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Abstract— Real-time systems and applications are becoming
increasingly complex and often comprise multiple commu-
nicating tasks. The management of the individual tasks is
well-understood, but the interaction of communicating tasks
with different timing characteristics is less well-understood.
We discuss several representative inter-task communication
flows via reserved memory buffers (possibly interconnected
via a real-time network) and present RAD-Flows, a model for
managing these interactions. We provide proofs and simulation
results demonstrating the correctness and effectiveness of RAD-
Flows, allowing system designers to determine the amount
of memory required based upon the characteristics of the
interacting tasks and to guarantee real-time operation of the
system as a whole.

I. INTRODUCTION

Many real-time applications that were previously exe-
cuted on dedicated systems in order to meet their needs of
predictable performance, now share execution on systems
with many other applications. For example, consider a
smart phone device, in which an audio application may run
simultaneously to a GPS map application. At the same time,
many real-time tasks interact with and share data with other
real-time tasks or subsystems. The aforementioned GPS
application, for example, deals with data sets much larger
than can fit into primary storage memory, and must access a
(possibly shared) storage device in real-time. Real-time data
capture and processing from satellite, video surveillance,
radio telescopes, and sensor networks, similarly produce
large data sets which must be processed by, transferred to, or
stored by other tasks or subsystems in real-time. This creates
the need for real-time memory management to support the
real-time buffering, transfer, caching, and processing needs
of such applications.

Real-time resource managers and schedulers have been
developed for many critical system resources including the
CPU, network, disk, and others. However, memory is still
typically managed by static reservation and overprovision-
ing. Each application’s memory footprint is determined of-
fline and sufficient memory is built into the system to support
all required applications. Where an application’s footprint is
too large, it is typically up to the application to manage its
own memory usage. Our goal is to develop and implement a
general model for real-time memory management that will
work together with our real-time CPU, disk, and network
managed to ensure predictable performance throughout a
shared, distributed, real-time computing environment with
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Figure 1: RAD Architecture. End–to–end predictable system.

large amounts of data being processed, buffered, and trans-
ferred among tasks on the same and different compute
nodes. A driving application is a large, distributed real-time
data storage system used for ultra large-scale data capture,
filtering, and processing, such as might be used with internet
monitoring or radio telescope data capture.

To ensure that a system would behave predictably (i.e.,
that it would complete a given amount of work in a given
amount of time) [1], [2], [3], [4], we have initiated the design
of common system schedulers for CPU, disk, and network
that ensures that each component behaves predictably ac-
cording to a unified model. Our goal in this work is to ensure
that operations move from component to component in a
predictable manner in a multi-task or multi-node computing
system. This would allow us to calculate bounds on the total
execution time by simply adding the worst–case times spent
at each component along the system.

This paper provides the link for those predictable system
components. We show how to combine different predictable
system components so that operations move from one to the
other without compromising predictability. We investigate
how to allow a continual flow of operations across system
components with different processing capabilities without
having to block them due to lack of buffer space to store
data. One key aspect to the solution is to account for



buffer space used to communicate between those system
components.

Our goal is to provide the tools for system designers
to assess how much buffer space is needed—as a function
of the processing capabilities of the system components—
and how this buffer space can be used to facilitate and
guarantee commonly used communication patterns between
system components. This accounting of buffer space is
needed to ensure hard bounds [5] on the overall time that
operations will take. Without it, we could potentially delay
delivery of data between real-time components, missing
overall system guarantees. For example, using a buffer that
can only hold one operation at a time would require us
to block applications so that each operation is completed
before another one is issued, causing significant delays in
the overall execution, dropped data, or worse.

In this paper, we address buffer management to enable
predictable delivery of data for distributed hard real–time
applications and systems. Given system components whose
processing capacities are characterized by a processing rate
over some time granularity (called period), we provision
enough buffer space to guarantee those performance require-
ments at all times. Applications and system components
run continually according to their processing capabilities
(i.e., we do not cause blocking). We chose to describe
processing capabilities by a rate and period, according to
the RAD (Resource Allocation/Dispatching) model [1], [2],
[3], [4], which we already use for CPU, disk, and network
resource management. We call our memory management
model RAD-Flows, which are designed for end–to–end
predictable systems as illustrated in Figure 1.

To the best of our knowledge, RAD-Flows provides the
first general framework describing predictable flows of data
between components with predictable behavior. We capture
a wide range of commonly used communication patterns
between communicating tasks or system components. We
address simple buffering where data moves from a compo-
nent to another through a shared queue and buffering for I/O
storage operations for which there is a response correlated
to each request. For the latter, we distinguish between
direct communication, where responses are produced by a
predictable system component directly, and indirect com-
munication, which allows the memory shared by the system
components that communicate to produce responses using
mechanisms such as prefetching and write-back. Our model
also applies to systems of multi-level storage hierarchies.

The main contributions of this paper are:
a) A formal definition of predictability for both system

components and communication between such components.
(Section III).

b) The RAD-Flows model, which consists of a set of basic
communication patterns that we show can be combined to
describe communication patterns commonly seen in practical
scenarios (such as simple buffering, direct, and indirect
communication). (Section IV).

c) Theoretical analysis of the RAD-Flows model. We
relate the buffer space needed for a certain communication
to the processing capabilities of the communicating compo-
nents and to the time that it would take for this communica-
tion to complete. Calculating the time of completion of an
operation is useful as some applications may impose bounds
on that time. (Section V).

d) Algorithms that use the RAD-Flows model to provide
predictable communication together with proofs of their
correctness for all types of communication: simple buffering,
direct, and indirect. (Section VI.)

e) A simulation of a system that verifies our proven
bounds on buffer space for the RAD-Flows model while
it also helps close the small gap (calculated in our analysis
to be a small constant factor) between our solution and the
optimal buffer allocation. To construct this simulation we
provide insight in what would cause a worst-case execution
(which is what we try to trigger). Note that this simulator can
be extended in the future to model an end-to-end workload
execution for more complex systems. (Section VII.)

Finally, the RAD-FLOW model is extensible and reusable.
It can be easily extended to accommodate other commu-
nication behavior and the components in the model and
analysis can be reused for analyzing other systems involving
buffer management and flows (e.g. buffer–cache, remote/lo-
cal copying services, RAID controllers, etc.).

II. RELATED WORK

The design of inter-task communication for hard real-time
systems is challenging. Our goal is to find the maximum
bound on the time needed to deliver operations throughout
a set of inter-communicating task or nodes with predictable
behavior. In our system, operations in the form of requests
are delivered and executed. Then they are transformed
into responses which are delivered back. The ability to
consume/produce operations of each task/node is charac-
terized by their maximum (or minimum) production (or
consumption) rate over period of time. We have opted to
compute the maximum bound as the summation of the
maximum execution time throughout each component along
the path. To do so our design must eliminate any dependency
between components along the path. These dependencies are
introduced due to lack of space to capture data or due to lack
of operations readily available in the buffer for consumption.
We are ensuring that there is always sufficient space to store
operations or data that is available for consumption so that
tasks do not block. Note that such blocking would have
caused undesirable dependencies which could also lead to
missing deadlines.

In our approach, we avoid blocking real-time tasks that
are capable of producing (or consuming) specific amount
of operations in a given amount of time. We have pro-
vided a model that enables system designers to identify the
maximum bound on the time operations take to move from
component to component. Also, we identify the minimum



buffering space needed to enable each node to process op-
erations at its own rate without having to block tasks/nodes.
In the following we will provide a detailed comparison of
our contributions to most related existing work.

Asynchronous communication between real-time tasks
have been subject of study by [6]. Their work has focused on
non-blocking real-time tasks communicating through shared
memory by avoiding blocking introduced due to mutex,
semaphores, etc. Our approach is complementary to their
approach. In our case, we avoid tasks from blocking by
providing sufficient resources to store data or by feeding
enough data into the buffer to keep the consumer busy.
We explore two cases where the producer does not have
to block due to lack of empty space to store data (the
consumer is allowed to stop without under flowing the
buffer), and the case where neither the producer nor the
consumer have to stop due to lack of empty space, or lack
of operations to consume in the buffer, respectively. The
techniques presented in [6] can be applied on top of our
analysis to deal with shared memory accesses, while non-
blocking is preserved.

