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SUMMARY

Whilst meta-analysis is becoming a more commonplace statistical technique, Bayesian inference in meta-
analysis requires complex computational techniques to be routinely applied. We consider simple approxi-
mations for the first and second moments of the parameters of a Bayesian random effects model for
meta-analysis. These computationally inexpensive methods are based on simple analytical formulae that
provide an efficient tool for a qualitative analysis and a quick numerical estimation of posterior quantities.
They are shown to lead to sensible approximations in two examples of meta-analyses and to be in broad
agreement with the more computationally intensive Gibbs sampling. ( 1998 John Wiley & Sons, Ltd.

Statist. Med., 17, 201—218 (1998)

1. INTRODUCTION

Over the last decade meta-analysis has become an accepted part of medical research.1 In wanting
to summarize evidence from a number of studies of the same type of design, that is, randomized
controlled trials, cohort studies, case-control studies, a variety of statistical methods have been
proposed.1 Whilst not all of the methods proposed have involved the actual combination of the
size of effects from the individual studies, the most widely used methods have. Of these methods
the so-called fixed effect model is the most common. In such a model it is assumed that there is
a true population effect, and that all the individual studies are estimating it.2 A number of
estimators for the population effect have been proposed, with many adopting a weighted
estimator, the weights being a function of the precision of individual studies.2

If the heterogeneity, in terms of the effect sizes, between the studies is ‘great’ then a number of
authors have proposed a random effects model.3~6 In such models each individual study is
assumed to be estimating its own, unknown, true effect which in turn is a perturbation about an
overall population effect. Whilst intuitively appealing, some have argued that random effects
models may mask the true reasons for the underlying heterogeneity, and that possible explana-
tions should be investigated.7 Perhaps pragmatically, generalized linear mixed models8 offer the
greatest flexibility in allowing both fixed covariates, thought to explain some of the heterogeneity,
together with a random component to accomodate unexplained heterogeneity.1,6
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Whilst it would appear that such a range of modelling strategies would be able to accommod-
ate a range of scenarios, a number of issues remain. Discrimination between fixed and random
effect models in a particular situation has been advocated using a s2 test for heterogeneity, which
it is accepted has low statistical power.2,6,7 When a random effects model has been chosen,
estimation of the variability of the population effect is sometimes problematic, and a number of
authors report obtaining negative estimates in various circumstances.4~6

Whilst not pretending to be a panacea, the Bayesian approach would appear to offer the
meta-analyst a more flexible (and robust) modelling strategy. In particular, there is a number of
advantages conferred by adopting such an approach. The first is the ability to include ‘back-
ground’ information that may be thought to be pertinent to the clinical question being ad-
dressed1, whilst the second is the fact that in estimating the true effects of individual studies they
can in some way ‘borrow strength’ from other ‘similar’ studies.9 In a similar manner, and more
pragmatically, the fully Bayesian approach takes account of all parameter uncertainty,10,11
a feature which is particularly important when considering the estimation of study-specific effects
or the prediction of an effect likely to be observed in a future study.12 Though empirical Bayes
(EB) methods have been suggested as a means of allowing for all parameter uncertainty, they still
require the use of Monte Carlo simulation or numerical integration methods.10,11 More recently,
methods based on the use of profile likelihood have also been advocated for estimating overall
population effect whilst simultaneously allowing for the fact that the between-study heterogeneity
had also been estimated.13 Finally, a third advantage of the Bayesian approach is that it
formalizes the methods used in cumulative meta-analyses14 in which information/beliefs regard-
ing treatment effects is sequentially updated as more trials become available.

A number of authors have advocated a variety of Bayesian approaches to meta-analysis. Some
have adopted a hierarchical Gaussian modelling approach9,11,15~18 in which the observed study
effects are assumed to be Normally distributed about their true, but unknown, effects and that at
the next level these unknown true effects are themselves assumed to be Normally distributed
about an overall population effect, with suitable prior distributions assumed for the unknown
variances and the overall population mean. Such a modelling strategy parallels the two-stage
linear model of Lindley and Smith.19 Other approaches have concentrated on assuming that
within an individual study the event rates in the two comparison groups each follow a binomial
distribution, and that only after taking some transformation of these rates, frequently logistic in
nature, are the individual study effects related to an overall population effect.20~22

The models we adopt here are of a hierarchical Gaussian nature. The observed study effects are
assumed to follow Normal distributions in which the variances are assumed unknown, but with
non-informative improper prior distributions. The means of these distributions are themselves
assumed to arise from a Normal distribution, in which the unknown mean represents the overall
population effect, and has a Uniform prior distribution, and the variance, representing the
between-study heterogeneity, is also assumed unknown and has an inverse gamma prior distribu-
tion. Such a prior specification, especially for the between-study heterogeneity, enables a variety
of situations to be accommodated, from the case when there is a relatively little prior information
available to the case when there may be substantial information a priori either in the form of
subjective beliefs or in the form of quantitative evidence from other sources.

