
An Integrated Model for Performance Management in a Distributed System

Scott A. Brandt, Carlos Maltzahn, Anna Povzner, Roberto Pineiro, Andrew Shewmaker, Tim Kaldewey
Computer Science Department

University of California, Santa Cruz
{scott,carlosm,apovzner,rpineiro,shewa,kalt}@cs.ucsc.edu

Abstract

Real-time systems are growing in size and complexity
and must often manage multiple competing tasks in environ-
ments where CPU is not the only limited shared resource.
Memory, network, and other devices may also be shared
and system-wide performance guarantees may require the
allocation and scheduling of many diverse resources. We
present our on-going work on performance management in
a representative distributed real-time system—a distributed
storage system with performance requirements—and dis-
cuss our integrated model for managing diverse resources
to provide end-to-end performance guarantees.

1 Introduction

Many computer systems ranging from small, embedded
computers to large distributed systems have Quality of Ser-
vice (QoS) requirements. Examples include flight control
systems, defense systems, automotive systems, multimedia
systems, transaction processing systems, virtual machines
on shared hardware, and many others. Even traditional best-
effort systems have hidden QoS requirements that are fre-
quently expressed in terms of responsiveness.

Addressing the QoS requirements in all but the most triv-
ial of systems may require the management of many re-
sources: CPU, memory, network, cache, storage, power,
and others. While a large amount of research has been
conducted on how to provide QoS for individual resources,
relatively few approaches—notably those of Lee [6] and
Hawkins [3]—address overall system QoS or end-to-end
QoS in distributed systems. We focus on end-to-end QoS
in a distributed system using commodity hardware.

Interaction and dependencies between resources in com-
plex/distributed systems require integrated solutions topro-
vide overall performance guarantees. For example, com-
pression algorithms may save network bandwidth and/or
storage space, but at the cost of higher CPU utilization.
Overall, the guarantees provided by a chain of resources
can be no stronger than in the weakest link of that chain and

� �

�
��
�
�
��
��
	

�
��
�

�
�
��
�
�
�
�
�
��
�

�
����
����

��

�
������
�������������������

���������
���

�
�
��
�
��
��

�
��

��
�
��
��

�
��

��������
	����
��

����
���
��
��

����
 �����

!"#�
�����

��$�%�
�����

&���
���
�
�
��

�
�����

����

�������
���

'
��
���
��
��

Figure 1: Classification of performance requirements in terms of
Resource Allocation and Dispatching (RAD).

incompatible strategies for enforcing guarantees in differ-
ent components may violate the overall QoS requirements,
even if both components meet all of their individual require-
ments. For example, a network may provide a specified QoS
by transferring a desired amount of data to a networked stor-
age device, but in smoothing the network traffic to meet its
QoS requirements, it may destroy the burstiness in the orig-
inal workload that enables sequential accesses required for
the disk to meet its I/O performance requirements.

Our goal is to develop a unified model for end-to-end
QoS in complex and distributed systems that enables overall
performance guarantees via the integrated management of
all of the resources in the system. Our solution should sup-
port all types of processing guarantees ranging from best-
effort to hard real-time. It should also allow the composition
of guarantees on the individual resources for system-level
performance guarantees independent of workloads, whether
known or unknowna priori.

Our solution is based on the RAD scheduling model [1],
originally developed in the context of CPU scheduling and
subsequently extended to include other resources (e.g.,disk

I/O [11]). In the RAD model, resources are allocated in
terms ofResource AllocationandDispatchingor, alterna-
tively, RateandPeriod. Resource allocation determines the
amount of resources provided to a process over time,e.g.,
percentage of CPU usage, network utilization, or disk head
time. Dispatching determines the times at which the (re-
served) resources must be delivered, effectively determin-
ing the granularity of the reservation. We have shown these
two parameters to be sufficient to describe and support a
wide range of scheduling policies ranging from best-effort
to hard real-time [7], depicted conceptually in Figure 1.

In the RAD model, rate and period specify the desired
performance, which must be enforced by the scheduler for
the particular resource. The details of the scheduler depend
upon the characteristics of the resource. We have devel-
oped schedulers for several resources, including CPU [1]
and disk [11]. Our current work extends our disk schedul-
ing research and adapts the RAD model to include network
and I/O buffer cache management and begins to examine
the interdependencies among those guarantees.