Characterizing the amount of time operations remain in
the buffer, and the buffer space needed to enable inter-
task communication have been subject of study by queueing
theory [7]. However, traditional queueing theory does not
take into consideration task’s period. Although further de-
velopment of queueing theory for real-time [8] do account
for timing considerations, the analysis is focused to task
with specific inter-arrival and service time distributions. In
our approach, we are particularly interested in bounding the
worst-case time operations remain in the buffer between
a pair of communication tasks. Those results apply to
chains of more than two tasks/nodes as well. Also, we
are interested in the wost-case buffering space (maximum
queue size or minimum buffer space needed) in order to
avoid blocking the inter-communicating tasks. Our analysis
is independent of inter-arrival or service time distribution.
Furthermore, although queueing theory might be used for
predictable communication for soft performance guarantees,
our main concern in this paper is to provide hard perfor-
mance guarantees needed by hard real-time applications.
Finally, in our design we accommodate for more complex
communication patterns that emerge in practical scenarios
in the context of predictable I/O storage access. In some
of our analysis we need absolute assurance that no buffer
overflow (or underflow) ever occurs. Also, we characterize
scenarios where operations aren’t removed from the buffer
until acknowledgements for completion from a remote com-
ponent have been received. To our knowledge, those are
not captured by any analysis provided by related queueing
theory results.

Pipelined systems have been studied before by [9], how-
ever they focus on the problem of schedulability of tasks.
We aim at providing an alternative approach, where we
explore composition of task/node by implementing a com-

mon interface characterizing production/consumption over
a specific amount of time (period). The communication
pattern that is considered in [9], corresponds to one of the
communication patterns that we consider, called the loop.
In addition, we also look at other communication patterns
that occur when intermediate components are involved in
the communication. We also account for more complex
communication patterns that emerge in practical scenarios
in the context of predictable communication for I/O stor-
age, such as waiting for acknowledgement before releasing
operations from the buffer, proactively moving data closer
to the application through pre-buffering, and postponing
processing of operations, etc.

Similarly to the pipeline approaches [9], we are envi-
sioning an end-to-end system that performs predictably. In
contrast to improving utilization and studying schedulability
as in [9], we focus on providing a system that is composable
through a common interface that will provide hard guaran-
tees. Our idea is to enable system components which enforce
predictable behavior, characterized by a common interface,
to be plugged into the system and provide end-to-end hard
performance guarantees. In particular, our model can be
combined with existing work [2], [4], [1], [3] to implement
an end-to-end system that enforces hard guarantees while all
processing capabilities are no longer expressed by deadlines
but by a representation called RAD [2]. We focus on RAD
characterizations for the performance of the system compo-
nents because of the flexibility it introduces while managing
resources:it separates rate of resources needed for execution
from the point in time when those resources are needed.
This enables us to vary these two components independently,
while allowing concurrent support of non real-time tasks,
as well as real-time tasks with needs for hard and soft
performance guarantees. RAD scheduling has been proved
useful for CPUs [1] and DISKs [4], [3] as it provides flexible
management of resources and has improved performance on
those devices, while ensuring hard performance guarantees.
Similarly, Shewmaker et al. [1] incorporates RAD based
schedulers for networks. Our work is the missing link that
will allow construction of an end–to–end system that uses
RAD throughout as illustrated in Figure 1. Since each of
the RAD components of these systems has better perfor-
mance compared to related work, our careful accounting of
buffering needed for communication of these components is
expected to lead us to an end-to-end system that does not
over provision resources while it guarantees the performance
needs of applications.

Predictable communication for soft real-time (as well
as best–effort) applications has been an extensive area of
research, specially for multimedia [10], [11], [12], [13], [13].
The communication patterns presented in this paper have
been explored before, in the context of soft performance
guarantees. However, we are particularly interested in de-
veloping models that enable hard performance guarantees
needed for hard real-time tasks/nodes. For that, we need



detailed models, based on formal analysis that characterize
the fundamental interactions which emerge between inter-
communicating tasks/nodes. We build upon these models
in order to provide hard performance guarantees along the
composition of these primitive communication patterns. This
allow us to build more sophisticated communication patterns
(such as pre-buffering, waiting for acks) which also provide
hard performance guarantees.

III. PREDICTABLE COMMUNICATION

We consider a system of nodes that directly commu-
nicate by sharing buffering components. We explore how
this communication should happen to enable the nodes to
continuously process operations at their specified processing
capabilities without having to stop. We ensure continual flow
of operations by accounting for sufficient buffer space with-
out allowing buffer overflow. Data related to operations may
remain in the buffer while still needed by applications. The
amount of buffers needed is described by a parameter that we
call buffering space. Each operation’s data is maintained in
the buffering component for some time that we call buffering
time. More formally, a predictable node (or component) is
capable of processing operations according to its processing
capabilities. These capabilities characterize the amount of
operations that might be processed within some amount of
time. We consider predictable nodes and we want to enable
predictable communication, formally defined as follows:

Predictable Communication A communication between
two predictable nodes is predictable if there is enough finite
buffer space available in their shared buffering component to
accommodate data produced while both nodes are allowed
to operate according to their processing capabilities, without
having to stop and no useful data ever gets lost.

In Subsection III-A, we describe how we model each
node’s processing capabilities. In the following subsections,
we formalize different predictable communication patterns
commonly seen in practice. The communication we con-
sider include simple buffering, direct communication during
which an application gets responses directly produced by the
system, and indirect communication where an intermediate
node (which could be the buffer itself) get involved in
the communication and produces responses asynchronously.
We describe those communication patterns in detail in the
following sections.

A. RAD Based Resource Management

The RAD (Resource Allocation/Dispatching) model ini-
tially was introduced to manage CPU [2] and later extended
to manage disks [3], [4]. This model provides the founda-
tions for predictable resource management by decoupling
how many resources are needed, from when those resources
are needed.

The model initially introduced device time utilization as
the metric for guaranteed performance. This makes sense for

system components such as disk and CPU, but for buffers
the RAD metric is rate of operations that can be produced
or consumed and the period (time) when this rate must be
enforced. Hence, according to RAD for buffers, if a node
produces operations with rate r over periods of length p, then
rp operations are produced during any period. We use RAD
(rate and period) to characterize the processing capabilities
of nodes in the system.

B. Simple Buffering

Let N and M be two nodes that communicate by simple
buffering. N produces operations (according to its processing
capabilities, RADN), and those are consumed by a node M
(according to its processing capabilities RADM) who does
not need to send responses. Until the later happens, the data
associated with those operations is maintained in the shared
buffers between N and M. This data occupies some buffering
space B and each data stays in the buffer for some buffering
time T . We need to relate RADN , RADM , B, T for the above
communication to be possible. The relationship given by
a solution to predictable simple buffering would be most
valuable if optimal (i.e., it would provide minimum buffer
space).

Predictable Simple Buffering Problem Given two pre-
dictable nodes N and M that communicate by simple buffer-
ing, our goal is to specify a relation between the processing
capabilities of N and M, buffering space, and buffering time
that makes this communication predictable.

C. Direct Communication

We define direct communication between two nodes as
follows: A node a node N produces operations according to
processing capabilities RADN and expects responses accord-
ing to possibly different processing capabilities RAD′

N , with
a maximum time separation Tmax between these two events.
Let M be the node that consumes the operations produced by
N according to its processing capabilities RADM (that may
be different than RADN). Then M produces the correspond-
ing responses according to processing capabilities RAD′

M .
There are two cases to consider:

• Short–Term: M consumes the operations and produces
responses immediately without any other system com-
ponent being involved. Then RADM = RAD′

M .
• Long–Term: M contacts other system components be-

fore it responds. Then, it is possible that RADM "=
RAD′

M .

Between the time an operation is produced by N and a
corresponding response is received by N, all related data are
kept in the buffering component that is shared between N
and M. To allow predictable direct buffering (formally de-
scribed below), we need to relate the processing capabilities
of N and M to buffering space B and buffering time T . An
optimal solution would require minimum buffering space.



