
Variable Independence and Resolution Paths for

Quantified Boolean Formulas

Allen Van Gelder
http://www.cse.ucsc.edu/∼avg

University of California, Santa Cruz

Abstract. Variable independence in quantified boolean formulas (QBFs)
informally means that the quantifier structure of the formula can be
rearranged so that two variables reverse their outer-inner relationship
without changing the value of the QBF. Samer and Szeider introduced
the standard dependency scheme and the triangle dependency scheme to
safely over-approximate the set of variable pairs for which an outer-inner
reversal might be unsound (JAR 2009).
This paper introduces resolution paths and defines the resolution-path
dependency relation. The resolution-path relation is shown to be the root
(smallest) of a lattice of dependency relations that includes quadrangle
dependencies, triangle dependencies, strict standard dependencies, and
standard dependencies. Soundness is proved for resolution-path depen-
dencies, thus proving soundness for all the descendants in the lattice.
It is shown that the biconnected components (BCCs) and block trees of
a certain clause-literal graph provide the key to computing dependency
pairs efficiently for quadrangle dependencies. Preliminary empirical re-
sults on the 568 QBFEVAL-10 benchmarks show that in the outermost
two quantifier blocks quadrangle dependency relations are smaller than
standard dependency relations by widely varying factors.

1 Introduction

Variable independence in quantified boolean formulas (QBFs) informally means
that two variables that are adjacent in the quantifier structure can exchange
places without changing the value of the QBF. The motivation for knowing such
shifts are sound (i.e., cannot change the value of a closed QBF, which is true or
false) is that QBF solvers have more flexibility in their choice of which variable
to select for a solving operation. They are normally constrained to obey the
quantifier order.

Samer and Szeider introduced dependency schemes to record dependency
pairs (p, q) such that q is inner to p in the quantifier structure and any rear-
rangement that places q outer to p might be unsound. The absence of (p, q)
ensures that there is some sound rearrangement that places q outer to p [6]. The
idea is that the pairs in a dependency scheme can be computed with reasonable
effort, and are a safe over-approximation of the exact relation that denotes un-
sound rearrangements of quantifier order. A smaller dependency scheme allows

Resolution
Path

- Quadrangle -��R Triangle PPPPPPPPq
Strict Standard - Standard - Trivial

Fig. 1. Lattice of dependency relations.

more pairs to be treated as independent. They proposed two nontrivial schemes,
the “standard” dependency scheme, which is easiest to compute, but coarse, and
the “triangle” dependency scheme, which is more refined. Lonsing and Biere have
reported favorable results on an implementation of the “standard” dependency
scheme [5]. We are not aware of any implementation of triangle dependencies.
Lonsing and Biere provide additional bibliography and discussion of other ap-
proaches for increasing solver flexibility.

This paper introduces resolution paths in Section 4 to define a depen-
dency relation that is smaller than those proposed by Samer and Szeider. Reso-
lution paths are certain paths in the resolution graph [7] associated with the
quantifier-free part of the QBF. A hierarchy of new relations is introduced,
called resolution-path dependencies (smallest), quadrangle dependencies, and
strict standard dependencies. Quadrangle dependencies refine the triangle de-
pendencies; strict standard dependencies refine standard dependencies. The re-
sulting lattice is shown in Figure 1. Soundness is proved for resolution-path
dependencies, thus proving soundness for all the descendants in the hierarchy.
A slightly longer version of this paper contains some details omitted here, due
to the page limit.1

The main obstacle is computing the dependency relation for anything more
refined than standard dependencies or strict standard dependencies. Samer and
Szeider sketched a polynomial-time algorithm, which enabled them to get inter-
esting theoretical results involving triangle dependencies and back-door sets. It
appears to be too inefficient for practical use on large QBF benchmarks and, to
the best of our knowledge, it has not been implemented.

Samer and Szeider used a certain undirected graph, similar to what is called
the clause-variable incidence graph in the literature, for their algorithm. This
clause-literal graph, as we shall call it, is normally already represented in the
data structures of a solver, as occurrence lists, and is practical to use for the
standard dependency relation [5]. It is easy to see standard dependencies (and
strict standard dependencies) are based on the connected components (CCs)
of this graph. Strict standard dependencies, introduced in Definition 5.2, are
essentially a cost-free improvement on standard dependencies, once this fact is
recognized.