Implementing a Bayesian model such as the one that we propose in this paper presents the
difficulty of having to evaluate integrals over several dimensions, in order to investigate the
properties of the joint posterior distribution for the parameters, a task that is not easily achieved.
Hence, approximations that produce simple formulae, and that are accurate for moderate to large
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sample sizes, provide a very efficient tool to estimate certain posterior quantities of interest. In
particular, the use of such approximations also enables an assessment of the sensitivity of
posterior estimates to the choice of prior distributions to be made easily. As opposed to Laplace
approximation,23 modal approximations24 and Markov chain Monte Carlo (MCMC) approxi-
mation methods,25 the approximations proposed in this paper provide simple closed-form
formulae, that facilitate a qualitative analysis of the behaviour of posterior quantities.

The rest of the paper is organized with Section 2 describing briefly two motivating examples of
meta-analyses in which there are varying amounts of prior information and varying degrees of
between-study heterogeneity. Section 3 outlines a general Bayesian random effects model for
meta-analysis, and briefly describes parameter estimation using closed-form and Gibbs sampling
approximation methods. Section 4 presents the results of applying the two methods of parameter
estimation discussed to the examples in Section 2. Finally, Section 5 discusses the approximations
presented here and the role Bayesian inference has to play in meta-analysis generally.

2. EXAMPLES

2.1. Infection Example

A previously conducted meta-analysis of randomized trials investigated the evidence of clinical
benefits for the selective decontamination of the digestive tract for patients in intensive care
units.26 The data, presented in Table I, consist of 22 randomized trials intended to investigate the
clinical benefits of selective decontamination of the digestive tract. In each trial patients in
intensive care units were randomized to receive either a combination of non-absorbable anti-
biotics (treatment group) or no treatment (control group). For each trial, the number of
respiratory tract infections in the treatment and control group were then recorded, and the odds
ratio for developing an infection in the treatment group compared to the control, together with its
associated 95 per cent confidence interval (CI) were calculated.

The data had originally been analysed using a fixed effect model,26 but as Smith et al.22,27 have
remarked, there appears to be a considerable degree of heterogeneity present in the data, and
a random effects to model would appear to be more appropriate. In fact, a s2 test for heterogen-
eity reveals that there is substantial evidence for the use of a random effect model; s2

HET
"58·0,

d.f."21 and P"0·00001.
Whilst there is no explicit prior information available for this example, previous Bayesian

analyses22,27 have used a range of different hypothesized prior distributions for the between-
study variability. The one used here is derived subjectively by considering the likely between-
study variability that would be observed27 and is described in further detail in Section 4.1.

2.2. Dentifrice Example

The second example concerns a previously published meta-analysis which was conducted of all
randomized controlled trials comparing sodium monofluorophosphate (SMFP) to sodium fluor-
ide (NaF) dentifrices (toothpastes) in the prevention of caries development.28 The outcome in
each trial was the change, from baseline, in the decayed missing (due to caries) filled surface
(DMFS) dental index29 at three years follow-up. Of 12 studies identified as meeting the inclusion
criteria, 9 considered a straight comparison of NaF and SMFP. Table II displays the data from
these 9 studies, in terms of mean change in DMFS index for each treatment and the difference in
mean change in DMFS index between treatments, SMFP — NaF, together with associated 95 per

APPROXIMATE BAYESIAN INFERENCE FOR RANDOM EFFECTS META-ANALYSIS 203

( 1998 John Wiley & Sons, Ltd. Statist. Med., 17, 201—218 (1998)



Table I. Randomized evidence, in terms of respiratory tract infections, regarding the use of selective
decontamination of the digestive tract for patients in intensive care units (Digestive Tract Trialists’

Collaborative Group)26

Study Treated Control Odds Ratios 95% CI
Infections Total Infections Total T/C

1 7 47 25 54 0·21 (0·08, 0·55)
2 4 38 24 41 0·09 (0·03, 0·30)
3 20 96 37 95 0·42 (0·22, 0·79)
4 1 14 11 17 0·06 (0·01, 0·44)
5 10 48 26 49 0·24 (0·10, 0·58)
6 2 101 13 84 0·13 (003, 0·53)
7 12 161 38 170 0·28 (0·15, 0·57)
8 1 28 29 60 0·06 (0·01, 0·33)
9 1 19 9 20 0·10 (0·02, 0·64)

