
This article was downloaded by: [Carlos Maltzahn]
On: 27 February 2012, At: 09:57
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered
office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

International Journal of Parallel,

Emergent and Distributed Systems
Publication details, including instructions for authors and
subscription information:
http://www.tandfonline.com/loi/gpaa20

QMDS: a file system metadata

management service supporting a graph

data model-based query language

Sasha Ames a b , Maya Gokhale a & Carlos Maltzahn b

a Computer Science Department, University of California, Santa
Cruz, USA
b Lawrence Livermore National Laboratory, Livermore, CA, USA

Available online: 24 Feb 2012

To cite this article: Sasha Ames, Maya Gokhale & Carlos Maltzahn (2012): QMDS: a file system
metadata management service supporting a graph data model-based query language, International
Journal of Parallel, Emergent and Distributed Systems, DOI:10.1080/17445760.2012.658802

To link to this article:  http://dx.doi.org/10.1080/17445760.2012.658802

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions

This article may be used for research, teaching, and private study purposes. Any
substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing,
systematic supply, or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation
that the contents will be complete or accurate or up to date. The accuracy of any
instructions, formulae, and drug doses should be independently verified with primary
sources. The publisher shall not be liable for any loss, actions, claims, proceedings,
demand, or costs or damages whatsoever or howsoever caused arising directly or
indirectly in connection with or arising out of the use of this material.

http://www.tandfonline.com/loi/gpaa20
http://dx.doi.org/10.1080/17445760.2012.658802
http://www.tandfonline.com/page/terms-and-conditions


QMDS: a file systemmetadata management service supporting a graph
data model-based query language

Sasha Amesa,b*, Maya Gokhalea and Carlos Maltzahnb

aComputer Science Department, University of California, Santa Cruz, USA; bLawrence Livermore
National Laboratory, Livermore, CA, USA

(Received 9 December 2011; final version received 10 January 2012)

File system metadata management has become a bottleneck for many data-intensive
applications that rely on high-performance file systems. Part of the bottleneck is due
to the limitations of an almost 50-year-old interface standard with metadata
abstractions that were designed at a time when high-end file systems managed less
than 100MB. Today’s high-performance file systems store 7–9 orders of magnitude
more data, resulting in a number of data items for which these metadata
abstractions are inadequate, such as directory hierarchies unable to handle complex
relationships among data. Users of file systems have attempted to work around
these inadequacies by moving application-specific metadata management to
relational databases to make metadata searchable. Splitting file system metadata
management into two separate systems introduces inefficiencies and systems
management problems. To address this problem, we propose QMDS: a file system
metadata management service that integrates all file system metadata and uses a
graph data model with attributes on nodes and edges. Our service uses a query
language interface for file identification and attribute retrieval. We present our
metadata management service design and architecture and study its performance
using a text analysis benchmark application. Results from our QMDS prototype
show the effectiveness of this approach. Compared to the use of a file system and
relational database, the QMDS prototype shows superior performance for both
ingest and query workloads.

Keywords: graph data model; query language; metadata management

1. Introduction

While storage systems continue to increase in volume and to improve in throughput, the
organisation of user-defined metadata has lagged behind and has become a bottleneck for
data-intensive applications. The growth in storage accompanies a surge in data-intensive
scientific computing, in which we have witnessed 1000-fold increases in data volume over
the past decade [8]. Cheaper costs for storage and higher bandwidth per system have
enabled data capture at the required volumes. Much of the data are stored in file systems
using the POSIX interface, a standard based on the systems first designed 50 years ago,
based on a hierarchal data model for file organisation. This arrangement originated for
systems with 10,000s of files, yet now we store 7–9 orders of magnitude greater number of
files within a single system.
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Raw data growth has been accompanied by an increase in the capabilities of data
analysis, which has resulted in the growth of additional related metadata. For instance, the
Sloan Digital Sky Survey (SDSS) [33,40] comprises a collection of photographic image
and spectra files, and a catalogue containing image and instrument metadata, photometric
and spectroscopic object data. While the data size of the raw photographic imagery has
grown from 2.3 to 15 TB over the span of seven releases, the catalogue has grown from
being an order of magnitude smaller than the raw data size to become 14% larger.

The needs of today’s applications force us to address the limitations of the POSIX
interface, in which the only user-defined metadata constructs available are the file name
and its location within a hierarchical name space. While hierarchies have served as a
useful organisational tool and still have benefits, they are deficient [38], in part due to the
inability to express more complex relationships that occur among data. In contrast, a data
model that conveys relationships and extends hierarchies would be the one employing a
graph structure. The graph data model is suitable to many arrangements of data found in a
variety of applications [22]. Graphs fit existing file systems through subsuming
hierarchical tree structures and have proven useful in experience with ranking algorithms
[39] for search results.

We identify three application domains with examples of graph metadata:

. Mentioned above, the SDSS catalogue metadata contains some hierarchical
organisation with additional relationships throughout. Notably, the catalogue
contains a network of neighbour relationships between pairs of photometric objects.
All these relationships are conventionally represented using relational tables.

. The Livermore entity extractor (Lextrac) [12] was designed as a benchmark for text
analysis. The application uses text document corpuses, which are processed within
the extractor application to find significant entities and entity co-occurrences. These
are significant pairs of entities within a particular document with a distance metric.
Their discovery results in a factor of 10 greater volume of metadata stored over the
original text data size. Relationships among the documents, entities and co-
occurrences form a graph that must be managed and queried. The relationship
between documents and entities is bipartite, and these metadata appear difficult to
partition.

. Metadata from HPC performance tools, such as OpenSpeedShop tool [42], related
provenance information from the HPC application build environment and source
file version control, are presently managed in separate schemes for each. The graph
data model fits the interrelationship of code objects, data collected by the tool and
the provenance of the build process from executable, object binary files and source
code. Moreover, there is no established methodology for developers to manage
these types of metadata, so each developer may choose an ad hoc scheme of his own
[36].

Applications also need to locate files, and POSIX paths are limited in that capability.
Paths require exact knowledge of location, namely the directory and file name
components, in contrast to a query interface that allows many combinations of terms or
expressions that could result in desired data. It is important for such an interface to fit the
data model; thus, a query language for searching a graph data model would be appropriate.

Applications instead have employed their own solutions for file metadata management
separate from file systems, often using relational databases given the strengths of the
relational model, SQL language and mature technology. The use of relational databases
requires a schema and index configuration specifically for every application. When the
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application’s data structures change, the database design must be modified. On the other
hand, file systems are generally configured and tuned for the shared use of a variety of
applications. Moreover, when applications must use two systems, the file system and the
database, their dual use creates management problems. For instance, references to files
within the databases must be updated to reflect changes in file systems.

In this paper, we discuss an exploration of our approach to the problem: the use of a
graph datamodel for representing file system user-definedmetadata and a query language for
retrieval. The purpose of this approach is to provide management of user-defined file
metadata along with data under a single file system interface, delivering a common service
across applications. Applications would be able to offload their metadata management needs
to the service, alleviating the need for their own solution. This arrangement would benefit
applications by reducing their code complexity, by virtue of not having their own custom
metadata management components. A second benefit is improved opportunities for
interoperability among separate applications. For instance in HPC code development,
developers would have the opportunity to consider the metadata from several performance
tools, such as OpenSpeedShop, provenance from their build process and version
information.