This paper shows in Section 6 that the biconnected components (BCCs)
of the clause-literal graph provide the key to identifying dependency pairs for

1 Please see http://www.cse.ucsc.edu/∼avg/QBFdeps/ for a more detailed version
of this paper and a prototype program.

quadrangle dependencies, introduced in Definition 5.2. Like CCs, BCCs can
be computed in time linear in the graph size. Based on the BCC structure,
the clause-literal graph can be abstracted into a block tree , so-called in the
literature.

Quadrangle dependencies can be determined by paths in the block tree, which
is normally much smaller than the clause-literal graph. Our algorithm could be
modified to compute triangle dependencies, but this would cost the same as
quadrangle dependencies, and produce less independence, so this modification
has not been implemented. We avoid calling the quadrangle dependency relation
a dependency scheme to avoid conflicting with the technical requirements stated
by Samer and Szeider [6]

In a prototype C++ implementation that builds dependency relations, com-
puting BCCs was found to be as cheap as computing connected components
(needed for any dependency relation), on the 568 QBFEVAL-10 benchmarks.
Preliminary empirical results are given in Section 7, mainly consisting of statis-
tics about the BCC structure and size of quadrangle dependency relations in
these benchmarks.

The primary goal of this work to provide methods by which practical QBF
solvers can soundly carry out a broader range of the operations they already
perform. (Readers should be familiar with QBF solver operations to follow these
paragraphs, or come back after reading Section 2.) The universal reduction op-
eration is ubiquitous in QBF solvers. The standard requirement is that all exis-
tential literals must be independent of the universal literal u to be deleted in the
trivial dependency relation. Theorem 4.9 shows that independence in the quad-
rangle relation is sufficient. Search-based QBF solvers make variable assignments
as assumptions (the word “decision” is often used). Normally, an existential vari-
able can be selected only if it is independent of all unassigned universal variables
in the trivial dependency relation. Theorem 4.7 shows that independence in the
quadrangle relation is sufficient.

2 Preliminaries

In general, quantified boolean formulas (QBFs) generalize propositional formulas
by adding universal and existential quantification of boolean variables. See [3] for
a thorough introduction and a review of any unfamiliar terminology. A closed

QBF evaluates to either 0 (false) or 1 (true), as defined by induction on its
principal operator.

1. (∃x φ(x)) = 1 iff (φ(0) = 1 or φ(1) = 1).
2. (∀x φ(x)) = 0 iff (φ(0) = 0 or φ(1) = 0).
3. Other operators have the same semantics as in propositional logic.

This definition emphasizes the connection of QBF to two-person games, in which
player E (Existential) tries to set existential variables to make the QBF evaluate
to 1, and player A (Universal) tries to set universal variables to make the QBF
evaluate to 0 (see [4] for more details).

For this paper QBFs are in prenex conjunction normal form (PCNF),

i.e., Ψ =
−→
Q.F consists of prenex

−→
Q and clause matrix F . Clauses may be writ-

ten enclosed in square brackets (e.g., [p, q, r]). Literals are variables or negated
variables, with overbar denoting negation. Usually, letters e and others near the
beginning of the alphabet denote existential literals, while letters u and others
near the end of the alphabet denote universal literals. Letters like p, q, r de-
note literals of unspecified quantifier type. The variable underlying a literal p is
denoted by |p| where necessary.

The quantifier prefix is partitioned into quantifier blocks of the same quan-
tifier type. Each quantifier block has a unique qdepth, with the outermost block
having qdepth = 1.

The proof system known as Q-resolution consists of two operations, resolution

and universal reduction. Q-resolution is of central importance for QBFs because
it is a sound and complete proof system [2]. Resolution is defined as usual, except
that the clashing literal is always existential; universal reduction is special to
QBF. Let α, β, and γ be possibly empty sets of literals.

rese(C1, C2) = α ∪ β where C1 = [e, α] , C2 = [e , β] (1)

unrdu(C3) = γ where C3 = [C]
3

= [u, γ] (2)

Resolvents must be non-tautologous for Q-resolution. unrdu(C3) is defined only
if u is tailing for γ, which means that the quantifier depth (qdepth) of u is
greater than that of any existential literal in γ.

