FLAMBES: Evolving Fast Performance Models

Adam Crume[†], Carlos Maltzahn[†], Jason Cope[‡], Sam Lang[‡], Rob Ross[‡], Phil Carns[‡], Chris Carothers^{*}, Ning Liu^{*}, Curtis Janssen^{\$}, John Bent[‡], Stephan Eidenbenz[‡], Meghan (Wingate) McClelland^{\bigstar}

[†]University of California, Santa Cruz, [‡]Argonne National Laboratory, ^{*}Rensselaer Polytechnic Institute, [◇]Sandia National Laboratories, [¥]Los Alamos National Laboratory

PROBLEM

- Need to simulate large clusters and supercomputers
- Simulating hard drives and other devices is too slow

GOAL

• Faster simulation methods that trade a little accuracy for a large gain in performance

OUR SOLUTION

- FLAMBES: Fitting scaLable Analytic Models Before Executing Simulation
- Focus on aggregate accuracy rather than request-level accuracy

INDIVIDUAL ERROR METRIC

- $\frac{1}{n} \sum \frac{|actual_i predicted_i|}{actual_i}$
 - Penalizes overestimation more than underestimation

•
$$\frac{1}{n} \sum \left| \log \frac{predicted_i}{actual_i} \right| = \frac{1}{n} \sum \log \frac{\max(actual_i, predicted_i)}{\min(actual_i, predicted_i)}$$

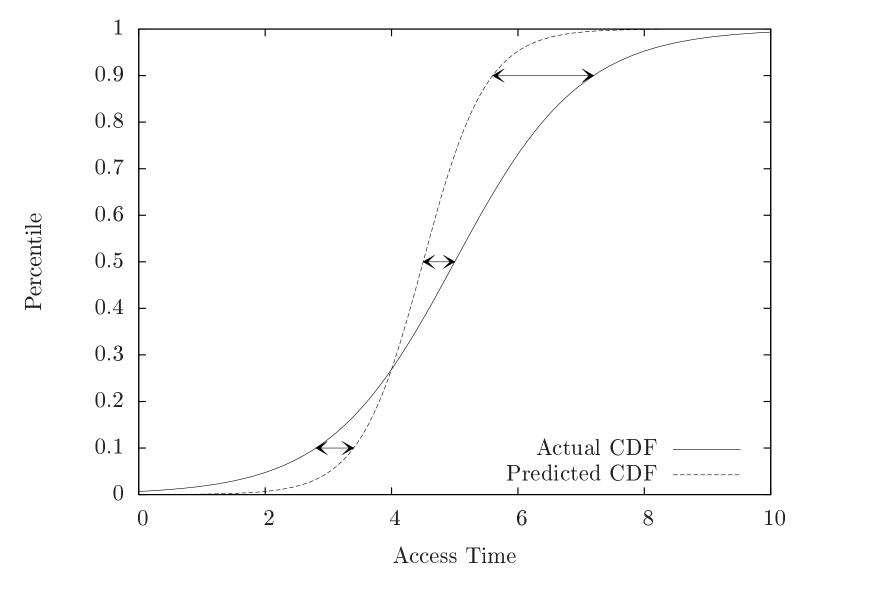
- Symmetric
- Allows very large ratios

•
$$\frac{1}{n} \sum \exp\left(\left|\log \frac{predicted_i}{actual_i}\right|\right) = \frac{1}{n} \sum \frac{\max(actual_i, predicted_i)}{\min(actual_i, predicted_i)}$$

- Best so far

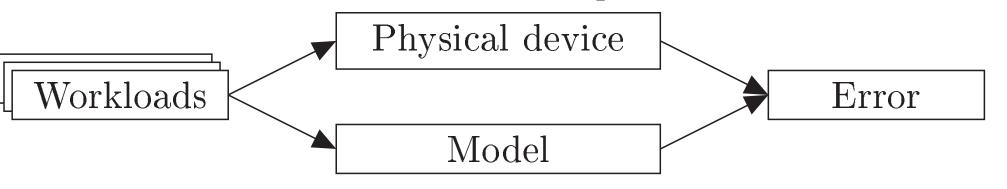
• Use genetic programming based on analytic models

AGGREGATE VERSUS INDIVIDUAL ACCURACY

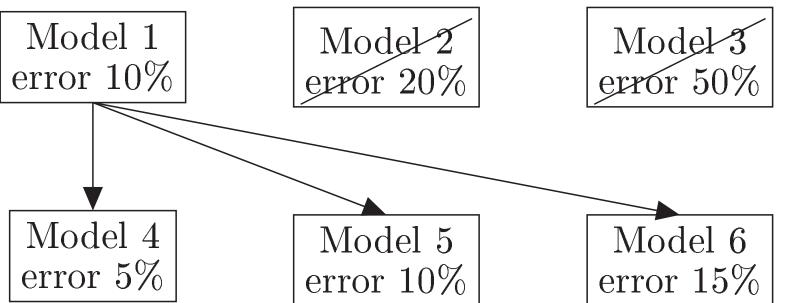

- Individual request times may be irrelevant
- Individual accuracy requires knowledge of future requests
- Ideally, always have aggregate accuracy, and have individual accuracy as much as possible

WHY GENETIC PROGRAMMING?

