Topological semantics of modal logic

Balder ten Cate, Tadeusz Litak

ESSLLI 2008, Hamburg
Outline

1. Introduction to topological semantics
2. Hybrid language on topological spaces
Best known example of a topological space: the real line.

Consider the set $S = \{1, \frac{1}{2}, \frac{1}{4}, \ldots \}$.

- S approximates 0 arbitrarily closely, but $0 \not\in S$.
- Topologists say “S is not closed”.

Every set X has a smallest closed superset, its closure $\mathcal{C}(X)$.

- In the example, $\mathcal{C}(S) = S \cup \{0\}$.
Best known example of a topological space: the real line.

Consider the set \(S = \{ 1, \frac{1}{2}, \frac{1}{4}, \ldots \} \).
- \(S \) approximates 0 arbitrarily closely, but 0 \(\not\in S \).
- Topologists say “\(S \) is not closed”.

Every set \(X \) has a smallest closed superset, its closure \(\mathcal{C}(X) \).
- In the example, \(\mathcal{C}(S) = S \cup \{0\} \).
Topological spaces: an example

- Best known example of a topological space: the real line.

- Consider the set $S = \{1, \frac{1}{2}, \frac{1}{4}, \ldots \}$.
 - S approximates 0 arbitrarily closely, but $0 \notin S$.
 - Topologists say “S is not closed”.

- Every set X has a smallest closed superset, its closure $\mathcal{C}(X)$.
 - In the example, $\mathcal{C}(S) = S \cup \{0\}$.
Topological spaces: an example

- Best known example of a topological space: the real line.

- Consider the set $S = \{1, \frac{1}{2}, \frac{1}{4}, \ldots \}$.
 - S approximates 0 arbitrarily closely, but $0 \not\in S$.
 - Topologists say “S is not closed”.

- Every set X has a smallest closed superset, its closure $\mathcal{C}(X)$.
 - In the example, $\mathcal{C}(S) = S \cup \{0\}$.
Topological spaces: an example

- Best known example of a topological space: the real line.

- Consider the set $S = \{1, \frac{1}{2}, \frac{1}{4}, \ldots\}$.
 - S approximates 0 arbitrarily closely, but $0 \notin S$.
 - Topologists say “S is not closed”.

- Every set X has a smallest closed superset, its closure $\mathcal{C}(X)$.
 - In the example, $\mathcal{C}(S) = S \cup \{0\}$.

Topological spaces: an example

- Best known example of a topological space: the real line.

- Consider the set \(S = \{1, \frac{1}{2}, \frac{1}{4}, \ldots\} \).
 - \(S \) approximates 0 arbitrarily closely, but 0 \(\not\in S \).
 - Topologists say “\(S \) is not closed”.

- Every set \(X \) has a smallest closed superset, its closure \(\mathcal{C}(X) \).
 - In the example, \(\mathcal{C}(S) = S \cup \{0\} \).
Some facts about c:

1. $X \subseteq c(X)$
2. $c(c(X)) = c(X)$
3. $c(\emptyset) = \emptyset$
4. $c(X \cup Y) = c(X) \cup c(Y)$
Some facts about \mathcal{C}:

1. $X \subseteq \mathcal{C}(X)$
2. $\mathcal{C}(\mathcal{C}(X)) = \mathcal{C}(X)$
3. $\mathcal{C}(\emptyset) = \emptyset$
4. $\mathcal{C}(X \cup Y) = \mathcal{C}(X) \cup \mathcal{C}(Y)$
Some facts about \mathcal{C}:

(1) $X \subseteq \mathcal{C}(X)$

(2) $\mathcal{C}(\mathcal{C}(X)) = \mathcal{C}(X)$

(3) $\mathcal{C}(\emptyset) = \emptyset$

(4) $\mathcal{C}(X \cup Y) = \mathcal{C}(X) \cup \mathcal{C}(Y)$
Some facts about \mathcal{C}:

1. $X \subseteq \mathcal{C}(X)$
2. $\mathcal{C}(\mathcal{C}(X)) = \mathcal{C}(X)$
3. $\mathcal{C}(\emptyset) = \emptyset$
4. $\mathcal{C}(X \cup Y) = \mathcal{C}(X) \cup \mathcal{C}(Y)$
Some facts about \mathcal{C}:

1. $X \subseteq \mathcal{C}(X)$
2. $\mathcal{C}(\mathcal{C}(X)) = \mathcal{C}(X)$
3. $\mathcal{C}() = \emptyset$
4. $\mathcal{C}(X \cup Y) = \mathcal{C}(X) \cup \mathcal{C}(Y)$

Proof of (4)

Suppose $X \cup Y$ approximates r.