This approach we have named QMDS, which we envision as extending existing
metadata services (MDS), adding Queriability. However, for the purpose of exploring the
graph data model and query language for this paper, we have implemented a single-host
file systems in user space (FUSE) file system service. We have limited the scope of our
research to retrieving files and attributes of files according to user-defined metadata and
relationships among the files. We consider changes to POSIX systems calls as a
consequence of our approach of extending POSIX with a query interface, but file data I/O
is not part of the work. Also, we do not try to solve general graph problems, such as a
shortest path algorithm, nor are standard file system operations a focus of this work.

Prior experience in attempting to use a relational database for file metadata with a
graph structure [2] has led us to our approach of implementing our own store for such
metadata [3], and we have continued to pursue that approach in this work. Our
performance results presented in Section 6 show a validation of this approach, exhibiting
superior performance of our system against that of a relational database.

The contributions of this paper are (1) the design and prototype implementation of
QMDS based on a graph data model; (2) the design and prototype implementation of the
Quasar query language specifically designed for the graph data model; (3) findings from
the static and dynamic analysis of three workloads using QMDS; (4) quantitative
evaluation of a QMDS prototype compared to a hierarchical file system plus relational
database. Our evaluation uses a workload from the Lextrac case study described above,
and we use its metadata for examples of the data model and queries from our language
throughout the paper. We have chosen it because of its relatively large metadata to data
size and complex graph structure. We additionally contrast our data model with the use of
an extended attribute (x-attr)-based approach and the use of resource description
framework (RDF) triples. We evaluate those approaches in part of the evaluation.

2. Related work

Vast growth in data has been accompanied by the need to grow individual file system
namespaces, resulting in distributed file systems. Some only distribute the data, while the
metadata management of files and the hierarchical namespace can be handled by a single
host. However, advances in distributed metadata management have shown that a directory
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hierarchy can span multiple nodes efficiently [45]. This approach assumes a hierarchical
name space with few non-hierarchical links.

The x-attr API gives applications some ability to store their own metadata for files, but
the API is not widely adopted. The API works on a per file basis, i.e. attributes are
retrieved given a path to a file, but lacks query functionality for files based on attribute
values. Semantic File Systems [16] provided that functionality by placing attribute-based
naming into path expressions. The Logic File System [30] provided and interface that uses
Boolean algebra expressions for defining multiple views of files. However, these concepts
have not been adopted into mainstream file systems. Other approaches have a separate
systems interface to handle searching and views of files, namely the Property List
DIRectory system [23], Nebula [9], and attrFS [46]. Some systems combine POSIX paths
with attributes [28,37] and directories with content [17]. Most recently, Perspective
provided a decentralised home-network system that uses semantic attribute-based naming
for both data access and management of files [35]. While many of these systems maintain
the equivalent of x-attrs on files before these became part of POSIX, none provide edges to
denote relationships among files.

There are a variety of ad hoc schemes in existence today to attach user-defined
metadata with files, such as a distinguished suffix, encoding metadata in the filename,
putting metadata as comments in the file or maintaining adjunct files related to primary
data files. Search within file systems has, in practice, often relied on command-line utilities
such as ls, find and grep.

Examples of searchable file systems using relational databases and keyword search
engines include Apple’s Spotlight [5], Beagle for Linux [7] and Windows FS Indexing
[24], in which Spotlight also includes application-defined attribute-based searches for files.
These systems provide full-text search, have indexing subsystems that are separate from
the file systems, as opposed to index management within the same module or process as file
system metadata management. A recent experimental file search system, Spyglass [21],
provides attribute indexing using K-D trees. The authors also compare the performance of
Spyglass with that of a relational database and find that Spyglass has superior query
performance when executing joins over multiple attributes, but the research focused on
traditional file attributes. None of the above systems allow for search over relationships.

PASS [25] proposed how provenance data could be managed behind a kernel-based
interface and tied into the file system. Their model includes relationships among files, but
they do not keep name–value pair attributes on these relationships. They restrict the scope
of the relationships to the provenance domains. We propose a metadata store that manages
any conceivable relationship between pairs of files.

Holland et al. propose a query language for Provenance [19]. They choose the
Lorel language [1] from the Lore system as a basis for provenance. The Lorel data model
(OEM) differs from ours, as it requires class definitions and treats attributes and data nodes
as the same.

Many researchers have proposed graph query languages [4]. Of those that have been
accompanied by backing implementations, relational databases were used to implement
the languages. Experience with a relational database and graph language has not yielded
suitable performance [20]. Moreover, there has been a trend towards the use of graph-based
data model over relational systems due to inability of RDBMS to manage graph-structured
data [34] and the growing interconnectedness of real-world data [14]. In the introduction to
this paper, we identify several applications which use relational databases to represent what
is essentially graph structured metadata; however, these applications are configured with
schemas specific to their needs rather than a general graph schema.

S. Ames et al.4
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There are several RDF triple stores, for instance, 4store [15] and RDF3X [29], which
support the SPARQL language [32]. However, RDF is a data model different from what
we are proposing in that RDF has only nodesand edges; there is no concept of an attribute.
Moreover, these engines do not support range queries, which make their use very limited
for our workloads. Neo4j [26] is an example graph database system that features a simple
Java API. This approach requires that application developers program graph queries and
handle complex operations, rather than use a robust query language interface that removes
the complexity and handles optimisations for the application. The study performed in [43]
describes some strengths, but points out some critical shortcomings of Neo4j.

3. Logical design

Our goal in exploring QMDS is to examine its potential for the analysis and management
of text, scientific and provenance metadata. In this section, we describe our logical data
model and query language for QMDS.

3.1 Data model

Our data model for file system metadata is a directed graph with attributes on nodes and
edges, shown in Figure 1. Nodes in the graph can represent files, and this allows the system
to manage relationships among files. We call our directed edges links, connecting parent
and child nodes. Attributes are name–value pairs, like POSIX x-attrs. These may be
placed on both nodes and links. Moreover, multiple edges are permitted between any pair
of nodes. Figure 2 shows example file metadata structured using these constructs from
the Lextrac example domain. In the example, the attributes placed on links contain the
provenance of the relationship. For instance, the depicted rightmost link was created by the
Stanford extractor, while the leftmost link was from the Unified extractor.

No application-specific ‘schemas’ need to be explicitly defined for nodes, edges and
attributes, and no classes must be defined for node objects, as one would need in most
object-oriented systems. This gives a degree of flexibility for applications to change
their metadata requirements and allows for heterogeneity within a single system.
A heterogeneous approach to managing metadata gives all applications the same tools to
manage relationships.

File attributes include the name of the file and are not necessarily unique. Moreover,
none of the attribute values must be unique for a particular attribute name, except for
system-assigned IDs on files and links. This provision allows for different files using the
same name in multiple views, such as for different applications, users or versions.
File nodes act as directories using links to represent directory membership.

Figure 1. The QMDS graph data model contains files, links and attributes.
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3.2 Other data model approaches

To contrast our graph-based data model, we consider two other data models which could
be used for QMDS. We look at, first, x-attrs and second, the RDF ‘triple’ data model.

