
SupMR: Circumventing Disk and Memory
Bandwidth Bottlenecks for Scale-up MapReduce

Michael Sevilla, Ike Nassi, Kleoni Ioannidou, Scott Brandt, Carlos Maltzahn
Computer Science Department

University of California, Santa Cruz
Santa Cruz, CA 95060, USA

{msevilla, inassi, kleoni, scott, carlosm}@soe.ucsc.edu

Abstract—Reading input from primary storage (i.e. the
ingest phase) and aggregating results (i.e. the merge phase)
are important pre- and post-processing steps in large batch
computations. Unfortunately, today’s data sets are so large
that the ingest and merge job phases are now performance
bottlenecks. In this paper, we mitigate the ingest and
merge bottlenecks by leveraging the scale-up MapReduce
model. We introduce an ingest chunk pipeline and a merge
optimization that increases CPU utilization (50 - 100%)
and job phase speedups (1.16⇥ - 3.13⇥) for the ingest and
merge phases. Our techniques are based on well-known
algorithms and scale-out MapReduce optimizations, but
applying them to a scale-up computation framework to
mitigate the ingest and merge bottlenecks is novel.

I. INTRODUCTION
Ingesting the input into memory and merging

large sets of data are performance bottlenecks for
data-intensive computing. Today’s big data archi-
tectures usually scale-out by adding nodes to the
system. These systems attack batch workloads with
huge data sets by arming themselves with many
resources (e.g., cores, memory, SSDs) and by ag-
gressively parallelizing computation. For example,
MapReduce [1] leverages the resources of many
connected nodes and distributed DBMSs parallelize
query execution. Recently, scale-up architectures,
which add more resources to a single node, have
been shown to be an effective option for large batch
computations at a fraction of the cost [2].

In scale-up systems, scale-out techniques, like
adding resources and automatic parallelization, work
well for the actual computation. However, they
overlook data pre- and post-processing stages, like
the ingest and merge phases. These phases are very
important because they significantly affect perfor-
mance and their execution times scale poorly with
the input size.

A properly configured scale-up system with faster

Fig. 1: A scale-up MapReduce sort application is bottlenecked
by ingest and merge phases. We leverage the MapReduce
model to circumvent these inefficient phases.

hardware and more channels can mitigate these bot-
tlenecks. However, the time to move large amounts
of data (into memory or off disk) will never be zero.
Furthermore, upgrading today’s systems is often
times limited by insurmountable costs or marriages
to legacy software. Because systems limited by the
speed of data movement are entrenched in many data
centers, it is important to provide techniques to help
mitigate these bottlenecks.

Fig. 1 shows how these phases bottleneck the job
in a scale-up, MapReduce sort application operating
on 60GB of data. The total CPU utilization (y
axis) is the percentage of time spent in kernel-space
code (sys), user-space code (user), and in code
waiting for IO (IO wait); the wall-clock time (x
axis) shows when each job phase occurs. The figure
shows that the actual compute phase takes less than
25% of the total execution time! We also see low
utilization for most of the job’s execution time.
Since the ingest and merge bottlenecks are largely
sequential, the theoretical speedup of the program
is limited.

Fig. 2: A comparison of the traditional scale-up MapReduce paradigm and SupMR. The top part of the figure shows how the
MapReduce model translates to scale-up components. The bottom part shows how SupMR mitigates the ingest bottleneck with
an ingest chunk pipeline. Ingest chunks are read into memory while mapper threads operate on earlier chunks.

A job reads data from primary storage into main
memory during the ingest phase. With large input
sizes, it is probable that data movement will saturate
the system’s resources thereby dominating the com-
putation time. Unfortunately, the ingest bottleneck
is prevalent in modern systems because the scale
of today’s data sets usually renders the number of
channels and the achievable bandwidth insufficient
to serve data to the computation framework. For
example, a system using disks instead of SSDs
may not be able to serve data fast enough [2]. A
system using scale-out storage with a slow network
or limited number of ports may not transfer data
quickly enough [7]. A system using storage silos
for data with different priorities may need to move
it to a local silo before beginning computation [3].

The merge phase is when the job aggregates the
results of many parallel tasks. In MapReduce, the
results are usually sorted during the merge phase
so that data scientists can understand or query the
results. It occurs after the computation and is limited
by the number of records to process. For example,
many parallel merge algorithms iteratively combine
lists, leading to multiple scans of the data. For large
input sizes with many values, inefficiencies in this
phase lead to noticeable bottlenecks.

