
Best-Effort Quality-of-Service
Bradley R. Smith†

brad@soe.ucsc.edu
†Computer Engineering Department,
University of California, Santa Cruz

Santa Cruz, CA 95064, USA

J.J. Garcia-Luna-Aceves†∗

jj@soe.ucsc.edu
∗Palo Alto Research Center (PARC)

3333 Coyote Hill Road
Palo Alto, CA 94304, USA

Abstract—We show that the fundamental problems in provid-
ing quality-of-service in the existing Internet architecture has
been the assumption that a single, “best” path from source to
destination is adequate for any communications requirements
of the network. We present a new, best-effort architecture for
providing quality-of-service in the Internet based on the use of
the “best set of paths” to destinations. We show that this setof
paths is well defined, can be efficiently computed, and present an
approach to efficiently implement this new, Best-Effort Quality-
of-Service architecture.

I. I NTRODUCTION

The two basic approaches to packet switching are virtual
circuits and datagrams. Both schemes segment messages into
limited-size packets, add control information to each packet to
accomplish its switching, and rely on statistical multiplexing
of the shared communication links. Virtual circuits emulate
circuit-switching used in the early telephone network. The
virtual-circuit model is connection-oriented in that commu-
nication occurs in three phases (path setup, data transfer,and
path teardown), routing is done once per flow by the ingress
node during path setup, and paths are implemented using
label-swap forwarding such that all traffic for a given flow
follows the same path through the network. In contrast, packet
switching based on datagrams is a more drastic departure from
the circuit-switching model. Datagram switching is connec-
tionless in that there are no phases in the communication
process, packets are transmitted when the source host is ready
to transmit, routing is computed at every router in the network
on an event-driven basis, and forwarding decision is made on
a hop-by-hop basis as packets flow through the network with
the result that different packets in a given flow may follow
different paths through the network.

The datagram approach to packet switching has a number of
strengths. It is robust in the sense that it co-locates the routing
process with the state it computes, manifesting a design
principle calledfate-sharingfirst described by Clark [1]. This
ensures that the failure of any single component of an internet

1This work was partially sponsored by the U.S. Army Research Office
under grant W911NF-05-1-0246, by the National Science Foundation under
grant CNS-0435522, by DARPA through Air Force Research Laboratory
(AFRL) Contract FA8750-07-C-0169, and by the Baskin Chair of Computer
Engineering. The views and conclusions contained in this document are those
of the authors and should not be interpreted as representingthe official
policies, either expressed or implied, of the Defense Advanced Research
Projects Agency or the U.S. Government.

does not invalidate state located elsewhere in the internet,
effectively localizing the affects of any failures. The datagram
model is efficient and responsive for a couple of reasons.
First, by implementing distributed control of forwarding state
it requires onlysimplexcommunication of topology change
events. Second, by assuming a distributed, hop-by-hop routing
model, the datagram model enables the use of more efficient
and responsive routing algorithms that can operate with partial
information regarding the topology of the network.

Virtual-circuit switching is based on a centralized routing
model, in that routes are computed on-demand, and forwarding
is source-specified through the use of path setup techniques
[2]. Hence, virtual circuits are less robust than datagrams
due to the requirement that the ingress router control re-
mote forwarding state in routers along the paths it has set
up. The virtual-circuit model is less efficient and responsive
for a couple of reasons. First, by implementing centralized
control of forwarding state it requiresduplexcommunication
of topology change events: outbound notification of a topology
event, and inbound notification of forwarding state changes.
Second, by assuming a centralized routing computation the
virtual-circuit model requires the use of full-topology routing
algorithms to ensure every router can compute optimal paths
to any destination in an internet

The architecture of today’s Internet is based on thecatenet
model of internetworking[3]. In the catenet model, networks
are built by the concatenation of disparate networks through
the use of routers. The primary goals of the catenet model,
and therefore the Internet architecture, were to support packet-
switched communication between computers over internets
composed of networks based on diverse network technologies,
and to encourage the development and integration of new
networking technologies into these internets.