3.2.1 Extended attributes

X-attrs allow for the use of arbitrary name–value pairs attached to files. In contrast to a
graph data model, there is no defined construct for relationships. x-attrs could be used to
store the relationships, but that sort of metadata requires some logical overhead for
management on the part of application.

Meta-attributes are required to store sets of relationships. In the example below for
Lextrac, we have found that we need two layers of set identification for particular attributes.
Then, because we have attributes on the links, those attributes need to either (1) encode in a
single BLOB attribute-value on the file attribute, or (2) each link attribute represented as a
separate file attribute with a specific attribute name-based encoding scheme.

For the BLOB encoding approach to link representation, the file attribute name might
be specific to the relationship, but for a general solution for relationships, we might use
two relationship-specific meta-attributes per file: one for parent link count, another for
child link count. The meta-attributes will be overwritten frequently during application
ingest of metadata if the application adds many links to particular files. Moreover, in order
to have the link attached to both the parent and child file, such link metadata as x-attrs must
be attached to both.

Another alternative for using attributes is to encode in multiple attributes any
information attached to QMDS datamodel nodes to be added and attached to data file nodes
of a particular application. This approach would not have the overhead of representing the
links and creating additional files, but instead, stressing the x-attr API. In addition, there are
no duplicated attributes for representing links on both parent and child files.

As an alternative to representing Lextrac using the QMDS graph data model, we have
attempted to represent the metadata using x-attrs on files. The files are the traditional
document files. For Lextrac, we do not need to create relational links between pairs of files.

Figure 2. An example of files (nodes), links (edges) and attributes from the Lextrac case study
application. Circles represent files, arrows represent links.
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However, we do need to manage entities and co-occurrences. We opt to store these items
within x-attrs as sets. Managing the entities requires meta-attributes to enumerate the sets
of entities, in which each set is generated by a particular extractor module within the
Lextrac application pipeline. Then, we have a meta-attribute for each set, providing the
count (hence, the two-layer approach mentioned above). We also have a meta-attribute for
the co-occurrences to store the count. In Section 6.1 we present the results of ingest of this
arrangement in comparison to the use of QMDS data model for Lextrac ingest.

3.2.2 RDF

The key distinction between the RDF data model and the graph-based data model that we
have chosen for QMDS is the use of higher level constructs. RDF uses triples to represent a
graph of all concepts. In contrast, the QMDS data model makes a distinction among the
following three concepts: nodes, edges and attributes. Nodes and edges, the higher level
constructs, may each have attached attributes. The components of triples are the basic
constructs. Verbs (RDF graph edges) in conjunction with objects (the RDF graph nodes)
are used to describe the subjects (also RDF graph nodes).

To map the QMDS data model, one must define RDF nodes for every node and edge.
Thus a system (application or service) must define the ids. Then triples are used for the
following:

(1) Connect RDF nodes representing QMDS graph nodes (parents) to RDF nodes
representing QMDS graph edges.

(2) Connect RDF nodes representing QMDS graph edges to RDF nodes representing
QMDS nodes (children).

(3) Connect RDF nodes representing both QMDS nodes and edges to RDF nodes
representing QMDS attribute values. In this circumstance the triple ‘verb’ or RDF
edge holds the QMDS attribute name.

In above cases (1) and (2), the RDF verb describes the generic relationship of either
being the parent or child component of the QMDS edge.

The use of RDF triples to represent QMDS graph data is problematic in several ways.
A collection of triples must be used to represent concepts which can be represented with
other higher level abstractions. In addition, the single concept of RDF nodes has to
represent multiple concepts – QMDS graph nodes, edges and attribute values – this adds
confusion and ambiguity, as one cannot automatically know which type of concept is
being represented. To further evaluate the use of RDF, we discuss an example of its use in
practice in Section 6.3.

3.3 Query language

Our query language, called Quasar, provides retrieval capabilities within graph-structured
file system metadata. The query model centres on processing of sets, in which elements
of the sets are files (nodes of the graph). Sets can be identified by particular attributes
(e.g. all.pdf files) or the parents or children of a particular file. Each query produces a
result set of nodes, which in context of file system metadata are virtual directories.
Traditional set operations from set algebra can be applied to sets of files, these operators
being set intersection, union and set difference. The other operations, attribute match,
neighbour match, and navigation are specific to the query language and are described
below.
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3.3.1 Operators

The attribute match operator, indicated by theMATCH keyword provides for identification
and conjunction based on sets of files, each denoted by set elements that contain the
attributes specified in the query expression. The match can be a single, a range or a set of
specified attributes. Conjunction of sets through the match operator allows for attribute-
based refinement of collections of files. We provide for the conjunction of multiple
attributes within a single match operator clause using the semicolon meta-character.

The neighbour match operator enables refinement of a set of nodes based on the
condition of particular parents or children to the nodes within the set. In a simple case, a
neighbour match operator might refine a set based on a particular attribute on the parents
or children of the nodes in the initial set. A Quasar expression using a neighbour pattern
match looks like:

MATCH FileType ¼ NewsDocument CHILD
{MATCH SemanticType ¼ ‘Location’ }

in which an input set containing files with [FileType, NewsDocument] is filtered to only
those whose children match [SemanticType, Location]. A pattern match operator may also
specify constraints on edges to parents or children based on edge attributes. The keywords
PARENT or CHILD indicate neighbour pattern mach expressions. The brace
meta-characters hold a sub-query

The navigation operator manipulates one or more elements in a set (node of the graph)
by the action of ‘following edges.’ Navigation can go either in the direction of the edge
(from parent to child), or vice-versa. Navigation can be constrained to only follow edges
that meet particular criteria, as specified via attributes placed on the particular edges.
The navigation operation (NAVIGATE) follows links in their ‘forward’ direction, from
parent to child. There is also a corresponding operation (BACKNAV) to traverse from
child to parent. For example, the query expression

MATCH FileType ¼ ‘NewsDocument’
NAVIGATE Extractor ¼ Unified

will change the result set from all files with [FileType, NewsDocument] following links
with the attribute [Extractor, Unified].

For attribute retrieval, the language features presentation functionality that returns
attributes of files or links in a tabular-string format, as is common functionality for various
query languages. Attribute names are specified with OUTPUT keyword-based clauses
within the queries. Each clause contains the name of one or more attributes of whose
values will be returned in the tabular output. Each row in the output corresponds to an
element in the result set and each column contains an attribute value corresponding to the
attribute name in the output clause. For example, the query expression:

MATCH FileType ¼ ‘NewsDocument’
OUTPUT FileName

lists all the files of [FileType,NewsDocument] by the values corresponding to their
FileName attributes.

