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ABSTRACT
Cloud-based services have become an attractive alternative
to in-house data centers because of their flexible, on-demand
availability of compute and storage resources. This is also
true for scientific high-performance computing (HPC) appli-
cations that are currently being run on expensive, dedicated
hardware. One important challenge of HPC applications is
their need to perform periodic global checkpoints of execu-
tion state to stable storage in order to recover from failures,
but the checkpoint process can dominate the total run-time
of HPC applications even in the failure-free case! In HPC
architectures, dedicated stable storage is highly tuned for
this type of workload using locality and physical layout poli-
cies, which are generally unknown in typical cloud environ-
ments. In this paper we introduce DataMods, an extended
version of the Ceph file system and associated distributed
object store RADOS, which are widely used in open source
cloud stacks. DataMods extends object-based storage with
extended services take advantage of common cloud data cen-
ter node hardware configurations (i.e. CPU and local storage
resources), and that can be used to construct efficient, scal-
able middleware services that span the entire storage stack
and utilize asynchronous services for offline data manage-
ment services.

1. INTRODUCTION
The use of Infrastructure as a Service (IaaS) offer-

ings have dramatically increased in recent years, ow-
ing their success to seemingly limitless scalability, and
cost effective resource allocation. However, the archi-
tectural design of IaaS storage services are largely in-
compatible with the needs of high-performance comput-
ing (HPC) software. In order for the HPC community
to take advantage of cost savings offered by the use of
cloud services—especially important for academic and
governmental institutions— specialized I/O storage ser-
vices must be be offered by IaaS providers.

Many HPC applications are tightly coupled, and sen-
sitive to failures. This is a problem for long running sim-
ulations. A common, general fault-tolerance solution is
global checkpoint and restart. In order to recover from
system failures applications often use a global check-

point mechanism to periodically save their execution
state to a file system, allowing the application to be
restarted from the latest snapshot after a failure occurs.
Because the saved state must be globally consistent,
during a checkpoint applications cannot make progress.
Thus improving checkpoint and restart performance is
an important goal. It is common in dedicated HPC data
centers to highly customize and tune the physical layout
of checkpoint data for a particular file system in order to
obtain good performance. Unfortunately, exposing low-
level tuning parameters and data locality information is
largely antithetical to common cloud architectures that
favor black-box designs that can be transparently re-
configured for load balancing and consolidation.

The process of application checkpoint is difficult to
scale because of the mismatch between high-level data
models and the traditional POSIX file I/O interface.
Data access libraries (e.g. HDF5 and MPI-IO) provide
valuable domain-specific abstractions to HPC application—
such as arrays, meshes, and graphs—over the standard
POSIX file I/O interface, but over time have become
highly complex. To understand why, consider that these
middleware libraries must implement flexible, parallel
services such as metadata management, data alignment,
and provide specialized access such as views, all on top
of the byte-stream data model that makes much of the
structural information unavailable to the file system. In
order to remain scalable, these middleware layers must
choreograph access within a narrow stage defined by so
called ”magic numbers”—the alignment specifications of
the underlying physical storage—and even when a file
system manages to expose these hints or allow their cus-
tomization, integrating this knowledge into middleware
remains non-trivial. Fortunately, many of the services
duplicated by middleware libraries already exist in dis-
tributed file systems with well-defined scalability prop-
erties. Exposing these services to high-level program-
ming models as a standardized IaaS offering will allow
developers to avoid duplicating complex, error prone
services in favor of generalized, robust, and scalable ver-
sion of such services. This paper identifies these services
and surfaces them with a set of abstractions that are de-

1



signed to provide a new abstract storage interface that
might replace or extend the existing POSIX I/O stan-
dard.

Data Model Modules (DataMods) are a new way of
building middleware services that take advantage of a
variety of scalable services already found within parallel
file systems. We have identified four components com-
mon to middleware libraries, and propose that existing
services within distributed object-based file systems be
generalized to provide the following services to high-
level programming models:

1. Metadata management. Middleware libraries
manage information describing a file layout and
data types, and must be able to efficiently access
this data at scale.

2. Data placement. Domain-specific data models
are forced to fit the byte-stream model by serializ-
ing model instances to offsets within a file, and in-
dexes maintained that record the location of data
elements.

3. Intelligent data access. Structural and content-
aware data subsetting require special purpose in-
dexes that must be explicitly managed, and local-
ity information is difficult to derive despite its im-
portance in optimizations that reduce data move-
ment.