To achieve these goals, a simple but powerful variant of the
datagram communication model was adopted. Specifically, the
Internet routing architecture is based on abest effortcommu-
nication model in which the “best” path is pre-computed by
each router to all destinations (triggered by topology changes),
and packets are forwarded on a best effort basis (and may be
dropped or delivered out of order in the event of congestion
or routing changes). Packet forwarding is implemented on
a hop-by-hop basis using destination-address based packet
forwarding state computed by the routing process.

This best-effort, distributed, hop-by-hop, datagram routing

model has proven surprisingly powerful. Indeed, much of
the success of the Internet architecture can be attributed to
its routing model. However, largely as a product of its own
success, limitations of this model are being encountered asit
is applied to more demanding applications [4].

A significant limitation is the model only supports a single
path to each destination. Specifically, Internet forwarding state
is composed of a single entry for each destination in an internet
giving the next-hop router on the path to the destination. As
a result, only one path is supported to any given destination,
and that path is computed to optimize a single metric.

As will be shown below, support for diverse performance, or
quality-of-service(QoS), requirements of a network requires
support of multiple paths to a given destination. Therefore
the single-path limitation of the Internet translates to the
inability to directly support applications with diverse QoS
requirements. Clearly, such a model is not adequate for many
of the demanding applications to which the Internet is cur-
rently being applied. The remainder of this paper presents a
new solution for providing QoS services in the Internet that
retains the Internet’s datagram communication model while
supporting multiple paths per destination. Section II gives
a brief introduction to QoS communications requirements,
and shows how they inherently require support for multiple
paths per destination. Section III reviews previously proposed
solutions for this problem in the Internet. Lastly, SectionIV
presents our solution to this problem, which is the first QoS
routing solution that simultaneously supports the Internet’s
datagram communication model and the use of multiple paths
to a destination. Section V presents a solution that efficiently
supports forwarding traffic over multiple paths to a given
destination. Section VI presents our conclusions.

II. QUALITY -OF-SERVICE NETWORKING

A number of metrics can be used to quantify the perfor-
mance of a communications network. For examplelatency
is a measure of the delay traffic experiences as it traverses
a network,jitter is a measure of the variation in that delay,
bandwidthis a measure of the amount of data that can pass
through a point in a network over time, etc.

Many applications have special requirements of the network
they run on. For example interactive audio (i.e. VoIP) requires
low latency and jitter of its communication channel to support
natural, conversational interaction, however it has relatively
minimal bandwidth requirements. In contrast, video streaming
requires high bandwidth and low jitter to provide a smooth
viewing experience, however it has relatively minimal latency
requirements (it’s OK if the video takes a number of seconds
to start. as long as it runs smoothly once it starts). In further
contrast, interactive video (i.e. video conferencing) is the most
demanding in that it requires high bandwidth, low latency, and
low jitter, combing the challenges of the previous two exam-
ples. The defining characteristic of these QoS requirementsis
they involve constraints on multiple performance metrics.

To satisfy constraints on multiple metrics requires, in
general, the use of multiple paths between any two nodes

in a network. For example, given two paths between two
nodes with the following parameters: path 1 has bandwidth
of 100Kbps, latency of 20ms, and low jitter; path 2 has
bandwidth of 2Mbps, latency of 200ms, and low jitter, which
is the better path? Path 1 would be preferred for an interactive
audio application while path 2 would be preferred for video
streaming. With multiple metrics, the preferred path depends
on the requirements of the application.

It is true, in the example described here, that a path that
provides the QoS required by interactive video would satisfy
all applications. However, the availability of such premium
paths can’t be depended on, and the use of such paths, when
they exist, for less demanding applications is, in general,a
waste of valuable communication resources.

This correspondence between multiple metrics and multiple
paths can be described formally by representing the set of
metrics used to describe the performance of paths from a given
source and destination pair as points in a multidimensional
space. We’ll call such a set of multiple metrics a link or
pathweight. Figure 1 plots the weights of 9 paths between a
specific source and destination in an example network where
the metrics composing the weights are bottleneck bandwidth
and latency. “Better” values of these metrics are towards the
origin of the graph (i.e. a perfect path would have infinite
bandwidth and 0 latency).

