and that among those who
completed the course, pairing and non-pairing students
performed equally well on the final exam. In this paper we
report on course performance data from all four sections.
We also present data about students’ confidence in their
programming solutions, and their enjoyment of, and
satisfaction with the process, as well as subsequent course
taking patterns and major declarations.

2. Method
The purpose of this study was to investigate the effects

of pair programming on student performance and
subsequent pursuit of computer science related degrees
among both female and male college students. Participants
were 555 students (413 men and 141 women1) who
attempted an introductory computer programming course,

1 Gender information was unavailable for one student.

intended primarily for computer science, computer
engineering, electrical engineering, and information
systems management majors, at the University of
California-Santa Cruz during the 2000-01 academic year.

Four sections of the course were offered during the
year: one in the Fall quarter, two in Winter, and one
during the Spring. One of the principle investigators of
this study, Charlie McDowell, taught the Fall and Spring
sections of the course. The two Winter sections were
taught by UCSC faculty members not associated with this
project.

Students enrolled in the Fall and Winter sections were
required to complete all assignments using pair
programming. Students in the Spring section, on the other
hand, were required to complete programming
assignments independently. On the first day of class
students in the pairing sections were given a brief 15 to 20
minute description of pair programming and instructed to
read Williams and Kessler’s paper “All I Really Need to
Know About Pair Programming I Learned in Kindergarten
[5].” As an incentive to read the paper they were told that
the first quiz might include a question about it.

Students in the pairing sections submitted a list of three
names of potential partners, and partners were assigned
based on these preferences. In nearly all instances,
students were assigned a partner from their list. Those that
stated no preference were randomly assigned a partner.
Whenever possible students remained with the same
partner throughout the quarter, however, due to schedule
changes and drops, a small number of partner
reassignments were necessary. As a result of hardships
such as heavy work schedules or living far from campus
seventeen students across the three pairing sections were
permitted to program alone for various reasons. Data from
these students was combined with the data from the
students in the non-pairing section.

Although each student was assigned to one 90-minute
lab time per week, most programming assignments were
completed outside of scheduled lab time. The labs
functioned primarily as teaching assistant office hours.
There were no specific in-lab assignments and attendance
was not mandatory.

Students in two of the three pairing classes and in the
non-pairing class were required to submit five graded
programming assignments. In the remaining pairing class
students completed four graded assignments. In all four
sections students were also encouraged to complete four
additional practice programming assignments that did not
contribute directly to their grade. Programming
assignments were scored for functionality and readability.
Along with each assignment students submitted a log
indicating the amount of time they spent on the
assignment (pairing students were asked to differentiate
between time spent driving, reviewing, and alone), their
level of confidence in their solution, how much they

enjoyed working on the assignment, and how satisfied
they were with the process.

Regardless of whether they completed assignments in
pairs, all students took exams independently. The final
exam assessed students’ knowledge of programming
concepts and their ability to write new code. Additionally,
we collected information about students SAT scores, the
courses they took over the following year, and their major
declarations a year after taking the class.

3. Results
An important assumption of this study was that all four

sections of the course were similar in terms of students’
academic preparation to succeed. In order to test this
assumption, one-way ANOVAs by course section on SAT
math and verbal scores, and high school GPA (required of
most freshmen applicants for admission to UCSC) and
transfer GPA (required of all transfer students) were
conducted. There were no significant differences between
sections on SAT math scores, or on high school or transfer
GPA. There was a significant main effect on SAT verbal
scores F(3, 465) = 5.05, p<.005. Tukey follow-up tests
revealed that the average SAT-V scores in one of the
sections that required pairing was significantly lower than
the two other pairing sections (M = 521 vs. M = 559 and
M = 573), but not significantly different than the non-
pairing section (M = 547). Combining the three pairing
sections indicated that there was not a significant
difference in SAT-V scores between all pairers and non-
pairers (M = 553 and M = 547 respectively). Because the
difference was only between pairing sections it seemed
acceptable.

3.1. Completion and Pass Rates
Perhaps the most straightforward indicators of student

success are completing the course and passing it. For the
purpose of this study, we defined completion as taking the
final exam, and passing as earning a “C” or above.