4. Asynchronous services. Middleware software
performs many synchronous tasks that are amenable
to asynchronous processing, such as various com-
pression techniques, indexing construction, and work-
flow execution.

A DataMod module contains a programmatic speci-
fication for how each generalized service should behave,
and the system ensures correct behavior without sacri-
ficing the scalability of each service. For instance, the
layout of a file may be expressed with a few basic for-
mulas and some accompanying metadata. These rules
and parameters are stored within a file inode, but the
system must prevent an inode from growing too large
in order to retain scalability properties of the metadata
and namespace service.

The remainder of this paper is structured as follows.
Section 2 describes distributed object-based file sys-
tems, the services they provide, and the interfaces they
export. In Section 3 this interface is contrasted with
the domain-specific data models that applications ac-
tually require, and in Section 4 we show how existing
services can be generalized and used within high-level
programming models.

2. CEPH DISTRIBUTED FILE SYSTEM

Large-scale file systems contain many scalable ser-
vices that function together to implement the common
byte-stream interface. In this section we provide an
overview of these services in the context of the Ceph
distributed object-based file system, focusing on the
scalability properties that must be maintained when ex-
posing generalized interfaces to high-level programming
models.
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Figure 1: Architecture of object-based file systems.
Clients communicate with distinct clusters for either
metadata or file data operations.

An object-based file system refers to a file system ar-
chitecture in which metadata (e.g. files, directories, and
locks) and file data are managed by distinct distributed
services within a file system cluster. A high-level view of
Ceph’s architecture is illustrated in Figure 1 in which
clients read and write file data directly to an object-
storage service, and direct metadata requests to a sep-
arate service. This separation of services is important
because of the vastly different access patterns needed
by file data and metadata.

Scalable metadata management. Clients interact
with a dedicated metadata service (MDS) that manages
the file system namespace, provides additional services
such as coherency control and security, and allows the
metadata cluster to scale independently of the underly-
ing object-storage system. A key component to Ceph’s
metadata scalability is its use of fixed-size inode struc-
ture that can be embedded in directory fragments, al-
lowing metadata servers to quickly rebalance using tree
partitioning as workloads change. The fixed-size inode
is made possible by trading large, explicit block lists for
a compact generating function that calculates object lo-
cations [5].

Distributed object storage. A cluster of object
storage devices (OSDs) persist both metadata and file
data in flexibly sized containers called objects. Each
OSD consists of local storage (e.g. HDD or SSD), a
cache, multi-core CPU, and RAM. Objects managed
by the cluster can belong to different classes, taking
on the behavior defined by the class, and allowing in-
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terfaces other than basic read and write functionality.
For example, metadata updates stored within a spe-
cial MDS-class object serialize directory updates at the
object-level, avoiding locking overhead and improving
scalability.

Recovery and fault-tolerance. Recovery and fault-
tolerance are handled transparently by the distributed
object store. At the time an OSD fails, all other OSDs
in the cluster become responsible for a share of the data
stored on the failed OSD. Ceph employs a scalable shuf-
fling technique that guarantees only an amount of data
proportional to the size of the failed OSD is moved. Ad-
ditional services such as scrubbing and repair are han-
dled as asynchronous background tasks on each storage
device.

2.1 Permitted File Operations
Ceph exposes a standard POSIX file I/O interface to

clients, including a full hierarchical namespace. When
a client opens a file it retrieves the inode from the meta-
data service. The inode contains standard file metadata
such as ownership and protection, as well as the configu-
ration used by clients to map the file byte-stream into a
set of objects contained within the object-store cluster,
a process known as striping. Ceph allows applications
and middleware limited control over physical layout by
allowing customization of the per-file striping strategy
configuration.

stripe count

ob
je

ct
 s

iz
e

stripe unit

Byte-stream Layout

Striping Strategy Inode OSD Client

File System Client

Object Layout

O
bj

ec
t O

pe
ra

tio
ns

Figure 2: A file system client uses a striping strategy
to distribute a byte-stream across a set of objects. The
strategy is partially configurable via parameters found
in the file inode.

Figure 2 illustrates how clients control physical file
layout. Three parameters are used to specify the strip-
ing strategy—object size, stripe unit, and stripe count—
allowing applications to manipulate layout along mul-
tiple dimension. Unfortunately, the striping strategy of
a file is applied to the entire byte-stream, and many
applications may write files with varying degrees of reg-
ularity, or simply have no regular pattern, gaining little
or no benefit from the additional control mechanism.