These points can be interpreted as representing a region, up
and to the right (away from the origin) of QoS values that
each weightsatisfiesin the sense that the path represented by
the weight would satisfy any QoS requirement in that region
of the graph. Figure 2 depicts the regions satisfied by each
path. Note that regions satisfied by some of the paths are fully
contained in the regions of other paths. In the figure these
coveredregions are represented with dashed lines.

A best setof paths to the destination can be identified as
the set of paths that are not covered by another path. This set
of paths isbestin the sense that any QoS requirement that is
satisfiable by an existing path between the given source and
destination, is satisfiable by a path in this set. We call these
regions theperformance classesavailable from the network
for the destination. Figure 3 shows the performance classes
for the example network.

The goal of QoS routing is to compute paths in a network
that satisfy the performance requirements, expressed in terms
of constraints on multiple metrics, of applications commu-
nicating across the network. The formalism presented above
shows that, by definition, QoS routing must support the use
of multiple paths between a source and destination.

III. QUALITY -OF-SERVICE IN THE INTERNET

As described in Sections I and II, the Internet architecture
only supports a single path between a given source and
destination, and support of QoS requires the use of multiple
paths per destination. Therefore, the Internet architecture is
inherently not able to directly support QoS. Two enhancements
to the Internet architecture to support QoS have been proposed
representing fundamentally different approaches to solving the

Latency0 ∞

0

∞

B
an

dw
id

th

Fig. 1. Path Weights

Latency0 ∞

0

∞

B
an

dw
id

th

Fig. 2. QoS Regions

Latency0 ∞

0

∞

B
an

dw
id

th

Fig. 3. QoS Classes

Latency0 ∞

0

∞

B
an

dw
id

th

Fig. 4. Total Ordering

problem of resource management in the context of perfor-
mance requirements, the Intserv and Diffserv architectures.

The goal of theintegrated services(Intserv) architecture [4]
is to define an integrated Internet service model that supports
best-effort, real-time, and controlled link sharing requirements.
Intserv makes the assumption that network resources must be
explicitly controlled, and defines an architecture where appli-
cations reserve the network resources required to implement
their functionality, and an infrastructure of admission control,
traffic classification, and traffic scheduling mechanisms which
implement the reservations. In the Intserv architecture resource
reservations are sent along paths computed by the existing
routing infrastructure. As a result requests may be denied when
resources do not exist along the current route when in fact
paths exist that could satisfy the request. Intserv is basedon
a virtual-circuit communications model and, as such, has all
the limitations of that model relating to robustness, efficiency,
and responsiveness discussed in Section I.

In contrast, thedifferentiated services(Diffserv) architecture
[5] provides resource management without the use of explicit
reservations. In Diffserv, a small set ofper-hop forwarding
behaviors(PHBs) is defined within a Diffserv domain which
provide resource management services appropriate to a class
of application resource requirements. Traffic classifiers are
deployed at the edge of a Diffserv domain that classify
traffic for one of these PHBs. Inside a Diffserv domain,
routing is performed using traditional hop-by-hop, address-
based forwarding mechanisms.

Diffserv retains the best-effort, distributed, hop-by-hop,
datagram routing model of the Internet, and therefore retains
the robustness, efficiency, and responsiveness of the Internet
discussed in Section I. However, similar to the Intserv model,
communications resources to a given flow in a Diffserv envi-
ronment are limited to those available along the paths com-
puted by the existing routing infrastructure. As a result QoS
requirements may not be satisfied when adequate resources
are not available along the current route when in fact paths
exist that could satisfy the requirements.

IV. B EST-EFFORTQOS

So far we have made the case that no effective solutions are
currently known for providing QoS services in the Internet.
Section II showed that QoS routing, by definition, must
support multiple paths to each destination. Intserv moves the

Internet back to a less robust, efficient, and responsive virtual-
circuit communication model, and is limited to the use of only
one path to a given destination. Diffserv retains the best-effort,
distributed, hop-by-hop, datagram communication model of
the Internet; however, it is still restricted to the use of only
one path to a given destination. The remainder of this paper
presents a new solution for providing QoS services in the
Internet that retains the Internet’s datagram communication
model while supporting multiple paths per destination. The
primary insight motivating this new QoS model is that the lim-
iting assumption of the Internet architecture is the sufficiency
of the best pathto each destination. Given this assumption,
the Internet protocols implement a routing computation that
finds a single, best route to each destination in an internet,
and use address-based forwarding that only supports a single
path between any source and destination. Our new QoS model
presented here is based on the need to supportthe best set of
pathsto each destination. This new model requires the precise
definition of this set, a path selection algorithm that efficiently
computes this set, and a forwarding plane that efficiently
supports assignment and forwarding of traffic over multiple
paths per destination. We call this new QoS modelBest-Effort
Quality-of-Servicerouting.