Predictable Direct Buffering Problem Given two pre-
dictable nodes N and M that communicate by direct buffer-
ing, our goal is to specify a relation between the processing
capabilities of N of producing operations and receiving
responses, the processing capabilities of M of consuming
operations and producing responses, buffering space, and
buffering time T ≤ Tmax that makes this communication
predictable.

D. Indirect Communication

Let N be a node that initiates an indirect communication
with node M. Node N produces operations that initiate
responses not produced by M but by the buffering com-
ponent itself, that we call intermediate node O. There are
two specific instances of indirect communication we will
explore: pre-buffering and post-buffering.

1) Pre-buffering: Consider a node N that initiates oper-
ations and expects some amount of responses above some
threshold according to its processing capability RADN , with
a maximum time separation Tmax between these two events.
If the system supports pre-buffering, then data is fetched into
the buffering component by node O that can produce those
operations and present them to node M before N requests
the corresponding data. For this to be possible, we assume
that the required data by N is known in advance (predictable
access, e.g. multimedia applications).

Let pre-buffering time correspond to the time that data
in M is fetched by O before N is allowed to request it. Let
response time T be the maximum time it takes for N to get a
response to an operation (T ≤ Tmax). Let pre-buffering space
correspond to the amount of data in M that is fetched by
O before N is allowed to request operations. The buffering
space is the maximum buffer size needed at any time during
the procedure of pre-buffering. Our goal is to specify how
much data and when it should be prefetched by O to satisfy
the requirements presented by applications while taking into
account the system’s capabilities described by the processing
capabilities of O.

Predictable Pre- Buffering Problem Given two
predictable nodes N and M and intermediate node O
such that N initiates a pre-buffering operation served by
M, our goal is to specify a relation between the processing
capabilities of N, M, and O, buffering space, pre-buffering
space, pre-buffering time, and response time T ≤ Tmax that
makes this communication predictable.

2) Post-buffering: Consider a node N that initiates oper-
ations and expects responses according to some processing
capability RADN , with a maximum time separation Tmax

between these two events. If the system supports post-
buffering, then data is stored into the buffering component
and an intermediary node O consumes those operations and
responds to N. Eventually, M receives this data by operations
initiated by O (e.g. real-time data capture).

Let post-buffering time correspond to the time that data
in M are stored by O after N created it. Let response time T
be the maximum time it takes for N to get a response to an
operation (T ≤ Tmax). Let post-buffering space correspond
to the maximum amount of data temporarily stored by O.
Buffering space is the maximum buffer size needed at any
time during the procedure of post-buffering. When studying
the problem of post-buffering, we would like to specify how
much data and when processing of data will begin by O.

Predictable Post- Buffering Problem Given two
predictable nodes N and M and an intermediate node
O such that N initiates a post-buffering operation served by
M, our goal is to specify a relation between the processing
capabilities of N, M, and O, buffering space, post-buffering
space, post-buffering time, and response time T ≤ Tmax that
makes this communication predictable.

IV. RAD-FLOWS MODEL

This section introduces the RAD–Flows model that char-
acterizes flow of operations across components with pre-
dictable behavior. In the following subsections, we describe
how RAD (rate and period) characterizes the processing
capabilities of predictable nodes. Then, we introduce the
producer–consumer model, which is the core element used
to model how information moves throughout system compo-
nents under worst–case conditions. We show how to chain
together producer–consumer models to create flows, which
are higher level communication abstractions. Finally, we
group flows to create the loop which characterizes how
correlated requests/responses move vertically across various
system layers.

A. RAD Performance Interface

Each predictable component’s processing capabilities are
described by its RAD interface which consists of two RAD
characterizations (RADin = (rin, pin), RADout = (rout , pout))
and an upper bound for buffering time, Tmax (i.e., bound
on time between arrival and departure of operations from
the component). RADin describes the rate and period of
information going in the component. RADout describes the
rate and period of information going out of the component.
In particular, the component may receive with up to, but
no more, than rin pin operations per period pin and it may
generate up to, but no more, than rout pout operations per
period pout . This RAD interface applies to every component
introduced in this section.

B. Producer–Consumer Model

The producer–consumer model, illustrated in Figure 2 (a)
which characterizes unidirectional communication between
a producer and a consumer. It consists of a producer, a
consumer, and memory buffers used to deliver operations
between them. A producer (or consumer) might be a soft-
ware or hardware component, (logical or physical) capable
of producing (or consuming) operations with predictable
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Figure 2: Modeling Operation Flows: The producer–consumer,
characterizes operations moving across components. A flow, com-
prised of one or more producer–consumers joined together, charac-
terizes how operations move across a component. A loop correlates
requests/responses.

behavior according to its processing capabilities RADin (or
RADout for the consumer). Operations produced by the
producer are stored in buffers while being delivered to the
consumer. When the consumer consumes an operation, its
relate data is removed from the buffer.

Many communication patterns, commonly used across
different systems, can be modeled by the producer–consumer
model. From all those cases, we extracted three basic pat-
terns which are repeated across many configurations. We
call those (communication) building blocks and they are
presented in Table I.

The building block called TRANSFER serves queuing
operations between components with possibly different pro-
cessing capabilities. The producer never stops (or blocks)
due to lack of space but it is allowed to produce operations
with a variable rate up to a certain upper bound specified by
its processing capabilities. Note that this case, the consumer
is allowed to stop if no data is available due to the producer’s
possibly reduced production.

The building block PRE–BUF describes how early and
how much data needs to be prefetched to meet a consumer’s
minimum processing capabilities. The producer never stops
(or blocks) due to lack of space and it produces opera-
tions according to a fixed rate specified by its processing
capabilities. The consumer never stops (or blocks) due to
lack of available operations to consume. The later will never
happen due to the fact that we allow certain operations to
accumulate in the buffer before initiating consumption and
also the producer never stops. We use PRE–BUF to solve
pre-buffering.

Finally, the WAIT building block is an extension of the
TRANSFER building block which allows data to reside in
the buffer after they have been consumed in anticipation
of some additional event to happen such as receiving an
acknowledgment confirming successful completion of the
operation. An example would be waiting for an acknowl-
edgement confirming that a write has been stored in the

remote storage device. The buffer space needed for the
WAIT building block depend on the maximum amount of
time the corresponding responses take to arrive (i.e., time
to serve the operation on a remote system). This time may
depend on factors such as system topology. We defer the
analysis of the WAIT building block to future work that
considers buffers in memory hierarchies. The buffering time
and space of TRANSFER and PRE-BUF is analyzed in
Section V.

Building Block Description

TRANSFER accounts for buffering (or queuing) space, and worst–
case queuing time while moving operations across
components with possibly different RAD processing
capabilities.

PRE–BUF accounts for pre-buffering time and space, in order
to meet the minimum performance requirements of
a consumer.

WAIT accounts for buffer space needed while retaining
operations in the buffering components.

Table I: Basic building blocks: Typical producer–consumer in-
stances used by I/O buffer–cache.

C. Flow of Operations

Flows, depicted in Figure 2(b), describe the path of oper-
ations as they move through the system: into a component,
out of a component, or across one or more internal or
external components. Each flow is comprised of one or more
stages, each modeled by a building block. Flows capture
different behavior throughout the path of an operation (e.g.
transferring requests, waiting for responses, etc). Figure 2(a
and b) illustrates two commonly used flows consisting of one
and two stages, respectively. For example, the one stage flow
might be used to characterize operations moving from one
component into another where resources are relinquished
immediately after transferring operations (e.g. when I/O
updates are directly transferred into a local storage device).
In contrast, the flow with two stages might be used to
characterize data moving into a component which may take
some time to relinquish the resources (eg. where I/O updates
remain in the buffer until an acknowledgement is received
back from the remote storage device).
Space and Time Requirements: The buffering space
needed for a flow consisting of n building blocks, bi, for
i ∈ [1, . . . ,n], is given by the sum of the buffers needed by
each building block, ∑n

i=1 Buffering Space(bi). Similarly, the
buffering time of the flow is given by the sum of the buffer-
ing times of its building blocks, ∑

n
i=1 Buffering Time(bi).