Our current focus is on managing the performance of dis-
tributed storage systems. Distributed storage shares many
of the important properties of other distributed systems of
interest to the embedded real-time community, such as sen-
sor networks. In a distributed storage system, there are
many independent I/O initiators operating on results in lo-
cal memories and transferring data over a shared network to
common targets. Where real-time data capture is important,
sensor networks must also deal with local and distributed
storage performance management (as well as power man-
agement).

Distributed storage performance management is chal-
lenging for a variety of reasons:

• End-to-end performance guarantees require the inte-
grated management of at least four resources: the
client buffer cache, the network, the storage server
buffer cache, and the disk.

• Disk I/O is workload-dependent and individual re-
quests are stateful and non-preemptible with response
times that are only partially deterministic, varying by
3–4 orders of magnitude between best and worst-case
performance.

• Independently-acting storage clients transfer data via
a shared network. Rate enforcement ensures that the
overall traffic is feasible, but traffic shaping must be
used to avoid network congestion leading to packet
loss [5, 10].

• Client and server I/O buffer caches must manage vari-
ance in the application I/O patterns and present the re-
quests to each device so as to maximize its predictabil-
ity and optimize its performance.

We discuss the RAD resource management model and
explain its application to each of the system resources, pro-
viding results from our proof-of-concept implementations
where available.

2 Architecture

Our target system is a distributed storage system con-
sisting of clients accessing common storage devices over a
shared network. The system is closed—we control all of
the relevant resources in the system, including the clients’
CPUs, buffer cache, and network access, and the servers’
network access, buffer cache, and storage devices. No
non-compliant traffic exists on the network and no non-
compliant clients may access the storage. Although we con-
trol the resources, we do not control the applications, which
may issue requests at any time.

Aside from the scale of our system, which may include
up to many thousands of nodes and petabytes of storage, it
is also representative of distributed embedded systems such
as sensor networks or distributed satellite communications
systems1.

Our goal is to provide I/O performance guarantees to
applications running on the client nodes. Application re-
quirements have many forms: guaranteed throughput for a
multimedia application; a guaranteed share of the raw disk
performance for a virtual machine; and guaranteed latency
for a transaction processing system. Regardless of the form
of the requirements, our goal is a unified resource manage-
ment system that ensures the performance of each workload
through all of the resources, independent of other work-
loads.

Making and keeping I/O guarantees in a distributed stor-
age system requires the integrated management of a number
of resources, as shown in Figure 2, including the disk, the
storage server buffer cache memory, the network, and the
client buffer cache memory. The overall guarantees can be
no stronger than can be provided in any individual com-
ponent and the guarantees must be composable in order to
provide an end-to-end guarantee.

We base our work on the RAD integrated scheduling
model [1]. Originally developed for CPU scheduling, RAD
separates scheduling into two distinct questions:Resource
Allocation, or how much resources to allocate to each task,
andDispatching, or when to allocate the resources a task
has been allocated. These two questions are independent
and separately managing them allows a scheduler to simul-
taneously handle tasks with diverse real-time processing re-
quirements ranging from best-effort to hard real-time [7].

1Although most satellite communication systems are monolithic cus-
tom (single) satellites, we are working with researchers atIBM Almaden
on a DARPA-funded distributed communication satellite architecture that
has many properties in common with our (ground-based) distributed stor-
age system and which will use similar RAD-based resource management.

client

cache

network

transport

disk
storage

cache

network

transport

flow with
one client

selection
between
clients

IO selection
and head
scheduling

prefetch and
writeback
based on rates

app

app

I/O

scheduler

client

cache

network

transport

app

app

Figure 2: Components in the I/O path.

In the RAD model, feasibility of a task set is trivially
verifiable by summing up the resource usage of each of the
tasks sharing a resource; if the sum is less than 100% of the
available resource(s), the task set is feasible. Scheduling is
done at run-time and may be accomplished with any rate-
enforcing optimal real-time scheduler2. For CPU schedul-
ing we use a version of EDF with timers to interrupt jobs
that have used up their allocated budget for the current pe-
riod.

A resource brokeris responsible for translating varied
application requirements into a uniform representation of
application needs and for performing the feasibility verifi-
cation required for robust admission control. This depends
upon the existence of a uniform resource allocation and
scheduling model for all managed resources.

In order to manage the diverse resources in our system,
we have had to extend the RAD model in a number of differ-
ent ways. Achieving good disk performance requires both
a guaranteeable metric of performance as well as careful
management of the workload to ensure and maintain the
physical and temporal contiguity of related requests. We
manage disk performance in terms of disk head time, which
is reservable and guaranteeable up to 100% of the available
time [4]. We also add a third layer to the model allowing
the reordering of disk requests [11]. Disk requests are dis-
patched according to both deadline requirements and per-
formance heuristics.