A. Best Set of Paths

As described in Section II,path weightsare composed
of multi-component metrics that capture all important per-
formance measures of a link such as delay, delay variance
(“jitter”), available bandwidth, etc. The best set of pathsto a
destination is defined using an enhanced version of the path
algebra defined by Sobrinho [6].

Formally, the path algebraP = < W ,⊕,�,⊑, 0,∞ > is
defined as a set of weightsW , with a binary operator⊕, and
two order relations,� and⊑, defined onW . There are two
distinguished weights inW , 0 and∞, representing the least
and absorptive elements ofW , respectively. Operator⊕ is
the original path composition operator, and relation� is the
original total ordering from [6], which is used to order the
paths for traversal by the path selection algorithm. Operator
⊕ is used to compute path weights from link weights. The
routing algorithm uses relation� to build the forwarding
set, starting with the minimal element, and by the forwarding
process to select the minimal element of the forwarding set
whose parameters satisfy a given QoS request.

Queue

B P

T

i i

Balanced Tree

H
e
a
p

Fig. 5. Data structures for the QoS-Dijkstra Algorithm

P ≡ Queue of permanent routes to all nodes.
Pn ≡ Queue of permanent routes to noden.
T ≡ Heap of temporary routes.
Tn ≡ Entry in T for noden.
Bn ≡ Balanced tree of routes for noden.
En ≡ Summary of traffic expression for all routes

in Pn.

TABLE I
NOTATION.

A new relation on routes,⊑, is added to the algebra and
used to define classes of comparable routes and select maximal
elements of these classes for inclusion in the set of forwarding
entries for a given destination. Relation⊑ is a partial ordering
(reflexive, anti-symmetric, and transitive) with the following,
additional property:

Property 1: (ωx ⊑ ωy) ⇒ (ωx � ωy).

A route rm is a maximal elementof a setR of routes in
a graph if the only elementr ∈ R where rm ⊑ r is rm

itself. A setRm of routes is amaximal subsetof R if, for all
r ∈ R either r /∈ Rm, or r ∈ Rm and for all s ∈ R − {r},
¬(r ⊑ s). The maximum size of a maximal subset of routes is
the smallest range of the components of the weights (for the
two component weights considered here). An example path
algebra based on weights composed of delay and bottleneck
bandwidth is as follows:

ωi ≡ (di, bi)

0 ≡ (0,∞)

∞ ≡ (∞, 0)

ωi ⊕ ωj ≡ (di + dj , Min(bi, bj))

ωi � ωj ≡ (di < dj) ∨ ((di = dj) ∧ (bi ≥ bj))

ωi ⊑ ωj ≡ (dj ≤ di) ∧ (bj ≥ bi)

Figure 4 is a graphical depiction of the relation� on the
set of weights used as a example in Section II wherex � y
is depicted asx → y. The⊑ relation, illustrated by Figure 2,
formalizes thecoversnotion presented above. And, lastly,Rm

formalizes the notions of performance classes in a graph, and
is the best set of routes we are looking for.Rm is illustrated
in Figure 3.