D. Request–Response Loops

Our next level of abstraction is a Request–Response loop
which uses flows to construct bidirectional communications
between components. Request–response loops characterize
how requests move from a requestor down to a responder,



where requests are turned into responses and then these re-
sponses move back to the requestor. The requestor generates
requests and consumes responses, and the responder con-
sumes requests and turn them into responses. The requestor
(as well as the responder) might be a hardware, software, or
system component. Requests (as well as responses) are op-
erations which may have associated data in either direction
or both directions at the same time.

The RAD interface of the loop consists of four RAD per-
formance descriptions. The first two characterizes operations
moving in and out of the loop from the requestor on top of
the loop. The remaining two characterize operations moving
in and out of the responder. Loops consists of two flows
chained one after the other, as shown in Figure 2(c). The first
flow consists of two chained building blocks characterizing
(vertical and horizontal) the flow of data in one direction
and the second flow is the building block characterizing
the flow of data in the opposite direction. The buffering
time of the loop, characterizes the maximum time separation
between the point requests arrive into the loop (produced
by the requestor) and when responses come out of the loop
(consumed by the requestor).

Request–response loops are used to model direct unidirec-
tional as well as bidirectional data transfer. This might par-
ticularly useful in direct I/O reads/writes/read–writes. The
loop might be used to model stateful delivery of operations
as well. Finally, loops can be combined to form hierarchies
of loops that can model indirect communication as we show
in Section VI.
Space and Time Requirements: The buffering space
needed for a loop consisting of n flows (flowi, for i ∈
[1, . . . ,n]) is given by the sum of the buffers needed by each
flow, ∑n

i=1 Buffering Space(flowi). Similarly, the buffering
time of the loop is given by the sum of the buffering times
of its flows, ∑n

i=1 Buffering Time(flowi).

V. ANALYSIS OF BUILDING BLOCKS

In this section, we analyze buffering time and space of the
basic building blocks. Periods of the producer (or consumer)
start immediately after the producer (or consumer) starts
operating. The beginning of a period is marked by the end
of the previous period but no periods overlap (i.e., if the
ith period starts at time ti, then this period is [ti,ti+1)).
Considering a set of operations that could be consumed
during a period of the consumer (according to its processing
capabilities), those are guaranteed to be consumed during
that period only if they are available to the consumer at
the beginning of the period. The consumer may consume
operations that are arriving after the beginning of its periods
but this is not guaranteed.

In the following analysis, we assume that both producer
and consumer start operating at the same time. This ensures
that initially, the periods of the consumer and the producer
are aligned. This may not be possible for all practical
scenarios as in some cases, a producer could start operating

before a consumer starts. To deal with this case, we can keep
in a separate buffer all operations produced by the producer
until the consumer is ready to start operating. Then we would
release the operations of the producer from that buffer in
the same order and distribution as produced earlier. This
shifting of operations produced (by the difference between
the starting time of the producer and consumer) would
cause initial alignment of the periods of the consumer and
producer. Hence, using our analysis that works given initial
alignment we can solve all cases of unaligned periods by
adding this special buffer to capture the data produced while
the consumer is not operating. Due to lack of space we only
present sketches of some proofs in this section, and we refer
the reader to [14] for the formal proofs.

A. Analysis of TRANSFER Building Block

In this section, we perform the analysis of the TRANS-
FER building block. A producer P produces operations with
processing capabilities RADp = (rp, pp) (i.e., it produces
at most rp pp operations at each of its periods of length
pp) and a consumer C consumes operations with processing
capabilities RADC = (rC, pC) (i.e., it consumes at most rC pC

operations at each of its periods of length pC). Next, we
describe the relation between RADP, RADC, the buffering
space B and the buffering time T of the TRANSFER
building block.

Although the periods of a producer and a consumer may
differ arbitrarily, this is not the case for their rates. The
consumer must consume at least what is produced to avoid
overflow of the buffers in between. For some cases, where
the periods are not a multiple of each other then the rate
of the consumer may be larger by a small constant factor
(smaller than 3) above the rate of the producer, as expressed
by the inequality in the following assumption.

Assumption 5.1: Let rc ≥
pp

⌊

pp
pc

⌋

pc

rp if pp > pc, or rc ≥
(⌈

pc
pp

⌉

+1
)

pp

pc
rp otherwise.

The analysis of the TRANSFER building block appears
in Theorem 5.4 following some preliminary lemmata that
specify when operations are consumed in the worst case.

Lemma 5.2: Provided that Assumption 5.1 holds, if pp ≤
pc, the data produced during Ii is guaranteed to be consumed
during Ii ∪ Ii+1, where Ii is the ith period of the consumer.

Lemma 5.3: Provided that Assumption 5.1 holds, if pp >

pc, the data produced during Ii is guaranteed to be consumed
during Ii ∪ Ii+1 ∪ Ii+2, where Ii is the ith period of the
producer.

Theorem 5.4: Provided that Assumption 5.1 holds, to
allow continuous communication between a producer and a
consumer given RADP = (rP, pP) and RADC = (rC, pC), the
buffering space B and buffering time T is bounded by the
inequalities below:

i- if pp ≤ pc then Buffer Space B ≤ 2
(⌈

pc
pp

⌉

+1
)

rp pp −
rp pp and Buffer Time T ≤ 2pc



ii- if pp > pc then Buffer Space B≤ 2rp pp +max(0 ,rp pp−
((

pp

pc
)−1)rc pc) ) and Buffer Time T ≤ 3pp

Proof Sketch To calculate the buffering space, we calculate
the maximum data that can coexist in the buffers. If pp ≤ pc

then, by Lemma 5.2, the operations pending at time some
time in the ith consumer’s period Ii are bounded by the
operations that can be produced during Ii−1 ∪ Ii (i.e. the 2
previous periods of the consumer). Otherwise, if pp > pc,
then by Lemma 5.3, in the worst case, the operations
pending at some time in the ith producer period Ii are the
operations that can be produced during Ii−2 ∪ Ii−1 ∪ Ii (i.e.,
the operations produced during the last three periods of the
producer). We calculated our bounds by adding the maxi-
mum number of operations produced during these periods
minus the operations that are guaranteed to be consumed
considering any possible execution. Considering buffering
times, for the case of pp ≤ pc, Lemma 5.2 implies that each
operation may delay to be consumed by at most 2 periods
of the consumer, hence T ≤ 2pc. Similarly, if pp > pc, then
from Lemma 5.3, we get that each operation may delay to
be consumed by at most 3 periods of the producer.

Theorem 5.4 can be intuitively explained because if the
consumer’s period is larger than the producer’s period, then
the consumer is behaving “lazily” compared to the producer
and the buffer pays for it (in amounts proportional to the
consumer’s period). Otherwise, the buffer’s size is indepen-
dent of the consumer’s period because the consumer takes
care of the workload in a more “intensive” way compared to
the producer. Our simulation in Section VII shows that our
bounds on buffering space calculated in Theorem 5.4 are
optimal. Analytically optimality can be shown by simply
describing this worst case execution of the simulation that
requires the bounds of buffer space expressed by Theorem
5.4.

B. Analysis of PRE-BUF Building Block

Consider a producer P that produces operations according
to processing capabilities RADp = (rp, pp) and a consumer
C that must achieve a consumption of rate of operations rc

every period pc. We call (rc, pc) the target performance for
the consumer. Hence, the consumer needs to consume rc pc

operations during each of its periods to achieve its goal. To
make that possible the producer’s rate must be the same
as the consumer’s rate. Otherwise, if the producer’s rate is
larger the buffer will overflow, and if it is smaller, there will
not be sufficient operations to be consumed for the consumer
to reach its target performance. Let r = rp = rc be the fixed
rate of production/consumption.