By the Pigeon Hole Principle, either X or Y approximates r.
Some facts about \mathcal{C}:

1. $X \subseteq \mathcal{C}(X)$
2. $\mathcal{C}(\mathcal{C}(X)) = \mathcal{C}(X)$
3. $\mathcal{C}(\emptyset) = \emptyset$
4. $\mathcal{C}(X \cup Y) = \mathcal{C}(X) \cup \mathcal{C}(Y)$
Some facts about \(\mathcal{C} \):

1. \(X \subseteq \mathcal{C}(X) \)
2. \(\mathcal{C}(\mathcal{C}(X)) = \mathcal{C}(X) \)
3. \(\mathcal{C}(\emptyset) = \emptyset \)
4. \(\mathcal{C}(X \cup Y) = \mathcal{C}(X) \cup \mathcal{C}(Y) \)

Topological interpretation of modal operators

- Proposition letters denote subsets of \(\mathbb{R} \).
- \(\lor, \land \) and \(\neg \) express union, intersection and complement.
- \(\Diamond \) is interpreted as closure (and \(\Box \) as interior).
Some facts about \mathcal{C}:

1. $X \subseteq \mathcal{C}(X)$ \hspace{1cm} p \rightarrow \Diamond p$
2. $\mathcal{C}(\mathcal{C}(X)) = \mathcal{C}(X)$ \hspace{1cm} \Diamond \Diamond p \leftrightarrow \Diamond p$
3. $\mathcal{C}([],) = []$ \hspace{1cm} \Diamond \bot \leftrightarrow \bot$
4. $\mathcal{C}(X \cup Y) = \mathcal{C}(X) \cup \mathcal{C}(Y)$ \hspace{1cm} \Diamond (p \lor q) \leftrightarrow \Diamond p \lor \Diamond q$

Topological interpretation of modal operators

- Proposition letters denote subsets of \mathbb{R}.
- \lor, \land and \neg express union, intersection and complement.
- \Diamond is interpreted as closure (and \Box as interior).
Some facts about \mathcal{C}:

(1) $X \subseteq \mathcal{C}(X)$ \quad p \rightarrow \lozenge p
(2) $\mathcal{C}(\mathcal{C}(X)) = \mathcal{C}(X)$ \quad \lozenge \lozenge p \iff \lozenge p
(3) $\mathcal{C}(\emptyset) = \emptyset$ \quad \lozenge \bot \iff \bot
(4) $\mathcal{C}(X \cup Y) = \mathcal{C}(X) \cup \mathcal{C}(Y)$ \quad \lozenge(p \lor q) \iff \lozenge p \lor \lozenge q

Topological interpretation of modal operators

- Proposition letters denote subsets of \mathbb{R}.
- \lor, \land and \neg express union, intersection and complement.
- \lozenge is interpreted as closure (and \Box as interior).

The set of modal formulas valid in this interpretation is called the modal logic of \mathbb{R}.
Some facts about \mathcal{C}:

1. $X \subseteq \mathcal{C}(X)$
2. $\mathcal{C}(\mathcal{C}(X)) = \mathcal{C}(X)$
3. $\mathcal{C}(\emptyset) = \emptyset$
4. $\mathcal{C}(X \cup Y) = \mathcal{C}(X) \cup \mathcal{C}(Y)$

$p \rightarrow \diamond p$

$\diamond \diamond p \leftrightarrow \diamond p$

$\diamond \bot \leftrightarrow \bot$

$\diamond (p \vee q) \leftrightarrow \diamond p \vee \diamond q$

Topological interpretation of modal operators

- Proposition letters denote subsets of \mathbb{R}.
- \vee, \wedge and \neg express union, intersection and complement.
- \diamond is interpreted as closure (and \Box as interior).