10 22 49 44 47 0·06 (0·02, 0·22)
11 25 162 30 160 0·79 (0·45, 1·41)
12 31 200 40 185 0·67 (0·40, 1·12)
13 9 39 10 41 0·93 (0·34, 2·56)
14 22 193 40 185 0·47 (0·27, 0·83)
15 0 45 4 46 0·10 (0·01, 1·99)
16 31 131 60 140 0·42 (0·25, 0·70)
17 4 75 12 75 0·32 (0·10, 0·99)
18 31 220 42 225 0·72 (0·43, 1·19)
19 7 55 26 57 0·18 (0·07, 0·46)
20 3 91 17 92 0·17 (0·05, 0·56)
21 14 25 23 23 0·03 (0·00, 0·49)
22 3 65 6 68 0·54 (0·14, 2·07)

Table II. Randomized evidence comparing sodium fluoride (NaF) with sodium monofluorophosphate
(SMFP) dentrifrices in terms of differences from baseline in DMFS dental index (Johnson)28

Study NaF SMFP SMFP—NaF 95% CI
N Mean SD N Mean SD

1 134 5·96 4·24 113 6·82 4·72 #0·86 (!0·26, #1·98)
2 175 4·74 4·64 151 5·07 5·38 #0·33 (!0·76, #1·42)
3 137 2·04 2·59 140 2·51 3·22 #0·47 (!0·22, #1·16)
4 184 2·70 2·32 179 3·20 2·46 #0·50 (#0·01, #0·99)
5 174 6·09 4·86 169 5·81 5·14 !0·28 (!1·34, #0·78)
6 754 4·72 5·33 736 4·76 5·29 #0·04 (!0·50, #0·58)
7 209 10·10 8·10 209 10·90 7·90 #0·80 (!0·73, #2·33)
8 1151 2·82 3·05 1122 3·01 3·32 #0·19 (!0·07, #0·45)
9 679 3·88 4·85 673 4·37 5·37 #0·49 (!0·06, #1·04)

cent CIs. The original analysis used a fixed effect model, against which a s2 test for heterogeneity
provided no substantial evidence; s2

HET
"5·4, d.f."8 and P"0·71.

The three remaining studies out of the 12 considered the comparison of combination treatment,
NaF together with SMFP, with the use of SMFP alone. Table III displays the data for these three
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Statist. Med., 17, 201—218 (1998) ( 1998 John Wiley & Sons, Ltd.



Table III. Randomized evidence comparing combined sodium fluoride (NaF) with sodium mono-
fluorophosphate (SMFP) with sodium monofluorophosphate (SMFP) dentrifices in terms of differences

from baseline in DMFS dental index (Johnson)28

Study NaF#SMFP SMFP NaF#SMFP!SMFP
N Mean SD N Mean SD Difference SD N 95% CI

1 228 8·46 6·19 230 9·30 6·67 !0·84 0·60 458 (!2·02, #0·34)
2 858 3·67 4·59 827 3·74 4·84 !0·07 0·23 1685 (!0·52, #0·38)
3 512 11·27 7·47 515 11·16 7·94 #0·11 0·48 1027 (!0·83, #1·05)

studies in terms of mean change in DMFS index for each treatment and the difference in mean
change in DMFS index between treatments, together with associated 95 per cent CIs. Without
making the assumption that there is no form of interaction between NaF and SMFP this data
cannot be combined directly with that of the direct comparison trials. However, it does contain
some information about the between-study variability that is likely to be observed, and therefore
could be used to derive a prior distribution regarding the likely between-study heterogeneity. The
derivation of such a prior distribution is considered in more detail in Section 4.2.

3. METHODS

3.1. A random effects model

When all the available heterogeneity between studies has been explained in terms of explanatory
factors, both at the study level and the patient level, any estimate of the overall treatment effect,
and individual study effects must take account of the remaining heterogeneity. This is most
appropriately accomplished by using a random effects model. A number of random effects models
have been proposed, most notably DerSimonian and Laird.5 By assuming a Gaussian error
structure the following random effect model is obtained:14

y
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i
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example, y
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In a model such as (1), h
i
is the true, but unknown, effect in the ith study, and k is the unknown

population effect, and it is this quantity that is often of most interest, since it represents the pooled
effect indicated by the studies. Finally, q2 is the population variance, or the between-study
variability, and is also of interest since it is a measure of how variable the effect is within
a population. In the case when q2"0 a fixed effect model is obtained.