We present SupMR, a Scale-up MapReduce
runtime that leverages the MapReduce model to
provide an efficient computation framework that has
better performance for large data sets. Using the
MapReduce model to distribute work and parallelize
computation on scale-up has already been shown
to be an effective model when compared to opti-

mized thread libraries [4]. Our work builds on these
techniques and mitigates the effects of the ingest
and merge bottlenecks by optimizing the distinct
MapReduce job phases. We make the following
contributions:

1) an ingest chunk pipeline that mitigates the
ingest bottleneck by parallelizing read/compute

2) a runtime modification that introduces a more
efficient sort to mitigate the merge bottleneck

3) an implementation that increases CPU utiliza-
tion (50-100%), resulting in job phase speedups
(1.16⇥ - 3.13⇥) and time-to-result speedups
(1.15⇥ - 1.45⇥) for 2 target applications

Other work has implemented many of these tech-
niques in scale-out job phases, but to our knowl-
edge, this is the first attempt at using well-known
techniques (double-buffering and p-way merging) to
mitigate the ingest and merge bottlenecks in a scale-
up framework. Although we use the MapReduce
model in this paper, the methods are still applicable
to large-scale HPC systems that have distinct job
phases.

II. BACKGROUND: SCALE-UP MAPREDUCE
MapReduce [1] is a popular programming model

for scale-out because it automatically parallelizes
the job, distributes the work, and is easy to pro-
gram. Map tasks transform the input into key-value
pairs and reduce tasks coalesce key-value pairs with
common keys. The mappers operate in parallel on
chunks of the input called input splits. The user
supplies the map and reduce implementations to the

Fig. 3: OpenMP’s sort computes much faster than the scale-up
MapReduce sort but the total time of the job is slower because
it reads data into memory and parses the data with one thread.

runtime.
Phoenix [4] is a MapReduce API and runtime

implementation designed for scale-up. Phoenix uses
the same model and programming interface but
replaces nodes with threads, the network commu-
nication with shared memory, and the distributed
file system with memory and caches. The top part
of Fig. 2 shows how Phoenix executes a MapRe-
duce job: the input data is read into memory, the
mapper threads operate on input splits and output
the intermediate key-value pairs back into memory,
and the reducer threads coalesce intermediate key-
value pairs with the same keys. Intermediate key-
value pairs (between the map and reduce phase) are
stored in containers and Phoenix supports different
container implementations tailored to popular work-
loads.

A big advantage for scale-up MapReduce is the
ability to store all the input and the data structures
in memory, making the computation memory-bound
(instead of network or disk bound). For example, the
shuffle phase, which is notoriously slow on scale-
out, is much faster on scale-up because all the data
does not need to travel to another node’s disk. Also,
scale-up MapReduce can remove many of the node
monitoring techniques that are necessary for scale-
out, such as heartbeats.

MapReduce is also a convenient abstraction that
helps lift the burden of parallel programming off
the developer. As an example, we compare a sort
application using Phoenix to a sort application using
OpenMP [5], an API for shared memory multipro-
cessing. For a 60GB input size, the scale-up MapRe-

duce sort compute phase is 214 seconds longer
than the OpenMP compute phase. Despite this, the
total execution time (i.e. the time-to-result) for the
OpenMP version is 192 seconds slower. As shown in
OpenMP’s CPU utilization graph in Fig. 3, we have
slower time-to-result because ingesting data into
memory and parsing the input into key-value pairs is
sequential and slow. Alternatively, the MapReduce
map phase automatically parses the input into key-
value pairs in parallel, saving time and increasing
utilization.

To increase the resource utilization and perfor-
mance on a scale-up system, SupMR introduces an
ingest pipeline and modifications to the sort algo-
rithm to mitigate the ingest and merge bottlenecks.

III. EFFICIENT INGEST PHASE
The ingest phase in a scale-up system is usually

a consequence of a limited number of data chan-
nels. Scale-out can circumvent these bottlenecks by
leveraging aggregate data channels in the system.
For example, in scale-out Hadoop (the open-source
implementation of MapReduce), the ingest phase is
parallelized across many disks.

To mitigate the data ingest time on scale-up,
we use a technique called double-buffering [6] to
overlap the ingest phase with the map phase. In
SupMR, the input is broken into ingest chunks and
the ingest chunks are sequentially sent into the
runtime, where they are ingested and operated on
in parallel. The bottom part of Fig. 2 shows how
our runtime (1) divides the file into ingest chunks,
(2) loops over each chunk and starts ingest/mapper
threads to work in parallel, and (3) launches the
reduce function to aggregate key-value pairs.

