
On the Role of Burst Buffers in Leadership-Class
Storage Systems

Ning Liu,⇤† Jason Cope,† Philip Carns,† Christopher Carothers,⇤
Robert Ross,† Gary Grider,‡ Adam Crume,§ Carlos Maltzahn,§

⇤Rensselaer Polytechnic Institute, Troy, NY 12180, USA
{liun2,chrisc}@cs.rpi.edu

†Argonne National Laboratory, Argonne, IL 60439, USA
{copej,carns,rross}@mcs.anl.gov

‡Los Alamos National Laboratory, Los Alamos, NM 87545, USA
ggrider@lanl.gov

§University of California at Santa Cruz, Santa Cruz, CA 95064, USA
{adamcrume,carlosm}@soe.ucsc.edu

Abstract—The largest-scale high-performance (HPC) systems
are stretching parallel file systems to their limits in terms of
aggregate bandwidth and numbers of clients. To further sustain
the scalability of these file systems, researchers and HPC storage
architects are exploring various storage system designs. One
proposed storage system design integrates a tier of solid-state
burst buffers into the storage system to absorb application I/O
requests. In this paper, we simulate and explore this storage
system design for use by large-scale HPC systems. First, we
examine application I/O patterns on an existing large-scale HPC
system to identify common burst patterns. Next, we describe
enhancements to the CODES storage system simulator to enable
our burst buffer simulations. These enhancements include the
integration of a burst buffer model into the I/O forwarding layer
of the simulator, the development of an I/O kernel description
language and interpreter, the development of a suite of I/O
kernels that are derived from observed I/O patterns, and fidelity
improvements to the CODES models. We evaluate the I/O
performance for a set of multiapplication I/O workloads and
burst buffer configurations. We show that burst buffers can
accelerate the application perceived throughput to the external
storage system and can reduce the amount of external storage
bandwidth required to meet a desired application perceived
throughput goal.

I. INTRODUCTION

High-performance computing (HPC) storage systems are
designed to meet high, sustained bandwidth requirements
under highly concurrent workloads. Currently, applications can
achieve sustained bandwidths from 40 GiB/s to 80 GiB/s on
these storage systems [18], [41]. Recent research [8], [17],
[43] suggests that these storage systems are subjected to bursty
I/O patterns as applications alternate between computationally
dominant and I/O-dominant execution phases. In the near
future, these “leadership-class” systems are expected to have
100x to 1000x more compute nodes than today’s largest-scale
HPC systems and require approximately 60 TiB/s of storage
system bandwidth to drain application data bursts fast enough
to meet checkpointing demands [12], [39].

Bursty application I/O, in conjunction with the high peak
I/O rates required for future systems, creates a challenging

problem for storage system designers. System designers must
find a solution that allows applications to minimize time spent
performing I/O (i.e., achieving a high perceived I/O rate)
and ensure data durability in the event of failures. However,
approaching this in the traditional manner—by providing a
high-bandwidth external storage system—will likely result
in a storage system that is underutilized much of the time.
This underutilization has already been observed on current
large-scale HPC systems. I/O performance data collected
from the Argonne Leadership Computing Facility (ALCF)
IBM Blue Gene/P system “Intrepid” indicates that the typical
bandwidth to the storage system is less than one-third of
its full capacity 99% of the time [8]. As the computational
performance and concurrency of HPC systems continue to
increase, this traditional approach leads to the deployment of
increasingly expensive storage systems that are underutilized
the majority of the time. An alternative, high-performance, and
more economical storage system design is required to support
the I/O requirements of emerging large-scale HPC systems.

Current large-scale HPC systems take advantage of enter-
prise parallel file systems that are designed for a range of
different applications. Since customizing these file systems
to meet large-scale computing needs may not be possible, a
viable alternative is to augment the intermediate hardware and
I/O middleware layers to better handle bursty application I/O
patterns. The emergence of I/O forwarding layers [3], [27]
provides a natural aggregation point and I/O offloading layer
for large-scale HPC systems. This layer is low enough in the
HPC I/O stack to capture all application I/O accesses and
high enough in the I/O stack to complement existing storage
system designs. This layer can provide a write-behind caching
capability that uses NVRAM-based devices to temporarily
store and manage bursts of application I/O requests.

In this paper, we explore one previously proposed [5],
[7], [15] alternative storage architecture: a disk-based external
storage system augmented with a tier of solid-state disk (SSD)
burst buffers located in a set of I/O nodes on the periphery of

Fig. 1: Overview of the Argonne IBM Blue Gene/P (Intrepid) computing environment and storage services. This figure highlights
how our proposed tier of burst buffers (green boxes) would integrate with the existing I/O nodes.

the system (Figure 1). With this tier of burst buffers, applica-
tions can push data out of memory and return to computation
without waiting for data to be moved to its final resting place
on an external, parallel file system. We begin (In Section II),
by describing the motivating factors that lead us to investigate
augmenting storage systems with burst buffers and present
our design. We study this storage system architecture using
the CODES parallel discrete-event storage system simulator
(described in Section III). We evaluate several common I/O
workloads found in scientific applications to determine the
appropriate design parameters for storage systems that include
burst buffers (presented in Section IV). We discuss research
related to our recent work (in Section V). We conclude
this paper (in Section VI) by enumerating the contributions
generated by our work, in particular better quantifying the
requirements of a burst buffer implementation and the degree
to which external storage hardware requirements might be
reduced using this approach.

II. MANAGING BURSTY I/O
Bursty application I/O behavior is a well-known phenome-

non. This behavior has been observed in prior studies for HPC
applications performing periodic checkpoints [10], [19], [28],
[32], [37], [43] and for the aggregate I/O activity across all
applications executing within large HPC data-centers [8], [17].
To better understand the viability of the burst buffer approach,
we need quantitative data on application I/O bursts so that we
can accurately represent this behavior in our simulated I/O
workloads. In this section, we present our analysis of bursty
application I/O behavior that we observed on a large-scale
HPC storage system. First, we analyze the most bursty and
write-intensive applications we observed over a one-month
period on a large-scale HPC system. Next, we describe how
these trends hinder the performance of current systems. Then,
we discuss how to manage this behavior through the use of
burst buffers.

A. Study of Bursty Applications
The Argonne Leadership Computing Facility maintains the

Intrepid IBM Blue Gene/P system. Intrepid is a 557 TF

leadership-class computational platform and provides access
to multiple petabytes of GPFS and PVFS external storage.
Figure 1 provides an overview of Intrepid and the external
storage services integrated with the system. Systems such as
Intrepid host a diverse set of applications from many scientific
domains, including climate, physics, combustion, and Earth
sciences. Workloads from these scientific domains are often
characterized by periodic bursts of intense write activity. These
bursts result from defensive I/O strategies (e.g., checkpoints
that can be used to restart calculations following a system
fault) or storage of simulation output for subsequent analysis
(e.g., recording time series data for use in visualization). To
quantify this behavior on Intrepid, we analyzed one month
of production I/O activity from December 2011 using the
Darshan lightweight I/O characterization tool [9]. Darshan
captures application-level access pattern information with per
process and per file granularity. It then produces a summary
of that information in a compact format for each job. In
December 2011, Darshan instrumented approximately 52% of
all production core-hours consumed on Intrepid. We identified
the four most write-intensive applications for which we had
complete data and analyzed the largest production example
of each application. The results of this analysis are shown in
Table I. Project names have been generalized to indicate the
science or engineering domain of the project.