In Theorem 5.5, we show that to guarantee the target
performance of the consumer, it is necessary to have an
initial phase where data produced is being accumulated in
the buffer and not consumed. We call this initial phase,
buffering phase. Then, in the following theorems, we show
how the buffering phase, buffer space, and buffer time of
the PRE–BUF building block should relate to the processing

a=rpc
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Consumer I1 I2

pp

pc

pc<pp

a b

pp
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Figure 3: Pre–buffering: Analysis of PRE-BUF building block.

capabilities RADP = (r, pP) and RADC = r, pC of P and C,
respectively.

Theorem 5.5: If there is no buffering phase, then it is
impossible to ensure that after some finite time any execution
will allow the consumer to meet its target performance.

Proof: We assume that there is a time t after which
the consumer must meet its target performance while no
buffering phase exists and get a contradiction. It suffices to
describe an execution that fails the target performance after
time t. For this execution, producer and consumer have the
same periods and everything produced is directly consumed
up to time t. After time t the producer produces some
operations at the middle of a consumer’s period which are
not consumed until the next period of the consumer. During
this period, the consumer has no data to consume which
contradicts the fact that after time t the consumer should
meet its target performance.

Theorem 5.6: Given a target performance (r, pc) of a
consumer, a producer can have processing capabilities (r, pp)
such that pc > pp, if we allow a buffering phase of length
2pc and there is a buffer with buffering space B ≤ 2rpc +
(* pc

pp
++1)rpp and buffering time T ≤ 3pc + pp

Proof Sketch The solution is illustrated in Figure 3(left),
where we divide the execution of the producer into time
frames Ii of length pc. We group the data produced as if they
were produced uniformly throughout the execution so that
each time frame Ii gets assigned exactly rpC produced oper-
ations. Note that those operations may not all be produced
during time frame Ii but we can show that those operations
will be available at the beginning of the (i+2)nd period of
the consumer, where they are guaranteed to be consumed.
This shows that the buffering phase of 2pc suffices. Using
the above construction which indicates where operations get
consumed in the worst case, we then calculate buffering
space and time.

Theorem 5.7: Given a target performance (r, pc) of a
consumer, a producer can have processing capabilities (r, pp)
such that pc < pp, if we allow a buffering phase of length

*
pc+pp

pc
+pc and there is a buffer with buffering space B ≤

4rpp + rpc and buffering time T ≤ 4pp + pc.
Proof Sketch The main idea of the proof is to divide the
consumer’s execution into time frames Ii of length pp start-
ing immediately after the buffering phase as illustrated in



Figure 3(right). Then we show that the operations produced
during the ith producer period will be consumed during
the consumer’s periods that overlap Ii. It is important to
note that correctness follows because the buffering space
is large enough to separate the ith producer’s period to the
consumer’s periods that overlap Ii, so that all operations that
are supposed to be consumed during those consumer periods
are available at the beginning of the first consumer period
overlapping Ii. Based on this framework that specifies where
operations are consumed in the worst case, we calculate the
bounds on buffering space and time.

The above theorems show some bounds that hold for all
cases of period transformations. For the case where the one
of the periods of the consumer or the producer is a multiple
of the other, smaller buffering phases and smaller buffers
suffice to solve the problem, as we show next.

Theorem 5.8: Given a target performance (r, pc) of a
consumer, a producer can have processing capabilities (r, pp)
such that either pc is a multiple of pp or vise versa, if we
allow a buffering phase of length max(pc, pp) and there is a
buffer with buffering space B ≤ 2rmax(pc, pp) and buffering
time T ≤ 2max(pp, pc).
Proof Sketch Let’s divide the execution into intervals of
length max(pp, pc). The operations produced during the ith

interval will be consumed during the (i+1)st interval.
Analytically, it is easy to show that we are within a

constant factor from the optimal solution regarding both
buffering phase and buffering space. This is possible because
if we reduce each by a constant factor we can describe
an execution where the target performance fails. This is
additionally verified by our simulation although it is not
illustrated here due to lack of space.

VI. SOLUTIONS FOR PREDICTABLE COMMUNICATION

In this section, we show how to use the RAD-Flows
model introduced in Section IV, to solve the predictable
communication problems described in Section III.
Simple Buffering Algorithm: Let N be a node that pro-
duces operations with rate at most rN over period pN , while
M consumes those operations with rate at most rM over
period pM . We propose a system of a simple TRANSFER
building block, where N is the producer, M is the consumer
with processing capabilities (rN , pN) and (rM , pM), respec-
tively. Data are stored in the (FIFO) buffers until they are
consumed. The buffer’s size is specified by Theorem 5.4.
Direct Algorithms: The solution to long–term direct prob-
lem between two nodes N and M, where N initiates opera-
tions served by M, is the wait loop illustrated in Figure 4.
N is a producer of the left building block and it produces
operations with processing capabilities RADN . The data
remains in the buffers of the left TRANSFER building block
until it get consumed by M, with processing capabilities
RADM . Then the data moves into the buffers of the WAIT
building block where it remains until responses come back.
At this point responses are produced by M with processing
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capabilities RAD′
M and get stored in the buffers of the right

TRANSFER building block until they are consumed by N
with processing capabilities RAD′

N . N expects a response
to an operation it produced within time Tmax. The system
should provide the buffer space needed by this loop (i.e.,
the sum of buffer spaces of 2 TRANSFER and a WAIT
building block). Also this solution works provided that Tmax

is larger than the buffering time of the loop. The Short–
term Direct Communication is solved similarly by the simple
loop illustrated in Figure 4. The WAIT building block is not
needed as M produces responses immediately and RADM =
RAD′

M .

Pre–buffering Algorithm: The solution to pre-buffering is
a combination of two loops as illustrated in Figure 5(left).
The top loop is a simple loop (that consists of two flows with
a TRANSFER building block each) and the bottom loop is
a pre–fetch loop (as illustrated in Figure 5 on the left).

There are many possible different variants of this problem
that depend on the behavior of N. Here we assume that N
must consume operations with a fixed rate, hence it also
produced operations with the same fixed rate. Alternative
scenarios can be similarly solved by our model but are left
as future work.

The buffering space of our algorithm is the sum of
buffering spaces of all loops involved. The response time
of N in our algorithm is less or equal to the buffering time
of the loop involving N and O. Pre-Buffering time of the



algorithm is at least the time needed to propagate operations
from O to M characterized by the TRANSFER building
block, plus the pre-buffering phase needed by the PRE-BUF
building block.

The pre-fetch loop is responsible for providing the right
data that will be used by the simple loop to create responses
on its own. The simple loop behaves exactly as specified
by the algorithm for short–term direct communication with
O being the node that consumes requests and produces
responses. The processing capabilities, RADO of O have to
comply with the capabilities (i.e., speed, etc) of the buffering
component.

The consumer N is not allowed to consume operations
from O until pre-buffering time has elapsed. During that
amount of time O must fetch data from M at the rate
specified by N. Note that the rates of all the producers
through the building blocks are fixed and equal to the
rate of N (which is the target rate of consumption). The
rate of the consumers are derived from our analysis of the
corresponding building blocks. After pre-buffering time, N
is allowed to consume operations. From that point onward,
N will be able to consume operations at its target fixed until
all the workload is finally consumed.

Post-buffering Algorithm: In this paper, we address the
solution for immediate writeback, where the intermediate
component does not retain any operation in the buffer.
Instead the intermediate component forwards the operations
immediately to their destination. For this solution, post-
buffering time and post-buffering space are equal to zero.
The buffering space is equal to the space needed for each
loop.

The solution to post-buffering consists of two loops: a
simple loop on top, and a wait loop on the bottom as
illustrated in Figure 5(right). All the producers of the build-
ing blocks involved in the solution may produce operations
with variable rates bounded by the same maximum value.
The rate of the consumers is derived from the analysis
of the building blocks. Node N initiates operations which
result in responses back from the intermediate component O,
similarly as described in the algorithm for short–term direct
communication. Then O immediately initiates operations to
M through the bottom loop and eventually M responds, sim-
ilarly as explained by the long–term direct communication
algorithm.