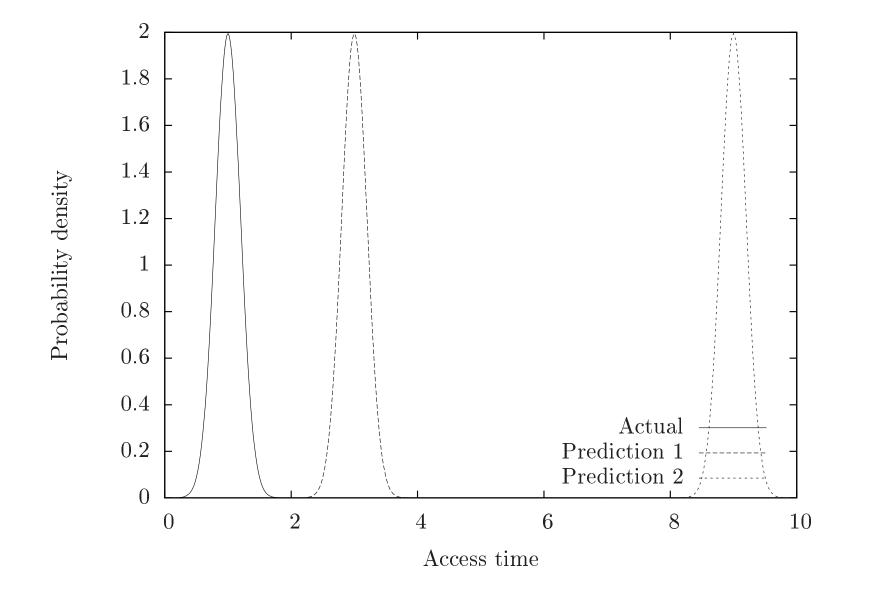
- Designing a model requires detailed expert knowledge
- Regression difficult due to high feature count
 - Large history; state depends on many previous inputs
 - Behavior is complex; many higher-order terms would be necessary
- Neural nets poorly suited for stateful problems


AGGREGATE ERROR METRIC

• Demerit - problematic with long tails



STEP 1: FIT THE MODEL


- Offline calculation done once per device template
- Independent of simulation size
- Fitting is fast: typically a few minutes
- Final model is accurate for workloads represented by the training set
- Algorithm:
 - 1. Initialize population by generating several models with random parameters
 - 2. Evaluate each model by comparing its predictions with device performance or a known device-accurate model on representative workloads

3. Discard poor models, duplicate and mutate good models

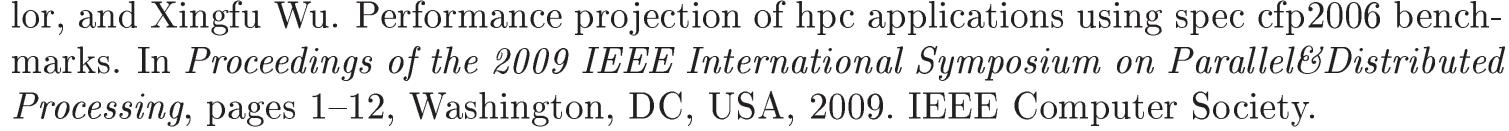
• PDF vertical comparison - unable to distinguish predictions 1 and 2 below

4. Repeat until error is low

STEP 2: USE THE MODEL

- Very fast calculation (not event-driven)
- Very low state: a few floating point numbers

RESULT


• Fast, accurate simulation of large distributed systems

RELATED WORK

- DiskSim[1] is request-level accurate, but slow
- Sharkawi in [2] used GAs to match applications to similar benchmarks. FLAMBES uses genetic programming to directly predict performance.

REFERENCES

- John S. Bucy, Jiri Schindler, Steven W. Schlosser, Gregory R. Ganger, and Contributors. The DiskSim Simulation Environment Version 4.0 Reference Manual. Carnegie Mellon University, Pittsburgh, PA, May 2008.
- [2] Sameh Sharkawi, Don DeSota, Raj Panda, Rajeev Indukuru, Stephen Stevens, Valerie Tay-

This work was supported by Department of Energy grant DE-SC0005428 and the Los Alamos National Laboratory/University of California, Santa Cruz Institute for Scalable Scientific Data Management (ISSDM).