The structure of (1) is similar to the hierarchical Bayesian models proposed by a number of
authors.24,31~33 In a Bayesian setting we would wish to put prior distributions on the unknown
parameters of the model, that is, p2

i
s, k and q2. In practice prior information is only likely to be

available possibly for k, the population treatment effect, and q2 the population variability of the
effect over studies. Therefore for p2

i
, the individual trial variances, we would wish to assume

a vague non-informative set of prior distributions. Following the common practice of using
a Jeffreys’ prior (Box and Tiao, p. 426)33 we shall assume that P (p2

i
)J1/p2

i
. We have found that

the use of such a prior distribution leads to results very similar to those obtained by the common
assumption that the p2

i
s are known and are replaced by the s2

i
s, the observed within-study

variances. A detailed discussion of the prior distributions for the p2
i
s together with recursive

formulae for the approximation of the first posterior moment can be found in Lindley24. Smith
et al.27 also discuss the choice of such a prior distribution for p2

i
and argue against assuming h

i
independent of p2

i
.

A prior distribution for q2 has to be flexible enough to be able to easily accommodate a priori
information whilst at the same time being mathematically convenient. For this reason an inverse
gamma distribution, denote IG(a, b), is used.34 Finally, for the purposes of this paper we assume
that there is only vague prior information regarding the population effect, k, thus maintaining
some element of objectivity with respect to the estimation of the overall effect. We therefore
assume it follows a locally uniform prior distribution.

3.2. Approximate inference

An approximation for the first moment of the effect of the ith study as described in model (1) is
given by
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residual sum of squares between studies, in the usual ANOVA notation. Also, yN is the arithmetic
average of the y

i
s, and a and b are the parameters of the inverse gamma prior distribution for q2.

An approximation to the second moment is given by
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where RSS
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!kyN 2 is the residual sum of squares between studies, in the usual ANOVA

notation. Similarly, an approximation for the first moment of p2
i
, the variability in the ith study, is
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given by

E (p2
i
Ds2, n)+

n
i

n
i
!2

s2
i
. (4)

Considering the population effect, k, initial approximations, based on first-order Taylor series
expansions, for the first and second moments are given by

E (kDy, s2, n)+yN and »(kDy, s2, n)+
2(1#bRSS

B
/2)

bk(2a#k!3)
. (5)

Finally, approximations for the first and second moments of the population variability, q2, are
given by

E (q2 Dy, s2, n)+
2(1#bRSS

B
/2)

b(2a#k!3)
and » (q2 Dy, s2, n)+

8(1#bRSS
B
/2)2

b2 (2a#k!3)2(k#2a!5)
. (6)

All the approximations reported above are obtained using a first-order Taylor expansion of the
posterior density; the idea of the expansion is presented in Appendix I, a more detailed exposition
can be seen in Sansó.35

Note that the approximation of the posterior expectation of h
i
, (2), is the average of the

observations for the ith study shrunk towards the overall mean, yN . The approximation of the
posterior variance of h

i
, (3), is an estimate of the variance within the ith study inflated by a factor

that corresponds to the random effect. The posterior expectation of the overall treatment effect, k,
is approximated by yN . Whilst this is clearly a sensible approximation it is also a rather crude one,
and so the following approximation, based on a second-order Taylor expansion, is considered
instead:
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(7)

Formulae (6) are reported for completeness since, in a Bayesian set-up, knowledge of the
posterior distribution of k is enough to describe the overall treatment effect.

Of particular interest is the case when a"0 and b"2, which we assume to be a reference prior
distribution that expresses relatively vague a priori knowledge in that it corresponds to an inverse
s2 distribution with zero degrees of freedom. Note that choosing a"b"0, which is frequently
proposed as a default prior distribution, does not produce sensible approximations for
»(kDy, s2, n), E (q2 Dy, s2, n) and »(q2 Dy, s2, n).

3.3. Gibbs Sampling

For the model (1) and the prior distributions described in Section 3.1 the conditional posterior
distributions may be obtained in closed form and thus Gibbs sampling may be used to obtain
posterior estimates of the model parameters.25 The functional forms of the conditional distribu-
tions are presented in Appendix II together with details on the methods used for assessing
convergence of the Gibbs sampler.
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4. APPLICATIONS

4.1. Infection Example

In the previous Bayesian analysis of this data22,27 a prior distribution for q2, the between-study
variability, is derived based on subjective beliefs regarding the plausible range of effect sizes. It is
assumed that there is likely to be a one order of magnitude difference between the maximum and
minimum odds ratio observed, that is, that they differ by a factor of 10, but that it is very unlikely
that they differ by two orders of magnitude, that is, that they differ by a factor of 100. Thus,
a likely value of q2 is given by [log

%
(10)/(2]1·96)]2, that is, 0·33, and an extreme value of q2 is

given by [log
%
(100)/(2]1·96)]2, that is, 1·38. It transpires that an inverse gamma distribution with

parameters 3 and 1 provides a suitable distribution for such beliefs. In terms of q2 this prior
distribution has a mode at 0·25, and there is 8 per cent prior probability that q2 will be greater
than one order of magnitude different to the average within-study variance, that is, 0·50.