Finally, Ceph exposes additional control over the con-
sistency guarantees required by the POSIX interface.
Locking can be relaxed among multiple writers of the
same file using the O LAZY feature when applications
wish to make their own guarantees over concurrent writer
behavior (such as client-side synchronization). How-
ever, even O LAZY benefits are limited by false shar-
ing in the case of unaligned access. Object-based file
systems feature a complex mix of services designed to
expose scalable byte-stream interface, but as we will see
in the next section, this interface is far from ideal for
middleware developers.

3. MIDDLEWARE-LEVEL INTERFACES
Applications interact with complex structured data

such as arrays, meshes, relational tables, and key-value
pairs, through a life cycle that involves saving, restor-
ing, and communicating application state. However, in
order to persist application data to a file system the se-
rialization of structured data must conform to the data
model exposed by the POSIX file I/O interface. For ex-
ample, Figure 3 illustrates an instance of a graph that
an application stores in a file system. There are many
challenges that must be met when managing complex
data, and these challenges are best addressed by data
management middleware.

Graph Middleware Library

Application

File System Byte Stream

Metadata Mgmt
Content Index
Compression

Serialization

Placement 
Indexing

I/O Systems

Figure 3: Middleware libraries map application-level
data model instances onto low-level byte-streams.
These libraries contain many sub-systems, such as in-
dexing that records the location of data model elements,
depicted by the intra-stream references in the byte-
stream.

Middleware bridges the division between complex ap-
plication data models, and the type-less byte-stream
interface by providing structured access to data. The
challenge faced by middleware is how the translation
between the two abstractions can be made efficient and
scalable. Returning to Figure 3, consider the func-
tionality that must be implemented within this mid-
dleware. Subsets of the graph managed by potentially
thousands of clients in a distributed application are seri-
alized, compressed, placed within the byte-stream, and
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the placement location recorded in an index; all while
trying to reduce intra-file contention due to unaligned
accesses. It should not be surprising then that what
middleware builds within a byte-stream begins to re-
semble a file system.

Metadata management. Middleware places meta-
data within a byte-stream that may take on many roles.
For example, headers in the HDF5 file format are placed
at well-known positions and act as superblocks, allowing
clients to bootstrap themselves with btree-based index-
ing and file layout information. Multiple distinct data
model instances (e.g. arrays) can be kept in a single
HDF5 file and organized using a heriarchical names-
pace, and clients must be aware of the distinction using
namespace metadata.

Data placement. As an HDF5 file grows, indexes,
metadata, and multiple data model instances must each
expand within the byte stream. Since each of these are
fundamentally different types of data, regions of the file
will naturally be subject to different types of workload
and growth patterns. For example, a btree placement
index will have a high-degree of concurrent access from
many readers, while locality among regions of a graph
may be exploited when reading and writing model data.
A challenge for middleware designers is to position data
within a file in such a way that reading and writing
metadata and other content is efficient and scalable.

Data access methods. Applications make struc-
tured requests against instances of a data model imple-
mented by middleware, and middleware may also sup-
port predicate-based filtering. However, middleware oc-
cupies a position in the I/O stack above the file system
client level, thus there is little to no support for in-
telligent, data model specific access methods. Rather,
structural indexes and layout metadata are first read
and queried, then located content is read, which may
be a granularity that results in increased network traf-
fic. When content-based indexes are not supported sig-
nificant amount of communication may be wasted on
moving data that does not match a desired predicate.

Asynchronous services. Middleware offers data
compression, implements basic workflows, and performs
data management tasks such as indexing. These opera-
tions are performed online—while a file is opened—but
many are amenable to being executed asynchronously
after a file is closed, thereby reducing the amount of
time applications spend performing I/O.

Next we will examine how the file system services
within distributed object-based file systems, as described
in Section 2, can be generalized to subsume the common
needs of middleware described in this section.

4. DATA MODEL MODULES
The traditional byte-stream interface is an important

system component that has survived because of its sim-

plicity, and will always serve an important role. In this
section we provide an overview of the abstractions we
propose to augment the existing byte stream interface
with rich functionality for new middleware and applica-
tion designers.

