Making Choices (Chap 3)

• If you wish to defrost, press the defrost button; otherwise press the full power button.
• Let the dough rise in a warm place until it has doubled in size.

Expressions and Statements

• Expression statements are formed by adding a semicolon to the end of certain types of expressions.
 – An assignment expression is an expression involving an assignment.
 area = width * height;
 – A method call expression has no assignment.
 System.out.println(...);

Blocks

Several statements can be grouped into a block using { }.

```java
{x = 1;
 {y = 2;
  System.out.println(y);
 }System.out.println(x);
}
```

A block with a declaration

```java
{int i = 5 + j;
 // i is declared in this
 // block j is from elsewhere
 ...
} // end of block, i disappears //can't access i here
```

Boolean Expressions

• Any expression that evaluates to true or false.
• Relational operators, <, <=, >, >=.
• Equality operators, ==, !=.
• For example:
  ```java
  int i = 3, j = 4;
  boolean flag;
  flag = 5 < 6;
  flag = (i == j);
  flag = (j + 2) <= 6;
  ```

Logical Operators

• Operators that take boolean values as operands.
• x && y - true if x AND y are both true
• x || y - true if either x OR y are true, or both
• !x - true if x is false - read NOT x
The if statement

```
if (BooleanExpression)
  Statement
```

BooleanExpr

true

false

Statement

Semicolons and the if statement

```
if (temperature < 32)
  System.out.println("Warning: Below Freezing!");
  System.out.println("It's "+temperature+" degrees");
if (temperature < 32) {
  System.out.println("Warning Warning Warning!");
  System.out.println("Warning: Below Freezing!");
  System.out.println("Warning Warning Warning!");
}
```

Example: Sort three numbers

<table>
<thead>
<tr>
<th>Before</th>
<th>After</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>17</td>
</tr>
<tr>
<td>b</td>
<td>6</td>
</tr>
<tr>
<td>c</td>
<td>11</td>
</tr>
</tbody>
</table>

Pseudocode

1. Place the numbers in boxes a, b, c
2. If the number in a is not larger than the number in b, go to 4.
3. Interchange the numbers in a and b.
4. If the number in b is not larger than the number in c, then go to 8.
5. Interchange the numbers in b and c.
6. If the number in a is not larger than the number in b then go to 8.
7. Interchange the numbers in a and b.
8. Halt

```java
// SortInput.java - sort three numbers
import tio.*; // use the package tio

class SortInput {
  public static void main (String[] args) {
    int a, b, c, t;

    System.out.println("type three integers:");
    a = Console.in.readInt();
    b = Console.in.readInt();
    c = Console.in.readInt();

    if (a > b)
      t = a; a = b; b = t;
    if (b > c)
      t = b; b = c; c = t;
    if (c > a)
      t = c; c = a; a = t;

    System.out.println("After: ");
    System.out.println("a: "+a);
    System.out.println("b: "+b);
    System.out.println("c: "+c);
  }
}
```
if (a > b) { // swap a and b
 t = a;
 a = b;
 b = t;
}
if (b > c) { // swap b and c
 t = b;
 b = c;
 c = t;
}
if (a > b) { // swap a and b
 t = a;
 a = b;
 b = t;
} // This doesn’t match the pseudo-code. Why not?
System.out.print("The sorted order is : ");
System.out.printf(a + ", " + b + ", " + c);

The if–else statement
if (BooleanExpression)
 Statement1
else
 Statement2

Finding the minimum
if (x < y)
 min = x;
else
 min = y;

A block in an if–else statement
if (temperature < 32) {
 System.out.println("Warning");
 System.out.println(32 - temperature + "(F) below Freezing!");
 System.out.println("Warning");
} else {
 System.out.println("It’s " + temperature + "degrees fahrenheit.");
}

Common Programming Error
What is printed by the following if x is 3 and y is 4?
if (x < y);
 System.out.println("x is smaller");
if (y < x);
 System.out.println("y is smaller");

Common Programming Error
What is printed by the following if temperature is 45?
if (temperature < 32)
 System.out.println("It is now");
 System.out.println(32 - temperature);
 System.out.println("It’s " + temperature + "degrees.");
else {
 System.out.println("It’s " + temperature + "freezing.");
 System.out.println("It’s " + temperature + "degrees.");
}
Nested if-else statements

if (ageOfPerson >= 18)
 if (ageOfPerson < 65)
 System.out.println("full fare adult");

if (ageOfPerson >= 18 && ageOfPerson < 65)
 System.out.println("full fare adult");

if-else-if-else-if-else...

