DRepl: Optimizing Access to Application Data for Analysis and Visualization

Latchesar Ionkov
Los Alamos National Laboratory
lionkov@lanl.gov

Abstract—Until recently most scientific applications pro-
duced data that is saved, analyzed and visualized at later time.
In recent years, with the large increase in the amount of data
and computational power available there is demand for appli-
cations to support data access in-situ, or close-to simulation to
provide application steering, analytics and visualization. Data
access patterns required for these activities are usually different
than the data layout produced by the application. In most of
the large HPC clusters scientific data is stored in parallel file
systems instead of locally on the cluster nodes. To increase
reliability, the data is replicated, usually using some of the
standard RAID schemes. Parallel file server nodes usually have
more processing power than they need, so it is feasible to offload
some of the data intensive processing to them. DRepl project
replaces the standard methods of data replication with replicas
having different layouts, optimized for the most commonly used
access patterns. Replicas can be complete (i.e. any other replica
can be reconstructed from it), or incomplete. DRepl consists
of a language to describe the dataset and the necessary data
layouts and tools to create a user-space file server that provides
and keeps the data consistent and up to date in all optimized
layouts.

Keywords-data storage; data replication; fault tolerance;
exascale; DISC

I. INTRODUCTION

The amount of data produced by scientific applications
increases with the size of the high-performance supercom-
puters they run on. The future exascale systems will require
hundreds of petabytes storage only for scratch space [1]. It
may be prohibitive to transfer all data produced by exascale
simulations outside of the compute cluster. These issues
made in-situ and close-to analytics and visualization solu-
tions an important research topic. Analyzing and steering
the simulation while it is running can reduce the resources
(both computational and storage) used. In most cases the
visualization and analytics applications need a small part of
the data produced by the scientific application, but because
the data layout is optimized to increase the performance of
the simulation, finding and reading the required data is slow
and may interfere with the data producer.

To improve data availability and reliability, storage sys-
tems use some form of data replication. Most commonly a
variant of RAID [2] is used. The advantage of using RAID
is that it is well supported, including in hardware. Each
replica uses additional storage and requires more electrical
power, but because all replicas are identical, these systems

Michael Lang
Los Alamos National Laboratory
mlang @lanl.gov

Carlos Maltzahn
University of California, Santa Cruz
carlosm@cs.ucsc.edu

usually don’t use the multiple replicas to improve storage
performance. The storage nodes are getting smarter, with
faster CPUs and more cores, even though they are not fully
utilized. With “cheap” and available computational power,
it makes sense to have replicas with different data layouts.
The data producers and data consumers can use the replica
that is best optimized for their access pattern.

DRepl tries to improve the performance of the visual-
ization and analysis tools while keeping the amount of
storage and reliability guarantees the same as when using
other data replication mechanisms. DRepl is transparent to
the applications and doesn’t require any modifications. It
runs as a file server that provides different files for each
layout of the data desired. The data layouts (views) can
be stored in a file (replica) on the underlying parallel file
system (materialized), or can be virtual (non-materialized).
If a view is materialized, reading from its file reads the data
from the real file on the parallel file system. Reading from
non-materialized view uses data from one of the materialized
views and converts the data on the fly. When writing data
to a view, DRepl updates all replicas. Depending on the
concurrency model, the updates can be synchronous or
asynchronous.

DRepl defines a language that is used to describe the
dataset, views and replicas. The description is used to
generate source code to convert between data layouts. The
code produces a user-level 9P2000 [3] file server. This
approach allows support for legacy scientific applications,
without any modifications in their code. As long as one of
the views matches the legacy data layout, the application can
continue to work as before, even if the replicas store the data
in a more portable and convenient layouts, like HDF5 [4]
or NetCDF [5].

DRepl is a work in progress. This paper describes the
experiments run in order to prove the feasibility of our
approach as well as the design and ongoing implementation
of DRepl.

II. MOTIVATION

In order to evaluate feasibility and performance of our ap-
proach, we constructed and ran experiments with prototype
implementations of our ideas.