3.3.2 Examples

To illustrate neighbour pattern matching, suppose we have a file system containing some
files with attribute/value pair [FileType, NewsDocument] and other files with
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attribute/value pairs [NodeType, SemanticTag]1 Each ‘NewsDocument’ links to the
‘SemanticTag’ files that it contains. Each link is annotated with a ‘LinkType’ attribute with
value ‘HasEntity’ ([LinkType, HasEntity]). Our input file set consists of NewsDocument
files that are tabular (files with [FileType, NewsDocument], [IsTabular, yes] attribute/value
pairs). We refine the file set context by a neighbour pattern match that matches links of type
‘HasEntity’ ([LinkType, HasEntity]) and child files that have [NodeType, SemanticTag]
and [SemanticType, Location]. The output file-set context will contain only those
NewsDocuments that link to SemanticTags matching the above criteria. In Quasar, the
query expression is:

MATCH FileType ¼ ‘NewsDocument’; IsTabular ¼ ‘yes’
CHILD LinkType ¼ ‘HasEntity’
{ MATCH NodeType ¼ ‘SemanticTag’;
SemanticType ¼ ‘Location’ }.

Similarly, MATCH FilleType ¼ ‘NewsDocument’
CHILD { MATCH SemanticType ¼ Location;
SemanticValue ¼ ‘New York’ } OUTPUT FileName

specifies properties that child nodes must match. First, files of the specified FileType are
matched. Second, we narrow down the set of files by matching child nodes with the
specified SemanticType and SemanticValue file attributes. Finally, using the presentation
operator, we return the set according to the document FileName attribute value.

MATCH FileName IN ‘N20090201’ , ‘N20090301’
NAVIGATE LinkType ¼ ‘HasCoOccurence’ OUTPUT ProximityScore

The above query, first, matches files in the specified range (in this example files named by a
date between 1 February and 1March, 2009, and the IN keyword paired with the tilde meta-
character indicates a range query predicate). Second, it traverses links from the matching
source files (NAVIGATE), only following links that match the [LinkType, HasCoOccur-
ence] attribute. Finally, it lists the resulting file set by the ProximityScore attribute.

4. Service design and implementation

To explore the graph data model and query language in practice, we have implemented a
prototype of QMDS. The prototype system runs in a single-host FUSE file system. Use of a
single host for metadata is comparable to several distributed file systems used in production
today that have single-host name nodes: HDFS, PVFS2 [11] and Lustre [18] (in practice).

As an enhancement to POSIX, the query language interface works with existing file
system operations: it provides file and virtual directory handles as responses to queries.
In addition, a ‘synthetic’ file interface (comparable to Linux /proc) provides for efficient
bulk metadata updates and access to attribute-oriented query results.

4.1 Overview

As shown in Figure 3, QMDS is implemented as a file server running in user space using
the FUSE interface [41]. Clients pose standard POSIX file system operations to the Kernel
Interface via systems calls. The Virtual File System forwards the requests to the FUSE
Kernel Module, as is standard for mountable file systems. The FUSE client kernel module
serialises the calls and passes the messages to the QMDS Software running in user space.

International Journal of Parallel, Emergent and Distributed Systems 9

D
ow

nl
oa

de
d 

by
 [C

ar
lo

s M
al

tz
ah

n]
 a

t 0
9:

57
 2

7 
Fe

br
ua

ry
 2

01
2 



The FUSE Library implements the listening part of the service which receives the

messages from the kernel and decodes the specific file system operations. The QMDS

File System Interface implements handler routines for the various file system operations

and interacts with the other components of the system.
To obtain a file ID, the client submits a Quasar expression, which is parsed by the

Query Parser and then passed to the Query Processor. The processor generates a query

plan and then looks up query terms in the Metadata Store/Index Manager. The MS/IM

returns posting lists of relevant files or link ids, or may filter attributes for a particular file.

The query processor uses standard query planning strategies using statistics on the stored

metadata. The store manager uses the underlying file system to store metadata structures.

Once the query processor has computed an answer to the query, it returns the list of ids to

the file system interface.
Other file system operations may go directly from the interface operation handler to the

data or metadata management components. Stat and attribute update/retrieval calls go

directly to the store manager, once the specified file has been looked up. File data

operations (read/write) go to a File Data Placementmanager. In our QMDS prototype, this

module maps file data to files stored within an underlying local (ext2) file system. Only

non-zero length files3 are represented in the ext2 file system. Zero-byte files that contain

only attributes and links are managed solely by the metadata store and are, therefore,

significantly cheaper to manage than regular files. For POSIX compliance, a zero-byte file

with links is equivalent to a directory.
The software design strives to decouple its various software components to the greatest

reasonable extent. The query processing module and parser must have access to the same

structures in order to be interoperable. Parsed query objects, returned by the parser, consist

of linked lists of parsed query operators. Each operator’s linked list node points to the

list of attributes. Neighbour match and set operators also point to a list of operators for the

sub-query.

Figure 3. The QMDS prototype software architecture is a single-host file server exporting a FUSE
interface that allows clients to the POSIX file system interface to pass Quasar expressions.
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Result set objects are used internally by the query processor and also returned to the
interface module. This object contains the result count, a union of several array datatypes
for results, and an integer indicating the particular array datatype: (0) file/node id only,
(1) file/node ID, link/edge ID pair (2) extended tuple of IDs (3) a list of pointers to lists of
IDs (direct to metadata store address space). Type number has a limited implementation
within the query processor, i.e. it is not handled by the routines to translate result sets to
strings. These result set objects generally correspond to the logical Quasar result sets of
each logical query operation.

4.2 QMDS semantics for directory/file operations

QMDS follows POSIX semantics as closely as possible, and extend the semantics as needed
for operations that involve metadata and links (excluding read, write, fsync, etc.)
In particular, as many file system operations require a pathname to a particular file,
operations posed to QMDS may specify a ‘pathname query’, which accepts any valid
Quasar expression, including POSIX paths. A consequence of this change is that the
semantics of someof the POSIXfile system calls that concernmetadatamust change aswell.

A high level description of QMDS behaviour for common file system calls is as
follows:

stat Looks up the pathname query. If stat matches a single file, it returns the POSIX
attributes for that file from the metadata store. If more than one file matches, stat returns
attributes for a virtual directory.

open (create, write) Looks up the pathname query. If there is no match, open creates a
new file object in the metadata store, stores the name and attributes given in the query
expression, and looks up a parent file. If a parent is found, it creates a link with the parent
as source, a new file as link target, creates a file in the underlying file system for data
storage and opens that file. If the initial query matches a file, it opens the corresponding
underlying file and truncates it. Finally, it returns the handle to the opened file.

open (read) Looks up the pathname query. If exactly one result is found and it is not
flagged as a directory, it opens the corresponding data file in the underlying file system.
Otherwise, it follows the opendir semantics.

mkdir Same as ‘open create’, but sets the ‘DIR’ flag in the file object, but does not
create or open an underlying file as no data storage is necessary.

opendir Looks up the pathname query. For each query result, opendir looks up
particular attributes to return for the result based on a ‘ListBy’ operator in the query.
Opendir returns a directory handle to the client. It stores the attribute value strings in a
cache for successive readdir operations until the directory handle is closed.

readdir Retrieves the next directory entry (or query result) in the result cache.
close(dir) Passes file handles to the underlying file system to close the file. Frees

temporary structures used to represent query results for directory listings.
chmod/chown,time Looks up the pathname query. Then modifies the permissions,

owner or time attribute for the result file’s object structure.
rename Depending on the result of the pathname query, will do one of the following:

(1) change the name (or other) attribute for a file, without affecting its parents/children,
(2) change the parent of a file or (3) update the affected link(s) and their associated
attributes. The pathname must resolve to a single source file.

unlink Looks up the pathname query. If the query matches a single file, it also looks up
the parent to the file within the query, determines the link between parent and child and
removes that link from the metadata store, including all of its link attributes.