We discovered examples of production applications that
generated as much as 67 TiB of data in a single execution. Two
of the top four applications (Turbulence1 and AstroPhysics)
illustrate the classic HPC I/O behavior in which data is
written in several bursts throughout the job execution, each
followed by a significant period of idle time for the I/O system.
The PlasmaPhysics application diverged somewhat in that it
produced only two bursts of significant write activity; the
first burst was followed by an extended idle period, while the
second burst occurred at the end of execution. The Turbulence2
application exhibited a series of rapid bursts that occurred
nearly back-to-back at the end of execution. On a per compute
node basis, the average write requests range from 0.03% to
50% of the memory size for these applications. We expect the
write request per compute node to be limited by the physical

TABLE I: Top four write-intensive jobs on Intrepid, December 2011

Project Procs Nodes Total Run Time Avg. Size and Subsequent Idle Time for Write Bursts >1 GiB
Written (hours) Count Size Size/Node Size/ION Idle Time (sec)

PlasmaPhysics 131,072 32,768 67.0 TiB 10.4 1 33.5 TiB 1.0 GiB 67.0 GiB 7554
1 33.5 TiB 1.0 GiB 67.0 GiB end of job

Turbulence1 131,072 32,768 8.9 TiB 11.5 5 128.2 GiB 4.0 MiB 256.4 MiB 70
1 128.2 GiB 4.0 MiB 256.4 MiB end of job

421 19.6 GiB 627.2 KiB 39.2 MiB 70
AstroPhysics 32,768 8,096 8.8 TiB 17.7 1 550.9 GiB 68.9 MiB 4.3 GiB end of job

8 423.4 GiB 52.9 MiB 3.3 GiB 240
37 131.5 GiB 16.4 MiB 1.0 GiB 322

140 1.6 GiB 204.8 KiB 12.8 MiB 318
Turbulence2 4,096 4,096 5.1 TiB 11.6 21 235.8 GiB 59.0 MiB 3.7 GiB 1.2

1 235.8 GiB 59.0 MiB 3.7 GiB end of job

memory of the node (2 GiB on Intrepid). From the I/O node
perspective, the write burst sizes range from 40 MiB to 67
GiB (or 0.0511% to 52.3% of the total amount of memory
available to the application). Also, the observed idle time
between two write bursts varies among the applications from
a couple of minutes to as long as two hours. They all feature
an end-of-job write burst. We used these statistics to guide the
parameterization of our simulated application I/O workloads.

B. Impact on Storage Systems
External storage systems, such as the one integrated with In-

trepid, are designed to quickly and efficiently store application
checkpoint data. This design point leads to storage systems
that may be idle during application computation phases and
saturated during application I/O phases. We have observed
extreme cases of bursty application I/O patterns and the lack of
storage system utilization in prior work [8]. We made several
observations over a two-month period, that indicate that the
achievable throughput to Intrepid’s external storage system is
often not realized, except for sporadic bursts of I/O activity
that correspond with storage system high utilization. In prior
work, Intrepid’s storage bandwidth was observed to be at 33%
or less utilization for 99.2% of the time over a two-month pe-
riod. Over this same period, Intrepid’s external storage system
operated at 5% or less of its expected peak bandwidth for
69.2% of the time. While the maximum observed throughput
over this interval was 35.05 GiB/s, the average throughput
was 1.93 GiB/s. These observations indicate that a lower-
bandwidth external storage system could provide the required
level of service, if bursty I/O traffic could be spread out over a
longer period of time (while allowing applications to resume
computation). Given the decreasing cost of solid-state storage,
this approach is likely to be more economical.

C. Absorbing Bursty I/O Patterns
One solution to handling I/O bursts in large-scale HPC sys-

tems is to absorb the I/O bursts at an intermediate storage layer
consisting of burst buffers. Burst buffers are high-throughput,
low-capacity storage devices that act as a staging area or a
write-behind cache for HPC storage systems. A compelling
approach to incorporating burst buffers is to place these buffers

on I/O nodes that connect to the external storage system and
to manage these buffers as part of the I/O forwarding services.
Figure 1 illustrates how burst buffers could be integrated
within Intrepid’s existing infrastructure. We envision that burst
buffers will integrate at HPC I/O nodes and will be managed
by I/O forwarding software. If the burst buffers are sufficiently
large and fast, they can absorb the relatively infrequent I/O
bursts observed during our studies.

From the data we gathered during our recent workload
study, we see that three of the top four production applications
on Intrepid could benefit greatly from a burst buffer architec-
ture in terms of potential reduction in perceived I/O time. The
majority of existing applications exhibit several periods of idle
I/O activity between I/O bursts. By aggregating and absorbing
the I/O requests into the burst buffer layer, applications can
overlap computations that follow I/O bursts while bleeding the
data from the burst buffer to external storage. Without these
burst buffers, applications would block until all I/O requests
had completed and would allow no potential for optimization
or overlapping computation and I/O activity. The Turbulence2
application would likely benefit the least because all of its data
is written at the end of execution, allowing no opportunity to
overlap buffer flushing activity with application computation.
However, if data were allowed to trickle out of the burst buffer
after the job was complete, the Turbulence2 application would
still see a reduction in overall runtime.

III. MODELING HPC STORAGE SYSTEMS AND
APPLICATIONS

Our simulation tools are built on top of the Rensselaer
Optimistic Simulation System (ROSS). Using ROSS, we have
implemented and validated [20] a storage system simulator for
the CODES exascale storage system project. This simulator
models the storage system hardware and software protocols
used by the ALCF’s Intrepid IBM Blue Gene/P system. As
part of this work, we extended this storage system simulator
to include a burst buffer tier of storage and updated the I/O
forwarding software protocols to manage data stored in the
burst buffers. In the remainder of this section, we present our
tools used in the simulation component of our burst buffer
study.

application kernel

jobID = 1;
fileHandle = 13;
r = getrank jobID;
s = getsize jobID;
o = 0;

open fileHandle;
o = (16M * r);
writeat fileHandle, 4M, o;
o = (16M * r) + (4M * 1);
writeat fileHandle, 4M, o;
o = (16M * r) + (4M * 2);
writeat fileHandle, 4M, o;
o = (16M * r) + (4M * 3);
writeat fileHandle, 4M, o;

sync jobID;
close fileHandle;

handshake
send

handshake
arrive

handshake
process

handshake
ack

handshake
end

data arrive data
process

CN ION

data send

data ackdata ack

ex
te

rn
al

 I/
O

 t
ra

ffi
c

PFS

burst buffer
filled

reserve
space

NoNo

release
space

YesYes

Fig. 2: Integration of burst buffer model into the CODES
storage system write request model; dotted arrows represent
asynchronous I/O when burst buffer is in use.