The set of modal formulas valid in this interpretation is called the modal logic of \mathbb{R}.

This interpretation works on any topological space, not only \mathbb{R}!
A topological space consists of a set \(D \) (the domain), plus a set of subsets \(C \subset \wp(D) \) (the closed sets), such that

- \(\emptyset, X \in C \)
- If \(X, Y \in C \) then \(X \cup Y \in C \)
 (holds for \(\mathbb{R} \) by the pigeon hole principle, as we saw)
- \(C \) is closed under intersection: for all \(A \subseteq C \), \(\bigcap A \in C \)
 (guarantees that every set has a unique closure).

The closure of a set \(X \) is the smallest \(X' \in C \) with \(X \subseteq X' \).
Equivalently, \(\mathcal{C}(X) = \bigcap \{ X' \in C \mid X \subseteq X' \} \).
Fact 1: Topological spaces generalize S4-frames (a.k.a. quasi-ordered sets):

- Every S4-frame defines a topological space over the same domain. The closed sets are the sets closed under taking predecessors.
- Not every topological space is representable by an S4-frame this way. Those that are, are called Alexandroff spaces.

Fact 2: Every topological space gives rise to a normal modal logic.
Fact 1: Topological spaces generalize S4-frames (a.k.a. quasi-ordered sets):

- Every S4-frame defines a topological space over the same domain. The closed sets are the sets closed under taking predecessors.
- Not every topological space is representable by an S4-frame this way. Those that are, are called Alexandroff spaces.

Fact 2: Every topological space gives rise to a normal modal logic.
Fact 1: Topological spaces generalize S4-frames (a.k.a. quasi-ordered sets):

- Every S4-frame defines a topological space over the same domain. The closed sets are the sets closed under taking predecessors.
- Not every topological space is representable by an S4-frame this way. Those that are, are called Alexandroff spaces.

Fact 2: Every topological space gives rise to a normal modal logic.
Fact 1: Topological spaces generalize S4-frames (a.k.a. quasi-ordered sets):

- Every S4-frame defines a topological space over the same domain. The closed sets are the sets closed under taking predecessors.
- Not every topological space is representable by an S4-frame this way. Those that are, are called Alexandroff spaces.

Fact 2: Every topological space gives rise to a normal modal logic.
Theorem (McKinsey-Tarski)

S4 is the modal logic of

- \(\mathbb{R} \),
- any other metric, separable, dense-in-itself space,
- all topological spaces.

A beautiful result, but also disappointing:

- Modal logic is too weak to see interesting properties of \(\mathbb{R} \).
- Richer languages needed to capture interesting topological reasoning.
Theorem (McKinsey-Tarski)

S4 is the modal logic of

- \mathbb{R},
- any other metric, separable, dense-in-itself space,
- all topological spaces.

A beautiful result, but also disappointing:

- Modal logic is too weak to see interesting properties of \mathbb{R}.
- Richer languages needed to capture interesting topological reasoning.
Theorem (McKinsey-Tarski)

S4 is the modal logic of

- \mathbb{R},
- any other metric, separable, dense-in-itself space,
- all topological spaces.

A beautiful result, but also disappointing:

- Modal logic is too weak to see interesting properties of \mathbb{R}.
- Richer languages needed to capture interesting topological reasoning.
Theorem (McKinsey-Tarski)

S4 is the modal logic of
- \mathbb{R},
- any other metric, separable, dense-in-itself space,
- all topological spaces.

A **beautiful result**, but also **disappointing**:
- Modal logic is too weak to see interesting properties of \mathbb{R}.
- Richer languages needed to capture interesting topological reasoning.
Outline

1. Introduction to topological semantics

2. Hybrid language on topological spaces
Let's now consider the hybrid language $\mathcal{H}(E)$, which has nominals and the global modality.

$$\phi ::= p \mid i \mid \neg \phi \mid \phi \lor \psi \mid \lozenge \phi \mid E\phi$$

- Nominals are proposition letters denoting singleton sets.
- Global modality allows us to say that a formula holds somewhere.