The original MapReduce paradigm is not flexible
enough to support ingest/map parallelization, so we
make three changes to the map execution engine.
First, we add data structures for managing data
ingest chunks. Second, we introduce an ingest chunk
pipeline so that parts of the input can be ingested
into memory while others are operated on. Third,
we force the intermediate key-value pair container
to persist across the job.

A. Managing Ingest Chunks
In the ingest chunk pipeline, we allow different

resources to operate on different parts of the data
at one time. To allow this, SupMR partitions the

input into small, similarly-sized units called ingest
chunks. These ingest chunks are sequentially sent
into the ingest chunk pipeline.

Recall that in the traditional MapReduce runtime,
the entire input is partitioned into input splits and
each map thread processes a single input split in
parallel. SupMR’s ingest chunk partitioning happens
before producing the input splits. As a result, the
ingest chunk pipeline operates on a single ingest
chunk instead of the entire input. To accommodate
the ingest chunk abstraction, we change the API to
force the user to specify the chunking strategy and
chunk size.

1) Ingest Chunking Strategy: There are two ways
to chunk data: inter-file chunking, where the input
is split into large chunks, and intra-file chunking,
where multiple files combine to form a chunk. For
inter-file chunking, the user specifies the desired
chunk size in bytes and for intra-file chunking,
the user specifies how many files to combine into
one chunk. More complicated abstractions, such as
variable sized ingest chunks or a hybrid inter/intra-
file chunking approach, could allow the runtime to
tune the system (i.e. ingest at size x and operate
on size y) but is not implemented in our initial
prototype.

We support both types of chunking so that
SupMR can process different big data workloads.
This flexible partitioning allows our runtime to
process data generated for Hadoop jobs. Hadoop
processes input as either one big file (e.g., Terasort)
or as many small files (e.g., Word count). This
flexibility is also useful for scale-out vs. scale-up
comparisons, since the the workloads and inputs can
be exactly the same [2], [7].

Inter-file chunking splits the file, allocates space
for the chunk, and reads the chunk into memory.
To ensure that chunking does not separate keys
or values into different chunks, the runtime makes
small adjustments to the split point: it seeks to the
user-defined chunk size, checks to see if it is in
the middle of a key or value, and then continually
increases the split point until reaching the end of the
value. For example, each key-value pair in the input
for Terasort is terminated with \r\n, so the split
function continually increases the split point until
reaching a newline.

Intra-file chunking coalesces multiple files into a

chunk by allocating space for the chunk (equal to the
size of a single file), reading the chunk into memory,
and looping until the user-defined threshold is met.
The runtime dynamically increases the allocated
space to ensure that all files in the intra-file chunk
are collocated in RAM. If the user-defined chunk
size is higher than the number of files left in the
job, then the last chunk is smaller than the rest. For
example, if the user wants to process 30 files with
an intra-file chunk size of 4 files, the runtime will
produce 8 chunks, where 7 chunks will contain the
user-defined 4 files and 1 chunk will contain the 2
remaining files.

2) Ingest Chunk Size: The chunk size determines
the granularity of the ingest chunk stream and
influences the number of map rounds. A fine gran-
ularity improves performance because the runtime
can parallelize more computation with ingest. A fine
granularity also increases resource utilization be-
cause the system is starting threads more frequently
- if the chunk size is too small, the computation
can be dominated by thread overheads, such as
synchronization.

SupMR lets the user define the chunk size be-
cause the runtime lacks the information necessary
to make a good decision, such as information about
the job specifications, the system hardware, or the
desired streaming properties. The optimal ingest
chunk size varies for different types of jobs; the
chunk size for a compute-bound job should be larger
than a disk-bound job to minimize the CPU cycles
spent on thread management. The optimal ingest
chunk size also varies depending on how fast the
system can move data; a system with a disk array
with many channels can handle more data per chunk
than a single disk. Finally, the optimal ingest chunk
size depends on the desired stream properties; large
chunks encourage a slow stream with low overall
utilization, which may benefit a shared compute
device where many other jobs are running.

We acknowledge that the user might not know
enough about the workload or the expected gains in
performance to determine the optimal ingest chunk
size. The best approach, which is left as future work,
is to design components that factor in the expected
performance and the workload characteristics (i.e. a
feedback loop).

Fig. 4: In the ingest chunk pipeline, the next ingest chunk
(ci+1) is read into memory while the mapper threads operate
on the current chunk (ci). Processed chunks are stored as
intermediate key-value pairs in a container.