A. Parallel Discrete-Event Simulation
ROSS is a massively parallel discrete-event simulator that

has demonstrated the ability to process billions of events per
second by leveraging large-scale HPC systems [4], [21]. A
parallel discrete-event simulation (PDES) system consists of
a collection of logical processes, or LPs, each modeling a
distinct component of the system being modeled (e.g., a file
server). LPs communicate by exchanging timestamped event
messages (e.g., denoting the arrival of a new I/O request at that
server). The goal of PDES is to efficiently process all events
in a global timestamp order while minimizing any processor
synchronization overheads. Two well-established approaches
toward this goal are broadly called conservative processing and
optimistic processing. ROSS supports both approaches. All
results presented in this paper use the conservative approach.

B. CODES Storage System Model
The end-to-end storage system model is composed of

several component models that capture the interactions of
the system software and hardware for I/O operations. The
models used in our simulations include networks, hardware
devices, and software protocols. The storage system model
also provides several configuration parameters that dictate the
execution behavior of application I/O requests.

We abstracted the common features of each Blue Gene/P
hardware component into compute node (CN), I/O node
(ION), and parallel file system (PFS) models. The PFS model
includes file server and enterprise storage submodels. These
models are the logical processes in our end-to-end storage
system model, which are the most basic units of our parallel
discrete-event model. The various BG/P networks are modeled
as the links connecting each LP. Each LP includes three
buffers. The incoming buffer is used to model the queuing
effects from multiple LPs trying to send messages to the same
LP. The outgoing buffer is used to model queuing effects when
an LP tries to send multiple messages to different LPs. The
processing buffer is used to model queuing effects caused by a
processing unit, such as CPU, DMA engine, storage controller,

or router processors. The units process incoming messages in
FIFO order.

The network connection between two LPs is modeled as
messages transmitted between the two LPs, where each LP’s
incoming buffer is connected to the other LP’s outgoing buffer.
Furthermore, the commodity networks (Ethernet and Myrinet
networks) are modeled by the links connecting the IONs with
the storage servers. If we increase the fidelity of our models
in the future, additional network components, such as routers
and switches, can be modeled as LPs.

In prior work, we evaluated the accuracy of these mod-
els [20]. The storage system models were developed to be
software protocol-level accurate. We opted for protocol-level
fidelity over cycle-level fidelity to provide a simulation frame-
work that is high-performance and accurate enough for our
experiments. We validated these models using data collected
on Argonne’s Intrepid Blue Gene/P system while Intrepid was
being deployed. Our simulated results accurately reflected the
performance variations reported in prior work [18] from 2,048
to 131,072 client processes, at roughly 10% error rate.

C. Burst Buffer Support in the CODES Storage System Model
We made several modifications to the existing CODES

storage system simulator to support a tier of burst buffer
storage. First, we developed a simple model of a solid-
state storage device, identified the parameters of interest for
modeling these devices, and consulted the literature for current
SSD products to define reasonable values for these parameters.
Next, we updated the I/O node hardware model in the CODES
simulator to support the integration of burst buffers. Then, we
updated the write request protocol of our simulator so that the
I/O forwarding software layer managed I/O requests stored in
the burst buffers.

T =
Ldata

BBB
+ TBB (1)

Equation 1 describes the analytical model used by our
simulator to compute the burst buffer data access costs. We
define the access time (T) such that it is influenced by the
data transfer size (Ldata), the device throughput (BBB), and
the data access latency (TBB). This is a naı̈ve model of
SSD devices; it assumes the same costs for read and write
operations, and it ignores decreases in device reliability and
write endurance [6], [33]. However, this model is sufficient
for approximating the general performance profile of an end-
to-end storage system using these devices since the fidelity of
this model is on a par with other hardware models used by
our simulator.

To identify realistic parameters for the burst buffer device
model, we investigated the parameters and characteristics of
several solid-state storage devices. Currently, several solid-
state storage devices are appropriate for use as burst buffers.
Table II summarizes the capacity, latency, and throughput
parameters for some of these devices. In general, these devices
provide between 0.25 TiB and 1.4 TiB of storage capacity,
write throughputs ranging from 0.21 GiB/s to 1.3 GiB/s, and
access latencies between 15 µs and 80 µs, which are on a par

TABLE II: Summary of relevant SSD device parameters and
technology available as of January 2012.

Bandwidth Latency
Size (GiB/s) (µs)

Vendor (TiB) NAND Write Read Write Read
FusionIO 0.40 SLC 1.30 1.40 15 47
FusionIO 1.20 MLC 1.20 1.30 15 68
Intel 0.25 MLC 0.32 0.50 80 65
Virident 0.30 SLC 1.10 1.40 16 47
Virident 1.40 MLC 0.60 1.30 19 62

with practical application requirements described in Table I.
On Intrepid the compute node to I/O node ratio is 64:1,
with each compute node having 2 GiB of main memory. The
smallest solid-state device in our survey has a capacity of
0.25 TiB, which is more than enough to hold all the data
in main memory on all associated compute nodes in a single
burst. We used the range of device capacity, access latency,
and throughput parameters to dictate possible storage system
configurations in our simulations.

Figure 2 illustrates how the burst buffer model integrates
with existing CODES storage models. At the compute node
level, the write request kernel is translated to a simulator
trigger event, and the control is passed to the underlying
simulation engine. All the following events (boxes) represent
the model details of the protocols used in the storage system.
In the original protocol, the compute nodes forward application
I/O requests to the I/O nodes, and the I/O forwarding software
replays these requests to the file system. To support burst
buffer storage at the I/O nodes, we modified the I/O forwarding
write request protocol to manage application data cached in
these devices. Our burst buffer data management protocol
model is similar to a write-behind cache policy. First, I/O
forwarding software attempts to reserve space in the burst
buffer for the application data. The I/O forwarding software
then receives the application data and deposits this data into
the burst buffer. Once the data is buffered, the I/O forwarding
software signals the application that the write operation com-
pleted. The I/O forwarding software then transfers the buffered
data to the file system. No other adjustments were made to the
write request protocol. The application client can force all data
in the burst buffer to be flushed to the file system through a
commit method. The details of the file servers and disk level
model are not addressed in Figure 2. Additional details of
these models are documented in our prior work [20].