International Journal of Parallel, Emergent and Distributed Systems 11
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A consequence of changing attributes of a file is that it might invalidate the path name
that an application uses to refer to that file. For example, if an application names a file by
the attribute k ¼ v and then subsequently changes its attribute to k ¼ n 0, the original name
does not resolve to that file anymore. One way to provide greater name space stability is to
(1) use QMDS assigned immutable file or link IDs to address files (equivalent to inode
numbers), as both are searchable attributes in QMDS, or (2) make a unique, immutable
object ID for each file and link available as attributes and include object IDs into the
Quasar name space (if applications need the convenience of their own ID schemes). Either
scheme provides applications with names that are immune to any metadata changes.
The second approach is already used in existing systems, for instance, document databases
use DOI. Our Lextrac example uses this approach for the document files through its
document file name attribute, which it controls. For an application to use the first approach,
it would obtain each ID upon file creation, then store the ID in its own temporary data
structures for use, in case the application were to modify the attributes of that file. We have
not explored an application using this procedure.

4.3 Metadata storage

Our QMDS prototype features a metadata store and index manager using structures
tailored to our graph data model. The data structures of the metadata store are a collection
of arrays, sorted lists and red-black trees. We have chosen these structures based on
experience with previous in-memory graph file system metadata management from the
LiFS prototype [3] and search engine design for indexing [10,47]. These data structures
are backed by memory-mapped files in an underlying file system. Each type of data
structure is assigned to a separate memory-mapped file, each with its own allocator. We
have used configurations with five or thirteen separate files. The sizes of each file must be
set prior to loading the QMDS software module. This design is suited for storage class
memories, as their use has been suggested for metadata storage [44], based on their lower
latencies for random access, as opposed to conventional disk-based storage. The data
structures are optimised for query operations expressible in Quasar, namely attribute
matching for a given set of files, neighbour pattern matching and navigation (see Figure 4).

The metadata store has a Superblock, which contains references to the other structures
within the store and some global statistics used for query optimisation, such as the total
numbers of files or links. We place the superblock at block zero of the memory-mapped
file containing the File Table. The File Table is a single-indirect array of pointers which
point to arrays of pointers. The table size is based on a pre-allocated value, given the preset
file size. Such is akin to setting the number of inodes available for a file system, based on
available space on a partition. There are 512 arrays (4K/8 byte pointers). When each block
fills completely with pointers, an additional 4K-block array is allocated from the store.
The second-level arrays contain the pointers to the file objects. For example for 100
million nodes, we require,800MB of pointers and a 4K page for the top level. Instead of
allocating the 800MB array in one go, we incrementally allocate ,1.5MB arrays, to
which the entries in the top-level 4K array point.

Likewise, the Link Table maps link IDs to each Link Attribute list using the same
singe-indirect structure. Unlike the File metadata, the entries in the link table contain a
count field and a pointer to an array of the list attributes. The attribute lists can increase in
length beyond the initial ingest, given that there is a reserved pointer at the beginning of
the array-list block. In the event that attributes are added to existing files or links, the
system can add additional blocks for new attributes.

S. Ames et al.12
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The file objects, similar to inodes, each include lists of File Attributes, pointers to a list
of parents and a list of children (recall that ‘parents’ are files with links pointing to the
current file and ‘children’ are files to which the current file’s links point). Within the list
(Parent/Child ID Lists) entries, each parent and each child is represented as a tuple
containing a file ID and a link ID. The link source and target need not be stored explicitly
as they can be accessed through the File Table.

The File and Link Attribute Indices are red-black trees, and they map attributes (name–
value pairs as keys) to the Lists of File and Link IDs (Postings). We integrate the libavl rb-
tree library [31] to handle tree inserts and lookup operations.We have implemented our own
range query predicate index scan procedure that uses a queue to temporarily store
subsequent nodes to process. The procedure, first, finds the leftmost tree node that fits the
range, and then, traverses nodes post-order [13] until the rightmost node is found. Values for
all matching nodes are returned in an array of pointers to posting lists of file/link IDs.

File/link attribute names within the file/link tables and indices contain string
references to entries in the Attribute Name Table, a hash table using a commonplace hash
function. String attribute values refer to a common Value Strings Storage shared with the
indices. When any file or link attribute is added, the software determines whether the
attribute name exists in the attribute name table via a standard hash function, and
determines whether an attribute string value is present via an index lookup. Numeric
values (integer and floating point) are stored directly in the file attributes.

The FS interface module does not make any direct calls to functions within the MS/IM
module. The MS/IM data structures have a simple interface to facilitate modification to the
underlying storage scheme. For instance, trees should support inserts, delete and point/range
lookups. Lists of file/link IDs are iterated through as their means of access, as within QMDS
query processing, there is no need to search for one particular item within a list of IDs.
The attribute lists are accessed through a linear search interface; we have determined that
even up to 452 attributes, linear search is more efficient than glibc binary search.

Figure 4. The schema of the QMDS metadata store is optimised for attribute matching, neighbour
pattern matching and navigation.
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The list structures use the most complex memory allocation scheme. A chunk allocator
maintains a pool of available chunks of some number of sizes. The tail node of the list
grows by swapping for the next sized chunk when the current one has filled up, until it
reaches the maximum size. Then, it points to a new node starting with the smallest size,
and the process repeats for subsequent additions. Thus, each list has a linked list of
maximum sized chunks up to the tail node, which may or may not be a smaller sized
chunk. Attribute index lists with four or fewer elements and parent/child lists with two or
fewer are stored in the referring node structure within the index RB tree or attribute node
storage, respectively.

The design and careful implementation of metadata management is key to the QMDS
prototype. Unlike schemata for relational databases, which are tailored to each application,
QMDS maintains a single metadata store schema for all applications.

4.4 Query planning and processing

In this section, we discuss several scenarios by which we optimise the processing of
Quasar queries. For a first optimisation scenario, consider the match operator: single
Quasar match operators find the search attribute name and value in the file attribute index
tree. Once the attribute structure is located, the list of matching file IDs is returned. In the
case of match operators with multiple attributes, the query processor determines the best of
the following two strategies:

. multiple lists should be intersected (computation time O(n1 þ n2), where n1 and n2
are the lengths of lists)

. the initial list of file ids should be filtered by looking up attributes via the file table
(constant time lookup for each attribute, thus O(K £ n1)).

In order to optimise for the two strategies shown above, in cases in which there are
multiple attribute query terms for an individual query operation, the query planner orders
the terms from smallest to largest based on the number of nodes or edges that match the
particular attributes. This process enables the query processor to select the more efficient
of the two strategies when multiple terms are encountered in a query match operation.
In our current prototype implementation, both strategies and the query processor’s ability
to select which to perform are implemented only for attribute match query operations.