Read Natura: —
2 F rite Natural ---»----
000 Read Legacy -~
Write Legacy &

1500

1000 ¢

Bandwidth (MB/s)

500 ?’k’,

0 L L L L L
0 1e+08 2e+08 3e+08 4e+08 5e+08 6e+08

Array Length
(b) Fusion-IO Disk

Figure 1: Legacy vs. Natural access to legacy data

Wad Natura: —
2 L rite Natural ------
000 Read Legacy -
Write Legacy &
1500 |
£
o
=
<
g 1000
‘§ A a =} o a
@
o
500
g ‘ ‘
0 1e+08 2e+08 3e+08 4e+08 5e+08 6e+08
Array Length
(a) RAID-0 HDD
A. Dataset

We used a simple dataset in which the scientific applica-
tion stores three values for each “point” of the simulation.
The number of “points” is configurable. The range for our
experiments was from 1 million to 170 million.

struct Point {

a float
b float
c float

}

Point data[N]

B. Views

We define three views (data layouts) of the dataset:
1) Natural/default (abc):

Point data[N]

50

ABC from ABG' ——
ABC from abc --—-x---

40

30 b e J—

Bandwidth (MB/s)

20

0 | | | | | | | |
0 2e+07 4e+07 6e+07 8e+07 1e+08 1.2e+08 1.4e+08 1.6e+08 1.8e+0€
Array Length

Figure 2: Reading legacy view from legacy and natural
layouts

2) Legacy (ABC): Most of the legacy applications, espe-
cially the ones written in Fortran, store separate arrays for
each value.

float a[N]
float b [N]
float c [N]

3) Visualization (b): In most cases the visualization re-
quires only some of the values.

float b [N]

C. Accessing legacy data

In this experiment the data is stored in the legacy (ABC)
format. We implemented programs that use the legacy and
natural layouts internally. They read and write the data
from/to a file that uses the legacy view. If the internal
representation is also legacy, the program uses a single
operation for each array. When the program uses the natural
representation, the legacy view is accessed in chunks of 1024
elements.

Figure 1 shows the results of the test on RAID-0 array
of two SAS disks vs. Fusion-IO card. Write operations
are faster than the reads in both cases, because the write
operation returns once the data is cached to the OS data
buffers and is not necessarily on written on the disk yet.

On rotational RAID-0 array, the difference between con-
verting the data to the natural view when reading is less
than 10 percent, while converting it for writing is three times
slower.

On the Fusion-1O card, both reading and writing data to
legacy format is more than twice as fast as converting it
from legacy to natural format.

The small difference between the two modes of reading
from the RAID-0 array could be due to the cache present
on the RAID controller. Bypassing the RAID-0 controller

50

ABC to ABC,abcb —+—
ABC to ABC,abc ---%---
ABC to ABC,b --*
ABC to abc,b —&
40 + ABC to ABC -—-#-- B
ABC to abc -

30 B

20 | 1

Bandwidth (MB/s)

0 2e+07 4e+07 6e+07 8e+07 1e+08 1.2e+08 1.4e+08 1.6e+08 1.8e+0¢
Array Length

(a) Synchronous mode (local)
50 ;

ABC to ABC,abc,b —+—
ABC to ABC,abc -----—

40 F ABC to ABC -—-=—- 4
ABC to abc ---o--

30 B

20 B

Bandwidth (MB/s)
Eod
o

0
0 2e+07 4e+07 6e+07 8e+07 1e+08 1.2e+08 1.4e+08 1.6e+08 1.8e+0€
Array Length

(c) Synchronous mode (remote)

50

ABC to ABC,abcb ——

ABC to ABC,abc ---»---
ABC to ABC,b ----*
ABC to abc,b &

40 | ABC to ABC —-=—- B

ABC to abc ---o--

20 | «

Bandwidth (MB/s)

0 2e+07 4e+07 6e+07 8e+07 1e+08 1.2e+08 1.4e+08 1.6e+08 1.8e+0€
Array Length

(b) Asynchronous mode (local)

50

ABC to ABC,abch —— ' ' ' '
ABC to ABC,abc ---»---

40 b ABC to ABC —-=—- 1
ABC to abc ---e--

20 1

Bandwidth (MB/s)

0
0 2e+07 4e+07 6e+07 8e+07 1e+08 1.2e+08 1.4e+08 1.6e+08 1.8e+0€

Array Length
(d) Asynchronous mode (remote)

Figure 3: Write performance for legacy format

on the test machines will verify this, but was impossible
due time constraints but will be a near-term extension to
this work. From the initial investigation the approach shows
promise with improvements in both read and write times on
two different physical disk media, with a very simple data
access pattern.