From Table I we can see that in trial 15 none of the patients in the treatment arm develops an
infection, whilst in trial 21 all 23 patients in the control arm develop infections. As a result
calculation of the log odds ratio and variance is problematic. We adopt the solution advocated by
Cox and Snell30 (pp. 31—32), in which correction factors of 0·5 are introduced into the log odds
ratio and corresponding corrections are made to the variance. This correction also has the effect
of improving the distributional assumption of Normality, and reducing the bias.30 Nevertheless
due care has to be taken when there are a number of trials which have particularly low or high
response rates in either or both groups.

In order to use the approximations of Section 3.2 we assume that the number of patients in
both the treatment and control group is the same for each study. Whilst from Table I we can see
that this assumption is approximately satisfied in this example, though there is an imbalance in
trial 8, in general this might not be so. In such circumstances choosing n

i
to be the minimum

guarantees a conservative estimation approach, as the individual trial standard errors will be
larger. For this example, we obtained similar results using the minimum, average and maximum,
though the results presented here were obtained using the average.

Table IV shows the means and variances for k and q2, the population parameters, using each of
the three estimation methods: maximum likelihood; the approximations of Sections 3.2 and 3.3.
For the Bayesian approaches two different prior distributions for q2 were considered; the first in
the reference prior distribution discussed in Section 3.2 in which a"0 and b"2, whilst the
second was that based on subjective beliefs27 briefly outlined above.

We can see from Table IV that, in terms of the population parameters, posterior estimates
based on the approximations of Section 3.2 and those obtained using Gibbs sampling are in
broad agreement. The differences between the Bayesian estimates and those obtained using
maximum likelihood methods are partly explained by the larger estimates for q2 under the
Bayesian methods, which in turn ensures that the smaller studies, that is, trials 4, 15 and 21,
receive greater relative weight. However, these smaller studies also have larger effect sizes, and
thus have an effect on the estimate of the overall effect. A sensitivity analysis using a range of
different values for b yielded similar results.

In terms of the individual trial effects, Figure 1 shows the approximated trial effects, those
obtained using Gibbs sampling, together with approximate 95 per cent credibility intervals, and
maximum likelihood estimates with 95 per cent confidence intervals. In general the Bayesian
approaches shrink the estimates of the individual trial effects towards the respective overall
population effect. This is more noticeable for the smaller trials than for the larger ones.
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Table IV. Comparison of estimation methods for infection data, assuming
reference prior distributions for both k and q2, together with a prior distribution
based on subjective beliefs for q2 (*denotes that the approximation is based on

a second-order Taylor expansion)

Parameter Maximum likelihood Approximation Gibbs sampling

ºniform prior distribution for k and IG(0, 2) for q2
E(k) !1·245 !1·477 !1·488
E(k)* — !1·498 —
Median(k) — —
»(k) 0·028 0·044 0·053
SD(k) 0·167 0·210 0·230

E(q2) 0·345 0·962 1·090
Median(q2) — — 1·005
»(q2) — 0·109 0·141
SD(q2) — 0·330 0·375

ºniform prior distribution for k and IG(3, 1) prior for q2
E(k) !1·245 !1·477 !1·463
E(k)* — !1·494 —
Median(k) — — !1·456
»(k) 0·028 0·035 0·041
SD(k) 0·167 0·187 0·202

E(q2) 0·345 0·771 0·665
Median(q2) — — 0·626
»(q2) — 0·052 0·053
SD(q2) — 0·228 0·231

Comparing the two Bayesian approaches we observe that for particularly small and unbalanced
studies, that is, trials 4 and 21, the approximations over-shrink the study effects and under-shrink
the estimates of the variances. Comparing the Bayesian approaches with maximum likelihood,
the results are similar for the larger trials, but for the smaller trials the Bayesian approaches
shrink the estimates of the individual study effects towards the overall population effect.