Our simple storage network behaves somewhat like a
single CPU in that each transmit port may only serve one
client’s data at a time. Unlike a CPU, the control of the net-
work is decentralized; each client must independently de-
cide when it will start and stop transmitting data. The RAD
model remains relatively intact for network scheduling, but

2A sub-optimal scheduler may also be used, with a suitably modified
feasibility test

the scheduler is quite different. We introduce a novel net-
work scheduler called Less Laxity More that is intended to
approximate the behavior of Least Laxity First without cen-
tralized control.

Our work on buffer cache management currently focuses
primarily on the storage server. Although cache memory
can be relatively trivially partitioned according to the mem-
ory needs of each process, the RAD model determines the
partition by indicating exactly how much cache is needed
for each process. Each task must be able to store a multiple
of the amount of data that may be transferred per period. In-
terestingly, this means that the best case for the disk is also
the worst case for the cache, as described in Section 5. The
cache may also be used for rate and period transformation
between the client and the disk, allowing the client to tem-
porarily transfer data at a higher rate than the disk allows,
and to transfer data with a smaller period than is feasible for
our disk scheduler.

Because each of the resources is managed via the RAD
model, the guarantees are easily composable. Although the
utilization of different resources vary for a given task, the
deadlines will be the same, allowing for simple synchro-
nization of the use of the different resources. Overall, if the
reservation for a given I/O stream is satisfiable on each of
the resources, the stream can be admitted and its I/O perfor-
mance can be guaranteed.

The following sections discuss our management of each
of the resources in more detail.

3 Guaranteed disk request scheduling

Our real-time disk scheduler is designed to meet three
goals. First, the scheduler must provide guaranteed, inte-
grated real-time scheduling of application request streams
with a wide range of different timeliness requirements. The
mechanical nature of disks adds an additional set of require-

ments. Sequential accesses experience orders of magnitude
lower latencies than random accesses, and good disk sched-
uler can significantly improve performance by reordering
requests to increase sequentiality. Thus, as a second goal,
our disk scheduler must provide not just guaranteed perfor-
mance but good performance. Finally, in a shared storage
system, performance of an I/O stream may be affected by
seeks introduced by competing I/O streams. Therefore, the
scheduler must also isolate I/O streams from the behavior of
others so that none of the streams cause another to violate
its requirements.

Traditional real-time disk schedulers guarantee reserva-
tions on throughput [2, 13, 12]. However, due to the or-
ders of magnitude difference between best-, average-, and
worst-case response times, hard throughput guarantees on
general workloads require worst-case assumptions about re-
quest times allowing reservations of less than 0.01% of
the achievable bandwidth. Our Fahrrad real-time disk I/O
scheduler [11] uses a different approach based ondisk time
utilization reservations [4]. A reservation consists of the
disk time utilization uand theperiod p. Disk time utiliza-
tion specifies an amount of time a disk will make avail-
able for a given request stream to service its I/O requests.
The period specifies the granularity with which the request
stream must receive its reserved utilization. Reservations
are associated with I/O request streams, which represent re-
lated sets of requests that may come from a single user, pro-
cess, application, or a set of these.

Fahrrad implements the RAD model and adapts it to disk
scheduling. Since the basic goal of our scheduler is to pro-
vide a full range of timeliness guarantees, Fahrrad imple-
ments the two layers of the RAD model: resource allocation
and dispatching. Resource allocation is done via the broker,
which ensures feasible resource allocation and maps appli-
cation requirements into disk time utilization and period.
I/O request dispatching, which chooses which I/O stream
requests to process, is based loosely on EDF. Because disk
I/O is stateful, adapting the RAD model to disk schedul-
ing requires the addition of a third layer concerned with I/O
requestordering. Fahrrad allows request ordering by logi-
cally gathering as many requests as possible into a set with
a property that the requests in the set can be executed in any
order without violating any guarantees. We now describe
each layer in greater detail.

Resource allocation is made via the broker and con-
sists of two parts: translation of application requirements
into a common representation—disk time utilization and
period—and admission control on the basis of this repre-
sentation. Most applications express their I/O performance
requirements in terms of throughput and latency3. In order
to make utilization reservations, applications specify their
desired throughput and/or latency and their expected I/O

3An exception to this is virtual machines, which want a share ofthe
disk performance with latency bounds.

behavior to the broker. Given knowledge about disk per-
formance characteristics, the broker translates throughput
and I/O behavior into utilization. When nothing is known
about I/O behavior, the broker assumes worst-case request
response time, resulting in no worse performance than with
throughput-based schedulers.