Shorthands:

$$\Box \phi \text{ for } \neg \lozenge \neg \phi \quad A\phi \text{ for } \neg E \neg \phi \quad @i\phi \text{ for } E (i \land \phi)$$

A formula is pure if it contains no proposition letters (nominals allowed).
Let’s now consider the hybrid language $\mathcal{H}(E)$, which has nominals and the global modality.

$$\phi ::= p \mid i \mid \neg\phi \mid \phi \lor \psi \mid \Diamond\phi \mid \mathbf{E}\phi$$

- **Nominals** are proposition letters denoting singleton sets.
- **Global modality** allows us to say that a formula holds somewhere.

Shorthands:

- $\Box\phi$ for $\neg\Diamond\neg\phi$
- $A\phi$ for $\neg\mathbf{E}\neg\phi$
- $@i\phi$ for $\mathbf{E}(i \land \phi)$

A formula is **pure** if it contains no proposition letters (nominals allowed).
Let’s now consider the hybrid language $\mathcal{H}(E)$, which has nominals and the global modality.

$$\phi ::= p \mid i \mid \neg \phi \mid \phi \lor \psi \mid \diamond \phi \mid E\phi$$

- **Nominals** are proposition letters denoting singleton sets.
- **Global modality** allows us to say that a formula holds somewhere.

Shorthands:
- $\Box \phi$ for $\neg \diamond \neg \phi$
- $A\phi$ for $\neg E \neg \phi$
- $@i \phi$ for $E(i \land \phi)$

A formula is **pure** if it contains no proposition letters (nominals allowed).
Let’s now consider the hybrid language $\mathcal{H}(E)$, which has nominals and the global modality.

$$\phi ::= p | i | \neg \phi | \phi \lor \psi | \lozenge \phi | E\phi$$

- **Nominals** are proposition letters denoting singleton sets.
- **Global modality** allows us to say that a formula holds somewhere.

Shorthands:

- $\Box \phi$ for $\neg \lozenge \neg \phi$
- $A\phi$ for $\neg E \neg \phi$
- $@_i \phi$ for $E(i \land \phi)$

A formula is pure if it contains no proposition letters (nominals allowed).
Let’s now consider the hybrid language $\mathcal{H}(E)$, which has nominals and the global modality.

$$\phi ::= p \mid i \mid \neg \phi \mid \phi \lor \psi \mid \Box \phi \mid E \phi$$

- **Nominals** are proposition letters denoting singleton sets.
- **Global modality** allows us to say that a formula holds somewhere.

Shorthands:

- $\Box \phi$ for $\neg \Diamond \neg \phi$
- $A \phi$ for $\neg E \neg \phi$
- $@_i \phi$ for $E(i \land \phi)$

A formula is **pure** if it contains no proposition letters (nominals allowed).
Example of a hybrid formula valid on \mathbb{R}:

$$\Diamond i \leftrightarrow i$$

It says: “the closure of any singleton set is the set itself”, or, equivalently, “every singleton set is closed”.

Not every topological space has this property (which is known as T_1-separation).

Corollary

The hybrid logic of \mathbb{R} is not the hybrid logic of all spaces.
T_1 is definable with nominals

Example of a hybrid formula valid on \mathbb{R}:

$\Diamond i \leftrightarrow i$

It says: “the closure of any singleton set is the set itself”, or, equivalently, “every singleton set is closed”.

Not every topological space has this property (which is known as T_1-separation).

Corollary

The hybrid logic of \mathbb{R} is not the hybrid logic of all spaces.
Example of a hybrid formula valid on \mathbb{R}:

\[\lozenge i \leftrightarrow i \]

It says: “the closure of any singleton set is the set itself”, or, equivalently, “every singleton set is closed”.

Not every topological space has this property (which is known as T_1-separation).

Corollary

The hybrid logic of \mathbb{R} is not the hybrid logic of all spaces.
Example of a hybrid formula valid on \mathbb{R}:

$\Diamond i \leftrightarrow i$

It says: “the closure of any singleton set is the set itself”, or, equivalently, “every singleton set is closed”.

Not every topological space has this property (which is known as T_1-separation).

Corollary

The hybrid logic of \mathbb{R} is not the hybrid logic of all spaces.