Filtering by attribute terms on navigation and neighbour match operators only use
strategy (2). However, the query planner can estimate the potential cost for those operators
based on information from the index reflecting node or edge counts of attribute query
terms, including range query predicates. Each operator is assigned a score. Then, the
operators might be reordered, based on a heuristic comparison function that takes the
scores as input. We use a simple product of one input with a configurable constant value
and have evaluated the performance of various constants. This behaviour is analogous to
query plan selection that occurs with the query optimisation of relational databases.
In addition, the query processor may merge ordered lists with either linear processing of
the lists as described in strategy (1) above, or binary search of the longer list by items in the
shorter list [6]. Statistics of the index maintained after every metadata ingest operation
determine which strategy to use.

5. Common workload patterns

In this section we briefly describe results from several workload analyses. Our primary
goal is to evaluate the effectiveness of the data structures chosen to organise and index
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QMDS metadata. In summary, our findings do not contradict the design choices made
for QMDS. Our approach to these analyses is to consider both static and dynamic analyses
of QMDS using the three example domains mentioned in Section 1, namely the text
analysis application (Lextrac), SDSS and OpenSpeedShop metadata. We give a summary
of the approach to our analyses, our observations and the implications of our findings.

5.1 Approach

We employ several static techniques to examine the properties of metadata stored in
QMDS. To determine the storage requirements per component data structure, we retrieve
the amount of storage used by each. The file system that stores files for each data structure
component (one file for each) can report the number of blocks stored per file. This
information is simply retrievable using the commonplace UNIX du utility.

Particular metadata item counts that we measure have been directly extracted from
QMDS Metadata Store files through a utility that memory-maps the files and crawls the
data structures. The QMDS software maintains these counts, as they are used in query
processing. Thus, they are easily reportable. The specific counts that we report are nodes,
edges, total attributes (name–value pairs), unique attributes, the number of nodes and
edges per unique attribute, the in- and out-degrees for the nodes within the graph structure
and the number of attributes on nodes or edges. We present the latter three categories of
counts as distributions. Because each unique attribute is found on multiple edges, the total
attribute counts are considerably larger.

Our approach to the dynamic analysis of the QMDS metadata store and query
processing uses traces of queries from the three workloads. The traces that we have
collected comprise of load memory operations specifically targeted to the address ranges
for the persistent data structures. Other load operations that target temporary structures
used in query processing are ignored. Each access in the trace has a sequence number and
the accessed memory address (in the QMDS process’s 64-bit virtual address space).
In addition, the accesses are grouped by distinct queries in the workload and by their target
data structure component.

We use the Valgrind [27] utility to handle the execution and to output every load
instruction to a temporary file. Next, the temporary file is processed: each load instruction
is kept if the address falls into one of the 13 ranges. Then, we write out the ID of the
component and the relative address for that particular access. We use an instrumented
version of QMDS, which outputs the base addresses for each of our memory-mapped files
and the boundaries of each individual query execution.

To address the issue of reducing storage usage, we quantify how the various data
structures that we have chosen might benefit from common lossless compression
techniques. Use of compression is well-established for building full-text indices, as such
indices can grow to become larger than the original data. We show how one might mitigate
such an issue through the use of two common lossless compression techniques: gzip and
bzip2.

5.2 Summary of measurements and observations

Our main findings are as follows (particular findings are designated in italics). Unless
specified, these are common, observed patterns across all the workloads.

Majority attributes – of all the metadata stored, a majority of storage is dedicated to
the node/edge attribute list structures.
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strings smallest – strings take up the least storage compared to other data structures.
Index and graph-degree distribution – the distributions of both the number of nodes or

edges to unique attributes follow a power-law distribution power. The same can be
observed for the in- and out-degrees of the metadata graph patterns.

Few attributes – pertain to the storage of attributes placed on nodes or edges
Tree percentage – with a small exception, the fraction of total accesses to tree data

structures is under 10%.
SDSS strings – for the SDSS workload, string accesses are in the 50–80% range. They

remain a significant fraction for the other workloads as well (but not to the same extent).
Super-hot pages – we found that there are on the order of 10 pages with access counts

several orders of magnitude larger than the next most frequently accessed pages.
Hot page distribution – the remainder of accesses to pages, irrespective of the

particular data structure, evenly spans from 10s to 10,000s.
Intra-page locality – the trees and list data structures have a high degree of locality

within a single page, i.e. once a page is loaded, there is a good chance that it will be
accessed very soon again repeatedly.

Random access – many access patterns are inter-page, and those appear to be random,
even within particular data structures.

Compressibility – gzip compression does not yield impressive compression ratios.
However, we observe quite a number of highly compressible data structures using bzip2
compression. Notably, the node and edge attributes compress by factors of at least 10 for
two of the workloads. In addition to the results shown in the table, we have measured that
the Lextrac 100K corpus metadata compressed from an original size of 5.4–750MB
overall: a compression ratio of 7.2.

5.3 Discussion

This discussion of the analyses focuses primarily on the various data structures employed
in QMDS. In addition, we discuss general systems configuration issues. We evaluate each
data structure based on the observations presented in Section 5.2.

Given our strings smallest finding, we surmise that a loss of locality in the Strings
component due to hashing for string deduplication is not significant. In addition, from our
SDSS strings finding, we realise the importance of string access in our workloads. Thus,
the String data structures are good candidates to be maintained in cache for lower latency
of access, as opposed to paging to and from secondary storage.

The File and Link Tables – arrays of pointers to the attributes for the File/Nodes or
Link/Edges – benefit from our intra-page locality finding. The use of an LRU cache
replacement policy should maintain that the single indirect block pointers (found at the
front of each of these structures) and one of the super-hot pages, will remain in cache,
given the frequency of access (observed in the hot page distribution finding).

The Attributes structures are simple array-based lists of the name–value paired
attributes. From the few attributes finding, we determine that the use of array-based lists
for attributes fits the common case of a small number of attributes on each node or edge.
Access to the Attribute component is subject to our random access and majority attributes
findings. Thus, we should least expect to find useful co-located data within larger sized
workloads, increasing a need for paging from storage suitable for low-latency random
access.

The Index and Adjacency Lists both use the same chunked-list structure. The use of
these structures is supported by the intra-page locality and random access findings,
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in which the random access is at the page level. There is no need to search these lists in the
current query processing model. The index and graph-degree distribution findings suggest
several properties for lists. First, because lists of the smallest sizes are stored directly in the
node metadata, no additional paging or pointer de-referencing is needed to access such
lists. These are the most frequently accessed and befittingly provide the highest efficiency.
Second, maintaining a pool of smaller chunks satisfies the mid-range sizes with moderate
frequency of access. Third, longer lists of larger chunks are accessed with the least
frequency, but should not require the greatest efficiency.

Finally, the RB trees exhibit intra-page locality of access in all traces studied except
the query trace from the Lextrac workload. We attribute the lack of overlapping data for
this workload to the fact that pages in the trees do not co-locate the necessary data.
Other tree data structures could be selected, but for this workload, given the favourable
performance we measure, a balanced binary tree appears to be reasonable. Our tree
percentage finding suggests that efficiency of a specific tree data structure will not
dominate overall query performance. There is no harm in the use of a particular tree
data structure that performs more efficiently than the other structures, but gains in
efficiency for the Index Tree component will not have a significant overall impact.
Moreover, from the hot page distribution finding, given that tree sizes of the Lextrac
800,000 workload are larger than those of 100,000 document corpus workload, the
upper levels of the trees have node structures (closer to the root of the tree) on particular
pages that are accessed more than the pages that contain the structures found on the
lower rungs. In contrast, for the smaller workload, it is more common to find the upper
and lower rungs within the span of the same page. The LRU cache policy should, in
theory, preserve these hotter pages in memory, if the lower rungs of the tree must be
swapped in and out of storage.