B. Ingest Chunk Pipeline
The ingest chunk pipeline parallelizes the job by

starting mapper threads to operate on the current
chunk and an ingest thread to read the next chunk
into memory. This is shown in Fig. 4, where mapper
threads operate on the current chunk, ci, while the
next chunk, ci+1, is read from disk into memory.

In the traditional MapReduce runtime, mapper
threads are triggered once to process the entire input;
the number of mapper threads is configurable by the
user. The ingest chunk pipeline starts mapper threads
multiple times to operate on new chunks as they
arrive. These implementations are part of the “loop
for each chunk” phase of the SupMR runtime in the
bottom part of Fig. 2 and pseudo-code is below:

partition input into ingest chunks
ingest 1st chunk
for each ingest chunk do

create thread to ingest next chunk
run mappers on previous chunk
destroy thread

end
run mappers on last chunk

In a SupMR job, there are n + 1 rounds, where
n is the number of ingest chunks. In the first round,
the ingest chunk pipeline reads one ingest chunk
serially (i.e. no other threads are operating). The
ingest chunk pipeline then loops over the rest of the
chunks, reading and computing in parallel. After the
last chunk is ingested, the runtime starts the mapper
threads one final time to compute on the last ingest
chunk.

C. Persistent container
Recall that the container stores intermediate key-

value pairs between the map and reduce phases.
Each map thread inserts intermediate key-value pairs
into this thread-safe container. In the traditional
MapReduce runtime, this container is initialized
when mappers start and destroyed after the reducers
are finished.

Our runtime cannot allow the container to re-
initialize every time the mappers start because we
must allow multiple map tasks across multiple
rounds to insert intermediate key-value pairs into
the container. We make the container persistent, as
was done in [8], by only initializing it the first
time mappers are triggered. All subsequent map
thread waves output to this same container. Since
the container is still holding the same amount of
key-value pairs, its size does not change from that
of the original runtime.

IV. EFFICIENT MERGE PHASE
For large computations with many key-value

pairs, merging data is a bottleneck because the long
latency of scanning keys makes the multiple round
computation inefficient. Merge sort breaks the job
into rounds, where each round (1) sorts many small
lists in parallel and (2) merges the lists. To merge
the lists, the worker repeatedly compares the first
values of the lists and inserts the smaller into a new
list. The next round repeats the process with half the
threads - this is shown by the “step” curve in the
280 - 400 second interval in sort’s CPU utilization
trace (Fig. 1). That figure shows high utilization at
the beginning of the interval as all cores are sorting
small lists in parallel and low utilization as less and
less threads are merging data.

Merge sort works well for small volumes of
key-value pairs because merging small lists is fast.
Unfortunately, merge sort suffers with large lists
because the algorithm ends up comparing many keys
in each round. This latency is multiplied with each
round and as a result, most of the time is spent re-
scanning the keys.

In scale-out architectures, this merge phase can
be sped up by leveraging extra resources on idle
nodes. For example, in Hadoop, daemons merge
values in the background while other data is trans-
ferred in the reduce phase. Other studies on scale-

TABLE I: These additions to the Phoenix++ runtime implement the ingest chunk pipeline. API/callback functions are used to
interact with the application. Runtime functions let the ingest chunk library access the internal runtime data structures.

function function # of times function call
name call type called purpose & description

run_ingestMR() API once launch the SupMR runtime
run_mappers() runtime multiple initialize data structs; determine # of mappers/reducers; launch mappers
run_reducers() runtime once launch reducers
set_data() callback multiple pass the chunk length and ingest chunk pointer back to the application

up MapReduce looked at scaling threads instead of
the actual data, so this merge bottleneck has gone
unnoticed. Furthermore, scale-out Hadoop can be
modified to use custom sort functions1.

To minimize the excessive re-scanning, SupMR
uses OpenMP’s sort version. OpenMP’s sorting al-
gorithm uses p-way merging [9], an algorithm that
merges N ordered lists into a single ordered array
using p processors.

V. IMPLEMENTATION
To implement SupMR, we built on the

Phoenix++ [10] system. The Phoenix++ runtime
creates and maintains all the data structures, sched-
ules all map, reduce, and merge tasks, and pushes
data through the system. The Phoenix++ application
allocates memory for the data, ingests the data,
and provides the runtime with map/reduce callback
functions and pointers to data in memory. We had
to slightly modify the applications but the runtime
is still backwards compatible.