4.2. Dentifrice Example

Before considering the analysis of the dentifrice data for the direct comparison of NaF with
SMFP we need to consider the use of the data from the indirect comparison of NaF#SMFP
with SMFP in order to derive a prior distribution for q2. One possible method would be to use
maximum likelihood methods4,36 to derive an estimate of q2 from the indirect evidence. However,
in this case, when there are only three studies, such an approach does not appear appropriate. An
alternative approach is to consider the prior distributions of the h

i
s, which conditional upon

k and q2, are members of the Student family of distributions. Thus, the parameters of the inverse
gamma distribution for q2 may be expressed in terms of a plausible range for the h

i
s. Further

details are given in Appendix III. As there are only three studies, use of the overall range, that is
0·11—0·84"0·95, rather than the interquartile range will ensure that the resulting prior distribu-
tion is sufficiently diffuse so as to reflect the small sample size, and thus reduce the weight of prior
evidence. This approach yields an IG(0·5, 8·86) prior distribution for q2, which has a mode at 0·08,
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Figure 1. Individual study estimates of log odds ratios, for treated compared to control, and approximate 95 per cent
credibility intervals for infection example using approximations and Gibbs sampling assuming q2&IG[0, 2] and
maximum likelihood: ——j—— approximation; —d— maximum likelihood; ·T· Gibbs sampling (size of symbols is propor-

tional to overall size of study)

and prior probability that q2 is at least one order of magnitude greater than 0·42, the average
between-study variability, of 54 per cent.

Table V shows the means and variances for k and q2 using both a reference prior distribution
for q2, that is, IG(0, 2), and the prior distribution derived from the indirect evidence briefly
outlined above, that is, IG(0·5, 8·86). Maximum likelihood methods estimate q2 to be negative
and therefore it is set to zero for this particular example. Whilst Bayesian methods also estimate
q2 to be small, they certainly do not estimate it to be zero. This is as a consequence of the fact that
both prior distributions spread their mass, to varying degrees, over the positive real line. Both the
approximation methods and Gibbs sampling give estimates of the first and second moments of
k and q2 which are in broad agreement. In particular, using both the reference and informative
prior distributions for q2, the uncertainty associated with k is considerably greater than that
estimated using maximum likelihood.
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Table V. Comparison of estimation methods for dentifrice data, assuming
reference prior distributions for both k and q2, together with a prior distribution
based on other randomized data for q2 (*denotes that the approximation is

based on a second-order Taylor expansion)

Parameter Maximum likelihood Approximation Gibbs sampling

ºniform prior distribution for k and IG(0, 2) for q2

E(k) 0·283 0·378 0·352
E(k)* — 0·434 —
Median(k) — — 0·351
»(k) 0·009 0·038 0·052
SD(k) 0·095 0·195 0·228

E(q2) 0·0 0·339 0·345
Median(q2) — — 0·270
»(q2) — 0·057 0·081
SD(q2) — 0·239 0·285

ºniform prior distribution for k and IG(0·5, 8·86) prior for q2

E(k) 0·283 0·378 0·354
E(k)* — 0·394 —
Median(k) — — 0·343
»(k) 0·009 0·020 0·035
SD(k) 0·095 0·141 0·187

E(q2) 0·0 0·180 0·164
Median(q2) — — 0·080
»(q2) — 0·013 0·010
SD(q2) — 0·114 0·100

In terms of the individual trial effects, Figure 2 shows the approximated trial effects, those
obtained using Gibbs sampling, together with approximate 95 per cent credibility intervals, and
maximum likelihood together with 95 per cent confidence intervals. We can see that for most of
the trials the two Bayesian approaches yield similar results apart from those trials that have
particularly large within-study variability, that is, trials 1, 2, 5, 7. In terms of comparing the
Bayesian approaches with maximum likelihood, the results are similar for the larger trials, but for
the smaller trials the Bayesian approaches shrink the estimates of the individual study effects
towards the overall population effect.

5. DISCUSSION

We have shown that the relatively simple approximations that we have proposed in Section 3.2
lead to broadly similar results when compared to the more computationally intensive Gibbs
sampling whilst still allowing for the inclusion of pertinent background information in a formal
manner. The two examples we have considered highlight perhaps the extremes in the application
of a meta-analytic techniques. The first example, on digestive tract infections, consisted of
a relatively large number of trials of variable size, whilst the second example, on the comparison
of dentifrices, though only containing a relatively small number of moderate size studies, did have
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Figure 2. Individual study estimates of difference in mean DMFS index, SMFP — NaF, and approximate 95 per cent
credibility intervals for dentifrice example using approximations and Gibbs sampling assuming q2&IG[0, 2] and
maximum likelihood: ——j—— approximation; —d— maximum likelihood; ·T· Gibbs sampling (size of symbols is propor-

tional to overall size of study)

some studies which had relatively large within-study variances. In particular, we have demon-
strated that is the case when a classical approach fails to estimate the between-study variability,
a Bayesian approach, whether based on analytic approximations or Markov chain Monte Carlo
approximation methods, can produce sensible estimates of the underlying between-study hetero-
geneity. This is as a result of choosing families of prior distributions for q2 which are only defined
for positive real values.