Several parameters can influence application I/O behavior
in this model. The solid-state device parameters include la-
tency, bandwidth, and capacity. Latency determines the data
access rates to these devices, and capacity is the amount of
buffer space that the devices can provide. The memory copy
bandwidth on the I/O nodes also limits the rate at which the
application data payload can be transferred between RAM and
the burst buffers. The storage network throughput and the disk-
based storage system throughput dictate how quickly the burst
buffers can be flushed. The compute node network controls
how quickly we can fill the burst buffers with application
data. If sufficient space is available to buffer the application

data, applications will transfer data directly to the burst buffer
and avoid other storage system protocol or hardware costs.
However, the cost of flushing the burst buffers and the protocol
interactions with the external storage system are still accounted
for and visible to the applications. If space is not available to
buffer the application data, the original write request protocol
(without burst buffer support) is executed.

D. CODES I/O Workloads
To drive the simulator, we used several workloads derived

from the I/O patterns of synthetic benchmarks and scientific
applications. In our prior work [20], the I/O workloads were
tightly integrated with our simulator. To further generalize our
storage simulator and to allow us to evaluate multiple types of
I/O workloads, we developed a small I/O description language
and interpreter. We integrated the language interpreter into the
CODES simulator. The language and interpreter allow us to
describe a variety of application workloads; provide features
to dictate the placement of applications within the system;
and define I/O workloads consisting of multiple, parallel,
concurrently executing applications. For the experiments we
present in this paper, we developed several I/O kernels based
on the IOR synthetic benchmark, the FLASH astrophysics
application, and general I/O kernels that mimic the I/O patterns
described in Table I.

The first I/O kernel we developed was for the IOR bench-
mark. IOR is a suitable proxy for some HPC I/O workloads
and is often used for evaluating supercomputer I/O perfor-
mance [40]. The IOR I/O pattern represented in our I/O kernel
consists of many processes concurrently writing large blocks
of data (multiple megabyte chunks) into a shared file. We
validated the results generated by this kernel against results
generated during our prior work [20].

Next, we evaluated the I/O workload for the FLASH astro-
physics code [36] and developed an I/O kernel for this code.
FLASH is a scientific application used to study nuclear flashes
that occur on the surfaces of white dwarfs and neutron stars. It
is an extremely scalable scientific application that successfully
reached scales of at least 65,536 cores on Argonne’s Intrepid
Blue Gene/P system [19]. For our experiments, we distilled
two phases of the FLASH I/O workload: the checkpoint I/O
phase and the plot file I/O phase.

During the checkpoint I/O phase of FLASH, each process
interleaves several large blocks of variable data stored in
double-precision floating-point format into a single, shared
data file. During the plot file I/O phase, each process inter-
leaves several medium sized blocks of variable data stored
in single-precision floating-point format into a single, shared
data file. FLASH writes data for each variable as a contiguous
buffer into the checkpoint and plot files. The high-level I/O
library used and I/O optimizations enabled by this library can
dictate the I/O pattern used to describe the data generated by
the application. For example, using the HDF5 high-level I/O
library with collective I/O optimizations disabled will force all
application processes to write several small blocks (between

1

10

100

1000

1024 2048 4096 8192 16384 32768 65536 131072

B
an

d
w

id
th

 (
G

iB
/s

e
c)

Number of Processes

full storage system with
burst buffer enabled

half storage system with
burst buffer enabled

full storage system with
burst buffer disabled

half storage system with
burst buffer disabled

Fig. 3: Simulated performance of IOR for various storage
system and burst buffer configurations.

100 and 4,000 bytes) to the file before writing the larger
variable data blocks. Many of the file accesses are unaligned.

We evaluated the FLASH I/O kernel at a scale of 65,536
application processes in our storage system simulator. Our
I/O kernel was configured to mimic the HDF5 I/O behavior
of FLASH when collective I/O optimizations are disabled.
In prior work [18], we observed on Intrepid that FLASH
checkpoint files could be stored at 21.05 GiB/s and the FLASH
plot file could be stored at 6.4 GiB/s. Initially, we observed that
the simulator stored the FLASH checkpoint file data at 30.77
GiB/s and the plot file data at 15.51 GiB/s. We discovered that
the simulator did not correctly account for the saturation of the
commodity storage network and did not correctly handle small
HDF5 I/O requests (100s to 1000s of bytes) written to the
enterprise storage model. We adjusted our commodity network
model to account for network saturation when using more than
65,536 processes and penalized small I/O requests written to
the enterprise storage device model. With these changes, the
simulator computed the checkpoint file data storage rate as
20.01 GiB/s and the plot file data storage rate as 6.715 GiB/s.

IV. BURST BUFFER STUDY

In this section, we explore the burst buffer storage system
design using our simulator. First, we investigate how burst
buffers influence individual application I/O behavior. Next, we
explore how burst buffers influence the performance and de-
sign of the external storage system when simulating multiple,
concurrent applications.

A. Single I/O Workload Case Studies
To understand how burst buffers influence application I/O

performance, we evaluated several I/O workloads in our sim-
ulator. In these experiments, we focused on exploring the
parameter space of the burst buffers and application I/O access
patterns. We limited these analyses to a single application I/O
workload so that we could observe the impact of burst buffers
from the application’s perspective.

The goal of our first experiment was to quantify the I/O
acceleration that burst buffers can provide to an application.
These experiments used the IOR I/O kernel we described

in Section III-D. We configured the I/O kernel in these
experiments to write four consecutive chunks of data 4 MiB
in length. We configured the simulated storage system to use
4 MiB stripes. Thus, the I/O kernel will write stripe-aligned
data requests to the storage system and should achieve the
best possible throughput for the I/O kernel. The configuration
of the simulated storage system was similar to experiments
presented in our prior work [20]. This configuration included
123 file servers and 123 enterprise storage LUNs connected to
the Blue Gene/P system through a commodity storage network.
File system clients were hosted on the I/O nodes and groups of
256 compute processes (on 64 compute nodes) shared access
to a single I/O node.

In addition to these configuration parameters, we made
two adjustments to the experimental setup of our simulation.
First, we configured an additional external storage system that
consists of 64 file servers and 64 enterprise storage LUNs. This
additional storage system configuration is approximately half
the storage system provided by the existing ALCF computing
environment. Next, we configured each I/O node to use a 4
GiB burst buffer with a transfer rate of 1.5 GiB/s. While a
4 GiB burst buffer is substantially smaller than the devices
presented in Table II, this size can fit all the application data
generated by this experiment. Increasing the burst buffer size
does not affect the performance of the model or the simulation.