B. Multi-constrained Path Selection

The notation used in the algorithms presented below
is summarized in Table I. In addition, the maximum

Notation Description
Queue

Push(r,Q) Insert recordr at tail of queueQ (O(1))
Tail(Q) Return record at tail of queueQ (O(1))

d-Heap
Insert(r, H) Insert recordr in heapH (O(logd(n)))

IncreaseKey(r, rh) Replace recordrh in heap with recordr
having greater key value (O(d logd(n)))

DecreaseKey(r, rh) Replace recordrh in heap with recordr
having lesser key value (O(logd(n)))

Min(H) Return record in heapH with smallest
key value (O(1))

DeleteMin(H) Delete record in heapH with smallest
key value (O(d logd(n)))

Delete(rh) Delete record rh from heap
(O(d logd(n)))
Balanced Tree

Insert(r, B) Insert recordr in treeB (O(log(n)))
Min(B) Return record in treeB with smallest key

value (O(log(n)))
DeleteMin(B) Delete record in treeB with smallest key

value (O(log(n)))

TABLE II
OPERATIONS ONDATA STRUCTURES[7].

algorithm QoS-Dijkstra
begin

1 Push(<s, s, 0>, Ps);
2 for each {(s, j) ∈ A(s)}
3 Insert(<j, s, ωsj >, T);
4 while (|T | > 0)

begin
5 <i, pi, ωi > ← Min(T);
6 DeleteMin(Bi);
7 if (|Bi | = 0)
8 then DeleteMin(T)
9 elseIncreaseKey(Min(Bi), Ti);
10 if (ωi ⊑/ Tail(Pi).ω)

then begin
11 Push(<i, pi, ωi >, Pi);
12 for each {(i, j) ∈ A(i) | ωi ⊕ ωij ⊑/ Tail(Pi).ω}

begin
13 ωj ← ωi ⊕ ωij ;
14 if (Tj = ∅)
15 then Insert(<j, i, ωj >, T)
16 else if (ωj ≺ Tj .ω)
17 then DecreaseKey(<j, i, ωj >, T);
18 Insert(<j, i, ωj >, Bj);

end
end

end
end

Fig. 6. QoS Dijkstra.

number of distinct performance classes is denoted by
W , and the maximum number of adjacent neighbors by
amax = max{|A(i) | | i ∈ N}. Table II defines the primitive
operations for queues, heaps, and balanced trees used in
the algorithm, and gives their time complexity used in the
complexity analysis.

The algorithm presented in this section is based on the data
structure model shown in Figure 5. In this structure, a balanced
tree (Bi) is maintained for each node in the graph to hold
newly discovered, temporary labeled routes for that node. The
heapT contains the lightest weight entry from each non-empty
Bi (for a maximum ofn entries). A queue,Pi, is maintained
for each node which contains the set of permanently labeled

routes discovered by the algorithm, in the order in which they
are discovered (which will be in increasing weight).

The general flow of the algorithm is to take the minimum
entry from the heapT , compare it with existing routes in the
appropriatePi, if it is incomparable with existing routes inPi

it is pushed ontoPi, and “relaxed” routes for its neighbors are
added to the appropriateBx’s.

Figure 6 presents a modified Dijkstra SPF algorithm that
computes the maximal set of routes to each destination subject
to multiple metrics. The correctness of this algorithm is based
on the maintenance of the following three invariants: for all
routesI ∈ P∗ andJ ∈ B∗, I � J , all routes in a givenPi

are incomparable, and the maximal subset of routes to a given
destinationi in Pi ∪ Bi represents the maximal subset of all
paths toi using nodes with routes inP . Furthermore, these
invariants are maintained by the following two constraintson
actions performed in each iteration of these algorithms: (1)
only known-non-maximal routes are deleted or discarded, and
(2) only the smallest known-maximal route is moved toP .
See [8] for a full proof of correctness.

The time complexity of the QoS-Dijkstra algorithm is
dominated by the loops at lines 4 and 12. The loop at line
4 is executed at most once for each incomparable path (in
terms of path weights) to each node in the graph for a total
of nW times. The loop at line 12 is executed at most once
for each distinct instance of an edge in the graph, for a total
of mW times. The most time consuming operation performed
as part of the loop at line 4 is the deletion from the balanced
tree Bi at line 6 of the best temporarily labeled route with
per-operation cost oflog amaxW , and an aggregate cost of
nW log amaxW . The accesses in lines 7–9 to the best route
in heapT have a per-operation costlogd n, for an aggregate
cost of mW log n. For the loop at line 12, the most time
consuming operation is the addition to the balanced treeBi

at line 18 with a per-operation cost oflog amaxW , and an
aggregate cost ofmW log amaxW . Therefore, the worst case
time complexity of QoS Dijkstra, dominated by the operation
at line 18, isO(mW log W). Algorithms using enhanced data
structures achieve time complexity ofO(mW log(n)) (see [8]
for details).