A. Additional Functions & Data Structures
The SupMR modifications are summarized in

Table I. The API library call, run_ingestMR(),
is part of the runtime and implements the ingest
chunk pipeline. The SupMR runtime launches in
exactly the same way as the original library with
a few additional chunk-related parameters. The two
runtime functions are wrappers for the original
map/reduce calls. Their purpose is to provide ac-
cess to the runtime data structures for our external
ingest chunk library. The map function wrapper,
run_mappers(), sets the number of mapper/re-
ducer threads and initializes the persistent container.
The reduce function wrapper, run_reducers(),
is the same as the regular internal reduce function.
Finally, to achieve the optimized sort and p-way

1As of Hadoop version 2.2, the developer can specify custom
functions using the Pluggable Shuffle and Sort capabilities.

merge, we use OpenMP’s parallel sort. We dis-
able the Phoenix++ runtime sort and manually call
gnu_parallel::sort().

The ingest chunk management structures and
functions are linked into the runtime from an exter-
nal library. This library contains the chunk struct, a
struct for passing around the job state, and functions
for reading chunks and locating chunk boundaries.
This is where the runtime manages ingest chunks
using the user-defined ingest chunking strategy and
ingest chunk size.

The original runtime forces the application to
manage memory and ingest the data. Since the
memory is part of the application’s address space,
execution of the callback functions does not violate
process address space semantics. SupMR manages
all the memory allocation to reduce redundant code
and enhance backwards compatibility. With this de-
sign, applications need not re-implement the ingest
chunk pipeline.

B. Application Modifications
In addition to the Phoenix++ application re-

sponsibilities, the SupMR applications need to (1)
allocate memory for the chunk data structures and
(2) define the set_data() callback function. Al-
locating the chunk data structures ensures that all
pointers to data can still be operated on by the appli-
cation map/reduce functions. The callback function,
set_data(), passes the chunk information back
to the application. This lets the runtime dictate
which part of memory (i.e. which ingest chunk) the
application map/reduce callbacks should operate on.

The Phoenix++ runtime generalizes to a range of
applications by supporting three different containers
for storing intermediate key-value pairs. These con-
tainers let the application choose the best container
given the workload. The default container is a hash
container, where each key is hashed to a cell in an
array. This works well for applications like word

count that have many pairs with the same key
because the large input set is transformed into a
much smaller intermediate set.

Unfortunately, the hash container is a poor data
structure for applications like sort, where the large
input set is transformed to an equal sized interme-
diate set. The mappers must check the container for
the key before insertion, which is a problem for a
large number of key-value pairs. Furthermore, after
the map phase, the container has unique key values
all inhabiting the same cell. When the reducers are
called, they must iterate over every key, needlessly
sweeping the array to handle different keys. Because
the sort application has unique keys, SupMR uses
Phoenix’s unlocked storage, which allows all threads
to write to a single array without synchronization.
Each mapper outputs to its key range in the array
and each reducer operates only on its key range.

VI. RESULTS
To demonstrate the benefits of SupMR, we

choose the word count and sort applications as
benchmarks because these applications represent
different spectrums of the application space; they
experience different speedups when mitigating the
ingest or merge phases. We choose input sizes
that showed extreme performance degradation in
previous work [7]; 155GB for word count and 60GB
for sort. Although we tested on traditional multi-core
servers with a few target applications, we feel that
the techniques can still be extended to other large-
scale deployments.

A. Measurements and Experimental Setup
To measure execution times we use the

Phoenix++ internal timing functions2. The program-
mer can start/stop a timer and print the elapsed time
with microsecond granularity. Each experiment is
run 3 times and the average is taken. The CPU
utilization is collected with collectl, a daemon
that can monitor all CPUs for a specified amount of
time. Each resource utilization graph traces one run,
since we care more about the behavior rather than
the exact timing measurements.

We ran the following experiments on a scale-up
Red Hat Enterprise Linux 6 system with 384GB of
RAM and 2 8-core processors with hyperthreading

2These functions use the Linux time libraries in time.h.

TABLE II: Execution times of the different job phases show
how SupMR mitigates the ingest and merge bottlenecks. Word
count operates on 155GB of data and sort operates on 60GB
of data.
*Note: rows = chunk sizes, columns = job phase

total read map reduce merge
Word Count: mitigate ingest bottleneck
none 471.75s 403.90s 67.41s 0.03s 0.01s
1GB 407.58s 406.14s 1.08s 0.01s

50GB 429.76s 423.51s 0.08s 0.01s
Sort: mitigate merge bottleneck
none 397.31s 182.78s 6.33s 7.72s 191.23s
1GB 272.58s 196.86s 9.04s 61.14s

enabled (32 hardware contexts). The system has 3
data HDDs in a RAID-0 configuration and a separate
HDD houses the operating system. The RAID-0
device reports a read speed of 384 MB/s maximum.