Figure 3 illustrates the perceived I/O bandwidth at the client
processes for a variety of scales. This bandwidth accounts for
the time for the applications to complete its I/O requests. It
does not account for the time to open or close the file, or the
time to ensure the durability of the application data on the
external storage system. Thus, the results of this experiment
illustrate the maximum achievable application I/O bandwidth
for storage systems with and without burst buffers. The full
storage system without a burst buffer achieves sustained band-
width similar to our prior study [20] because all application
I/O requests interact with the external storage system. The half
storage system configuration without a burst buffer exhibits
similar I/O performance trends but achieves only half the
bandwidth of the full storage system. When burst buffers are
enabled for either external storage system configuration, we
achieve linear scaling of I/O bandwidth. The burst buffers
essentially cache the application I/O requests and suppress the
cost of interacting with the external storage system. In this test,
the application I/O performance is limited by the bandwidth of
the Blue Gene/P tree network that connects the compute nodes
with the I/O nodes. This network has a maximum bandwidth
of 700 MiB/s for 4 MiB I/O requests.

In order to observe the benefits of the burst buffers when
accounting for data flushes, applications must overlap com-
putations with the burst buffer flush. We modified our initial
IOR experiment to account for the cost of flushing burst buffer
data so that we could quantify the benefit of computation
and I/O overlap. This new experiment measures application
runtimes at various scales for storage systems configured with
and without burst buffers. In this experiment, we used the full

500#

600#

700#

800#

900#

1000#

1100#

1200#

8192# 16384# 32768# 65536# 131072#

Jo
b$
Ex
ec
u*

on
$T
im

e$
(s
)$

NumberofProcesses$

I/O#Enabled#with#
Burst#Buffer#

I/O#Enabled#

I/O#Disabled#

(a) Simulated application runtime performance for var-
ious I/O and burst buffer configurations.

0

10

20

30

40

50

60

70

80

90

4*1M 4*2M 4*4M 4*8M 4*16M

Ba
nd

w
id

th
 (

G
iB

/s
ec

)

Data Size

burst buffer disabled
burst buffer enabled

(b) Simulated IOR performance for various burst buffer
configurations and I/O workloads.

Fig. 4: Results of the burst buffer and application I/O workload parameter space investigations.

storage system configuration consisting of 123 file servers. We
added a 20 GiB burst buffer to each I/O node.

Figure 4a illustrates the simulated application runtime (com-
putation time plus I/O time) at various scales. We collected
data for three application configurations. Each application
executed two computation phases that consumed five minutes
of application runtime. First, we measured the application
runtime when the application executed no I/O operations. This
experiment represents the best possible case for the application
because it does not interact with the storage system and is not
affected by external storage system costs. Next, we measured
the runtime for an application that performs I/O directly to the
external storage system and does not use a burst buffer. After
each computation phase, each process enters an I/O phase and
writes four 20 MiB chunks of data. For this application, this
test case represents the worst possible case for the application
runtime, since the I/O is not overlapped with application
execution. Then, we measured the application runtime with
burst buffers enabled. Similar to the previous test case, each
process writes four 20 MiB chunks of data after each com-
putation phase. However, the I/O forwarding layer completes
the application I/O request once the data is transferred to the
burst buffer. Thus, the application computation can overlap
the burst buffer data transfers to the external storage system.
This test case highlights how the application runtime decreases
when the application computation is overlapped with the I/O
forwarding layer writing burst buffer data to external storage.

Next, we investigated how the application bandwidth is
affected by the burst buffer capacity and application I/O
request sizes. The results of this experiment are illustrated
in Figure 4b. For this experiment, we configured the IOR
I/O kernel to issue four I/O requests ranging from 1 MiB
to 16 MiB. We evaluated this I/O pattern using 32,768 IOR
processes, 123 file servers, and a 4 GiB burst buffer on
each I/O node. We measured the perceived application I/O
bandwidth and ignored the cost of flushing the burst buffer
data to the external storage system.

When the burst buffer is disabled, the application I/O perfor-
mance is limited by the external storage system performance

for all I/O request sizes. When the burst buffer is enabled, the
application I/O performance is limited by the time to transfer
data from the compute node into the burst buffer while the
burst buffer still has free space. In this experiment, this occurs
at 4 MiB request size test. After this point, the application I/O
performance is limited by the external storage system because
the I/O requests overflow the burst buffer.

B. Multiapplication Case Study
An interesting question that arises when burst buffers are

introduced into the system is the degree to which multiple
applications running simultaneously might conflict with one
another and in what ways. I/O bursts that saturate the stor-
age system can delay or starve data accesses generated by
other applications competing for access to the same storage
resources [23]. Interleaved I/O requests from multiple, unre-
lated sources can lead to random I/O workloads for storage
devices to handle and often require additional software to
effectively reorder these requests [24], [30]. As part of our
study we simulated the behavior of the system with multiple
applications. We note that the current I/O forwarding and burst
buffer models do not perform any intelligent reordering or
transformation on the I/O request stream; rather, they replay
operations in order on each I/O forwarder.

For this study we initialized the simulator to have 32K
compute nodes and 512 IONs. The SLC NAND FusionIO card
parameters were used for the burst buffer model (i.e., 400
GiB capacity, 1.3 GiB/sec write rate). Two external storage
configurations were tested: 128 file servers with 16 enterprise
storage racks (full storage system) and 64 file servers with
8 enterprise storage racks (half storage system). We separated
the compute nodes into three partitions: two 8K node partitions
and one 16K node partition.

From the data in Table I we generated three application I/O
patterns that reflect the patterns seen in the PlasmaPhysics, As-
troPhysics, and Turbulence1 applications. The PlasmaPhysics
kernel was configured so that each application process issued
two large (256 MiB) write request bursts separated by a
two-hour interval. The AstroPhysics kernel was set up to

execute three small I/O phases followed by a large I/O phase,
where each phase was separated by a five-minute interval.
This pattern was repeated eleven times. The Turbulence1 I/O
kernel executed 220 small I/O phases separated by a 70-second
interval. We configured the simulation to run for 5 simulated
hours, enough time for the “applications” to reach steady state
and for us to observe I/O activities and conflicts.

We simulated test cases with burst buffers enabled and
disabled. Additionally, we conducted tests using the full and
half external storage system configurations. The results of
these simulations are illustrated in Figures 5 and 6. During
these simulations, we collected 2,000 samples of the total
amount of data transferred throughout the simulator at ten
second intervals. The ten second average data transfer rates
are reported in Figures 5 and 6.

One of the observations we made from the multiapplication
experiment is that burst buffers accelerate the application
perceived throughput under mixed I/O workloads. The 400
GiB burst buffer was large enough to buffer the data requests
generated by all three workloads. Additionally, decreasing the
size of the storage system while using burst buffers had no
noticeable impact on the mixed I/O workloads performance.
Without burst buffers, decreasing the external storage system
by half its original size impacted the applications’ I/O perfor-
mance. Figures 5a and 5b show that the peak bandwidth of
the storage system is slightly less in the half storage system
configuration, and the time to complete all the I/O requests
is extended. When burst buffers are enabled, decreasing the
external storage system still provides exceptional I/O band-
width for the applications. Figures 5c and 5d indicate no
observable difference in aggregate I/O performance when the
storage system is decreased by half its original size.