C. Performance of QoS Dijkstra

Figures 7 and 8 present the results of experiments run
using the enhanced version of the QoS-Dijkstra algorithm (not
shown here). The experiments were run on a 2.2GHz Intel
Core 2 Duo based system (Apple MacBook Pro) with 2GB of
RAM. The algorithms were implemented using the C++ Stan-
dard Template Library (STL) and the Boost Graph Library.
Each test involved running the algorithm on ten random weight
assignments to ten randomly generated graphs (generated
using the GT-ITM package [9]). For each test the worst case
measurements are graphed. The metrics were generated using
the “Cost 2” scheme from [10] where the delay component is
randomly selected in the range1..MaxMetric, and the cost
component is computed ascost = σ(MaxMetric − delay),
whereσ is a random integer in the range1..5; this scheme

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 200 400 600 800 1000 1200 1400 1600

R
un

tim
e

(s
ec

s)

Graph size (# vertices)

Runtime(graph size) - Maximum Metric = 1000

Degree 32
Degree 16

Degree 8

Fig. 7. Runtime vs. Vertex Count (Enhanced Algorithm)

0

5000

10000

15000

20000

25000

30000

0 200 400 600 800 1000 1200 1400 1600

S
pa

ce
 (

en

tr
ie

s
in

 B
_i

 a
nd

 T
)

Graph size (# vertices)

Space(graph size) - Maximum Metric = 1000

Degree 32
Degree 16

Degree 8

Fig. 8. Space vs. Vertex Count (Enhanced Algorithm)

was chosen as it proved to result in the most challenging
computations from a number of different schemes considered.
Space overhead was measured in terms of the maximum
number of entries stored in theB∗ structures.

Tests were run for performance (both runtime and space)
as a function of graph size, average degree of the graph, and
the maximum link metric value. Only the graphs for size are
shown here. Also, since the maximum metric was shown to
have little impact on performance, only results for tests with a
maximum metric of 1000 are presented here. The results show
very reasonable performance for graphs of up to 1600 nodes,
well beyond the state-of-the-art in routing protocol scalability.
These results indicate that these routing computations meet
the performance requirements of modern routing domains with
performance headroom to spare.

V. D ISTRIBUTED LABEL-SWAP FORWARDING

As illustrated in Figure 9, the forwarding table computed by
QoS-Dijkstra contains an entry for each performance class.
A performance class is defined by the weight of the path
providing that performance class. Conceptually, forwarding in-
volves determining the performance requirements for a packet
based on traffic classification rules specified in terms of the
contents of the packet, and selecting the path appropriate to
these requirements.

2,3

A
dd

re
ss

 P
re

fix

N
ex

t H
op

Lo
ca

l L
ab

el

W
X
Y
Z

1
2
3
4

−

1

−
6

W
W
X

1
2
3

1
1
2

N
ex

 H
op

 L
ab

el
W
X
Y
Z
Z

1
2
3
4
5

− −

4
4

0,0
2
3

0,0
3

P
at

h
W

ei
gh

t

− −Z
Y

6
7 3

0,0

w

x

z

y

x
y
x
y

w
z

z

x
y
x

y

1,2

2,4

1,2

2,3

1,2
2,4

W
X
Y
Z

1
2

4

−
1
−

6
7

1,2
0,0

1,2
3

w

w
z

1,2

2,3
2,2
4,3

3,4

2,2
4,3

2,4
3,2

Fig. 9. Forwarding Labels

Process

Label−Swap
Forwarding

Traffic
Classifier

Local Processes

Y

N

N

Y

Local? Labelled?

Routing

Fig. 10. Traffic flow in routers

Performing this traffic classification step at each hop in the
network would be prohibitively expensive. To avoid this, we
propose using label-swap forwarding to require only the first
router that handles a packet to classify it before forwarding it.
Accordingly, the forwarding state of a router must be enhanced
to include local and next hop label information, in additionto
the destination and next hop information existing in traditional
forwarding tables. Traffic classifiers must then be placed atthe
edge of an internet, where “edge” is defined to be any point
from which traffic can be injected into the internet. Figure 10
illustrates the resulting traffic flow requirements of a best-
effort QoS router.