Applications with no real-time requirements are associ-
ated with a best-effort I/O request stream that receives a
minimum or remaining unreserved utilization. Latency re-
quirements translate directly to the period reservation. If an
application sends I/O requests according to its reservation,
its requests will be queued no longer than one period. Since
the reservation is guaranteed by the end of each period, the
latency is bounded by that period.

Once translated into the utilization and period, the broker
decides that the reservation is feasible as long as the total
sum of the utilizations on a given disk (plus a little extra) are
less than or equal to 100%. The extra reservation is needed
to account for blocking due to the non-preemptibility of
I/O requests. In our task model, preemptible jobs are di-
vided into non-preemptible I/O requests analogous to non-
preemptible portions of CPU jobs. We have shown previ-
ously that a task set is feasible as long as we reserve enough
extra time for one worst-case request in the task with the
shortest period [11].

In order to guarantee the reserved budgetb = u∗ p for
a given stream, the broker has to make an additional reser-
vation. Since service times of I/O requests are not known
a priori and I/O requests are non-preemptible with a large
potential worst-case request time (WCRT), the scheduler
cannot issue a request unless there is a worst-case request
time left in the current period. Thus, in order to guaran-
tee the desired budgetb, the broker must actually budget
b+WCRT[11].

Fahrrad guarantees the reserved utilization for each re-
quest stream by correctly measuring and accounting for all
I/O requests issued and seeks occurred. Fahrrad temporar-
ily assumes that each request takes worst-case time, and al-
lows ⌊bi/WCRT⌋ requests from streami in the current pe-
riod into the reordering set. Each time a request completes,
the scheduler measures its execution time and updates the
budget based on actual execution times. If there is enough
budget left to issue one or more worst-case requests, the
scheduler continues to dispatch additional requests untilthe
reservation is met. I/O streams whose reservation has been
met must wait until their next period to receive more ser-
vice.

The architecture of Fahrrad is shown in Figure 3, which
implements the dispatching and ordering layers of the RAD
model. The architecture consists ofrequest stream queues,
theDisk Scheduling Set(DSS), the requestdispatching pol-
icy, and the requestordering policy. Each request queue
contains the requests from a single I/O stream and requests
are ordered by their arrival times. The request dispatching

 0

 200

 400

 600

 800

 1000

 0 100 200 300 400 500

T
h

ro
u

g
h

p
u

t
[I

O
s
 p

e
r

s
e

c
]

Time [sec]

transaction
media 1
media 2

background

 0

 200

 400

 600

 800

 1000

 0 100 200 300 400 500

T
h

ro
u

g
h

p
u

t
[I

O
s
 p

e
r

s
e

c
]

Time [sec]

transaction
media 1
media 2

background

(a) Linux (b) Fahrrad

Figure 4: Behavior of mixed workload during 500 seconds, with and without Fahrrad. Points are the average for 5-second intervals.

Figure 3: Fahrrad architecture.

policy takes requests from request queues and sends them
to the DSS such that DSS always contains the largest set
of requests that can be executed in any order without vio-
lating any utilization reservations. All requests in the DSS
are assumed to take the worst-case time and the number of
requests in the DSS is dictated by the earliest deadline in
the system. The request dispatching policy moves all re-
quests that have to be executed in the current period from
the stream with the earliest deadline. Any remaining time
is filled with requests from other stream queues. In order to
minimize inter-stream seeking, the dispatching policy tries
to maximize the number of requests from the same stream in
the DSS (from streams with later deadlines and thus looser
scheduling constraints). Since requests are assumed to take
worst-case time, the scheduler always guarantees that the

stream with the earliest deadline will meet its reservation
regardless of the order in which the requests are sent from
the DSS to the disk. If requests take less than worst-case
time, the dispatcher allows more worst-case requests to the
DSS if there is enough space left. The ordering policy takes
requests from the DSS and sends them to the disk in an or-
der that optimizes head movement.

While Fahrrad tries to minimize the interference be-
tween I/O streams by minimizing inter-stream seeking,
some seeks between streams are unavoidable. In order to
guarantee isolation between streams, we account for extra
seeks caused by inter-stream seeking by reserving "over-
head" utilization. We account for these seeks in the reser-
vations of streams responsible for inter-stream seeking and
bill these streams for the additional seeking. In this way,
the I/O performance achieved from the reserved utilization
depends only upon the workload behavior.

