Extending modal logic

- What does it mean to “extend” modal logic?
 - Expressive extensions (increasing the expressivity of the language)
 - Axiomatic extensions (restricting the class of frames)
 - Signature extensions (changing the type of structures)

- The challenge: to preserve the good properties of modal logic.
1. Expressive extensions

- We can make the language more expressive. Examples:
 - adding counting modalities,
 - guarded fragment,
 - fixed point operators (modal mu-calculus)

- Trade-off between expressive power and complexity/decidability.
1. Expressive extensions

- One explanation for the good computational behavior of ML:
 - ML is bisimulation invariant, and hence has the tree model property (satisfiability = satisfiability on trees)
 - ML is contained in Monadic Second Order Logic (MSO)
 - MSO satisfiability is decidable on trees (Rabin), in fact even on structures of bounded treewidth (Courcelle).

- This suggests some extensions of ML:
 - Modal mu-calculus is bisimulation invariant fragment of MSO.
 - Guarded fragment has small treewidth model property.
1. Expressive extensions

- For many extensions of ML, analogues of the usual results (axiomatizations, decidability / complexity, frame definability, etc.) have been mapped out.

- There are also some results of a more general nature. Example:

 - Modal Lindström Theorem (Van Benthem ‘07): Every proper extension of the modal language lacks either Compactness or bisimulation invariance.
2. Axiomatic extensions

- Often in applications of modal logic, we want to reason about a restricted class of structures, e.g,
 - linear orders (flows of line),
 - finite trees (XML documents or linguistic parse trees),
 - equivalence relations (epistemic logic)

- This means adding axioms to the logic.

- The good properties of the basic modal logic may or may not survive.
2. Axiomatic extensions

- **Theorem (Sahlqvist):** If a frame class K is definable by Sahlqvist formulas, then a complete axiomatization of the modal logic of K is obtained by adding these formulas as axioms to the basic modal logic.

- **Theorem (Bull-Fine-Hemaspaandra):** For every class K of reflexive transitive linear frames, the modal logic of K is finitely axiomatizable, has the finite model property, and is coNP-complete.
We will discuss *frame definability* at length: which properties of frames are definable by modal formulas?

Theorem: for frame classes K defined by universal Horn conditions $\forall x_1...x_n(\varphi_1 \land ... \land \varphi_k \rightarrow \psi)$ the following are equivalent:

1. K is modally definable
2. K is closed under bounded morphic images and disjoint unions
3. The Horn conditions can be written so that their left hand sides are tree-shaped.
4. K is definable by Sahlqvist formulas
Frame definability

- Transitivity $\forall xyz(Rxy \land Ryz \rightarrow Rxz)$ is modally definable:

 \[\begin{array}{c}
 Z \\
 y \rightarrow Rxz \\
 x
 \end{array} \]

- Anti-symmetry $\forall xy(Rxy \land Ryx \rightarrow x=y)$ is not modally definable:

 \[\begin{array}{c}
 y \\
 \leftrightarrow x
 \end{array} \rightarrow x=y \]
3. Signature extensions

- Sometimes, we want to describe more general type of mathematical structures. Examples:
 - more than one modality ("poly-modal" as opposed to "uni-modal")
 - k-ary modalities for $k>1$ (with $k+1$-ary accessibility relations)
 - topological spaces
- Many results in modal logic generalize.
- Occasionally, there can be some surprising differences...
3. Signature extensions

- **Frame satisfiability problem**: given a modal formula, is there a frame on which the formula is valid?

- **Decidable** for uni-modal formula (in fact coNP-complete).
 - If a modal formula is valid on any frame then it is valid on a frame with only one world (Makinson's theorem).
 - Easy to test whether a given frame validates a modal formula.

- **Highly undecidable** for poly-modal formulas (in fact as undecidable as full second-order logic).
3. Signature extensions

- Proof of Makinson’s theorem
 - Let F_{irr} be the irreflexive one world frame and F_{refl} the reflexive one.
 - Suppose φ is valid on some frame F.
 - If F contains a world without successors, then F_{irr} is (isomorphic to) a generated subframe of φ, hence φ is valid on F_{irr}.
 - If F contains no world without successors, then F_{refl} is a bounded morphic image of F, hence φ is valid on F_{refl}.

3. Signature extensions

- Co-algebras provide a framework for studying signature extensions.
Co-algebras

- Recall that a Kripke model is a structure of the form

\[M = (D, R, V) \] with \(R \subseteq D \times D \) and \(V : D \to \wp(\text{PROP}) \).

- Equivalently, \(M = (D, f) \) where \(f : D \to \wp(D) \times \wp(\text{PROP}) \).

- Generalizing from this, let \(\tau(X) \) be any term generated by the following inductive definition:

\[\tau(X) ::= X \mid A \mid \tau + \tau \mid \tau \times \tau \mid \tau^A \mid \wp(\tau) \] with \(A \) any set (e.g., PROP).

- Each such \(\tau \) gives rise to a functor on Set, called a Kripke polynomial functor (KPF).

- A “\(\tau \)-coalgebra” is a pair \(M = (D, f) \) with \(f : D \to \tau(D) \).
Co-algebras

- Kripke models are just co-algebras of a particular functor.
- Other examples: ternary Kripke models, bi-modal Kripke models, ..
- Further generalizations of the class of KPFs are possible, covering also, e.g., neighborhood models.
- With each KPF τ we can associate a “basic modal language”.
- Various results for modal logic (e.g., decidability, finite axiomatization, Goldblatt-Thomason theorem) generalize to arbitrary KPFs. [Rößiger; Jacobs; Kurz & Rosicky]
Topological semantics of ML

- We will discuss in some detail the topological semantics of ML.
 - Take any topological space, say the real line
 - Interpret the \Diamond modality as closure: the closure of a set of real number is obtained by adding limit points.
 - For instance if $X=\{\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots\}$, then $\Diamond X = X \cup \{0\}$.
Cross-overs

- There are many cross inter-relations between the three types of extensions of ML. For example,
Outline of the course

- **Tuesday**: expressive extensions
 - Extended modal languages (mu-calculus, guarded fragment, ...)
 - Characterizing languages (bisimulations, Lindström theorems, ...)

- **Wednesday**: axiomatic extensions
 - Frame definability

- **Thursday**: signature extensions
 - Case study: topological semantics

- **Friday**: mixing it all together
 - Properties of topological spaces definable in extended modal languages and/or special requests.