D. File server that provides multiple data views

We implemented a simple user-level file system that
serves each view as a separate file. When the file server
is mounted in a directory, it contains three files:
ABC Data in legacy format. First 4 *x N bytes contain
the data for the array a, followed by 4 « N bytes
for array b, and then 4 %« N bytes for array c.

abc Data in natural format. Contains N elements, each
12 bytes long with the values of a, b and c for that
element.

b Data in the visualization format. Contains N ele-

ments, each 4 bytes long with values only of b.

The file server is written in the Go [6] language, using the
go9p [7] library. It allows materialized and non-materialized
views for each of the three views as well as synchronous

and asynchronous updates to the other views when data is
written.
Converting data from one view to another can be very
inefficient. For example, if a program writes to the first
400 bytes of file ABC, updating the first 100 values of a,
the operation needs to be converted to 100 writes to file
abc, each writing 4 bytes with stride 12 bytes. Even using
functions like writewv can be slow, because of the time and
resources required to prepare the data for the call. Using
processors close to the data can improve the performance
somewhat. In order to improve it even further, we use mmap
to map the content of the materialized views to memory.
The conversion between different views then is equivalent
to conversion of data in memory.
We ran sets of experiments varying the following param-
eters:
Array Length
We run tests with array lengths from 1 million to
170 million elements.

Materialized views
We tried six different combinations of materialized
views: ABC/abc/b, ABC/abc, ABC/b, abc/b,

ABC, and abc.

Synchrony of updates
We tried synchronous vs. asynchronous updates. At
least one of the replicas is updated synchronously
before the write operation completes. Reading per-
formance is not affected by the synchrony param-
eter.

Remove vs. Local
We tried running the file server on the same
computer as the program that accesses the data,
as well as on another computer.

Read and write operations access all data in the view.

The experiments were done on 4 socket, 12 core servers
(total 48 cores) with 128GB of RAM. The interconnect was
Infiniband. The OS buffer cache was cleaned between every
run.

1) Local File Server: We chose to run our tests on
traditional rotational disks, configured in a RAID-0 array
and Fusion-IO card that achieves one of the highest I/O
bandwidths at present, and likely has the properties of the
hardware present in the future exascale systems. Figure 2
shows reading speed for the legacy format when ABC and
abc views are materialized. There is 31 percent penalty
when data needs to be converted from the natural to the
legacy layout. The results for converting the opposite way
is comparable.

Figure 3 shows the write performance for different ma-
terialized views as well as synchronous vs. asynchronous
mode. In synchronous mode (Fig. 3a), the presence of replica
that is not in the format of the view through which the
data is updated decreases the write speed by more than
half. The presence of a replica with similar layout (ABC
and ABC, b) has negligible effect on the performance. In
asynchronous mode (Fig. 3b), the write performance is
degraded only if there is no replica with layout similar to
the view through which the data is updated. Even though
the b replica has similar layout to ABC, it is not a complete
replica and therefore the replica abc is chosen to be updated
synchronously.

2) Remote File Server: Running the file server on a re-
mote node (Fig. 3¢ and 3d) doesn’t change the performance
results drastically. As expected, the difference between
ABC->ABC and ABC->abc is decreased due to the usage
of additional hardware. We assume that for applications that
utilize all cores on the compute node, the difference between
running the file server locally and remotely, will be more
pronounced.

III. DESIGN: DREPL LANGUAGE

The DRepl language allows definition of datasets and
views. It allows definition of custom types based on a set
of primitive types, as well as arrays. It is loosely based on
the type and variable definition in the Go language. The lan-
guage is designed to be able to represent native application

datasets with rich views to allow visualization and analytics
optimized access to data of interest. NetCDF [5], HDF5 [4]
and local large-scale HPC applications data formats were
investigated to ensure good representation of real datasets.

A. Dataset Section

The dataset section defines the types that are used in the
dataset as well as the variables that make up the dataset.
1) Primitive Types: DRepl defines 7 primitive types:

int8 1-byte signed integer

intl6 2-byte signed integer

int32 4-byte signed integer

int64 8-byte signed integer

float32 single-precision floating point number
float64 double-precision floating point number
string[0-9]+ | variable size string of characters

The suffix of the string type defines the maximum size of
the string that can be stored.