Figures 6a through 6d illustrate simulated disk I/O statistics
monitored during same time period. When the burst buffer is
enabled, the disk I/O requests appear more condensed resulting
in better disk utilization. Comparing Figure 6c and 6d, we
find that job execution time is approximately the same, which
shows an even higher disk utilization in the half storage system
test case. The burst buffer is capable of feeding the storage
system with large enough I/O requests, and these requests
are fully digested by storage system, in the time intervals
between the write requests. This indicates the potential of
saving storage resources with the burst buffer approach while
hitting performance targets.

V. RELATED WORK

Three areas of work are related to our research. First, a
significant amount of research has been devoted to accurate
and scalable simulation methods and frameworks for HPC
systems, with a relative increase in activity to generate simu-
lation tools for designing exascale computing systems. The
second area of related research involves asynchronous I/O
methods for HPC systems; this area focuses on identifying
techniques for processing HPC application I/O requests in the
background of application execution. The third area of related
work focuses on integrating NVRAM or solid-state storage
into HPC systems for use as a fast tier of storage.

As part of the exascale co-design process, significant interest
has arisen in understanding how parallel system software such
as MPI and the associated supercomputing applications will
scale on future architectures. For example, Perumalla’s µ⇡
system [34] will allow MPI programs to be transparently
executed on top of the MPI modeling layer and simulate
the MPI messages. A number of universities and national
laboratories have joined together to create the Structural
Simulation Toolkit (SST) [35]. SST includes a collection of
hardware component models including processors, memory,
and networks at different accuracy. These models use parallel,
component-based discrete-event simulation based on MPI.
BigSim [44] focuses on modeling and predicting the behavior
of sequential execution blocks of large-scale parallel applica-
tions. Our simulator differs from these projects because our
tools support the construction of storage system models and
address how to represent the storage system software protocols
in parallel discrete-event simulators.

Researchers have also developed a number of parallel file
system simulators. The IMPIOUS simulator [26] was de-
veloped for fast evaluation of parallel file system designs.
It simulates PVFS, PanFS, and Ceph file systems based
on user-provided file system specifications, including data
placement strategies, replication strategies, locking disciplines,
and caching strategies. The HECIOS simulator [38] is an
OMNeT++ simulator of PVFS; it was used to evaluate scalable
metadata operations and file-data-caching strategies for PVFS.
PFSsim [22] is an OMNeT++ PVFS simulator that allows
researchers to explore I/O scheduling algorithm design. PVFS
and ext3 file systems have been simulated by using colored
Petri nets [29]; this simulation method yielded low simulation
error, with less than 10% error reported for some simulations.
Checkpoint workloads and storage system configurations were
recently evaluated with the SIMCAN simulator, an OMNeT++
simulator for HPC architectures [31]; from the SIMCAN
simulations, the authors concluded that increasing the perfor-
mance of the external storage system and storage networks
were effective methods for improving application checkpoint
performance. The focus of CODES sets it apart from these
related simulation tools. One of the goals of CODES is to
accurately and quickly simulate large-scale storage systems.
To date, CODES has been used to simulate up to 131,072
application processes, 512 PVFS file system clients, and 123
PVFS file servers. The existing studies limited their simu-
lations to smaller parallel systems (up to 10,000 application
processes and up to 100 file servers).

An abundance of research focus on asynchronous file I/O,
data staging, and I/O offloading research for HPC systems.
Many of the recent challenges associated with this research
area focus on how to minimize the impact of asynchronous
file I/O network activity on application communication over
shared interconnects. GLEAN [42] and DART [11] provide
data offloading and staging capabilities for use by HPC appli-
cations in data-center and wide-area computing environments.
Both of these tools ship application I/O requests to data staging

0.1

1

10

100

1000

0 1 2 3 4 5

ag
gr

e
ga

te
 b

an
d

w
id

th
 (

G
iB

/s
)

time (hour)

PlasmaPhysics Turbulence 1 AstroPhysics

(a) burst buffer turned off, full storage system
in use, 128 file servers

0.1

1

10

100

1000

0 1 2 3 4 5

ag
gr

e
ga

te
 b

an
d

w
id

th
 (

G
iB

/s
)

time (hour)

PlasmaPhysics Turbulence 1 AstroPhysics

(b) burst buffer turned off, half storage system
in use, 64 file servers

0.1

1

10

100

1000

0 1 2 3 4 5

ag
gr

e
ga

te
 b

an
d

w
id

th
 (

G
iB

/s
)

time (hour)

PlasmaPhysics Turbulence 1 AstroPhysics

(c) burst buffer turned on, full storage system
in use, 128 file servers

0.1

1

10

100

1000

0 1 2 3 4 5

ag
gr

e
ga

te
 b

an
d

w
id

th
 (

G
iB

/s
)

time (hour)

PlasmaPhysics Turbulence 1 AstroPhysics

(d) burst buffer turned on, half storage system
in use, 64 file servers

Fig. 5: Ten second average data transfer rate for the compute nodes observed during the multiapplication simulations.

nodes and allow these nodes to manage the I/O requests on
behalf of the application. The ADIOS and DataStager teams
have done extensive research on how to adapt and isolate
applications from several sources of interference, including
sources that impact asynchronous I/O capabilities [1] and
usage of heavily utilized file system resources [23]. Our work
is complementary to that existing work. Those asynchronous
tools provide the interfaces and mechanisms to provide asyn-
chronous I/O capabilities to the application, whereas our work
provides insight on how those tools will work on large-scale
systems with a dedicated buffer space.

Several recent activities have focused on the usage of solid-
state devices in HPC systems. This work includes evaluating
the use of solid-state storage for data-intensive computa-
tions [13], [25], investigating the use of solid-state devices
in storage systems [2], designing data-intensive HPC systems
that can host large data sets near processing elements [16], and
using SSDs as a medium for temporarily storing application
checkpoint data [14], [30]. Of particular interest and relevance
to our work are storage system designs that use nonvolatile
burst buffers [5]. These system designs integrate nonvolatile
media between the main memory accessible to the processing
elements and the slower spinning disk media that hold durable
copies of application data. Thus, it is used as an intermediate

storage tier located between the processing elements and the
external storage system. In this paper, we investigate the role of
burst buffers in large-scale HPC systems. We adopt the usage
model of nonvolatile burst buffers [5], define several large-
scale HPC storage system configurations integrated with burst
buffers, and evaluate application I/O workloads using these
system configurations through the CODES storage system
simulator.

VI. CONCLUSIONS

This study explores the potential for burst buffers in HPC
storage systems and highlights their potential impact through
simulations of an existing large-scale HPC system, the Ar-
gonne IBM Blue Gene/P “Intrepid” including application
I/O patterns and enhanced storage system. We gather data
from the production computing system to provide an accurate
model of application I/O bursts in today’s systems, and we
survey current nonvolatile storage products to provide realistic
parameters for our burst buffer model. We provide a parallel
discrete-event model for burst buffers in an HPC system based
on our previous work of a leadership-class storage system
model. The model is tested through a series of I/O benchmarks
and mixed workloads, and simulations are performed with a
reduced configuration of external storage.