Table 1: Completion and pass rates

Completion
Rates for all

Students

Pass
Rates for all

Students

Completer’s
Pass Rates

Pairers2

(N=404)
90.8% 72.3% 79.6%

Non-pairers
 (N=148)

80.4% 62.8% 78.2%

A comparison of students who used pair programming
with those who didn’t indicated that pairers were
significantly more likely to complete the course (90.8%)

2 The pairing status of 3 students was unavailable.

than were non-pairers (80.4%), χ2(1) = 11.21, p<.001. Not
surprisingly then, pairers were also more likely to pass the
course (72.3% vs. 62.8%), χ2(1) = 4.57, p <.05. Among
just those who took the final exam, the difference in pass
rates between pairing (79.6%) and non-pairing students
(78.2%) was not statistically significant (see Table 1).

Williams and Kessler have proposed “pair pressure” as
a possible explanation for higher completion rates among
paired versus unpaired students[6]. According to Williams
and Kessler, students who work in pairs may be more
likely to complete programming courses because of the
shared responsibility that results from collaborative
partnerships. As a consequence, paired students may
remain in the class for the sake of their partner. Although
this is a plausible explanation, it is not supported by these
data. The fact that in our study there was no difference in
pass rates between pairers who completed the course and
non-pairers who completed the course suggests that it was
not simply the case that pairers were more likely to “stick
it out,” but rather that a larger proportion of paired
students were able to master enough of the course material
to pass.

Overall the difference between women’s and men’s
completion rates (85.8% and 89.1% respectively) was not
statistically significant χ2(1) = 1.10, p>.05. An
examination of the effects of pairing on women and men
separately indicated that men who paired were
significantly more likely to complete the course (91.7%)
than men who did not pair (81.5%). On the other hand,
there was not a significant difference in completion rates
between women who paired and those who did not (88.1%
vs. 79.5%). The fact that the 10% difference in
completion rates between paired and unpaired men was
statistically significant, while the 8% difference in
completion rates between paired and unpaired women was
not is probably best explained by the substantially smaller
number of women (N = 141) than men (N = 413) in the
programming classes.

3.2. Course Performance
In addition to completion and pass rates, we were

interested in the effects of pairing on course performance.
We measured two related, but distinct indicators of course
mastery. The first, the quality of the programs that
students produce was operationalized as student’s
normalized average score on the graded programming
assignments. The second is the extent to which students
are able to apply the concepts covered during the course.
We used final exam scores, which all students took
independently regardless of whether they paired or not, as
the measure of the extent to which they had learned the
material. For the following analyses we included only
those students who completed the course, defined as
taking the final exam (N=486).

Among students who completed the class, a two-way
ANOVA (pair type X gender) indicated that those who
paired produced significantly better programs (86.6%)
than those who worked alone (68.1%), F(1, 482) =77.42,
p<.001. There was no significant gender difference in
average programming scores (men’s and women’s scores
were 81.9% and 82.5% respectively), nor was there an
interaction between gender and pairing. In other words,
pairing was associated with significantly higher scores for
both women and men (see Table 2). A two-way (gender X
partners’ gender) ANOVA on pairer’s programming
scores indicated that neither pairers’ gender nor their
partner’s gender was related to the quality of the programs
they produced.

Table 2: Average programming scores

Mean Std. dev.
All pairers 86.6% 14.7
All non-pairers 68.1% 22.4

Paired women 86.9% 16.0
Unpaired women 70.1% 19.7
Paired men 86.5% 14.2
Unpaired men 67.3% 23.3

It may be that the reluctance of some computer science
faculty to use pair programming in their classes is due to a
concern that at least some students will “earn” grades that
predominantly reflect their partner’s work. It is possible,
for example, that the pairing students in our study earned
higher average programming scores simply because
weaker students received scores that were primarily due to
the work of the stronger student in the pair, thus
artificially inflating the average programming scores of
the pairers.

Elsewhere we have argued that the very process of
working collaboratively enhances the quality of programs
that pairs produce[3]. In that paper we compared the two
sections of the introductory programming course that were
taught by the same instructor, and for which assignments
were intentionally designed to be equivalent. We found
that the average score on programming assignments of all
of the students in the pairing section was significantly
higher than the average score of the top 50% (based on
final exam scores) of the non-pairing section.