PrimitiveType = "int8" | "intle" |
"int32" | "inté64" | "float32" |
"float64" | "string"

2) Structs: Multiple elements can be arranged in a struct.
A name needs to be assigned to each of the elements.

StructType = "struct" "{" { FieldDecl ";" } "}"
FieldDecl = IdentifierList Type
IdentifierList = identifier { "," identifier }
Example:
struct {
a float64
b, ¢ float32

}

3) Arrays: Array is a numbered sequence of elements of
the same type. Arrays can be single- or multi-dimensional,
of fixed or variable size. Only one of the dimensions of a
multi-dimensional array can be of variable size. Instances
of the variable-sized arrays need to specify a variable that
stores the size of the array.

Variable-sized types can’t be used as element types.

ArrayType = "[" ArraylLengths "]" Type
ArrayLengths = Expression { "," Expression }

The Expression in ArrayLengths can be arith-
metic expression containing integer constants (named or
unnamed), or it can be the name of an already defined integer
variable. In the latter case, the variable contains the size of
the array in that dimension.

In the example below, b is a two-dimensional 5 x 5 array,
and c is variable-sized array with size stored in the sz
variable.

var sz int32
var b [5,5]floato4
var c [sz]float32

4) Named Types: The user can assign names to the
defined custom types. The names allow the user to use
”shortcuts” when using a type more than once.

TypeDecl = "type" identifier Type
5) Types:

Type = identifier | CustomType
CustomType = ArrayType | StructType

Unlike most languages, DRepl allows a type to be refer-
enced before it is defined, so there is no need for forward
declaration mechanisms.

6) Variables and Constants: A variable is a named in-
stance of a type. The names of the variables need to be
unique.

Constants are named values that can’t change. They don’t
use storage space.

VarDecl = "var" IdentifierList Type
IdentifierList = identifier { "," identifier }
ConstDecl = "const" identifier "=" Expression

7) Dataset: A dataset is a collection of types, variables
and constants.

Dataset = "dataset" "{"
{ TypeDecl | VarDecl | ConstDecl } "}"

This example shows how the dataset from section II is
defined in the DRepl language:

dataset {
const N = 1000000

type Point struct {
a, b, c float32
}

var data [N]Point

}

B. View Section

Views define subsets of the dataset. No new types can
be defined in the view section, unless they are subtypes
of the dataset types. The user can define “substructs”, i.e.
structs that have only some of the fields of a dataset struct,
or “slices” — parts of an array type defined in the dataset
section.

The variables defined in the view should be based on the
variables in the dataset. Each view variable has correspond-
ing dataset variable and is of the same type as the dataset
variable, or compatible subtype.

1) View Struct:

ViewStruct = "{" { ViewFieldDecl ";" } "}"
ViewFieldDecl = IdentifierList ViewType

Example of usage of a view struct:

var b [] {
b
} = data

The view variable b is defined as an array with the same
size as the dataset variable data, but each element of the

array contains only the field b from the original data
elements.

2) View Slice: The view slice contains only part of the
elements of the original dataset array.

ViewSlice = "[" SliceLengths "]"
SlicelLengths = Expression { "," Expression }

The Expression in the slice length definition can be
arithmetic expression containing temporary variable names
that are used to express the slice. For example, the snippet
below defines a view variable that contains every 5t" element
of the data array.

var d[i] = datal[ix5]

3) Named View Types: As in the dataset section, the user
can assign a name to any defined view type, in order to
simplify the view definition. The example below shows the
definition of type Subpoint that is based on dataset type
Point but contains only fields a and c.

type Subpoint {
a, c
} Point

4) More Complex Examples: A view variable that con-
tains every 37¢ b field of the elements of data:

var d [1] {

b
} = datal[ix3]

The same result with defining view type:

type PointB { b } Point
var d [1]PointB = data[ix3]

Reversing the column and row order in a two-dimensional
array:
var d [i,3] = alj,1i]
5) View Declaration:
ViewDecl = "view" identifier ReadOnlyFlag "{"
{ ViewTypeDecl | VarTypeDecl } "}"

ViewDecl = "view" FileName
ReadOnlyFlag = "read-only" | <nothing>

The view can be defined in the same file as the dataset,
or it can be defined in a separate file and the file name can
be specified to include to content of the file while parsing
the dataset definition.