0.1

1

10

100

0 1 2 3 4 5

ag
gr

e
ga

te
 b

an
d

w
id

th
 (

G
iB

/s
)

time (hour)

(a) burst buffer turned off, full storage system
in use, 128 file servers

0.1

1

10

100

0 1 2 3 4 5

ag
gr

e
ga

te
 b

an
d

w
id

th
 (

G
iB

/s
)

time (hour)

(b) burst buffer turned off, half storage system
in use, 64 file servers

0.1

1

10

100

0 1 2 3 4 5

ag
gr

e
ga

te
 b

an
d

w
id

th
 (

G
iB

/s
)

time (hour)

(c) burst buffer turned on, full storage system
in use, 128 file servers

0.1

1

10

100

0 1 2 3 4 5

ag
gr

e
ga

te
 b

an
d

w
id

th
 (

G
iB

/s
)

time (hour)

(d) burst buffer turned on, half storage system
in use, 64 file servers

Fig. 6: Ten second average data transfer rate for the external storage system observed during the multiapplication simulations.

This study clearly indicates that burst buffers are practical
in the context of this example system and set of applica-
tions. While current systems operate effectively without burst
buffers, we show that the use of burst buffers can allow
for a much less capable external storage system with no
major impact on perceived application I/O rates. For today’s
systems this means that storage system costs could likely be
significantly reduced—fewer file servers, racks of storage, and
external switch ports are needed. For systems in the 2020 time
frame, burst buffers are likely to be a mandatory component
if peak I/O rates are to be attained.

Future work will follow along two lines. First, in order to
further improve the efficiency of our simulations on large-scale
systems, we will adapt our models to optimistic execution.
Second, we continue to improve the fidelity of the model.
We are incorporating models of the torus and tree networks as
part of this activity, and we are investigating methods to better
simulate the disk drives in our enterprise storage model.

ACKNOWLEDGMENTS

This work was supported in part by the Office of Advanced
Scientific Computer Research, Office of Science, U.S. Dept.
of Energy, under Contract DE-AC02-06CH11357 and partially
by Contract DE-SC0005428 and the LANL/UCSC Institute for

Scalable Scientific Data Management (ISSDM). This research
used resources of the Argonne Leadership Computing Facility
at Argonne National Laboratory, which is supported by the
Office of Science of the U.S. Department of Energy under
contract DE-AC02-06CH11357.

REFERENCES

[1] H. Abbasi, M. Wolf, G. Eisenhauer, S. Klasky, K. Schwan, and F. Zheng.
DataStager: Scalable data staging services for petascale applications.
In Proceedings of the 18th ACM international Symposium on High
Performance Distributed Computing, June 2009.

[2] S. Alam, H. El-Harake, K. Howard, N. Stringfellow, and F. Verzelloni.
Parallel I/O and the metadata wall. In Proceedings of the 6th Parallel
Data Storage Workshop (PDSW’11), November 2011.

[3] N. Ali, P. Carns, K. Iskra, D. Kimpe, S. Lang, R. Latham, R. Ross,
L. Ward, and P. Sadayappan. Scalable I/O forwarding framework for
high-performance computing systems. In IEEE International Conference
on Cluster Computing (Cluster 2009), New Orleans, LA, September
2009.

[4] D. W. Bauer Jr., C. D. Carothers, and A. Holder. Scalable time warp on
Blue Gene supercomputers. In Proceedings of the 2009 ACM/IEEE/SCS
23rd Workshop on Principles of Advanced and Distributed Simulation,
pages 35–44, Washington, DC, USA, 2009. IEEE Computer Society.

[5] J. Bent and G. Grider. Usability at Los Alamos National Lab. In The
5th DOE Workshop on HPC Best Practices: File Systems and Archives,
September 2011.

[6] S. Boboila and P. Desnoyers. Write endurance in flash drives: Measure-
ments and analysis. In Proceedings of the 8th USENIX Conference on
File and Storage Technologies, February 2010.

[7] D. L. Brown and P. Messina. Scientific grand challenges: Cross-cutting
technologies for computing at the exascale. Technical report, Department
of Energy Office of Advanced Scientific Computing Research and Office
of Advanced Simulation and Computing, February 2010.

[8] P. Carns, K. Harms, W. Allcock, C. Bacon, S. Lang, R. Latham, and
R. Ross. Understanding and improving computational science storage
access through continuous characterization. Trans. Storage, 7:1–26,
October 2011.

[9] Philip Carns, Robert Latham, Robert Ross, Kamil Iskra, Samuel Lang,
and Katherine Riley. 24/7 characterization of petascale I/O workloads.
In Proceedings of the First Workshop on Interfaces and Abstractions for
Scientific Data Storage (IASDS), New Orleans, LA, September 2009.

[10] J. Dennis and R. Loft. Optimizing high-resolution climate variability
experiments on the Cray XT4 and XT5 systems at NICS and NERSC.
In Proceedings of the 51st Cray User Group Conference (CUG), 2009.

[11] C. Docan, M. Parashar, and S. Klasky. Enabling high-speed asyn-
chronous data extraction and transfer using DART. Concurrency and
Computation: Practice and Experience, 22(9):1181–1204, June 2010.

[12] J. Dongarra. Impact of architecture and technology for extreme scale on
software and algorithm design. Presented at the Department of Energy
Workshop on Cross-cutting Technologies for Computing at the Exascale,
February 2010.

[13] B. Van Essen, R. Pearce, S. Ames, and M. Gokhale. On the role of
NVRAM in data-intensive architectures: an evaluation. In International
Symposium on Parallel and Distributed Processing (to appear), 2012.

[14] L. Gomez, M. Maruyama, F. Cappello, and S. Matsuoka. Distributed
diskless checkpoint for large scale systems. In Proceedings of the
10th IEEE/ACM International Conference on Cluster, Cloud, and Grid
Computing (CCGrid’10), May 2010.

[15] G. Grider. Exa-scale FSIO - Can we get there? Can we afford to?
Presented at the 7th IEEE International Workshop on Storage Network
Architecture and Parallel I/O, May 2011.

[16] J. He, J. Bennett, and A. Snavely. DASH-IO: and empirical study of
flash-based IO for HPC. In Proceedings of TeraGrid’10, August 2010.

[17] Y. Kim, R. Gunasekarana, G. Shipman, D. Dillow, Z. Zhang, and
B. Settlemyer. Workload characterization of a leadership class storage
cluster. In Proceedings of the 5th Parallel Data Storage Workshop
(PDSW’10), November 2010.

[18] S. Lang, P. Carns, R. Latham, R. Ross, K. Harms, and W. Allcock.
I/O performance challenges at leadership scale. In Proceedings of the
Conference on High Performance Computing Networking, Storage and
Analysis, page 40. ACM, 2009.