Nevertheless, it is important to understand the effects
of pairing on individual student learning. Because all of
the students in this study took the final exam
independently, we considered final exam scores the best
indication of the extent to which students had mastered the
course material. A two-way (pairing X gender) ANOVA
indicated that scores were not influenced by whether
students paired, F(1, 482) =.02, p>.05. Pairers averaged
75.2% on the final compared with non-pairers’ average of
74.4% (see Table 3). This finding strongly suggests that a

student’s ability to independently apply concepts to novel
problems is not compromised by learning to program in
pairs. Indeed, considering that a significantly greater
percentage of the students who paired took the final, it
seems that learning to program in pairs results in mastery
for a greater percentage of students.

We did note a gender difference in final exam scores
that approached, but did not reach significance, F (1, 482)
=2.86, p=.09. Men and women scored 76.2% and 71.4%
respectively. Analysis of covariance (ANCOVA), using
SAT math scores as a covariate (F(1, 409)=.43, p=.51.)
indicated that the marginal gender difference we observed
may be the result of differential preparation.

A two-way (gender X partner’s gender) ANOVA on
pairers exam scores only, revealed a significant main
effect of gender on final exam scores, F(1, 362) = 7.46,
p<.01. Men who paired averaged 76.7%, while women
who paired averaged 70.8% (see Table 3). Again, this
difference was not significant when math SAT scores
were held constant, F(1, 303) = 2.9, p>.05. The gender of
the partner was not related to performance on the final
exam.

Table 3: Final exam scores

Mean Std. dev. N
All pairers 75.2% 18.9 367
All non-pairers 74.4% 18.5 119

All men 76.2% 18.4 366
All women 71.4% 19.7 120

Paired men 76.7% 18.6 277
Paired women 70.8% 19.2 89

3.3. Confidence, satisfaction, and enjoyment

Table 4: Questions asked about each program

Confidence On a scale from 0 (not at all confident) to
100 (very confident), how confident are
you in your solution to this assignment?

Satisfaction
(pairers
only)

How satisfied are you with the way that
you and your partner worked together on
this assignment? (1=very dissatisfied,
7=very satisfied)

Satisfaction
(non-pairers
only)

How satisfied are you with how you spent
your time on this assignment? (1=very
dissatisfied, 7=very satisfied)

Enjoyment How much did you enjoy working on this
programming assignment? (1=not at all,
7=very much)

Of course the most important goal for students in any
class is mastery of the material. This is certainly the case
for introductory programming courses, where future
success is dependent on a strong foundational knowledge.

However, subjective experiences in introductory
programming courses may also contribute to decisions
about whether to pursue computer science related degrees.
For this reason it is important to understand how the
experience of pairing influences students’ confidence in,
enjoyment of, and satisfaction with their work. The
specific questions students responded to in their logs are
presented in Table 4.

3.3.1. Confidence in program solution

Overall, students who paired reported significantly
higher confidence in their program solutions (89.4%) than
students who worked independently (71.2%),
F(1,482)=99.38, p<.001, and men were significantly more
confident (87.0%) than women (81.1%), F(1,482)=14.62,
p <.001. There was also a significant interaction between
pairing and gender with regard to reported confidence.
Simple effects follow-up tests of the interaction indicated
that pairing resulted in more confidence for both women
(86.8% vs. 63.0%), F(1, 482) = 50.54, p<.001 and men
(90.3% vs. 74.6%), F(1, 482) = 54.94, p<.001. However,
the 24% increase in confidence that pairing afforded
women was even greater than the 15% confidence boost
experienced by men who had the benefit of pairing (see
Table 5). Partners’ gender was unrelated to pairers’
confidence levels.

Table 5: Confidence in solutions

Mean Std. dev. N
All pairers 89.38 13.73 380
All non-pairers 71.21 23.95 106

All men 86.99 16.42 356
All women 81.11 21.57 130

Paired men 90.30 13.08 281
Unpaired men 74.61 16.42 75

Paired women 86.79 15.19 99
Unpaired women 62.97 28.29 31

3.3.2. Satisfaction with programming

Similarly, pairing students reported greater satisfaction
(M=5.95) than non-pairing students (M=4.58),
F(1,475)=118.05, p<.001, and men reported greater
satisfaction (M=5.72) than women (M=5.45),
F(1,475)=4.56, p<.05 (see Table 6). No interaction
between pairing and gender was found. Because the
question about satisfaction was not identical for the
pairing and non-pairing students these results should be
interpreted cautiously. We realized too late that we had
asked the pairing students a question that was not
appropriate for the non-pairers.