Figure 4 shows the performance obtained with Fahrrad.
It compares a mixed-application workload running on a
standard Linux system (a) and one with Fahrrad (b). The
workload combines two “media” streams, a transaction pro-
cessing workload with highly bursty request arrivals, and a
random background stream simulating backup or rebuild.
Fahrrad meets both the utilization guarantees and through-
put requirements of the I/O streams and its throughput ex-
ceeds that of Linux by about 200 I/Os per second.

4 Guaranteeing storage network
performance

Most general-purpose networks provide a best-effort ser-
vice, striving for good overall performance while offering
no guarantees. Network hardware with built-in QoS fea-
tures exists, but is relatively expensive and is usually limited
to static configurations that distinguish between classes of

Figure 5: Fat tree network

traffic rather than individual streams. We are interested ina
more general cooperative end-to-end protocol that does not
rely on specialized network hardware. Adapting the RAD
model to the Network (RAD on the Network, or Radon)
allows for flexible, general, and fine-grained performance
guarantees using commodity network hardware.

We distinguish three major classes of networked stor-
age: Network Attached Storage (NAS), Storage Area Net-
works (SAN), and distributed file systems. NAS is the most
common and least expensive storage network, where one
or more servers individually provide a file system interface
over a commodity networks. More expensive SANs are
composed of storage arrays connected with a high perfor-
mance network, e.g. Fibre Channel, addressed as a local
device. Distributed file systems come in two flavors, for
Wide Area and Local Area Networks. Wide area systems
generally serve large numbers of users, operate over a large
variety of technologies, and are generally grown rather than
designed. On the other hand, local area systems are usually
designed to provide a high performance parallel file system
for a defined clientele. We focus on local area distributed
file system.

Figure 5 is our canonical storage network–a closed, full
bisection bandwidth, fat tree network of standard Giga-
bit Ethernet switches. Each of the switches have a set of
ports connected via a switch fabric and shared memory for
queuing requests, as shown in Figure 6. Packets contend-
ing for the same destination port are queued. Continuous
contention (congestion) may cause once isolated streams
to interfere with each other. In the worst case, the queue
will overflow and packets will be lost. Distributed file sys-
tems experience a particular case of congestion called in-
cast [5, 10] where a file spread among many servers is sent
in simultaneous bursts to a client, which can overflow a
switch buffer with little or no warning signs.

Given the theoretical capabilities and limitations of com-
modity storage networks, the question, “How much of the
resource is actually reservable?" has to be answered. We
performed a simple characterization with a commodity Gi-
gabit Ethernet switch supporting jumbo frames. Figure 7
shows that one to seven nuttcp UDP clients communicating
with the same host achieve linear scaling for aggregate load

Figure 6: Simple model of a standard Ethernet switch

up to 900 Mbps while experiencing packet loss of under
3% averaged over 10 seconds. Achieved load leveled off
with an offered load greater than 900 Mbps while packet
loss increased dramatically. The performance of a single
connection appears to be limited by a host’s NIC, as a sin-
gle client reaches a maximum throughput of approximately
600 Mbps over the network and above 1000 Mbps using the
host’s loopback device.

These results show that well paced, short burst, fixed rate
streams are able to achieve good individual performance
with low packet loss while achieving 80% utilization of the
network resource. With accurate congestion detection and
bounded responses, we expect to be able to further increase
overall utilization and decrease packet loss.

Before introducing our model for network resource man-
agement, we will briefly describe the most widely de-
ployed end-to-end network protocol, TCP/IP. Network per-
formance is determined by the flow control mechanism,
which manages the rate at which data is injected into the
network in the absence of congestion. Congestion con-
trol mechanisms, adapt the rate and timing of transmissions
when congestion is detected. TCP/IP is one of most suc-
cessful protocols ever developed, but its congestion control
algorithms do not allow for any performance guarantees. It
continuously tries to increase throughput at the sender by
increasing the window (burst) size and uses packet loss as
a congestion signal to throttle the sender drastically. Even
for a single connection, this results in a sawtooth pattern for
throughput over time and a large variance in packet delays,
as a the queue continually overflows and drains.