A Q-derivation , often denoted as π, is a directed acyclic graph (DAG) in
which each node is either an input clause (a DAG leaf), or a proof operation (an
internal node) with a specified clashing literal or reduction literal, and edge(s)
to its operand(s). A Q-refutation is a Q-derivation of the empty clause.

An assignment is a partial function from variables to truth values, and is
usually represented as the set of literals that it maps to true. Assignments are
denoted by ρ, σ, τ , etc. Applications of an assignment σ to a logical expression
are denoted by q⌈σ, C⌈σ, F⌈σ, etc. If σ assigns variables that are quantified in Ψ ,
those quantifiers are deleted in Ψ⌈σ, and their variables receive the assignment
specified by σ.

3 Regular Q-Resolution

In analogy with regular resolution in propositional calculus, we define Q-resolu-
tion to be regular if no variable is resolved upon more than once on any path in
the proof DAG. We need the following property for analyzing resolution paths.

Theorem 3.1 Regular Q-resolution and regular tree-like Q-resolution are com-
plete for QBF.

Proof: The proof for regular Q-resolution is the same as in the paper that
showed Q-resolution is complete for QBF [2]. It is routine to transform a regular
Q-resolution derivation into a regular tree-like Q-resolution derivation of the
same clause, by splitting nodes as needed, working from the leaves (original
clauses) up.

4 Resolution Paths

This section defines resolution paths and resolution-path dependencies, then
states and proves the main results in Theorem 4.7 and subsequent theorems. Let
a closed PCNF Ψ =

−→
Q.G be given in which the quantifier block at qdepth d + 1

is existential. Consider the resolution graph G = (V,E) defined as follows [7]:

Definition 4.1 The qdepth-limited resolution graph G = (V,E) at qdepth d+1
is the undirected graph in which:

1. V , the vertex set, consists of clauses in G containing some existential literal
of qdepth at least d + 1;

2. E, the undirected edge set, consists of edges between clauses Ci and Cj in V ,
where there is a unique literal q such that q ∈ Ci and q ∈ Cj , so that Ci and
Cj have a non-tautologous resolvent. Further, q is required to be existential
and its qdepth must be d + 1 or greater. Each edge is annotated with the
variable that qualifies it as an edge.

A resolution path of depth d + 1 is a path in G such that no two consecutive

edges are annotated with the same variable. (Nonconsecutive edges with the
same variable label are permitted and variable labels with qdepths greater than
d + 1 are permitted.)

Definition 4.2 We say that a literal p presses on an existential literal q in the
graph G defined in Definition 4.1 if there is a resolution path of depth d + 1
connecting a vertex that contains p with a vertex that contains q without using
an edge annotated with |q|. Similarly, p presses on q if there is a resolution path
of depth d + 1 connecting a vertex that contains p with a vertex that contains
q without using an edge annotated with |q|.

One may think of “presses on” as a weak implication chain: if all the clauses
involved are binary, it actually is an implication chain. An example is discussed
later in Example 5.4 and Figure 3 after some other graph structures have been
introduced. The intuition is that if literal p presses on literal q, then making p true

makes it more likely that q will need to be true to make a satisfying assignment.
Theorem 4.7 shows that transposing the variable order in the quantifier prefix
is sound, even though many combinations of pressing are present. Only certain
combinations are dangerous.

We say that a sequence S′ is a subsequence of a sequence S if every element
in S′ is also in S, in the same order as S, but not necessarily contiguous in S.

The next theorem shows that Q-resolution cannot bring together variables
unless there is a “presses on” relationship in the original clauses. This suggests
that resolution paths are the natural form of connection for variable dependen-
cies.

Theorem 4.3 Let Ψ =
−→
Q.G be a closed PCNF. Let π be a regular tree-like

Q-resolution derivation from Ψ . For all literals p and for all existential literals f ,
if there is a clause (input or derived) in π that contains both p and f , then the
order of sibling subtrees of π may be swapped if necessary so that a resolution

path from a clause with p to a clause with f appears as a subsequence of the
leaves of π (not necessarily contiguous, but in order).