Table 6: Satisfaction
 (1=very dissatisfied, 7=very satisfied)

Mean Std. dev. N
Pairers 5.95 .98 374
Non-pairers 4.58 1.28 105

Men 5.72 1.09 351
Women 5.45 1.40 128

Paired w/ a man 5.91 1.00 277
Paired w/ a woman 6.05 0.87 96

A partner by partner’s gender ANOVA of pairers
satisfaction revealed a marginal effect of partner’s gender,
F(1,369)=3.84, p=.051. Students that partnered with a
woman were more satisfied with how they worked with
their partner (M=6.05) than students that partnered with a
man (M=5.91).

3.3.3. Enjoyment

A two-way (pairing X gender) ANOVA indicated that
pairing students enjoyed working on programming
assignments (M=5.14) more than non-pairing students
(M=4.69), F(1,482)=9.00, p<.005. Overall women
(M=4.84) and men (M=5.11) enjoyed the assignments
equally well, F(1,482)=2.69, p>.05. However, among just
the students who worked in pairs, men reported
significantly higher enjoyment (M=5.21) than the women
(M=4.91), F(1,482)=6.42, p<.05 (see Table 7) regardless
of whether they partnered with a woman or a man.

Table 7: Enjoyment
 (1=very unenjoyable, 7=very enjoyable)

Mean Std. dev. N
Pairers 5.14 1.14 380
Non-pairers 4.69 1.02 106

All men 5.11 1.11 356
All women 4.84 1.15 130

Paired men 5.21 1.13 280
Paired women 4.91 1.12 99

3.4. Persistence in computer science

In addition to being interested in the effects of
programming on students’ performance and subjective
experiences with pairing, we were interested in the effect
pairing might have on student persistence in computer
science related majors. Specifically we wanted to know if
using pairing as a learning tool for beginning
programmers would influence subsequent computer
programming course taking behavior, both in terms of
attempts and pass rates, and students’ decisions to major
in computer science related fields.

Of course pursuing a computer science degree is
dependent on success in the introductory course. For that
reason we limited our analyses of persistence to the
students who had successfully passed the class with a “C”
or above. When interpreting these data it is important to
keep in mind that nearly 10% more of the students who
had paired in the introductory course successfully passed
it. Because we followed students for one full academic
year, our sub-sample was further limited to those who
were still enrolled at UCSC three quarters after taking the
course (N=321). Finally, although the introductory
programming class is intended primarily for computer
science majors, some students not intending to major in
any of the computer science related fields also take the
course. Most of the analyses below focus on those
students who indicated on the first day of class an
intention to pursue one of the computer science related
majors offered at UCSC.

Among the students who were intending to pursue a
computer science related major at the start of the
introductory programming class, successfully passed the
class with a “C” or better, and were still enrolled at UCSC
a full year later (N=238; 187 men and 51 women), a
significantly higher percentage of the students who had
paired had gone on to attempt the subsequent
programming course (Introduction to Data Structures)
within a year (76.7%), than had the non-pairing students
(62.2%), χ2(1) =6.17, p <.05. Separate analyses by gender
of the effect of pairing on whether the subsequent course
was attempted within a year revealed about an 18%
difference between pairers and non-pairers for both
women and men (73.8% of paired women vs. 55.6% of
non-paired women, and 88.0% of paired men vs. 69.4% of
unpaired men). The pairing effect was statistically
significant for men, χ2(1) = 7.60, p<.01, but not for
women, χ2(1) = 1.19, p>.05. The increase in the
percentage of students associated with pairing appears to
be quite similar for men and women. The fact that this
difference was statistically significant for men but not
women, again is most likely attributable to the relatively
small number of women (51 compared to 186 men) in this
study.

Among students that attempted the Data Structures
course, there was no significant difference between pairers
and non-pairers pass rates on their first attempt (see Table
8). That is, students who paired in the introductory
programming course were more likely to attempt the
subsequent programming class, and were just as likely to
pass it as those who learned to program independently.