We have also shown that although in general the approximations and Gibbs sampling are in
broad agreement, what differences there are depend on either the sample sizes of the trials in the
meta-analysis or the number of trials included. In the former case, differences at the individual
study level parameters appear, whilst in the latter case, differences at the population level
parameters emerge. In situations when there are a few trials, and each is relatively small, the
rationale for using meta-analytic methods at all could be questioned. For practical purposes the
approximations outlined here are not suitable for meta-analyses with fewer than six studies in
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Statist. Med., 17, 201—218 (1998) ( 1998 John Wiley & Sons, Ltd.



them. In terms of individual studies it is more difficult to give clear guidelines, but our experience
would suggest extreme caution should be taken in using the approximations when there are
studies that are either particularly small, that is, contain less than 30 patients, or when the
within-study variances are relatively large, or when there is severe imbalance between
the treatment groups within trials. This latter point is particularly relevant to the case when the
outcome measure is binary, as the approximations assume the number of patients in the two
treatment groups, within a trial, to be equal. Though a number of methods have been proposed to
accommodate such imbalances, their exact effect upon the approximations ideally requires
exploration via a sensitivity analysis.

Whilst the approximations in general yield broadly similar results to those obtained using
Gibbs sampling, in poorly behaved examples, that is, a small number of small trials, it might be
felt that the accuracy of the approximations is not sufficient to warrant formal inference, and we
suggest that in such circumstances they could be used to provide appropriate starting values for
Gibbs sampling, especially since the convergence of such methods has been shown to depend
critically on starting values.37 Though the approximations outlined here could be obtained to
a higher degree of accuracy by considering higher order Taylor series expansions, a balance has to
be maintained between accuracy and complexity. In fact, the simple formulae provided are
particularly suited to performing sensitivity analyses in order to assess the influence of specific
values of a and b, without being computationally expensive.

Model (1) has assumed that the p2
i
s are unknown and have a non-informative improper

prior distributions. In practice, even in random effects models, the p2
i
s are often assumed

to be known and take the values of the observed within-study variances. This could be incorpor-
ated into a model formulation such as (1) but is unlikely to lead to radically different approxima-
tions.

The approach taken here to the inclusion of background information thought pertinent to the
issue in question has been to derive an appropriate prior distribution for the between-study
heterogeneity. An alternative approach would have been to have included such information as
another parallel level within a hierarchical modelling framework.38,39 The choice of which
approach is appropriate will often depend on the particular situation and the clinical question to
be addressed.

So far we have not addressed issues regarding the more general role that Bayesian methods
have to play in meta-analysis. Two areas deserve particular attention: cumulative meta-analysis,
and the choice between competing models. The use of cumulative meta-analyses has been
advocated as a means of establishing the stability of an intervention effect over time.14,40 Though
to date the majority of cumulative analyses have been reported from a classical perspective, the
sequential updating of beliefs regarding an intervention is inherently Bayesian in nature and such
methods offer a potentially useful method of analysis. The second area, that of model discrimina-
tion, and in particular discrimination between fixed and random effect models, is another area in
which a Bayesian approach is of potential benefit. As noted by a number of authors the standard
test for heterogeneity is of low statistical power6,7,41 making practical interpretation of such
a test difficult. Recently the use of Bayes factors42~44 have been advocated as a means of
discriminating between competing models. Though some would argue that a Bayesian approach
to meta-analysis should take account of all uncertainty regarding model parameters, and
therefore a random effects to model should always be adopted, Bayes factors do have the
advantage of allowing a more judicious appraisal of the evidence for either model. They also
allow for the possibility that model uncertainty may be incorporated formally into an analysis.44
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While the Bayesian approach offers an appealing methodology to the meta-analyst, its
application in practice has been hampered by the lack of suitable user-friendly software. Recently
this has begun to change45 and the approximations outlined here add another complementary
tool to the applied (Bayesian) statistician’s toolkit.

APPENDIX I

The idea behind the approximations for the posterior first and second moments of the parameters
in model (1) will be illustrated by considering the approximation for the marginal density of the
data, m(y)

m(y)JPRkP
=̀

0

2P
=̀

0
P

=̀

0
P

=̀

~=

k
<
i/1
A

1

p2
i
B
(ni`2)@2

A
1

2nB
ni@2

]expG!
n
i
s2
i

2p2
i

!

n
i
(y

i
!h

i
)2

2p2
i

H N
k
(h Dk, q2I) IG(q2 Da, b)dk dq2 dr2 dh

where s2
i

is the observed variance of the ith study, N
k
(x Dv, ¼) denotes a k-variate Normal density

evaluated at x, with mean vector v and variance-covariance matrix ¼; IG(x Da, b) denotes
an inverted gamma density evaluated at x, with parameters a and b and I is a k]k identity
matrix. Further, define r2"(p2