4.1 RAD on Networks (Radon)

The RAD model was originally developed to manage a
single resource with a centralized dispatcher. In the case
of networks, the RAD model has to accommodate multi-
ple dispatchers for a single resource, where the resource
is a transmit port on a switch. The admission process en-
sures that the aggregate utilization of each switch port is
not greater than one. Ideally, dispatchers should be able
to cooperatively manage flow control and congestion con-

Figure 7: One to seven nuttcp UDP clients offering aggregate loads ranging from 100 to 1000 Mbps

trol based on individual resource allocations, minimizing
the use of the queue on a switch. The definitions for the
RAD model on networks are as follows:

Resource Allocation A taskTi ’s reservation(ui , pi), where
ui is network time utilization andpi is the length of the
period for whichui is guaranteed.

Dispatching A taskTi has a budgetei = ui · pi , and consists
of a sequence of jobsJi, j , each having a release time
r i, j and a deadlinedi, j = r i, j + pi .

The major challenge in guaranteeing network resources
is to avoid dispatching synchronized bursts of packets while
minimizing communication and synchronization overhead.
Ideally this means that a host does not require external infor-
mation to determine when to dispatch its requests. Schedul-
ing algorithms like Earliest Deadline First (EDF) require all
dispatchers contending for the same resource to know the
release times of all jobs so that they can agree on the ear-
liest deadline. Furthermore, the clocks of the dispatchers
must be synchronized at a granularity corresponding to the
smallest possible difference between deadlines. Thus, when
a resource is scheduled by multiple dispatchers, a different
algorithm is required.

The Least Laxity First (LLF) [8] scheduling algorithm
defines the laxity of a jobl i, j as the time remaining be-
fore the job must be scheduled in order to meet its deadline,
l i, j = di, j − t −e′i , wheret is the current time ande′i is the
budget remaining in the period. EDF schedules based on
the deadline by which a job must be finished, while LLF
schedules based on the deadline by which a job must be
started. LLF is optimal for scheduling a single resource
in the same sense that EDF is, if a feasible schedule ex-
ists, then both will find one [8]. Implementing LLF across
multiple dispatchers would require just as much communi-
cation and synchronization as EDF, but it lends itself to an
approximation suitable for distributed dispatchers because

the measure of laxity is relative while deadlines are abso-
lute.

Thus, we propose an approximation to LLF is called
Less Laxity More (LLM). As long as no congestion is de-
tected, streams of packets are transmitted as fast as possible
up to the allocated budget. When congestion is detected,
each sender will use a normalized notion of a job’s laxity–
percent laxity–the ratio of laxity to the total remaining time
until the deadline. More formally:

%laxity=
l i, j

di, j − t

This definition of urgency can equivalently be expressed
in terms of budget since

%budget= (1−%laxity)

4.2 Flow Control and Congestion Control

Before developing LLM, we simulated different flow
control mechanisms based on the queuing model shown in
Figure 8. One mechanism was to implicitly drive flow con-
trol by the disk performance reservation. This simulation
uses a token bucket model where clients are allowed to sub-
mit a storage request to the system when tokens are avail-
able. Tokens are managed by the server, which is constantly
monitoring the current performance of each client. How-
ever, in the most promising simulation, clients replenish to-
kens required to achieve the reserved performance them-
selves based on server-assigned rates and periods, while the
server directly manages tokens for unused resources. This
shows that flow control fits well with the RAD model.

Congestion can be detected by observing packet loss or
by measuring changes in transmission delay. The response
to congestion is traditionally a multiplicative decrease in
window size. We suggest bounding the change in window

Figure 8: Queuing-theoretic model of Radon

size, making it proportional to percent laxity. Furthermore,
we propose explicitly dealing with incast by postponing the
dispatch time of the next window based on a model of the
current queue depth of the bottleneck switch. Congestion
can be detected in its early stages using the measure of rela-
tive forward delay as proposed in TCP Santa Cruz [9]. Rela-
tive forward delay allows hosts to model the queue depth of
a bottleneck switch and allows congestion on the forward
and reverse paths to be differentiated. This capability can
become crucial on storage networks, where read and write
patterns create asymmetric flows.

Flow Control Budget (in packets)mi = ei/pktS, where
pktSis the worst case packet service time

Congestion Control Windows adjusted in size and dis-
patch time

Window Target wop = (1−%laxity) ·wmax

Size Change wchange=
−|wi −wop|

2

Dispatch Offset wo f f set=
Nobs

pktS
· rand

Wherewi is the current window size andNobs is the
observed depth of the bottleneck switch’s queue. The
resulting window size is also obviously bound by the
minimum window size and the remaining budget.

Even if individual hosts do not know who among them
has the least laxity, they can cooperatively control conges-
tion using the relative measure of their own laxity.