if (ageOfPerson < 18)
 System.out.println("child fare");
else if (ageOfPerson < 65)
 System.out.println("adult fare");
else
 System.out.println("senior fare");

if (18 <= age < 65)
 ...
This is not legal syntax.

if (temperature < 32) {
 System.out.println("Warning");
 if (temperature < 0)
 System.out.println((-temperature) + "(F) below zero!");
 else
 System.out.println(32 - temperature + "(F) below Freezing!");
 System.out.println("Warning");
} else {
 System.out.println("It is " + temperature);
}

if (temperature < 32) {
 System.out.println("Warning");
 if (temperature < 0)
 System.out.println((-temperature) + "(F) below zero!");
 else
 System.out.println(32 - temperature + "(F) below Freezing!");
 System.out.println("Warning");
} else {
 System.out.println("It is " + temperature);
}
The dangling else problem

if (Expression1)
 if (Expression2)
 Statement1
 else
 Statement2

This indentation is misleading.

An else always matches the nearest unmatched if.

The dangling else problem

if (Expression1)
{
 if (Expression2)
 Statement1
 else
 Statement2

Use braces to force the grouping you want.

The while statement

while (BooleanExpression)
 Statement

Execution enters the loop

Continue with the rest of the program

A simple loop

class Valentine {
 public static void main(String[] args) {
 int howMuch = 0;
 while (howMuch < 5) {
 System.out.println("I love you.");
 howMuch++;
 }
 }
}

Average - pseudocode - no while

1. Get a number.
2. If the number is 0 go to step 6.
3. Add the number to the running total.
4. Increment the count of numbers read in.
5. Go back to step 1.
6. Divide the running total by the count of number in order to get the average.
7. Print the average.
Average - pseudocode - using while

Get a number.
While the number is not 0 do the following:
 Add the number to the running total.
 Increment the count of numbers read in.
Get a number.
(when the loop exits)
Divide the running total by the count of number in order to get the average.
Print the average.

General form of a while loop

InitializationStatement
while (BooleanExpression) {
 Statement1
 Statement2
 ...
 PrepareForNextIteration
}

Average.java

• Dissect Average.java
• Identify parts of the loop - init, test, nextIter
• Sentinel controlled loop
• 0 / 0 is NaN

```
// Average.java - compute average of input values
import tio.*;

public class Average {
  public static void main(String[] args) {
    double number;
    int count = 0;
    double runningTotal = 0;
    // initialization before first loop iteration
    System.out.println("Type some numbers, the last one being 0");
    number = Console.in.readDouble();
    while (number != 0) {
      runningTotal = runningTotal + number;
      count = count + 1;
      // prepare for next iteration
      number = Console.in.readDouble();
    }
    System.out.print("The average of the ");
    System.out.print(count);
    System.out.print(" numbers is ");
    System.out.println(runningTotal/count);
  }
}
```

Common Programming Error

How many times does this loop execute?

```
int count = 13;
System.out.println("The multiples of 13 between 1 and 100 are:");
while (count != 100) {
  System.out.println(count);
  count = count + 13;
}
```
The `for` statement

```
for (ForInit; BooleanExpr; UpdateExpr) Statement
```

- `ForInit` - Execution enters the loop
- `BooleanExpr` - true or false
- `UpdateExpr` - Continue with the rest of the program

```java
// SquareRoots.java - print square roots of 1 - 10
public class SquareRoots {
    public static void main(String[] args) {
        double square_root;
        for (int i = 1; i <= 10; i++) {
            square_root = Math.sqrt(i);
            System.out.println("the square root of " + i + " is " + square_root);
        }
        System.out.println("That's All!");
    }
}
```

```java
// SquareRoots2.java - replace for with while
public class SquareRoots2 {
    public static void main(String[] args) {
        int i;
        double square_root;
        i = 1;               // initialization-expr
        while (i <= 10) {
            square_root = Math.sqrt(i);
            System.out.println("the square root of " + i + " is " + square_root);
            i++;               // iteration-expr
        }
        System.out.println("That's All!");
    }
}
```