The data in the dataset can’t be updated via read-only
views.

C. Replica Section

Replica defines how the views are going to be laid out in
the file system. Replica is a sequence of one or more views.
The replicas can be “complete” or “incomplete”. A complete
replica contains all the data from the dataset. If the view
only contains a subset of the dataset, the remaining data is
appended at the end to ensure a complete replica. The views
are stored in the file in the order they appear in the replica
declaration.

Each materialized view has to belong to a replica. The
views that are not part of any replica are non-materialized
and when read from them, the data is transformed on-the-fly.

Currently the language definition doesn’t allow specifica-
tion whether the primitive types are written on the disk as
big- or little-endian. This can change in the future.

ReplicaDecl = "replica" identifier

CompleteFlag ArrayOrderFlag "{"
{ ReplicaView} "}"

ReplicaDecl = "replica" FileName

CompleteFlag = "complete" | <nothing>

ArrayOrderFlag = "row-major" | "column-major" |
<nothing>

ReplicaView = "view" identifier

IV. DESIGN: REPLICA LAYOUT

Each replica is a separate file, or directory, with name,
the name specified when declaring the replica. If any of the
views of the replica contains variable-sized data, the replica
is a directory with multiple files in it. Otherwise, data for
all views is stored in the same file.

The data from the views laid out in the order they are
declared in the replica definition. Each view starts at offset
divisible by 8, and padding is added between the views if
the previous view’s size is not divisible by 8.

A. Primitive Types

Each of the primitive types starts at offset that naturally
aligns to its type.

type alignment | size
int8 1 1
intl6 2 2
int32 4 4
int64 8 8
float32 4 4
float64 8 8
stringN 2 2+ N

The string content is preceded by an intl6 value that
specifies the actual length of the string.

B. Structs

The fields in a struct are laid out sequentially without any
explicit padding between them, or at the end of the struct.
The alignment rules for the type of the first field define the
alignment requirements for the struct.

C. Arrays

Elements of an array are laid out sequentially without
any padding between them or at the end of the array. The
alignment rules of the element type define the alignment
requirements for the array type.

D. Variable-size data

Because POSIX file systems don’t allow insertion of
data in the middle of file, DRepl needs to split replicas
that contain variable-size data into more than one files. A
variable-sized type is laid out using the same rules as any
other type. The data defined after this type is stored in a
new file.

DRepl uses numerical names for the files comprising
a replica, starting from O and increasing by 1 after each
variable-sized data is laid out.

V. DESIGN: TRANSFORMATION RULES

When data is written to one of the views, or data is read
from non-materialized view, DRepl needs to transform the
data from one data layout to another. First, the code needs to
identify which variable the data belongs to, and what is its
type. Then it needs to use the transformation rules associated
with that type to transform the data to the related variables
in the other views (or even the same view) in case of writing,
or use the other related variables in order to construct the
requested data, in case of reading.

While processing the dataset description, for each variable
in the dataset, the DRepl parser locates all related variables
in the view. For each pair of related variables it produces
a map on how to transform data from one variable to the
other. If a view is marked as read-only, the maps describing
how to transform from its variables to other are not created.

A. Conversion Map

The conversion map consists of block descriptions. Each
block has defined size and list of blocks its data transforms
to.

type Block struct {
offset int64
size int64
list of Destination

}

type Destination struct {
fname string
offset 1into64

}

For example, for a dataset description:

dataset {
var p struct {
a, b, c¢c float32
}
}

view "default" {
var p

}

view "viz" {
var pa { a }
var pba { b,
}

=p
al=p

The conversion map for “default” is:

Block { // p.a
offset=0
size=4
list of {
Destination { fname="viz" offset=0 }
Destination { fname="viz" offset=8 }

}

Block { // p.b
offset=4
size=4
list of {
Destination { fname="viz" offset=4 }
}
}

A special block is used to describe arrays. In addition to
the offset, it contains the element size as well as the number
of elements. If the number of elements is specified as 0, the
array is variable-sized and uses all remaining space in the
file.

type ArrayBlock struct ({

offset int64
elsize 1int64
elnum int64

list of struct {
destoffset func(offset int64) int64
list of Block or ArrayBlock

}

The function destoffset is used to convert the indices
between differently sliced arrays. It also allows adjustments
between slices which elements are not of the same size (for
example when the original array is an array of struct and
one of the slices contains only some of the struct fields). If
the function returns negative number of specified offset, the
element of that offset is to be skipped and doesn’t exist in
the other slice.