One key finding that might influence system and hardware configuration for QMDS is
our random access finding. Therefore, the common practice of pre-fetching data from
storage should not be beneficial to QMDS metadata when the memory available for buffer
cache is limited. In addition, the small working-set finding suggests that pre-fetching
would not be beneficial because, in all likelihood, whatever additional data is pre-fetched,
based on the accesses in the initial query within a given workload, will not be accessed by
a subsequent query.

6. Evaluation

In this section, we report on results of ingest and query experiments using the Lextrac
application. In its original configuration, Lextrac writes document metadata to
conventional files in initial analysis phases, followed by a phase that writes the data to
a searchable SQL database. We use PostgreSQL 4.3 in our experiments, and refer to that
configuration as FS þ DB. To produce a scalable ingest, we have configured PostgreSQL
with a schema specific to the Lextrac metadata structure and create indices on several of
the columns. To properly generate the graph structure, the ingest application must leverage
the index and query functionality of the metadata storage system (the SQL database), so
incremental indexing is important.

We extended Lextrac so it supports the QMDS storage interface in addition to the
POSIX I/O interface and can take full advantage of the QMDS data model. This is an
example in which an application (i.e. Lextrac) can offload its metadata management needs
to QMDS. In the second configuration (labelled ‘QMDS’), we have replaced the file
system and SQL database with our QMDS prototype (with its backing store also acting as
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a store for file data). In this configuration, the final SQL database building phase is
unnecessary.

Our evaluation was conducted on a Dual-Core AMD Opteron 2.8GHz, 4 socket server
with 32GB main memory running on Linux kernel version 2.6.18 with a 250GB SATA
drive configured with an ext3 file system, shared by all configurations for file and metadata
storage. For the FS þ DB/SQL configurations discussed in this section, we have configured
PostgreSQL with a schema specific to the Lextrac application. We create indices on all
columns within this schema to provide suitable SQL query performance. (Experiments with
PostgreSQL without indices have resulted in performance so uncompetitive that a
comparison would best be characterised as a ‘straw-man’.) In addition, we run the database
without transactions or isolation.

6.1 Ingest

Table 1 shows the results of our document ingest experiments in which the Lextrac
application processes a Reuters News corpus containing 800,000 documents (the full
corpus available contains very slightly more). The application configured to write to
QMDS completes in close to 2.4 times faster than the FS þ DB configuration.

While the storage space required for QMDS metadata is somewhat larger, it does not
need the additional space overhead for temporary files to write metadata prior to writing
that metadata into PostgreSQL. Moreover, we are aware of instances in which space might
be better used within QMDS metadata storage. As we run on 64-bit architectures, we store
64-bit pointers within our data structures. Much space savings should be possible though
storage of smaller, relative addresses. We consider this an implementation issue that can
be resolved as future work. In addition, we have determined that many of our data
structures are compressible using standard techniques.

We have unsuccessfully attempted to implement the graph data model using an SQL
database. We configured PostgreSQL with a general schema for the graph data model
consisting of four tables: files, links, file attributes and link attributes, in contrast to the
specific schema that we created for Lextrac. Standard indices were configured for all
columns within the tables. However, the ingest times were not able to scale. The largest size
attempted with this configuration was 20,000 documents in the Lextrac reuters corpus, and
its processing takes over 24 h. In contrast, the PostgreSQL schema configured specifically
for Lextrac takes about a half-hour for processing with the same sized workload.

In another attempt to use common database software to represent and store our graph
data model, we configured our prototype to use BerkeleyDB as a storage layer for
metadata and indices. The purpose of constructing a BerkeleyDB implementation was to
evaluate the benefit of using a highly optimised library with support for out-of-core data
structures as the underlying QMDS access mechanism. While the structures appeared to

Table 1. Properties of Lextrac metadata storage (QMDS and FS þ DB), 800,000 Reuters
documents.

System QMFS FS þ DB

Ingest time (h) 23.78 58.95
Metadata size (GB) 43 30
Temporary size (GB) 0 14

Note: The graph size is approximately 100 million nodes and 350 million edges, while the original text data size is
3.8GB. Thus, the metadata size is roughly an order of magnitude larger.
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exhibit scalability for small number of documents, our data ingest experiment did not
complete after 36 h of processing with a 10,000 document workload. These results
reinforce our position to develop a custom metadata store and index manager for a graph
data model.

We briefly consider the implementation of QMDS using an x-attr-only data model
(no links), as discussed in Section 3.2.1. We evaluate this alternative using a modified
Lextrac ingest application workload. This modified application version encodes all
metadata pertaining to entities and co-occurrences, including the nodes, edges and
attributes used in QMDS, as attributes attached to the document files. We use the Quasar
interface for attribute access, but we only use a subset of the language features that pertain
to attributes attached to files. Overall, we observe a speedup factor of close to two for the
use of links and attributes for Lextrac ingest over the use of attributes only.

6.2 Query experiments

The query study uses query templates Q0–Q4 representative of queries that would be
applied to the document set. Below we describe these query templates with examples that
follow Figure 1. Our goal in selecting these query scenarios is to stress both searches for
files and semantic querying capabilities of the metadata managed by QMDS: of the query
templates presented here, Q0–Q1 return files and Q2–Q4 return metadata items.

Q0 Find all documents that are linked to a particular entity. Example: find all
documents linked to a place ‘New York.’
Q1 Find all documents that link to both entities X and Y that have a particular
proximity score between them. Example: find all documents that link to a place
‘New York’ and organisation ‘NYSE’ with co-occurrence of proximity score ‘25’.
Q2 Find all entities related to entity X in documents with names in a particular range
and whose proximity to entity X has a score of Y. Example: find entities co-occurring
with ‘New York’ in documents with names in the range ‘N20090101’–‘N20090331’
whose proximity score with ‘New York’ is ‘25’.
Q3 Find all proximity scores within a particular range relating two particular entities
in documents with names in a particular range. Example: find the proximity scores in
the range of ‘20’–‘30’ relating ‘New York’ and ‘NYSE’ in documents with names in
the range of ‘N20090101’–‘N20090331.’
Q4 Find ALL proximity scores (no range constraint unlike Q3) relating to two
particular entities in documents with names in a particular range. Example: find the
proximity scores relating ‘New York’ and ‘NYSE’ in documents with names in the
range of ‘N20090101’–‘N20090331.’

An example of a Q0 query in Quasar:

MATCH SemanticType ¼ ‘Location’;
SemanticValue ¼ ‘New York’
BACKNAV MATCH FileType ¼ ‘NewsDocument’
OUTPUT FileName

A more complex Q1 query example:

MATCH SemanticType ¼ ‘Location’;
SemanticValue ¼ ‘New York’
BACKNAV MATCH Proximity ¼ 25
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CHILD { MATCH SemanticType ¼ ‘organisation’;
SemanticValue ¼ ‘NYSE’ }
BACKNAV MATCH FileType ¼ NewsDocument
OUTPUT FileName

All query classes contain SQL queries and corresponding Quasar queries with the
same general language-specific clauses. For each SQL query, we select literal values for
the WHERE clauses and then use the same values for the corresponding Quasar query.