B. Timing Analysis
Our timing analysis in Table II provides raw

performance numbers to support our claims that
SupMR effectively mitigates the ingest and merge
bottlenecks. The rows of that table are the runtimes
with different chunk sizes, with “none” correspond-
ing to the original runtime. The columns of that
table show the total runtime of the job (total) and
a breakdown of the job into the four different
MapReduce phases (ingest, map, reduce, merge).
Experiments with different chunk sizes indicate that
1GB and 50GB are good minimum and maximum
chunk sizes, respectively. This concept is explained
more fully in the next section. For the total job time,
the timing breakdown shows performance improve-
ments for SupMR. The word count application ex-
periences a speedup between 1.16⇥ and 1.10⇥ over
the original runtime, depending on the chunk size.
The sort application experiences a 1.46⇥ speedup
over the original runtime. All job execution times
do not add up to the total execution time because
we do not list the cleanup or setup times.

For the four job phases, the timing breakdown
shows how SupMR (1) parallelizes the ingest/map
phases for word count and (2) improves the merge
phase for sort. In the original runtime, there is a
read and a map phase but in SupMR, these phases
are combined because of the ingest chunk pipeline.
Word count experiences a speedup between 1.16⇥
and 1.12⇥ in these phases; it is a better speedup than
sort because word count has a more complicated

0%

50%

100%

 0 200 400

To
ta

l C
PU

 U
til

iz
at

io
n

Wall-clock Time (seconds)

user
sys

wait IO

(a) Word count without ingest chunks.

0%

50%

100%

 0 200 400

(b) Word count, chunk size = 1GB.

0%

50%

100%

 0 200 400

(c) Word count, chunk size = 50GB.

Fig. 5: For word count, the CPU utilization shows a long ingest bottleneck without ingest chunks (a) and improved performance
and utilization with ingest chunks (b and c). Smaller ingest chunks have better performance during the ingest/map phase (1.16⇥
over the original runtime), while larger ingest chunks (1.11⇥ over the original runtime) have less thread management overheads.

map phase, namely checking a container before
inserting a key. This results in a longer map phase,
which in turn allows more of the job execution to
be parallelized with ingest.

SupMR’s sort achieves a 3.12⇥ speedup in
the merge phase. This speedup is better than
word count’s speedup because sort manages more
key-value pairs, resulting in a longer merge phase.
The benefit of the ingest chunk pipeline depends
on the map phase execution time (i.e. how map-
intensive the application is). The benefit of the sort
modification depends on the merge phase execution
time (i.e. # of key-value pairs).

Conclusion 1: the benefit of these modifications
depends on the complexity of the individual job
phases.

C. Resource Usage Analysis
The resource usage analysis reveals important

properties about SupMR’s ingest chunk pipeline
and p-way merge. In this section, we also draw
conclusions on the optimal ingest chunk size and
the relative job phase execution times.

1) Word count - efficient ingest: All three graphs
in Fig. 5 show the total CPU utilization for the word
count application and demonstrate how SupMR
(Figures 5b and 5c) achieves better utilization than
the original runtime (Fig. 5a). The large spike in
Fig. 5a encapsulates all compute phases (map, re-
duce, merge), while the dense spikes in Figures 5b
and 5c show how ingest chunks are overlapped with
the map phase.

Experiments with different ingest chunk sizes
reveal that small chunks have higher utilization

and better performance. Fig. 5b shows small (1GB)
chunk sizes and Fig. 5c shows large (50GB) chunk
sizes. Large chunks produce sparse, well-defined
utilization spikes, indicating low overall utilization
and minimal thread overhead. Small chunks produce
dense utilization spikes because the mapper threads
finish faster3. This shows that, as we decrease the
chunk size, the number of map/ingest rounds in-
creases, the time to ingest a chunk decreases, and
the CPU utilization increases.

For the highest performance, the chunks
should be small. Of course, small ingest chunk
sizes also have disadvantages, such as high
energy consumption. For example, in our system
more map/ingest rounds incur repetitive thread
operations. This leads to long periods of very high
CPU utilizations and stresses the thread library with
unnecessary work. During our experiments, CPU
heat thresholds were occasionally breached leading
to throttling. Also, increasing the CPU utilization
decreases the availability of the system, as it limits
the performance of other jobs.

Conclusion 2: the benefit of the ingest chunk
pipeline depends on the ingest chunk size.