The offsets in the Blocks and Destinations in the Array-
Block description are relative to the offset of the currently
processed element.

For example, for a dataset description:

dataset {
type Point struct {

a, b, ¢ float32
}

var data [50]Point

}

view "default" {
var data

}

view "viz" {
var bb [i] { b } = datal[ix5]
}

View “viz” contains only the b field of every 5 element
of array data. The conversion map for default is:

ArrayBlock {
offset=0

elsize=12

elnum=50
list of {
destoffset=func(o int64) int64d {
idx:=0/12

if idx%5!=0 {
return -1

}

return idxx4
}
list of Block {
offset=4
size=4
list of {
Destination { fname="viz" offset=0 }

}

The conversion map for a replica is constructed by the
conversion maps for all the views that belong to it.

B. Updating Data

The dataset can be updated via a write operation to
one of the replica files. The write operation receives as
arguments the file offset and the number of bytes written.
The file server finds all Blocks and ArrayBlocks that belong
to the specified range and applies the conversion rules
specified in the blocks.

C. Reading Data through Non-materialized View

Non-materialized, read-write views still have conversion
maps created. Using the (offset, count) pair, the appropriate
blocks are found in the conversion map and the data is
copied from one or more of the materialized views.

VI. CONCLUSION

DRepl provides a novel method for optimized access to
application datasets that are read and written with multiple
contrasting patterns. Initial investigations showed increased
performance in both read and writes on various physical
media. A prototype file system was implemented and the
language was designed and specified to allow construction of
multiple dataset views. These views are displayed as separate
but consistently updated files from the DRepl file server.

DRepl’s approach allows flexibility on where the conver-
sion between replicas is being performed. The file server can
be run locally on the node that runs the scientific application,
on the parallel file system nodes, or on nodes that perform
I/O aggregation and forwarding. It works well with legacy
scientific applications without imposing changes in their
code.

Using multiple complete replicas of the data increases the
reliability of the storage system.

VII. RELATED WORK

There has been quite a body of work using middle-ware
to optimize reading or writing of application data. PLFS [8]

is a transparent layer optimized for writing of parallel
application checkpoints. It allows each process of a parallel
application to believe it is writing to the a single file while
the PLFS middle-ware separates these writes to disjoint
files, extensions to this work are focused on increasing read
performance. ADIOS [9] is an API that allows efficient
data reordering that is transparent to the application but
requires modification of the application to use the APIL
Further work with ADIOS [10] has reordered data using
space filling curves for faster access. MPI 10 [11] also has
the concept of defined views and requires modification of the
parallel application, but provides collective I/O operations
and strided access of data. MPI I/O has two-phase I/O option
which allows reordering of data as it is being accessed.
Semantic file systems try to represent the data by the
information contained in the file rather then its position in
the file system. The SFS semantic file system [12] was a
layer on top of NFS that would create files based on user
defined transducers. The transducers would allow retrieval of
pieces of files, although this work was not focused on large
application data. The ATTIC [13] system allowed transparent
access to compressed files. UNIX systems have presented
changing information through virtual files, examples such
as /dev, /proc [14] and also in Plan 9 [15], this is analogous
to in-situ access to the state of various data structures in
the kernel. Long distance visualization [16] uses multi-
resolution data views to allow reasonable response times.
In this scenario, when looking for an area of interest the
resolution is sub-sampled to allow fast scanning, and when
an area of interest is selected the high resolution data is then
streamed in. None of the related work combines multiple
semantic views with replicas to provide the configurability
and resilience of our proposed solution.

VIII. FUTURE WORK

We are still working on implementing the full version of
the DRepl file server and testing it with real applications.
Once it implemented and working correctly, we are planning
to work on optimizing it for highly parallel loads.