For the query workload experiment Q0, literal query terms (the entity values) were
selected from subsets of the terms appearing in the data. The entire collection of terms was
sorted by frequency of occurrence in the document set, and then the subset was created by
selecting terms from the sorted list according to either an arithmetic or geometric series.
The arithmetic series favours terms with low document frequencies (as are a majority of
entities), while the geometric series samples from most frequent to least. Our preliminary
work with queries indicated that the more frequent terms resulted in longer query times
than the infrequent terms, due to processing of long lists of results. Thus, we developed
this process to provide a meaningful variety of terms to use in the queries, as simply
selecting the query term at random should favouir the majority of entity-value terms,
which correspond to relatively few documents. Specifically, our query test suite for Q0
selects entity values based on combining the arithmetic and geometric series, split evenly
between each.

For Q1–Q4, We follow a different procedure to generate their query terms, which
might be one or two entity values, a proximity score, range of scores or range of
documents. For each query, we randomly choose a document co-occurrence, which is a
four-tuple consisting of a document, a pair of entities and the proximity score for the pair.
This procedure guarantees us at least one valid result.

These experiments were run with the 800,000 document corpus used in the ingest
experiments. We only used queries that have at least one result returned in the
measurements discussed below. QMDS answers empty-result queries 10–40 times faster
than PostgreSQL, and this we attribute to an optimisation we made in the QMDS query
planner to verify all attribute search terms in the index prior to processing the remainder of
the query.

Figure 5 shows the mean query response times for each class4. Each distinct query was
executed 10 times, and we measured 3% relative standard deviation across all classes of
queries. However, the variance for each class is due to different processing times from the
use of a variety of literal values within each class. We have written in the very large values
that would not otherwise fit into the chart with a reasonable y-axis scale to fit most of the
values.

For our simple class of query, Q0, QMDS answers the queries four times faster on
average than PostgreSQL. We attribute the QMDS speedup for Q0 to the use of the
navigation operation over the relational join operations needed to combine tables and
arrive at the relevant results.

For Q1, more complex than Q0 in terms of query operations (joins in SQL), also
locates document files. QMDS answers the query on average 200 times faster than
PostgreSQL. We suspect that this class of query is particularly tough for the SQL query
optimiser due to a relatively very large table of proximity scores, in which there are tens of
millions of rows. Indexing this table can only help a little because there are fairly few
(about 50) individual score values in the index. The database then must scan all the
matching values and join those with the other tables. In contrast, the QMDS query
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processor simply navigates to the entries corresponding to nodes in the graph with the
matching values, producing the observed speedup.

In the other three cases, Q2–Q4, the queries run on average about five times faster
using QMDS than using PostgreSQL. These are semantic queries that return particular
document metadata: entity values or entity proximity scores. For these cases, PostgreSQL
leverages the document ranges to produce better query plans unlike Q1 with no doc range,
but as with Q0, the SQL joins do not perform as well as QMDS navigation. In summary, as
query complexity increases in terms of the number of query operations, QMDS query
performance remains roughly constant, while PostgreSQL must spend additional time
processing the queries.

The error bars in the figures show that both systems have some degree of variance to its
response time. Results for Q0 in both systems can be directly attributed to the number of
documents that match the requested entity in each query, subsequently corresponding to
the number of results returned. For Q1, there are two entities involved in the query, so the
sum of the number of documents corresponding to each entity is correlated with an upper
bound to the response time, while there is a constant lower bound. The error bar Q2 for
PostgreSQL is shorter than all the others, and we attribute this to nature of the SQL query
and the data. The query planner leverages a small number of documents in the specified
range, and unlike the other complex queries, there is only one entity term to match,
yielding a less expensive join in most cases.

6.3 RDF-3X queries

To consider the performance of an RDF SPARQL engine we have selected RDF3X and
converted the Lextrac relational tables of the 40,000 document corpus to RDF triples.
RDF3X can index the 22 million triples contained in that corpus in about 10min.
By extrapolation, we would expect to find approximately 440 million triples to represent
the metadata for a 800,000 document workload. Note that this value is significantly
smaller than what we would expect for converting the metadata constructs from the
QMDS graph data model to triples, as described in Section 3.2.2. For the largest Lextrac
workload we consider, the total number is over a billion triples.
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Figure 5. Mean query times for our five classes of queries comparing QMDS (left bars) with
PostgreSQL (right bars).
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Several factors account for the discrepancy noted above. First, using a Lextrac-specific
ontology saves spaces over a general QMDS graph data model ontology. The general
ontology must convert some application ‘type’ identification attributes to triples, which
can be eliminated when using an application-specific ontology. Also, the Lextrac-
application specific schema does not maintain a sequence number attribute, which is used
to maintain the provenance of which entity is selected first within a co-occurrence. This
information in FS þ DE is present in the flat files written by the application for temporary
metadata storage, but not needed for queries (thus omitted from the searchable relational
and RDF databases). We expect to find a couple hundred million of these attributes within
the largest Lextrac workload.

RDF3X does not support range queries; thus, we could only faithfully use the Q0 and
Q1 query classes. In attempt to support Q2 and Q3 for a simple comparison, we use sets of
documents that would otherwise appear in the range predicates. We observe the following
times with some sample queries: Q0 – 7ms, Q1 – 22–24 s, Q2 – 310–340ms, Q3 – 42–
44ms. These values are all significantly slower than PostgreSQL running on the same
workload, which, in turn, exhibits slower on-average performance than QMDS. Note that
these response times are measured using a 20 times smaller Lextrac workload than that
used in the comparison between QMDS and PostgreSQL. Similar to what we observed in
the QMDS comparison with PostgreSQL, we attribute the Q1 response time to our
understanding that matching the proximity score is the most time consuming aspect of this
particular query class. There are a large number of rows/triples for each co-occurrence
given a relatively small range of score values (2–50).

7. Conclusion

In this paper, we present our rationale for managing user-defined metadata in a file system
MDS using a graph data model. We describe the data model, the query language and the
metadata storage design of our prototype system, QMDS. Using a text document data
mining application, we evaluate our prototype system’s performance on ingest and query
workloads.

Acknowledgements

This work was supported in part by the Department of Energy under Contract DE-AC52-
07NA27344, the Institute for Scalable Scientific Data Management (ISSDM), and the sponsors of the
UCSC Systems Research Lab (SRL). We thank Ethan L. Miller for his advice during the early stages
of the work, John Compton of LLNL for his guidance in the design of the query templates, and our
colleagues at LLNL and UCSC for their feedback.

Notes

1. This example comes from our workload evaluation application (see Section 6), in which text
documents are annotated with semantic entities found within. We represent the semantic entities
as directories linked from the file containing the text, and label such directories as ‘nodes’, hence
the use of the ‘NodeType’ attribute.

2. In PVFS, file metadata can be distributed but directories and file names are managed on a single
host.

3. Or zero-byte files without links.
4. These measurements were made on ‘warm’ systems, both with QMDS and PostgreSQL.
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