Among the students initially intending a computer
science major, and who passed the introductory course
and remained at UCSC for at least a year, the pairing
students were also more likely to have declared a
computer science related major 1 year after completing

the introductory programming class, χ2(1) =13.19, p
<.001 This was the case for both women and men.
Women who paired were more likely than women who
worked independently to be in a computer science related
major (59.5% vs. 22.2%), χ2(1) =4.14, p <.05. Similarly
pairing men were also more likely to have declared a
computer science related major 1 year later than men who
worked alone (74% vs. 47.2%), χ2(1) =9.70, p <.005 (see
Table 9).

Table 8: Attempted and passed data structures course

Attempt Rates

Pass Rates
(on 1st attempt)
of Attempters

All pairers 76.7% 73.6%

All non-pairers 62.2% 72.4%

Paired women 73.8% 77.4%
Unpaired women 55.6% 66.0%

Paired men 88.0% 72.7%
Unpaired men 69.4% 75.0%

Interestingly, the same pattern of results was observed
among all students who successfully completed the
introductory programming course and were still enrolled
at UCSC a year later, regardless of whether they had
initially been planning to major in one of the computer
science related majors. Pairers were significantly more
likely to have declared a computer science related major
than non-pairers, χ2(1) =12.18, p <.001, and that was the
case for both men, χ2(1) =6.23, p <.05 and women, χ2(1)
=7.13, p <.01 (see Table 9 for percentages).

Table 9: Percentage of students declaring a
computer science major 3 quarters after intro course

Pairers Non-pairers
Students intending CS majors 70.8% 42.2%
Women intending CS majors 59.5% 22.2%
Men intending CS majors 74.0% 47.2%
Students intending any major
(including undeclared)

56.9% 33.8%

Women intending any major
(including undeclared)

46.3% 11.1%

Men intending any major
(including undeclared)

59.9% 41.1%

4. Conclusion

The results of this study provide some of the most
compelling evidence to date of the effectiveness of pair
programming as a pedagogical tool. It appears that pairing
bolsters course completion and consequently course pass
rates, and contributes to greater persistence in computer
science related majors. Moreover, students who pair

produce higher quality programs, are more confident in
their work, and enjoy it more. We hope these findings will
encourage instructors to use pair programming not only in
their introductory courses, but also in their upper level
courses.

The continued underrepresentation of women in
computer science underscores the need for strategies that
foster women’s interest and promote their success[7]. Pair
programming appears to be one such approach. That the
benefits associated with pair programming extend to both
men and women speaks to its broad-based appeal. As we
continue to investigate the effects of this technique on
attracting and retaining female students, parallel research
investigating these phenomena in the workplace is also
needed.

Acknowledgments
This work was funded by National Science Foundation

grant EIA-0089989. Any opinions, findings, and
conclusions or recommendations expressed in this paper
are those of the authors and do not necessarily reflect the
views of the National Science Foundation. We wish to
thank undergraduate student Tristan Thomte and graduate
students Wendy R. Williams, Wendy M. Limbert, Jennifer
Bevan, and Brian Hanks for help with the data.

5. References

[1] Beck, K., Extreme Programming Explained: Embrace
Change. 2000, Reading, Mass: Addison-Wesley.

[2] Williams, L., et al., Strengthening the Case for Pair
Programming. IEEE Software, 2000. 17(4): p. 19-25.

[3] McDowell, C., et al. The Effects of Pair-Programming on
Performance in an Introductory Programming Course. in 33rd
SIGCSE Technical Symposium on Computer Science Education.
2002. Northern Kentucky: ACM Press.

[4] Nosek, J.T., The Case for Collaborative Programming.
Communications of the ACM, 1998. 41(3): p. 105-108.

[5] Williams, L.A. and R.R. Kessler, All I Really Need to
Know About Pair Programming I Learned in Kindergarten.
Communications of the ACM, 2000. 43(5): p. 108-114.

[6] Williams, L.A. and R.R. Kessler. The Effects of "Pair-
Pressure" and "Pair-Learning" on Software Engineering
Education, in Thirteenth Conference on Software Engineering
Education and Training. 2000. Austin Texas: IEEE Computer
Soc.

[7] Tech-Savvy Educating Girls in the New Computer Age
Executive Summary. 2000, American Association of University
Women Education Foundation (available at
http://www.aauw.org/2000/techsavvy.html).