Correctness of all algorithms follows directly from cor-
rectness of the building blocks involved in each solution,
under the assumption that enough buffer space is available
(as specified by our analysis). Since all building blocks work
as FIFO queues, no data is replaced unless it is no longer
needed. Finally, assuming that Tmax is greater or equal to
the sum of buffering times of the building blocks of each
solution, then all operations will be served within time Tmax.
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Figure 6: Buffering space vs ratios of periods.

VII. EMPIRICAL EVALUATION

We have developed a simulation of RAD-Flows to explore
worst–case conditions that otherwise would be very difficult
to reproduce under a real system. We use our simulator to
evaluate the analytical results regarding the building blocks.
Our evaluation confirms the results from the theorems re-
garding the TRANSFER and PRE–BUF building blocks.
Additionally, it verifies that we accounted for the right
factors (e.g. buffering phase, buffering space, and buffering
time).

In our first set of experiments, we identified maximum
number of queued operations (or minimum buffering space)
needed to enable communication between predictable com-
ponents with specific processing capabilities. In our second
set of experiments we looked into minimum buffering phase
and minimum buffering space needed by the PRE–BUF
building block in order to enable a consumption rate above a
particular threshold. Not only does our calculated values for
all cases (i.e., buffering phase and buffering space) suffice,



but in most cases our calculated buffering space is necessary
(it matches the bound given by the simulation). This makes
our analytical results optimal. Considering all executions,
the analytically calculated buffering space is always within
a small (less than 2) constant factor from the buffering space
needed according to the simulator.

Due to lack of space, we only present a subset of
our experiments. We chose to present results regarding
TRANSFER which is the most used building block in our
communication patterns. In Figure 6(a), we show that when
the consumer’s period is slightly smaller than the producer’s
period, unalignment of periods can cause worst case buffer-
ing space (this matches the analytically calculated buffering
space). As we decrease the consumer’s period, the buffering
space needed gets reduced. This is expected because by
reducing the consumer’s period, we reduce the overhead
of unalignment between periods. Eventually, buffer space
needed converges to the minimum requirements (within a
constant factor from worst case). Based on the relation
between producer’s and consumer’s period, we can provision
close to exact the amount of buffering space needed in the
experiments.

In Figure 6(b), we illustrate buffering space for the case
of the consumer’s period being larger than the producer’s
period. In this case, the worst case calculated by our formula
follows the curve of the experiment as it depends on pc.
The worst case happens again due to to unalignment of the
periods. As we increase the consumer’s period, we see that
the worst case and best case buffering spaces converge. This
is expected because as the ratio increases torwards infinity,
the production happens almost uniformly. That allows the
consumer to maximize consumption without needing extra
buffering space due to unaligment of the periods. This is
also the case when the periods have the same size.

VIII. CONCLUSION AND FUTURE WORK

We introduced the RAD–Flows model to describe pre-
dictable flow of operations and used it to ensure predictable
communication between nodes that communicate through
buffers. RAD–Flows can also be used by algorithms solving
different communication patterns that can appear in multi-
level environments, in caches etc. By extending our simula-
tion we could evaluate communication patterns that extend
across multiple components and could provide insight not
just for worst case, but also for average case buffering space.
In that case, our model can be used to calculate requirements
for applications with soft guarantees. Our work provides the
foundation to construct an end-to-end predictable system by
linking together existing predictable components.
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APPENDIX

In the appendix we provide all formal proofs of lemmata
and theorems that did not appear in Section V due to lack
of space.

A. Formal Proof for TRANSFER building block

Lemma A.1: Provided that Assumption 5.1 holds, if pp ≤
pc, the data produced during Ii is guaranteed to be consumed
during Ii ∪ Ii+1, where Ii is the ith period of the consumer.

Proof: We will prove the lemma by strong induction
on i. Let xi be the operations produced during period Ii.

Operations x0 are the only operations produced by the end
of I0 and they are either consumed during I0 (i.e., the 1st
consumer period) or are pending at the beginning of I1. By
the definition of RAD reservations and the fact that pp ≤ pc,
then ‖x0‖ ≤ (* pc

pc
++ 1)rp pp. But by the assumption of the

statement (i.e., rc pc ≥ (* pc
pp
++ 1)rp pp ), we conclude that

‖x0‖≤ rc pc. Hence, ‖x0‖ operations can be consumed during
one period of the consumer, and since those operations are
available at the beginning of I1, they are guaranteed to be
consumed during I1 because the buffer behaves as a simple
FIFO queue.

We assume that the lemma holds for all i ∈ [1,k−1] and
we will prove the statement for i=k.

We will prove that xk (i.e., the operations produced during
Ik, will be consumed during Ik ∪ Ik+1. By the inductive
hypothesis, we get that all operations produced during
the execution up to and including period Ik−1 have been
consumed by the end of period Ik. Hence at the end of
period Ik the only operations that may be pending (i.e., not
yet consumed and at the beginning of the FIFO queue) are
the ones that have been produced during Ik (i.e., xk). We will
show if those operations are not consumed during Ik, there
will be consumed during Ik+1. During Ik there can be at
most (* pc

pp
++1)rp pp operations produced. By the statement

of the lemma, those are less than rc pc which is what can be
consumed within a consumer’s period. We conclude that all
operations produced during Ik will be consumed by the end
of Ik+1.

Lemma A.2: Provided that Assumption 5.1 holds, if pp >

pc, the data produced during Ii is guaranteed to be consumed
during the consumer periods that start in Ii+1 if not earlier,
where Ii is the ith period of the producer.

Proof:
Let xi be the operations produced during period Ii. We

will prove the lemma by strong induction on i.
For i = 0, we get that during the first producer’s period,

I0, ‖x0‖ ≤ rp pp data is produced. There is no previous data
pending in the system hence, by the end of I0, exactly ‖x0‖
operations are available for consumption (at the beginning of
the FIFO queue) or less if some operations in x0 are already
consumed during I0. Time period I1, contains the beginning
of at least (

pp

pc
) (consecutive) periods of the consumer (each

of length pc). During each of these periods the consumer can
consume at most rc pc operations (if available). Hence during
those periods the consumer is guaranteed to consume up to
(

pp

pc
)rc pc operations. Because by assumption in the lemma

statement, (
pp

pc
)rc pc ≥ rp pp and ‖x0‖≤ rp pp, then the part of

x0 that is not consumed in I0 it will be consumed during the
consumer periods that start during I1 since those operations
are already in the queue before the beginning of each of
those consumer’s period.

We assume that the lemma holds for i ∈ [1,k−1] and we
will prove the lemma for i=k.

We will prove that xk (i.e., the operations produced during
Ik, will be consumed during the consumer’s periods initiated
during Ik+1, if not earlier. By the inductive hypothesis, we
get that all operations produced during the execution up to
and including period Ik−1 have been consumed by the end of
the consumer periods that were initiated during Ik. Let that
time be t. Hence at the end of those periods (i.e., at time t)
the FIFO queue contains at its beginning the subset of the
operations that have been produced during Ik (i.e., xk) and
not yet consumed. Time t is in Ii+2. In particular, time t is
the beginning of the first consumer period that starts during
Ii+2. We will show that the pending operations among xk at
time t will be consumed by the end of the consumer periods
initiated during Ik+1 (i.e., initiated at time t).

Time period Ik+1, contains the beginning of at least (
pp

pc
)

(consecutive) periods of the consumer (each of length pc).
During each of these periods the consumer can consume
at most rc pc operations (if available). Hence during those
periods the consumer is guaranteed to consume up to
(

pp

pc
)rc pc operations. Because by assumption in the lemma

statement, (
pp

pc
)rc pc ≥ rp pp and ‖xk‖ ≤ rp pp, then the part

of xk that is not consumed by time t it will be consumed
during the consumer periods that start during Ik+1 since those
operations are already in the queue at time t.

Lemma A.3: Provided that Assumption 5.1 holds, if pp >

pc, the data produced during Ii is guaranteed to be consumed
during Ii ∪ Ii+1 ∪ Ii+2, where Ii is the ith period of the
producer.