DRepl can be used for easier conversion of data produced
by legacy applications to standard scientific formats like
HDF-5. Once the legacy layout is defined in the DRepl
dataset language, it is easy to produce a HDF-5 dataset from
it. We are planning to write a HDF-5 back-end to our DRepl
file server, that allows unmodified legacy application to store
and read the dataset from HDF-5 file.

Another possible extension is adding support to HDF-5 so
it can work better with the DRepl file server. It is not possible
to describe HDF-5 file layout with our current language.

We need to do more investigations on whether DRepl has
enough features to cover all legacy formats that we need to
support. One important feature that is missing is the ability
to specify the endianness of the data in the file. We may
also need to extend the support for data alignment.

When running in asynchronous mode, DRepl doesn’t
provide any guarantees when the data in the other replicas
will become up-to-date. We are planning to experiment with
update-on-close (i.e. once the file that is used to update the
dataset is closed, all replicas are synced).

In order to improve the performance when using non-
materialized views, we need to define which of the replicas
is closest to the view. One approach would be to base the
closeness function on the number of blocks that need to be
used for the conversion. The “closest view” can be coarse-
grained (for the whole non-materialized view), or finer-
grained (for each variable in the view).

The data layout knowledge can be used to improve the
performance of prefetching schemes and make decisions
on what striping approaches to use for the replica files
on the parallel file systems. We are planning to do more
investigations in that field in the future.

Integrating the DRepl language parser with the file server
would allow dynamic addition, modification and removal
of views. That feature will make it easier for scientists
to visualize and check the simulation progress while it is
running as well as look for abnormal behaviors.

IX. ACKNOWLEDGMENTS

We would like to thank Jim Ahrens, and Scott Brandt
for there helpful insights for this paper. This work was per-
formed at the Ultrascale Systems Research Center (USRC)
which is a collaboration between Los Alamos National
Laboratory and the New Mexico Consortium(NMC). NMC
provides the environment to foster collaborative research
between LANL, universities and industry allowing long-
term interactions in Los Alamos for professors, students and
industry visitors.

This work was supported in part by the U.S. Department
of Energy’s National Nuclear Security Administration under
contract DE-AC52-06NA25396 with Los Alamos National
Security, LLC.

This paper has assigned LANL publication number: LA-
UR-11-11589.

REFERENCES

[1] G. Grider, “Exa-scale FSIO Can we get there? Can we afford
to?” presented at the 7th IEEE International Workshop on
Storage Network Architecture and Parallel 1/0s, 2011.

[2] D. A. Patterson, G. Gibson, and R. H. Katz, “A case
for redundant arrays of inexpensive disks (RAID),” in
Proceedings of the 1988 ACM SIGMOD international
conference on Management of data, ser. SIGMOD ‘88.
New York, NY, USA: ACM, 1988, pp. 109-116. [Online].
Available: http://doi.acm.org/10.1145/50202.50214

[3] “Introduction to the 9p protocol,” Plan 9 Programmer’s
Manual, vol. 3, 2000.

[4] T. H. Group, “Hierarchical data format version 5.” [Online].
Available: http://www.hdfgroup.org/HDF5

http://doi.acm.org/10.1145/50202.50214
http://www.hdfgroup.org/HDF5

(3]

(6]

(7]

(8]

(9]

(10]

U. P. Center, “Network common data form.” [Online].
Available: http://unidata.ucar.edu/software/netcdf/

R. Pike, “Another go at language design,”
Presented at the Stanford University = Computer
Systems Laboratory = Colloquium OSCON, 2010.
[Online]. Available: http://assets.en.oreilly.com/1/event/45/

AnotherGoatLanguageDesignPresentation.pdf

L. Ionkov, “Package for implementing 9p servers and clients
in Go.” [Online]. Available: http://code.google.com/p/go9p

J. Bent, G. Gibson, G. Grider, B. McClelland,
P. Nowoczynski, J. Nunez, M. Polte, and M. Wingate,
“PLFS: a checkpoint filesystem for parallel applications,”
in Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis, ser. SC ’09.
New York, NY, USA: ACM, 2009, pp. 21:1-21:12. [Online].
Available: http://doi.acm.org/10.1145/1654059.1654081