5 Buffer management for I/O guarantees

The goals for our buffer-cache in the context of perfor-
mance management are two-fold. First, the buffer-cache
must provide a single solution that addresses a continuous
spectrum of performance guarantees, ranging from best-
effort to hard real-time. The buffer-cache must guarantee
capture and retention of data as long as needed, but not any
longer, before forwarding it to a device. The second goal of
the buffer-cache is to enhance the performance of devices,
allowing performance reservations for rates and periods that
the devices may not be able to provide by themselves.

Buffering serves three main functions. First, buffers are
used to stage and de-stage data, decoupling components and
introducing asynchronous access to the devices. The sec-
ond function of the buffers are speed matching between
different devices allowing fast transfers to/from slow de-
vices. Finally, they are used to shape traffic between de-
vices, increasing or decreasing burstiness in the workload.
The ability to decouple components is driven by the amount
of buffers available to the system. Speed matching is de-
pendent upon the transformation of one component’s rate to
another and vice versa. Finally, the shape of the workload is
influenced by the length of the period, among other factors.

Buffering can also be used for caching by placing a
small, fast storage device in front of larger, slower device.
Distributed storage systems use buffering on a number of
system components such as storage clients, storage servers,
network switches, and disks. Storage clients, for example,
use caching to capture working sets in order to consolidate
reads and writes. Storage servers employ caches to stage
and de-stage data, capture request bursts, and prefetch data
based on sequential access patterns.

In this section we will focus on buffering in storage
servers but we believe that many of the principles apply
to buffering in general. For the rest of the section we re-
fer to buffering applied to storage servers as buffer caching.
For now we also assume that the buffer cache is also non-
volatile, as is standard in storage servers.

Figure 9: Cache Architecture.

Decoupling components, such as the disk and the net-
work, requires enough buffer space to be allocated. Each
application receives a dedicated partition as shown in Fig-
ure 9. The amount of buffer space assigned to each stream is
a product of the guaranteed rate and period, and also influ-
enced by workload characteristics and performance goals.
Streams with performance requirements receive a mini-
mum amount of dedicated buffer space based on worst case

request times on the device, whereas streams with soft-
performance requirements might receive buffer space ac-
cording to average case request times. Streams with no per-
formance requirements are aggregated into a single reser-
vation and may receive any uncommitted resources from
streams with performance needs.

Maximizing the utilization of a resource requires worst-
case buffer space allocation. We allocate space for as many
requests as can be served by a device during a period based
on the best case request time for the device. Thus the best-
case on the device represents the worst case buffer alloca-
tion. This amount represents an upper bound on the buffer
space needed within a period for read-only streams. In the
case of streams involving writes, allocating extra buffersen-
ables delayed write-back to the disk.

Embedding an application’s behavior into the perfor-
mance reservation (e.g.,sequential/random ratio, read/write
ratio) allows efficient allocation of resources, for example
by allocating less buffers for random streams. Efficient re-
source allocation can be achieved to the extent an applica-
tion’s workload can be characterized. If such characteriza-
tion is missing, default worst-case assumptions are made.

An application’s reservation is transformed into a re-
source reservation by means of rate and period transforma-
tions. Rate transformationandperiod transformationare
mechanisms which allow the buffer-cache to decouple an
application’s reservation from the underlying device’s ca-
pabilities while maintaining performance guarantees. It is
possible to shape bursty workloads, using period transfor-
mations, into uniform accesses over long periods of time
when that results in making better use of the device (e.g.,
network). Similarly, by transforming short periods into long
periods it is possible to introduce burstiness into the work-
load, reducing device utilization and overhead (for example,
extra seeks on disks).

The period length of write-only streams can be elongated
by means ofperiod transformation, provided enough buffer
space is available to hold the additional updates. It is possi-
ble to remove extra seeks in a predictable manner by trans-
forming shorter periods into longer periods. The overhead
previously imposed by short periods is then transformed
into reservable utilization that could be used for admitting
more request streams. Finally, since buffers have no context
switch cost between stream requests, it enables reservations
with very short periods. This turns some unmanageable sce-
narios into feasible situations that can be supported by the
whole system.

Rate transformation is achieved by means of speculative
reads and delayed writes. Rate transformation decouples
an application’s rate from a device’s rate, allowing faster
rates than the device can actually support. Finally, exposing
faster rates to the application results in faster access times
per request, allowing applications to release requests closer
to the end of the period without missing deadlines.