2) Sort - efficient merge: The original runtime
shown in Fig. 1 shows poor utilization and perfor-
mance in the ingest and merge phases; we focus
on the merge phase, since speedup of the ingest
phase is limited for sort. For the original runtime, the
utilization starts high, at 100%, and progressively

3We believe that these intervals reach 100% CPU utilization but
the sampling interval of our measurement tool is too large.

0%

50%

100%

 0 200 400

To
ta

l C
PU

 U
til

iz
at

io
n

Wall-clock Time (seconds)

user
sys

wait IO

Fig. 6: The CPU utilization for sort on SupMR does not incur
the same merge bottleneck as the original runtime in Fig. 1.
SupMR uses OpenMP’s p-way merge implementation.

0%

50%

100%

 0 200

To
ta

l C
PU

 U
til

iz
at

io
n

Wall-clock Time (seconds)

none
1GB ingest chunks

Fig. 7: The CPU utilization for word count on SupMR with a
32-node HDFS storage system shows high utilization but only
a 7 second speedup.

degrades to lower utilization.
Fig. 6 shows that SupMR achieves higher

utilization and less key scans in the merge phase,
resulting in better performance. We see 3.13⇥
speedup in the merge phase because SupMR
handles many key-value pairs more efficiently
than the original runtime by avoiding multiple
merge steps and thread operations. There is only
one merge round because p-way merge merges
N ordered lists into a single ordered array and
the CPU utilization is high because p-way merge
parallelizes computation more efficiently while
using less total threads.

Conclusion 3: the benefit of the sort modification
depends on the number of merge rounds it avoids.

3) A Case Study - ingest chunks on HDFS: As a
proof of concept, we show how SupMR can benefit
one of the scenarios outlined in the introduction: a
scale-up computation framework using a distributed
file system as primary storage. We run HDFS on
our 32 node scale-out system that is connected
with 1Gbit ethernet behind one link. We use the
libhdfs library to ingest data from the distributed
file system directly into memory. For the original
runtime, we copy 30GB of data from all the nodes
onto one node and then start the word count com-
putation. For SupMR, the runtime copies the data
from all the nodes in parallel with the computation.

Fig. 7, which compares the original runtime
to SupMR, shows that SupMR achieves high
CPU utilization during the ingest phase, proving
high compute activity and map task overlay.
Unfortunately, most of the utilization is from
starting parallel resources - the actual speedup is
minimal because the map phase is such a small
fraction of the total job time. The longer the ingest
phase, the smaller the map phase becomes relative
to the total job time. With a small map phase, there
is less opportunity to overlay the map computation
with ingest. As a result, we only see a 7 second
speedup, despite achieving higher utilization. A job
with a longer and more complicated map phase
would achieve better speedup.

Conclusion 4: the benefits of SupMR depend on the
relative execution time of the job phases.

VII. RELATED WORK
To mitigate the ingest and merge bottlenecks, we

use techniques from existing big data runtimes, dis-
tributed storage, and scale-out systems. Traditional
distributed computation lets the user specify the
parallel tasks while the runtime handles the com-
munication and load distribution. The community
quickly learned that MapReduce is not the silver-
bullet for all large scale computation and began
tweaking the model to help move data within the
computation.

Runtime modifications were made to accommo-
date iterative tasks with HaLoop [11], Twister [8],
and CGL-MapReduce [12]. Other work, most no-
tably streaming-based [13] and in-memory [14] ar-
chitectures also addressed the problem of moving

data through the runtime.
These models for scale-out address the data

movement problem within a computation by at-
tempting to leverage in-memory storage to achieve
fine-grained updates to mutable states (i.e. shared
memory, key-value stores, database techniques,
etc.). Although SupMR leverages many of these
concepts (data caching, persistent data structures,
multiple map/reduce rounds), we are attacking a
different part of the data flow - the pre-compute
ingest bottleneck. We do not try to pass data to
different parts of the system; instead we work on
getting the data into the system.

Caching on scale-out systems addresses the data
movement problem within storage tiers and streams
data into the system, like SupMR. MixApart [3]
introduces a cache layer so that compute tasks can
overlay with data ingest. Filtering in Hadoop [15]
can assist caching by reducing the working set of the
job, resulting in less data transmitted on the wire.
SupMR adopts many of these caching techniques
in the double-buffering scheme and applies them to
scale-up computation frameworks.