Switch

- Day of week with if-else
- Day of week with a switch
- Day of week grouping weekdays and weekends.

```java
if (dayOfWeek == 1) {
    System.out.println("Sunday");
} else if (dayOfWeek == 2) {
    System.out.println("Monday");
} else if (dayOfWeek == 3) {
    System.out.println("Tuesday");
} else if (dayOfWeek == 4) {
    System.out.println("Wednesday");
} else if (dayOfWeek == 5) {
    System.out.println("Thursday");
} else if (dayOfWeek == 6) {
    System.out.println("Friday");
} else if (dayOfWeek == 7) {
    System.out.println("Saturday");
} else {
    System.out.println("Not a day number " + dayOfWeek);
}
```
switch (dayOfWeek) {
 case 1:
 System.out.println("Sunday");
 break;
 case 2:
 System.out.println("Monday");
 break;
 // cases 3-6 omitted to make fit on one slide
 case 7:
 System.out.println("Saturday");
 break;
 default:
 System.out.println("Not a day number " + dayOfWeek);
 break;
}

switch (dayOfWeek) {
 case 1:
 case 7:
 System.out.println("Stay home today!");
 break;
 case 2:
 case 3:
 case 4:
 case 5:
 case 6:
 System.out.println("Go to work.");
 break;
 default:
 System.out.println("Not a day number " + dayOfWeek);
 break;
}

A Final Example

Write a program to plot an increasing frequency sine wave, given an initial step size in degrees, the number of points to plot, and the rate of increase as a percentage.

class PlotSin {
 public static void main(String[] args) {
 <<Get initial step, num points, and rate>>
 while <<More lines to plot>>
 <<Plot the next point>>
 }
}

<<More lines to plot>>
(linesRemaining > 0)

<<Plot the next point>>
{
 <<Print some spaces>>
 System.out.println(' ');
 <<Update the variables>>

 linesRemaining--;
 angle = angle + step;
 step = step * rate;
}

<<Print some spaces>>

// change -1 to 1 into 0 to 78
int numSpaces =
 Math.sin(Math.toRadians(angle)) * 39 + 39;
while (numSpaces > 0) {
 System.out.print(' ');
}

<<Update the variables>>

<<Get initial step, num points, and rate>>

double step, angle = 0;
int pointsRemaining;
System.out.println("Enter initial step size.");
step = Console.in.readDouble();
System.out.println("Enter number of points.");
pointsRemaining = Console.in.readInt();
System.out.println("Enter rate of increase.");
rate = Console.in.readDouble();
//Convert to 1 + fractional rate
rate = 1 + rate / 100;
import tio.*;

class PlotSin {
 public static void main(String[] args) {
 //get the step size, number of lines, and rate of increase
 double step, rate, angle = 0;
 int pointsRemaining;
 System.out.println("Enter the initial step size in degrees.");
 step = Console.in.readDouble();
 System.out.println("Enter the number of points to plot.");
 pointsRemaining = Console.in.readInt();
 System.out.println("Enter the rate of increase as a percentage.");
 rate = 1.0 + (rate / 100);
 while (pointsRemaining > 0) {
 // print some spaces
 int numSpaces = (int)Math.round(Math.sin(Math.toRadians(angle)) * 39 + 39);
 while (numSpaces > 0) {
 System.out.print(' ');
 numSpaces--;
 }
 System.out.println('*'); // draw the point
 // update the variables for the next iteration
 pointsRemaining--;
 angle = angle + step;
 step = step * rate; // incr step => incr frequency
 }
 }
}

Enter the initial step size in degrees.
10
Enter the number of points to plot.
40
Enter the rate of increase as a percentage.
0
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

while (pointsRemaining > 0) {
 // print some spaces
 // change -1 to +1 range of sin() into 0 to 78.
 int numSpaces = (int)Math.round(Math.sin(Math.toRadians(angle)) * 39 + 39);
 while (numSpaces > 0) {
 System.out.print(' ');
 numSpaces--;
 }
 System.out.println('*'); // draw the point
 // update the variables for the next iteration
 pointsRemaining--;
 angle = angle + step;
 step = step * rate; // incr step => incr frequency
}