6 Conclusion

End-to-end performance management in a complex, dis-
tributed system requires the integrated management of
many different resources. The RAD integrated scheduling
model provides a basis for that management and is adapt-
able to a variety of different resources. Based on a separa-
tion of the two basic resource management questions—how
much resources to allocate to each process and when to pro-
vide them—RAD supports a wide variety of different types
of processes. Our ongoing work demonstrates the appli-
cability of the model to CPU scheduling, disk scheduling,
network scheduling, and buffer cache management.

Our future work focuses on fully generalizing the RAD
model. The addition of constraints—required processing
characteristics such as deadlines—and heuristics—desired
processing characteristics such as minimizing jitter or task
migrations—give the model sufficient flexibility to describe
a wide variety of existing and hypothetical schedulers with
different properties. We are also extending the model to ap-
ply to additional resources and dimensions, including multi-
processor and multi-disk scheduling.

Acknowledgements

This work was supported in part by National Science
Foundation Award No. CCS-0621534. Additional support
was provided by Los Alamos National Laboratory. The
other members of our RADIO research team–Richard Gold-
ing and Theodore Wong—contributed significantly to the
development of the ideas in this paper.

References

[1] S. A. Brandt, S. Banachowski, C. Lin, and T. Bisson. Dy-
namic integrated scheduling of hard real-time, soft real-time
and non-real-time processes. InProceedings of the 24th
IEEE Real-Time Systems Symposium (RTSS 2003), pages
396–407, Dec. 2003.

[2] J. L. Bruno, J. C. Brustoloni, E. Gabber, B. Özden, and
A. Silberschatz. Disk scheduling with quality of service
guarantees. InProceedings of the 1999 IEEE International
Conference on Multimedia Computing and Systems (ICMCS
’99), pages 400–405, 1999.

[3] W. Hawkins and T. Abdelzaher. Towards feasible region
calculus: An end-to-end schedulability analysis of real-time
multistage execution,.

[4] T. Kaldewey, T. Wong, R. Golding, A. Povzner,
C. Maltzahn, and S. Brandt. Virtualizing disk performance.
In Proceedings of the 14th IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS 2008), Apr.
2008.

[5] E. Krevat, V. Vasudevan, A. Phanishayee, D. G. Andersen,
G. R. Ganger, G. A. Gibson, and S. Seshan. On application-
level approaches to avoiding TCP throughput collapse in
cluster-based storage systems. InProc. Petascale Data Stor-
age Workshop at Supercomputing’07, Nov. 2007.

[6] C. Lee, J. Lehoczky, D. Siewiorek, R. Rajkumar, and J. Han-
son. A scalable solution to the multi-resource QoS problem.
In Proceedings of the 20th IEEE Real-Time Systems Sympo-
sium (RTSS 1999), Dec. 1999.

[7] C. Lin, T. Kaldewey, A. Povzner, and S. A. Brandt. Diverse
soft real-time processing in an integrated system. InPro-
ceedings of the 27th IEEE Real-Time Systems Symposium
(RTSS 2006), pages 369–378, Rio de Janeiro, Brazil, Dec.
2006.

[8] A. K. Mok. Fundamental Design Problems of Distributed
Systems for Hard Real-time Environment. PhD thesis, Mas-
sachusetts Institute of Technology, May 1986.

[9] C. Parsa and J. J. Garcia-Luna-Aceves. Improving TCP con-
gestion control over internets with heterogeneous transmis-
sion media. InProceedings of the 7th IEEE International
Conference on Network Protocols (ICNP). IEEE, 1999.

[10] A. Phanishayee, E. Krevat, V. Vasudevan, D. G. Andersen,
G. R. Ganger, G. A. Gibson, and S. Seshan. Measurement
and analysis of tcp throughput collapse in cluster-based stor-
age systems. InFAST’08: Proceedings of the 6th USENIX
Conference on File and Storage Technologies, pages 1–14,
Berkeley, CA, USA, 2008. USENIX Association.

[11] A. Povzner, T. Kaldewey, S. Brandt, R. Golding, T. M.
Wong, and C. Maltzahn. Efficient guaranteed disk request
scheduling with fahrrad. InEurosys 2008, April 2008.

[12] L. Reuther and M. Pohlack. Rotational-position-aware real-
time disk scheduling using a dynamic active subset (DAS).
In Proceedings of the 24th IEEE Real-Time Systems Sympo-
sium (RTSS 2003), Dec. 2003.

[13] T. M. Wong, R. Golding, C. Lin, and R. Becker-Szendy.
Zygaria: Storage performance as a managed resource. In
12th IEEE Real-time and Embedded Technology and Appli-
cations Symposium (RTAS06), Apr. 2006.