The interface consists three abstractions. First, the
File Manifold encapsulates metadata management and
data placement by allowing middleware to extend in-
ode structures with custom state and rule-based place-
ment logic. Second, Typed and Active Objects provide a
safe mechanism for extending the interface and behav-
ior of the underlying object store to include application-
specific abstractions. Finally, applications can take ad-
vantage of Asynchronous Services to implement offline
processes that can be used to perform indexing, com-
pression, de-duplication, and other management activi-
ties such as basic workflows, after a file has been closed.

Tying each of these abstractions together, and to un-
derlying file system services, is a run-time environment
and language. The run-time limits the exposure of file
system internals to application-specific extensions while
still providing access to a rich array of built-in utilities,
as well as other application-defined abstractions. The
language and run-time together enforced basic scalabil-
ity invariants in the underlying file system service.

4.1 File Manifolds
A file manifold is a generalization of metadata storage

and data placement services, and addresses the needs
of middleware to support heterogeneous byte-streams
in which multiple types of data are combined in arbi-
trary patterns. For example, an HDF5 file may store
several multi-dimensional arrays in distinct files, each
with a layout tailored for a particular array, while the
high-level file manifold stitches each sub-file together
forming a composite view. Figure 4 illustrates an exam-
ple of such a file consisting of three datasets. The first
two are represented by pattern-based striping strategies
with different configurations, and the third uses an in-
dex to record data element placement (e.g. a vertex
list).

dataset A dataset B dataset C

pattern layout manifold

Byte Stream

index

Compound Manifold

append log
pattern layout manifold

Figure 4: A file manifold is an abstract striping strat-
egy that allows separate regions of a file to be stitched
together in arbitrary patterns.

Scalability. All manifold data is stored within a
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file inode, and thus must adhere to the scalability con-
straints of the Ceph metadata service. An inode in
Ceph may be flexibly sized, but must remain to be small
enough to be stored inline with directory entries. Fig-
ure 5 illustrates the extensions made to the inode struc-
ture to implement file manifolds.

Inode
Protection
Ownership

Length

RADOS
Namespace

File Schema

Versioning

Placement 
Rules

RADOS

Client

Figure 5: FIXME: this graph needs to be expanded

In addition to the common fields stored within an
inode—access times, object namespace, modes—file man-
ifolds expand an inode by incorporating custom meta-
data and striping rules. The interface through which
inode extensions are defined enforce limits on the size
of an extended inode. The scalability constraints of an
inode do not prevent file manifolds from being depen-
dent on more data than is allowed, and may instead
choose to store metadata within auxiliary objects with
references maintained in the inode itself.

Byte-stream compatibility. Middleware need not
be constrained to exporting a byte-stream, and may opt
to work directly with objects. In such cases middleware
have maximum freedom over data layout, while still be-
ing able to take advantage of the namespace manage-
ment features offered by the metadata service. There
are interesting implications that result from not sup-
porting a byte stream interface. First, measures must
be taken to ensure that general binary utilities (e.g. cp,
mv) do not succeed, as there may be not real meaning to
a byte-stream. Interestingly, it may be possible to auto-
matically export an archive format as a byte stream, for
any file manifold, by serializing objects and metadata.

4.2 Active and Typed Objects
Advanced interfaces that go beyond interacting with

type-less binary objects are needed to efficiently support
the type of intelligent data access, filtering, and manipu-
lation that middleware libraries perform at a high-level.
This is accomplished through an object-level abstrac-
tion that combines type and interface metadata with a
rule-based specification of behavior.

Figure 6 illustrates the active object abstraction. There
are two ways that new behavior can be added to ob-
jects. First, hooks can be registered with the system

ActionPre Post

Object

request

reply

Storage

Typed and Active Object

Figure 6: Typed and active objects combine rules and
actions for handling requests, interacting with object
data, and may generate transitive actions that affect
other objects or system services.

that wrap existing object behavior. For example, a pre-
processing hook could be registered around the existing
read and write behavior to implement an application-
specific compression codec. Second, entirely new be-
havior can be defined by implementing named methods
associated with an object type. For example, an appli-
cation may implement an object method that provides
model-specific views using an automatically maintained
index of object contents.

Applications implement new object types and behav-
ior in a similar way to defining file manifolds, by spec-
ifying state information and rules that the system au-
tomatically maintains and isolates on behalf of an ap-
plication. As shown in Figure 7, applications begin by
registering a new object type that includes state infor-
mation and rules defining behavior. Object types do
not change, and therefore can be aggressively cached
throughout the system. Following registration, the sys-
tem will return to the application a handle used when
referencing objects, such as when new objects are cre-
ated. Native object types built into the system have
well-known handles, and can be used in the same way
as application-defined types. Finally, the underlying
object store is responsible for evaluating object rules on
behalf of applications or asynchronous services within a
run-time environment.

