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Problem

• Need to simulate large clusters and supercomputers

• Simulating hard drives and other devices is too slow

Goal

• Faster simulation methods that trade a little accuracy for a large gain in performance

Our solution

• FLAMBES: Fitting scaLable Analytic Models Before Executing Simulation

• Focus on aggregate accuracy rather than request-level accuracy

• Use genetic programming based on analytic models

Aggregate versus individual accuracy

• Individual request times may be irrelevant

• Individual accuracy requires knowledge of future requests

• Ideally, always have aggregate accuracy, and have individual accuracy as much as possible

Why genetic programming?

• Designing a model requires detailed expert knowledge

• Regression di�cult due to high feature count

� Large history; state depends on many previous inputs

� Behavior is complex; many higher-order terms would be necessary

• Neural nets poorly suited for stateful problems

Aggregate error metric

• Demerit - problematic with long tails
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• PDF vertical comparison - unable to distinguish predictions 1 and 2 below
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Individual error metric
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� Penalizes overestimation more than underestimation
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� Symmetric

� Allows very large ratios
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� Best so far

Step 1: Fit the model

• O�ine calculation done once per device template

• Independent of simulation size

• Fitting is fast: typically a few minutes

• Final model is accurate for workloads represented by the training set

• Algorithm:

1. Initialize population by generating several models with random parameters

2. Evaluate each model by comparing its predictions with device performance or a
known device-accurate model on representative workloads

Workloads

Physical device

Model

Error

3. Discard poor models, duplicate and mutate good models

Model 1
error 10% ���

��Model 2
error 20% ���

��Model 3
error 50%

Model 4
error 5%

Model 5
error 10%

Model 6
error 15%

4. Repeat until error is low

Step 2: Use the model

• Very fast calculation (not event-driven)

• Very low state: a few �oating point numbers

Result

• Fast, accurate simulation of large distributed systems

Related work

• DiskSim[1] is request-level accurate, but slow

• Sharkawi in [2] used GAs to match applications to similar benchmarks.
FLAMBES uses genetic programming to directly predict performance.
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