To date, label-swapping has been used in the context of
connection-oriented (virtual circuit) packet forwardingarchi-
tectures. A connection setup phase establishes the labels that
routers should use to forward packets carrying such labels,and
a label refers to an active source-destination connection [2].
Chandranmenon and Varghese [11] presentthreaded indices,
in which neighboring routers share labels corresponding to
indexes into their routing tables for routing-table entries for
destinations, and such labels are included in packet headers to
allow rapid forwarding-table lookups.

The forwarding labels in a best-effort QoS environment

are similar to threaded indices. A label is assigned to each
routing-table entry, and each routing-table entry corresponds
to a policy-based route maintained for a given destination.
Consequently, for each destination, a router exchanges oneor
multiple labels with its neighbors. Each label assigned to a
destination corresponds to the set of service classes satisfied
by the route identified by the label.

VI. CONCLUSION

In this paper we show that support of QoS requirements
in general depends on the use of multiple paths per des-
tination, and that the Internet architecture is limited to a
single path service due to its use of shortest-path-first routing,
and address-based forwarding. We then show that previous
proposed solutions for the support of QoS in the Internet
have significant limitations. Finally, we present a new, Best-
Effort QoS routing solution, based on the use of the best
set of paths to a destination, that implements the Internet’s
best effort, hop-by-hop, datagram communication model. This
solution includes a formal definition of the “best set of paths”
to a destination, an algorithm that efficiently computes this
set of paths, and a forwarding architecture that efficiently
implements forwarding over multiple paths to a destination.
Specifically, routers independently compute the best set of
routes available in an internet and forward packets using label-
swap forwarding over paths appropriate to the application’s
performance requirements. The best set of paths is continually
recomputed in response to topology events (link cost changes,
or link or node failures). Performance parameters and applica-
tion requirements are defined by network administration. This
is the first QoS routing model that supports multiple paths per
destination and retains the Internet’s best-effort, hop-by-hop,
datagram communication model, with the many benefits that
come with it.

REFERENCES

[1] D. D. Clark, “The Design Philosophy of the DARPA InternetProtocols,”
Computer Communications Review, vol. 18, no. 4, pp. 106–114, Aug.
1988.

[2] B. Davie and Y. Rekhter,MPLS: Technology and Applications. Morgan
Kaufmann, 2000.

[3] V. G. Cerf and R. E. Kahn, “A Protocol for Packet Network Intercommu-
nication,” IEEE Transactions on Communications, vol. COM-22, no. 5,
pp. 637–648, May 1974.

[4] B. Braden, D. Clark, and S. Shenker, “Integrated Services in the Internet
Architecture: an Overview,” RFC1633, Jul. 1994.

[5] S. Blake, D. L. Black, M. A. Carlson, E. Davies, Z. Wang, and
W. Weiss, “An Architecture for Differentiated Services,” RFC 2475,
December 1998. [Online]. Available: http://www.ietf.org/rfc/rfc2475.txt

[6] J. L. Sobrinho, “Algebra and Algorithms for QoS Path Computation
and Hop-by-Hop Routing in the Internet,”IEEE/ACM Transactions on
Networking, vol. 10, no. 4, pp. 541–550, Aug. 2002.

[7] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin,Network Flows – Theory,
Algorithms, and Applications. Prentice Hall, 1993.

[8] B. R. Smith, “Efficient policy-based routing in the internet,” Ph.D.
dissertation, University of California, Santa Cruz, 2003.

[9] E. W. Zegura, K. Calvert, and S. Bhattacharjee, “How to Model an
Internetwork,” inProceedings INFOCOM ’96. IEEE, 1996.

[10] S. Siachalou and L. Georgiadis, “Efficient QoS Routing,” in Proceedigns
of INFOCOM’03. IEEE, Apr. 2003.

[11] G. P. Chandranmenon and G. Varghese, “Trading Packet Headers for
Packet Processing,”IEEE ACM Transactions on Networking, vol. 4,
no. 2, pp. 141–152, Oct. 1995, 1995.