[19] R. Latham, C. Daley, W. K. Liao, K. Gao, R. Ross, A. Dubey, and
A. Choudhary. A case study for scientific I/O: Improving the FLASH
astrophysics code. In under review to Journal of Computational Science
and Discovery, 2012.

[20] N. Liu, C. Carothers, J. Cope, P. Carns, R. Ross, A. Crume, and
C. Maltzahn. Modeling a leadership-scale storage system. In Proceed-
ings of the 9th International Conference on Parallel Processing and
Applied Mathematics, 2011.

[21] N. Liu and C. D. Carothers. Modeling billion-node torus networks using
massively parallel discrete-event simulation. In Proceedings of the 2011
IEEE Workshop on Principles of Advanced and Distributed Simulation,
PADS ’11, pages 1–8, Washington, DC, USA, 2011. IEEE Computer
Society.

[22] Y. Liu, R. Figueiredo, D. Clavijo, Y. Xu, and M. Zhao. Towards
simulation of parallel file system scheduling algorithms with PFSsim. In
Proceedings of the 7th IEEE International Workshop on Storage Network
Architectures and Parallel I/O, May 2011.

[23] J. Lofstead, F. Zheng, Q. Liu, S. Klasky, R. Oldfield, T. Kordenbrock,
K. Schwan, and M. Wolf. Managing variability in the IO performance
of petascale storage systems. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis 2010 (SC10), November 2010.

[24] T. Madhyastha, G. Gibson, and C. Faloutsos. Informed prefetching of
collective input/output requests. In Proceedings of the 1999 ACM/IEEE
Conference on Supercomputing (SC’99), November 1999.

[25] N. Master, M. Andrews, J. Hick, S. Canon, and N. Wright. Performance
analysis of commodity and enterprise class flash devices. In Proceedings
of the 5th Parallel Data Storage Workshop (PDSW’10), November 2010.

[26] E. Molina-Estolano, C. Maltzahn, J. Bent, and S. Brandt. Building a
parallel file system simulator. In Journal of Physics: Conference Series,
volume 180, 2009.

[27] J. Moreira, M. Brutman, J. Castaños, T. Engelsiepen, M. Giampapa,
T. Gooding, R. Haskin, T. Inglett, D. Lieber, P. McCarthy, M. Mundy,
J. Parker, and B. Wallenfelt. Designing a highly-scalable operating
system: the Blue Gene/L story. In Proceedings of the 2006 ACM/IEEE
Conference on Supercomputing, November 2006.

[28] H. Naik, R. Gupta, and P. Beckman. Analyzing checkpointing trends for
applications on petascale systems. In Second International Workshop on
Parallel Programming Models and Systems Software (P2S2) for High-
End Computing, 2009.

[29] H. Q. Nguyen. File system simulation: Hierachical performance
measurement and modeling. PhD thesis, University of Arkansas, 2011.

[30] P. Nowoczynski, N. Stone, J. Yanovich, and J. Sommerfield. Zest:
Checkpoint storage system for large supercomputers. In 3rd Petascale
Data Storage Workshop, November 2008.

[31] A. Nunez, J. Fernandez, J. Carretero, L. Prada, and M. Blaum. Optimiz-
ing distributed architectures to improve performance on checkpointing
applications. In Proceedings of the 13th IEEE International Conference
on High Performance Computing and Communications (HPCC’11),
September 2011.

[32] R. Oldfield, S. Arunagiri, P. Teller, S. Seelam, M. Varela, R. Riesen, and
P. Roth. Modeling the impact of checkpoints on next-generation systems.
In 24th IEEE Conference on Mass Storage Systems and Technologies
(MSST 2007), pages 30 –46, September 2007.

[33] Y. Pan, G. Dong, and T. Zhang. Exploiting memory device wear-
out dynamics to improve NAND flash memory system performance.
In Proceedings of the 9th USENIX Conference on File and Storage
Technologies, February 2011.

[34] K. S. Perumalla. µ⇡: a scalable and transparent system for simulating
MPI programs. In Proceedings of the 3rd International ICST Conference
on Simulation Tools and Techniques, SIMUTools ’10, pages 62:1–62:6,
ICST, Brussels, Belgium, 2010.

[35] A. F. Rodrigues, K. S. Hemmert, B. W. Barrett, C. Kersey, R. Oldfield,
M. Weston, R. Risen, J. Cook, P. Rosenfeld, E. CooperBalls, and
B. Jacob. The Structural Simulation Toolkit. SIGMETRICS Perform.
Eval. Rev., 38:37–42, March 2011.

[36] R. Rosner, A. Calder, J. Dursi, B. Fryxell, D. Lamb, J. Niemeyer,
K. Olson, P. Ricker, F. Timmes, J. Truran, H. Tufo, Y. Young, M. Zin-
gale, E. Lusk, and R. Stevens. Flash code: Studying astrophysical
thermonuclear flashes. In Computing in Science and Engineering,
volume 2, pages 33–41, 2000.

[37] P. Roth. Characterizing the I/O behavior of scientific applications on the
Cray XT. In Proceedings of the 2nd Parallel Data Storage Workshop
(PDSW’07), November 2007.

[38] B. W. Settlemyer. A Study of Client-side Caching in Parallel File
Systems. PhD thesis, Clemson University, Clemson, South Carolina,
USA, 2009.

[39] J. Shalf. Exascale computing technology challenges. Presented at the
HEC FSIO Workshop 2010, August 2010.

[40] H. Shan, K. Antypas, and J. Shalf. Characterizing and predicting the
I/O performance of HPC applications using a parameterized synthetic
benchmark. In Proceedings of the 2008 ACM/IEEE conference on
Supercomputing, SC ’08, pages 42:1–42:12, Piscataway, NJ, USA, 2008.
IEEE Press.

[41] G. Shipman, D. Dillow, S. Oral, F. Wang, D. Fuller, J. Hill, and Z. Zhang.
Lessons learned in deploying the world’s largest scale lustre file system.
In Proceedings of the 52nd Cray User Group Conference (CUG), May
2010.

[42] V. Vishwanath, M. Hereld, V. Morozov, and M. Papka. Topology-
aware data movement and staging for I/O acceleration on Blue Gene/P
supercomputing systems. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis
2011 (SC11), November 2011.

[43] F. Wang, Q. Xin, B. Hong, S. Brandt, E. Miller, D. Long, and
T. McLarty. File system workload analysis for large scale scientific
computing applications. Technical report, Lawrence Livermore National
Laboratory, January 2004.

[44] G. Zheng, G. Gupta, E. Bohm, I. Dooley, and L. V. Kale. Simulating
large scale parallel applications using statistical models for sequential
execution blocks. In Proceedings of the 16th International Conference
on Parallel and Distributed Systems (ICPADS 2010), number 10-15,
December 2010.