4.3 Asynchronous Services
Middleware libraries perform compression, indexing,

and are involved in high-level workflows, among other
data management tasks. Each of these tasks is per-
formed online while files are opened, but are amenable
to being processed asynchronously. For example, ag-
gressive compression can be applied offline to reduce
data volumes that would otherwise introduce unaccept-
able overhead to the write fast path. High-level libraries
such as the Climate Data Operators can be used to
implement workflows such as regridding or computing
statistical summaries. Providing middleware designers
flexibility in when and where data-intensive operations
such as these are scheduled can help increase utilization
by spreading work throughout the system.

Scalability. Middleware can schedule asynchronous
work to be performed continuously in the background,
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Figure 7: Object requests trigger specific actions within
the object store. Native actions are built-in, and dy-
namic behavior defined by middleware is JIT compiled,
and LRU cached.

scheduled in the future, or triggered at specific file events
(e.g. close). Work is defined in a similar way to that of
active and typed objects. An interface with specific be-
havior is defined and registered within the system, and
may be accessed from within the run-time environment
to register work.

Existing, threaded workqueue abstractions within the
file systems are generalized to run within the context of
the DataMod run-time, and their interface (e.g. add-
work()) is exported to be available within the run-time
environment.

4.4 Run-time Environment
The generalization of services requires the ability to

synthesize new behaviors within the file system, such
as formulas used to define a striping strategy, or light-
weight routines that can traverse a data model instance.
DataMods accomplishes this using a well-defined, safe
run-time environment that includes just-in-time compi-
lation of code, or alternatively the ability to commu-
nicate with external processes that implement required
logic. The run-time environment provides middleware
developers access to built-in functionality such as exist-
ing data structures and metadata, as well as the meta-
data and interfaces defined within and exported by an
existing DataMods module. A full discussion of the
requirements of the run-time environment are beyond
the scope of this paper, and include addressing both
resource usage and scalability isolation.

5. RELATED WORK
The Lustre file system contains a mechanism for join-

ing files together, each with a potentially distinct strip-
ing pattern. Yu et al. used this feature to decouple
MPI-IO collective writers to avoid a performance prob-
lem with large stripe widths [6]. Lustre file joining is

similar to file manifolds in that multiple data sources are
merged to construct a view, but Lustre is restricted to
joining with concatenation semantics, rather than the
flexible, rule-based joining offered by file manifolds.

There has been a wide variety of research related to
active storage [2, 4] John et al. explores active storage
in the context of object storage devices by allowing func-
tionality to be defined in Java and activated remotely
by clients using an extended version of the iSCSI OSD
protocol. The user-defined Java class files are down-
loaded to the storage devices, and executed in a process
distinct from the storage device OSD server. It is dif-
ficult to integrate with caching policies, data must be
moved across process boundaries, and QoS is challeng-
ing with arbitrary code allowed to run in a memory
hungry virtual machine.

Piernas et al. takes a princepled approach to adding
active storage facilities to the Lustre file system, in
which clients create empty files that act as sinks, and
specify source files to be processed by arbitrary pro-
cessing components. The processing components accept
data streams, and several configurations of source and
sink are possible. Striped files are processed in parallel
by instantiating a processing component on each stor-
age device that processes local data chunks.

In [3], Bogdan et al. introduced BlobCR that per-
forms efficient, incremental checkpoints in a virtual ma-
chine cloud environment using VM snapshots saved to
local disk (and migrated later to stable storage). An
integrated API is available so that applications can syn-
chronize checkpointing, but BlobCR only targets appli-
cations that can checkpoint local state, avoiding writing
to a global file.

[1] found that several cloud providers supported HPC
application with acceptable performance, and that in-
creased network performance would bring the greatest
increase in applicability of the cloud to HPC. They did
not however address any I/O issues such as checkpoint-
ing.

6. CONCLUSION AND FUTURE WORK
This paper presents DataMods, a plugin mechanism

allowing new file formats to be constructed in and sup-
ported directly by parallel file systems. The DataMods
system provides middleware developers enhanced ex-
pression of their requirements and helps developers avoid
duplicated common system services. The next steps
for this work is to explore several case studies in order
demonstrate the performance improvements and com-
plexity reduction that can result from building middle-
ware systems across the entire storage system stack.
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