Proof: By Lemma A.2 the data produced during Ii is
guaranteed to be consumed during the consumer periods that
start in Ii+1 if not earlier, where Ii is the ith period of the
producer. But those consumer periods will terminate before
the end of Ii+2 because the consumer’s period is smaller than
the producer’s period. The Lemma follows.



Theorem A.4: Provided that Assumption 5.1 holds, to
allow continuous communication between the producer and
a consumer given RADP = (rP, pP) and RADC = (rC, pC),
the buffering space B and buffering time T is bounded by
the inequalities below:

i- if pp ≤ pc then Buffer Space B ≤ 2
(⌈

pc
pp

⌉

+1
)

rp pp −

rp pp and Buffer Time T ≤ 2pc

ii- if pp > pc then Buffer Space B≤ 2rp pp +max(0 ,rp pp−
((

pp

pc
)−1)rc pc) ) and Buffer Time T ≤ 3pp

Proof: Let xi be the of operations produced during
period Ii. We prove the theorem for the following two cases:

If pp ≤ pc then by Lemma A.1, we conclude that the
operations consumed by some time t, include all operations
that have been produced up to period Ii−2, where i is such
that t ∈ Ii and Ii is the ith period of the consumer. Therefore,
in the worst case, the operations pending at time t, include
the operations that can be produced during Ii−1 ∪ Ii. This
provides an upper bound on the size of the buffer needed
since the buffer’s role is to hold the operations that are
pending at any time. Next we calculate an upper bound on
the data that can be produced during Ii−1 ∪ Ii. Let v be that
data, then the buffer space needed is at most equal to v
(i.e., B≤ v). During any two consecutive consumer’s periods
there can be at most 2(* pc

pp
+ + 1)rp pp − rp pp operations

produced because there can be at most 2(* pc
pp
+ + 1) − 1

overlapping periods of the producer. This is because every
period of the consumer can overlap at most (* pc

pp
+ + 1)

producer periods but then when this value is reached one
of them would be shared between this consumer period and
the next one. Hence during any two consecutive consumer
periods there can be at most 2(* pc

pp
++ 1)− 1 overlapping

producer periods. Since there can be at most rp pp operations
produced during each producer periods, then during any
two consecutive consumer periods, there can be at most
(2(* pc

pp
++ 1)− 1)rp pp = 2(* pc

pp
++ 1)rp pp − rp pp operations

produced and v ≤ 2(* pc
pp
++ 1)rp pp − rp pp. Considering the

buffering time T each operation may delay to be consumed
by at most 2 periods of the consumer, hence T ≤ 2pc. This
follows directly from Lemma A.1.

Otherwise pp > pc. By Lemma A.3, we conclude that the
operations consumed by some time t, include all operations
that have been produced up to period Ii−3, where i is such
that t ∈ Ii and Ii is the ith period of the producer. Therefore,
in the worst case, the operations pending at time t, include
the operations that can be produced during Ii−2 ∪ Ii−1 ∪ Ii

minus a subset of those operations that are guaranteed to be
consumed by time t. This provides an upper bound on the
size of the buffer needed since the buffer’s role is to hold the
operations that are pending at any time. Next, we calculate
an upper bound on the data that can be produced during these
three producer’s periods. Let v be that data, then the buffer
space needed is at most equal to v (i.e., B ≤ v). During I j for
any j, the producer can produce at most rp pp operations. The

operations produced during Ii−1 ∪ Ii may not be consumed
by time t. Hence considering the period Ii−1∪Ii, in the worst
case, there will be 2rp pp operations produced and not yet
consumed by time t. It remains to calculate the operations
produced during Ii−2 that will not be consumed by time t. As
we will show next, there are at most max(0 ,(rp pp −(

pp

pc
)−

1)rc pc ) operations produced during Ii−2 and not consumed
at time t. This implies that the operations produced during
Ii−2∪Ii−1∪Ii and not yet consumed by time t are v≤ 2rp pp +
max(0 ,rp pp − ((

pp

pc
)−1)rc pc ).

Next, we show that there are at most rp pp −
max(0 ,((

pp

pc
)−1)rc pc ) operations produced during Ii−2 and

not consumed at time t. By Lemma A.2, we know that all
operations produced by the end of Ii−3 will be consumed
in consumer’s periods that start in Ii−2. Those periods will
end before the beginning of the first consumer period that
starts in Ii−1, let’s say at time t ′. Hence, if there were some
operations produced during Ii−2 then those are guaranteed
to be on top of the FIFO queue at time t ′. There are at
least ((

pp

pc
)− 1) consumer periods that start at time t ′ and

complete before time t. During each of these periods the
consumer can consume up to rc pc operations. Hence during
time [t ′,t], ((

pp

pc
)− 1)rc pc operations can get consumed. If

the operations produced during Ii−2 are less than or equal
((

pp

pc
)−1)rcpc, then all those operations will be consumed

by time t ′, and hence, all operations produced during Ii−2 (if
any) will be consumed by time t. Otherwise, the operations
produced during Ii−2 are more than the operations that are
guaranteed to be consumed by time t. In this case there will
be some left over of at most (rp pp − ((

pp

pc
)−1)rc pc), since

the producer will produce at most rp pp operations during
Ii−2.

Considering the buffering time T each operation may
delay be consumed by at most 3 periods of the producer,
hence T ≤ 3pp. This follows directly from Lemma A.3.

B. Formal Proof for PRE–BUF building block

Theorem A.5: If there is no buffering phase, then it is
impossible to ensure that after some finite time any execution
will allow the consumer to meet its target reservations.

Proof: We will prove the theorem by contradiction.
Assume that there is a solution for which no buffering
happens at the beginning. Let t be a finite time after which
the consumer must meet its target reservations. We will
construct an execution that renders this impossible.

For our execution, we assume that the periods of the
consumer and the producer are the same. Let p = pp = pc.
The producer produces rp operations during each period
but not at its beginning. The consumer consumes those
operations immediately once produced up to beginning of
the first period that starts after time t. Let this be the ith
period of the execution. At the beginning of period i, the
cache is empty because everything produced is consumed
immediately so far in the execution. Recall that a consumer
is guaranteed to consume some operations only if those
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are available at the beginning of its period (assuming that
those are less than rp). If operations become available for
consumption within the period but after its beginning they
may or may not be consumed during that period. Hence, we
can construct the period i in such a way so that nothing gets
consumed during period i, violating the target reservations
for the consumer for period i. Since period i starts after time
t we reached a contradiction to the fact that the solutions
was guaranteeing the target after time t.

Theorem A.6: Given a target performance (r, pc) of a
consumer, a producer can have processing capabilities (r, pp)
such that pc > pp, if we allow a buffering phase of length
2pc and there is a buffer with buffering space B ≤ 2rpc +
(* pc

pp
++1)rpp and buffering time T ≤ 3pc + pp

Proof:
Let’s divide the producer’s periods in time frames such

that each time frame is defined by the starting and ending
of the consumer’s periods as illustrated in Figure 3(left). In
particular, the ith time frame, Ii starts at the beginning of the
ith consumer period and ends when this period ends, hence
the length of Ii is equal to pc (for all i ≥ 1).

If the production of operations was happening uniformly,
then everything produced in Ii would be available for con-
sumption in the (i+2)nd period of the consumer for i ≥ 1.
Since the length of Ii = pc, then during Ii there would
be rpc data produced which is exactly the data that is
consumed within a consumer period. Hence, if the producer
was producing uniformly operations then the operations
produced during Ii would be consumed during the (i+2)nd
period which in turn proves that the target reservation is met
starting from the 3rd consumer period. Recall that during the
first two consumer periods there is no consumption because
of our choice of buffering phase. We will show that the fact
that the data is not uniformly produced does not affect the
statements above.

During each period of the producer there are rpp opera-
tions produced. Let’s split those operations so that exactly
rpc operations are assigned per each Ii interval in the
following way: All operations produced during complete
periods of the consumer that belong in Ii are assigned to
Ii; if Ii contains incomplete periods of the producer, then
we assign part of the operations produced during those
periods based on the overlapping part as if the operations

were produced uniformly during those periods. There are
exactly rpc operations assigned to each period Ii and there
is no operation produced which is not assigned to some time
frame.