1
,2 ,p2

k
)T and h"(h

1
,2 , h

k
)T so that dr2"dp2

12
dp2

k
and

dh"dh
12

dh
k
. Note that m (y) appears in the denominator of the posterior moments of all

parameters.
Changing the order of integration and integrating out h, we obtain

m(y)"P
=̀

0

2P
=̀

0
P

=̀

0
P

=̀

~=

k
<
i/1
A
2n
n
i
B
1@2 k

<
i/1
A

1

p2
i
B
(ni`1)@2

A
1

2nB
ni@2

]N
k
(y Dk, diag(p2

i
/n

i
)#q2I) IG(q2 Da, b) exp M!+ n

i
s2
i
/2p2

i
Ndk dq2 dr2

where y"(y
1
,2 , y

k
)T. For large n

i
it is sensible to think that N

k
(y Dk, diag(p2

i
/n

i
)#q2I) tends to

N
k
(y Dk, q2I). More precisely, consider the function

f (z
1
,2 , z

k
)"A

1

2nB
k@2 k

<
i/1
A
1

z
i
B
1@2

expG!+
(y

i
k)2

2z
i
H

then f (q2#p2
1
/n

1
,2, q2#p2

k
/n

k
)"N

k
(y Dk, diag(p2

i
/n

i
)#q2I). A first-order Taylor expansion of

f centred on z0"(q2 ,2 , q2)T and evaluated at z"(q2#p2
1
,2, q2#p2

k
)T gives

N
k
(y Dk, diag(p2

i
/n

i
)#q2I)+N

k
(y Dk, q2I)A1#+!

p2
i

2n
i
q2
#

(y
i
!k)2

2n
i
q4 B

so that the previous approximation is equivalent to a one term Taylor expansion of f (z
i
,2 , z

k
).

The former discussion yields an approximation for m(y) such that
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and for this expression all integrals can be carried out in closed form.
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A similar technique can be used to obtain approximations for the numerous in the formulae
for E (h

i
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)T. Taking the ratio of

the approximations to the numerator and m(y) in each case yields approximations to the first and
second moments of the model parameters.

APPENDIX II

For the model (1) and the prior distributions described in Section 3.1 the conditional posterior
distributions may be obtained in closed form and thus Gibbs sampling may be implemented
without too much difficulty.25 The full conditional distributions are given by
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Estimation of the marginal posterior densities for the model parameters is then achieved by
sampling from each of the posterior conditional distributions in turn, conditional upon current
estimates of other unknown model parameters, until ‘convergence’ is achieved.

Whilst in this case it would be relatively straightforward to implement such a sampler in any
statistical programming environment, we have used the BUGS program.45

Several authors have discussed the convergence criteria of the Gibbs sampler,46,47 the number
of iterations required48 and general sampling strategies that should be adopted.49,50 We have
adopted a mixture of the methods suggested, using multiple runs with different starting values
and varying the number of iterations (both burn-in and sampled), and assessed convergence
within an individual run by means of the diagnostic statistic proposed by Geweke46 together with
plots of the actual samples.

APPENDIX III

In order to elicit the values of the parameters a and b of the inverse gamma prior distribution for
the population variance q2, consider model (1), then the prior distribution for the vector
h"(h
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)T is given by
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a k-variate Student density with location k, scale matrix I/ab and 2a degrees of freedom. The
a priori marginal density of each h

i
is then a Student t-density with location k, scale 1/ab and 2a

degrees of freedom (note that this does not imply that the h
i
s are independent).

APPROXIMATE BAYESIAN INFERENCE FOR RANDOM EFFECTS META-ANALYSIS 215

( 1998 John Wiley & Sons, Ltd. Statist. Med., 17, 201—218 (1998)



The choice of a"1/2 produces a Cauchy distribution, the density with the flattest tails among
the family of Student distributions with integer valued degrees of freedom. Since such a density
does not have either first or second moments, the elicitation of b can be achieved using the
quantiles. Consider a Cauchy distribution with location k and scale j then, if 2* is the
interquartile range, due to the symmetry of the density

P
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As a result of the former discussion the interquartile range for the h

i
equals 2J(2/b) and so,

letting c
0

be a specified value for it, b"8/c2
0
. The conclusion is that a prior distribution for q2,

which is reasonably vague in that it does not have any finite moments and produces a robust
inference in terms of the influence of large values of k (see, for example, Pericchi and Sansó51), is
given by an inverse gamma distribution with parameters 1/2 and 8/c2

0
, where c

0
is a specified

interquartile range for the h
i
s. Note that the mode of such a distribution is attained at c2

0
/12. An

analysis similar to the former one can be carried out for quantiles other than those corresponding
to 25 per cent probability.
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