J. F. Lofstead, S. Klasky, K. Schwan, N. Podhorszki, and
C. Jin, “Flexible 10 and integration for scientific codes
through the adaptable 10 system (ADIOS),” in Proceedings
of the 6th international workshop on Challenges of large
applications in distributed environments, ser. CLADE ’08.
New York, NY, USA: ACM, 2008, pp. 15-24. [Online].
Available: http://doi.acm.org/10.1145/1383529.1383533

Y. Tian, S. Klasky, H. Abbasi, J. Lofstead, and R. Grout,
“Edo: Improving read performance for scientific applications
through elastic data organization,” in Proceedings of the IEEE
International Conference on Cluster Computing, ser. Cluster
’11. IEEE, 2011.

[11]

[12]

[13]

[14]

[15]

[16]

R. Thakur, W. Gropp, and E. Lusk, “A case for using MPI’s
derived datatypes to improve I/O performance,” in Proceed-
ings of the 1998 ACM/IEEE conference on Supercomputing
(CDROM), ser. Supercomputing ’98. Washington, DC,
USA: IEEE Computer Society, 1998, pp. 1-10. [Online].
Available: http://dl.acm.org/citation.cfm?id=509058.509059

D. K. Gifford, P. Jouvelot, M. A. Sheldon, and J. W. O’ Toole,
Jr., “Semantic file systems,” in Proceedings of the thirteenth
ACM symposium on Operating systems principles, ser. SOSP
’91. New York, NY, USA: ACM, 1991, pp. 16-25. [Online].
Available: http://doi.acm.org/10.1145/121132.121138

V. Cate and T. Gross, “Combining the concepts of
compression and caching for a two-level filesystem,” in
Proceedings of the fourth international conference on
Architectural support for programming languages and
operating systems, ser. ASPLOS-IV. New York, NY,
USA: ACM, 1991, pp. 200-211. [Online]. Available:
http://doi.acm.org/10.1145/106972.106993

R. Faulkner and R. Gomes, “The process file system and
process model in unix system v,” in Proceedings of the
USENIX Conference, January 1991.

R. Pike, D. Presotto, K. Thompson, and H. Trickey, “Plan 9
from Bell Labs,” vol. 10, no. 3, pp. 2-11, Autumn 1990.

J. P. Ahrens, J. Woodring, D. E. DeMarle, J. Patchett, and
M. Maltrud, “Interactive remote large-scale data visualization
via prioritized multi-resolution streaming,” in Proceedings of
the 2009 Workshop on Ultrascale Visualization, ser. UltraVis
’09. New York, NY, USA: ACM, 2009, pp. 1-10. [Online].
Available: http://doi.acm.org/10.1145/1838544.1838545

http://unidata.ucar.edu/software/netcdf/
http://code.google.com/p/go9p
http://doi.acm.org/10.1145/1654059.1654081
http://doi.acm.org/10.1145/1383529.1383533
http://dl.acm.org/citation.cfm?id=509058.509059
http://doi.acm.org/10.1145/121132.121138
http://doi.acm.org/10.1145/106972.106993
http://doi.acm.org/10.1145/1838544.1838545

	I Introduction
	II Motivation
	II-A Dataset
	II-B Views
	II-B1 Natural/default (abc)
	II-B2 Legacy (ABC)
	II-B3 Visualization (b)

	II-C Accessing legacy data
	II-D File server that provides multiple data views
	II-D1 Local File Server
	II-D2 Remote File Server

	III Design: DRepl Language
	III-A Dataset Section
	III-A1 Primitive Types
	III-A2 Structs
	III-A3 Arrays
	III-A4 Named Types
	III-A5 Types
	III-A6 Variables and Constants
	III-A7 Dataset

	III-B View Section
	III-B1 View Struct
	III-B2 View Slice
	III-B3 Named View Types
	III-B4 More Complex Examples
	III-B5 View Declaration

	III-C Replica Section

	IV Design: Replica Layout
	IV-A Primitive Types
	IV-B Structs
	IV-C Arrays
	IV-D Variable-size data

	V Design: Transformation Rules
	V-A Conversion Map
	V-B Updating Data
	V-C Reading Data through Non-materialized View

	VI Conclusion
	VII Related Work
	VIII Future Work
	IX Acknowledgments
	References