VIII. CONCLUSIONS AND FUTURE WORK
The ingest and merge bottlenecks plague many

large scale-up systems and reducing their effect is
important for performance. We focus on the MapRe-
duce model and our ingest chunk pipeline and merge
runtime modification show between 50 - 100%
more CPU utilization and speedups between 1.16⇥
and 3.13⇥ for the ingest and merge phases. These
speedups result in 1.10⇥ - 1.46⇥ time-to-result
speedups. We also identify utilization and energy
consumption as significant factors in comparing this
approach to an “equivalent” scale-out implementa-
tion. Integrating functionality for determining (1)
the optimal chunk size and (2) the optimal runtime
parameters could improve the ingest/map phases but
are left as future work.

ACKNOWLEDGEMENTS
We thank all of our anonymous reviewers for

their helpful suggestions, especially in regards to the
significance of this work for HPC.

REFERENCES
[1] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Pro-

cessing on Large Clusters,” in Proceedings of the 6th USENIX

Symposium on Operarting Systems Design & Implementation,
ser. OSDI’04, 2004.

[2] R. Appuswamy, C. Gkantsidis, D. Narayanan, O. Hodson, and
A. Rowstron, “Scale-up vs Scale-out for Hadoop: Time to
Rethink?” in Proceedings of the 4th ACM Symposium on Cloud
Computing, ser. SOCC’13, 2013.

[3] M. Mihailescu, G. Soundararajan, and C. Amza, “MixApart:
Decoupled Analytics for Shared Storage Systems,” in Proceed-
ings of the 4th USENIX Conference on Hot Topics in Storage
and File Systems, ser. HotStorage’12, 2012.

[4] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and
C. Kozyrakis, “Evaluating Mapreduce for Multi-core and Mul-
tiprocessor Systems,” in Proceedings of the 13th IEEE Inter-
national Symposium on High Performance Computer Architec-
ture, ser. HPCA’07, 2007.

[5] OpenMP Architecture Review Board, “OpenMP Applica-
tion Program Interface Version 3.0,” accessed 08/09/2012,
http://www.openmp.org/mp-documents/spec30.pdf.

[6] M. M. Rafique, B. Rose, A. R. Butt, and D. S. Nikolopoulos,
“Supporting MapReduce on Large-scale Asymmetric Multi-
core Clusters,” SIGOPS Operating Systems Review, 2009.

[7] M. Sevilla, I. Nassi, K. Ioannidou, S. Brandt, and C. Maltzahn,
“A Framework for an In-depth Comparison of Scale-out and
Scale-up,” in Proceedings of the 2nd International Workshop
on Data Intensive Scalable Computing, ser. DISCS’13, 2013.

[8] J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.-H. Bae,
J. Qiu, and G. Fox, “Twister: A Runtime for Iterative MapRe-
duce,” in Proceedings of the 19th ACM International Sym-
posium on High Performance Distributed Computing, ser.
HPDC’10, 2010.

[9] B. Salzberg, “Merging Sorted Runs Using Large Main Mem-
ory,” Acta Informatica, vol. 27, no. 3, pp. 195–215, 1989.

[10] J. Talbot, R. M. Yoo, and C. Kozyrakis, “Phoenix++: Modular
MapReduce for Shared-Memory Systems,” in Proceedings of
the 2nd ACM International Workshop on MapReduce and its
Applications, ser. MapReduce’11, 2011.

[11] Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst, “HaLoop:
Efficient Iterative Data Processing on Large Clusters,” Proceed-
ings of the VLDB Endowment, vol. 3, no. 1-2, 2010.

[12] J. Ekanayake, S. Pallickara, and G. Fox, “MapReduce for Data
Intensive Scientific Analyses,” in Proceedings of the 4th IEEE
International Conference on eScience, ser. ESCIENCE’08,
2008.

[13] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari, “S4:
Distributed Stream Computing Platform,” in Proceedings of
the 10th IEEE International Conference on Data Mining Work-
shops, ser. ICDMW’10, 2010.

[14] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. Mc-
Cauley, M. J. Franklin, S. Shenker, and I. Stoica, “Re-
silient Distributed Datasets: A Fault-Tolerant Abstraction for
In-Memory Cluster Computing,” in Proceedings of the 9th
USENIX Conference on Networked Systems Design & Imple-
mentation, ser. NSDI’12, 2012.

[15] C. Gkantsidis, D. Vytiniotis, O. Hodson, D. Narayanan,
F. Dinu, and A. Rowstron, “Rhea: Automatic Filtering for Un-
structured Cloud Storage,” in Proceedings of the 10th USENIX
Conference on Networked Systems Design and Implementation,
ser. NSDI’13, 2013.