We claim that the operations assigned to Ii are consumed
during the (i + 2)nd period of the consumer. This implies
that the buffering time T ≤ 3pc + pp because the operations
assigned to Ii are either produced during Ii or in some period
of the producer that overlaps Ii. To prove the above state-
ment, first, recall that the consumer can only consume rpc

operations per period, hence there will be an exact matching
of the time frames Ii to the periods of the consumer. It
remains to prove that the operations assigned to Ii are
available for consumption at the beginning of the (i+2)nd
consumer period. The operations assigned to Ii are either
produced within Ii or they are produced within producer’s
periods which have some overlap with Ii. Since pc > pp, all
producer periods from which we assign operations to Ii will
finish within Ii+1. Hence, all operations assigned to Ii are
produced before the beginning of Ii+2. Since the beginning
of Ii+2 is the same of the beginning of the (i+2)nd consumer
period, the lemma follows.

Next, we will calculate the bound on the size of the buffer
component. Let t be a time in the (i+2)nd consumer period.
All operations assigned up to the beginning of Ii have been
consumed by time t because they have been consumed by the
(i+1)st consumer period. Hence, the operations pending at
time t are bounded by the operations assigned to Ii∪Ii+1 plus
the operations produced during Ii+2. The operations assigned
to Ii∪ Ii+1 are 2rpc. The operations produced during Ii+2 are
bounded by (* pc

pp
++1)rpp. In total, the pending operations

at time t are bounded by 2rpc +(* pc
pp
++ 1)rpp and this is

the bound of the size of the buffer component.

Theorem A.7: Given a target performance (r, pc) of a
consumer, a producer can have processing capabilities (r, pp)
such that pc < pp, if we allow a buffering phase of length

*
pc+pp

pc
+pc and there is a buffer with buffering space 4rpp +

rpc and buffering time T ≤ 4pp + pc.

Proof:

By the definition of the buffering phase, the consumption
starts from the beginning of the first consumer period after
pc + pp time. Starting at that point and on, we divide the
execution of the consumer into intervals Ii each of length
pp for i ≥ 1 as illustrated in Figure 3(right). We divide the
operations produced into sets that get assigned to intervals
Ii as follows: Interval Ii gets assigned exactly rpp operations
which have been produced during the ith producer period.
We further divide those operations to assign exactly rpc

operations per consumer period after the buffering phase.
This assignment happens by uniformly distributing the rpp

operations assigned to each interval Ii so that each con-
sumer’s period that overlaps Ii gets proportional amount of
operations according to the length of its overlapping part



with Ii (i.e., if a consumer period overlapping length with Ii

is x then it gets assigned exactly rx operations from interval
Ii).

Next, we prove that all assigned operations to each of the
consumer periods (after the buffering phase) are available for
consumption at the beginning of each such period. Then,
since there are exactly rpc operations assigned to each
consumer period, then during each consumer period rpc

operations get consumed, and the target reservations are met.
Let’s pick any period p of the consumer which starts after
the buffering phase. First, assume that p belongs completely
to an interval Ii. In that case, the operations assigned to p are
operations produced during the ith producer period. By the
choice of buffering phase, Ii starts at least pc time after the
end of the ith period period. Hence, the operations assigned
to p are available for consumption before the start of Ii and
hence at the beginning of p. Second, let p be a consumer
period that is divided between two intervals Ii and Ii+1. In
this case, the operations assigned to p are produced during
both producer periods i and (i + 1). Similarly to above,
since the ith period of the producer completes before Ii then
those operations are available at the beginning of p. We
will now prove that the (i + 1)st producer period is also
completed before p starts. This completes the proof because
this implies that the operations assigned to p are available
for consumption at the beginning of p. Let t be the time
where Ii ends (and Ii+1 begins). Because p is split between
Ii and Ii+1, p is the last period which overlaps Ii. Since
p is a consumer period with length pc then p starts after
time t − pc. Because the length of the buffering phase is
at least pp + pc and the length of the interval Ii is pp, the
producer period (i+1) starts before or at t−(pp + pc). Since
the length of the producerś periods is pp, then the producer
period (i+1) ends before or at time t − pc. Hence, since p
starts after time t − pc (as we showed above), p starts after
the (i + 1)st producer period is completed. This completes
the proof that the target consumer reservations are met after
the buffering time of pc + pp.

Next, we calculate an upper bound on the buffer size
that allows the buffering phase of *

pc+pp

pc
+pc. Let time t be

during the buffering phase. Then up to 3 producer periods
can be accumulated for consumption at time t. This is
because the buffering phase may overlap with at most 3
producer’s periods. Let time t be within some interval Ii

(i.e., after the buffering phase). Interval Ii overlaps with
at most two producer periods whose operations may be
pending. To accommodate those the buffer needs at most
2rpp size. It remains to calculate the data that has been
produced before those two producer periods which have
not been consumed by time t. The operations assigned to
consumer periods overlapping Ii are produced in the ith
and possibly the (i− 1)st producer period. Since there can

be at most *
pc+pp

pc
+pc distance between the beginning of

Ii and the beginning of the ith producer period (by the
buffering phase length), then there can be at most another 2

producer’s periods between Ii and the ith producer period.
The operations of those producer’s periods may be pending
at time t. To store those, we would require an additional
buffer size of 2rpp. Finally, the operations of the (i− 1)th
period of the producer possibly assigned to a period of
Ii are the only remaining operations that can be pending
at time t as all other operations are already consumed
before Ii starts. Next, we show that the operations produced
during the (i−1)st producer’s period that are assigned to a
consumer’s period in Ii are at most rpc. This is because since
a consumer period of Ii gets assigned operations from the
(i− 1)st producer period, that means that this consumer’s
period overlaps both Ii−1 and Ii. The overlapping part of
this period to Ii−1 is of length at most pc, hence since the
assignment of data happens in a uniform distribution, then
the data assigned to this overlapping part of this consumer’s
period is at most rpc. In total the pending data at time t is
then bounded by 4rpp + rpc.

Finally, the buffering time T is at most 4pp + pc because
each operation produced during period i will be consumed
during a producer’s period overlapping interval Ii as ex-
plained above and the separation of those two is at most
4pp + pc.

Theorem A.8: Given a target performance (r, pc) of a
consumer, a producer can have processing capabilities (r, pp)
such that either pc is a multiple of pp or vise versa, if we
allow a buffering phase of length max(pc, pp) and there is a
buffer with buffering space B ≤ 2rmax(pc, pp) and buffering
time T ≤ 2max(pp , pc ).

Proof: Let’s divide the execution into intervals, Ii of
length p = max(pc, pp) each (for i ≥ 1). During I1 no
consumption happens because of the buffering phase.

If p = pp, then Ii is aligned to the producer’s period.
The rp operations produced during Ii are available for
consumption at the beginning of Ii+1 for all i ≥ 1. Let
pp = kpc for some natural number k. During Ii+1 there are
k periods of the consumer each consuming rpc operations.
Therefore, during Ii+1 there will be krpc = rpp operations
consumed if they are available at the beginning of Ii+1.
Since those are produced during Ii, they are available at
the beginning of Ii+1, hence the target reservation of the
consumer is met.

If p = pc then Ii is aligned to the consumer’s period.
Let pc = kpp for some natural number k. During Ii+1

there are k periods of the producer each producing rpp

operations. Therefore during Ii+1 there will be krpp = rpc

operations produced. The operations produced during Ii

will be available for consumption at the beginning of Ii+1

(which is a consumer’s period) for i ≥ 1. Therefore, at all
consumer’s periods with the exception of the first that is the
buffering phase, the consumer will be consuming exactly
rpc operations, which is its target reservation.

At any given time t in Ii the operations pending are
the ones produced during Ii−1 ∪ Ii. This is because the



operations produced during one interval will be consumed
during the next. At each interval max(pc, pp) operations
will be produced. Hence, it suffices to have buffer of
size 2r max(pc , pp ). Finally, the buffering time is at most
2max(pp , pc ) which is the length of two consecutive
intervals as all operations of one interval will be consumed
in the next.