Proof: The proof is by induction on the subtree structure of π. The base
case is that p and f are together in a clause of G, say D1, which is a leaf of π.
Then D1 constitutes a resolution path from p to f .

For any non-leaf subtree, say π1, assume the theorem holds for all proper
subtrees of π1. That is, assume for all literals q and for all existential literals e,
if there is a clause in a proper subtree of π1, say π2, that contains both q and e,
then the subtrees of π2 may be swapped so that a resolution path from a clause
with q to a clause with e appears as a subsequence of the leaves of π2.

Suppose that clause D1, the root clause of π1 contains both p and f . If p and
f appear in a clause in a proper subtree of π1, then the inductive hypothesis
states that the needed resolution path can be obtained, so assume p and f do
not appear together in any proper subtree of π1.

Arrange the two principal subtrees of π1 so that p is in the root clause of the
left subtree and f is in the root clause of the right subtree (p and/or f might
be in both subtrees). Let the clashing literal be g at the root of π1. That is, g

appears in the left operand and g appears in the right operand of the resolution
whose resolvent is D1.

By the inductive hypothesis, the left subtree has a resolution path PL from
a clause with p to a clause with g as a subsequence of its leaves. Also, the right
subtree has a resolution path PR from a clause with g to a clause with f as a
subsequence of its leaves. Concatenate PL and PR (with the edge being labeled
|g|) to give a resolution path from a clause with p to a clause with f . Since |g| was
a clashing literal at D1, above the two subtrees, by regularity of the derivation,
|g| cannot appear as an edge label in either PL or PR, so the concatenation
cannot have consecutive edges labeled with |g|.

We now consider when transposing adjacent quantified variables of different
quantifier types in the quantifier prefix does not change the value of the QBF.

Definition 4.4 Let a closed PCNF Ψ =
−→
Q.G be given in which the universal

literal u is at qdepth d and the existential literal e is at some qdepth greater
than d. The pair (u, e) satisfies the resolution-path independence criterion

if (at least) one of the following conditions hold in the depth-limited graph G

defined in Definition 4.1:

(A) u does not press on e and u does not press on e ; or
(B) u does not press on e and u does not press on e .

If u and e are variables, the pair (u, e) satisfies the resolution-path indepen-

dence criterion for variables if any of (u, e) or (u, e) or (u , e) or (u , e)
satisfies the resolution-path independence criterion for literals.

Definition 4.5 Let universal u and existential e be variables, as in Defini-
tion 4.4. We say the pair (u, e) is a resolution-path dependency tuple if
and only if (at least) one of the following conditions holds in G:

(C) u presses on e and u presses on e ; or

(D) u presses on e and u presses on e .

Lemma 4.6 states that either this definition or Definition 4.4, but not both,
applies for pairs (u, e) of the correct types and qdepths.

Lemma 4.6 If u and e are universal and existential variables, respectively, then
(u, e) satisfies the resolution-path independence criterion for variables if and only
if e does not have a resolution-path dependency upon u.

Proof: Apply DeMorgan’s laws and distributive laws to the definitions.

We are now ready to state the main theoretical results of the paper. We use
transpose in its standard sense to mean interchange of two adjacent elements
in a sequence.

Theorem 4.7 Let a closed PCNF Ψ =
−→
Q.G be given in which the universal

literal u is at qdepth d and is adjacent in the quantifier prefix to the existential
literal e at qdepth d + 1. Let (u, e) satisfy the resolution-path independence
criterion for literals (Definition 4.4). Then transposing |u| and |e| in the quantifier
prefix does not change the value of Ψ .

Proof: It suffices to show that transposing u to a later position does not
cause Ψ to change in value from 1 to 0. We show this holds for all assignments σ

to all variables outer to u in Ψ . That is, let
−→
Qrem be the suffix of

−→
Q beginning

immediately after ∀u ∃e, and define

Φ = ∀u ∃e
−→
Qrem.F , where F = G⌈σ (3)

Φ′ = ∃e∀u
−→
Qrem.F . (4)

Note that if the hypotheses (A) and (B) in Definition 4.4 hold for Ψ , then
they also hold for Φ. Throughout this proof “A” and “B” refer to these con-
ditions. Suppose Φ′ evaluates to 0. By Theorem 3.1 there is a regular tree-like
Q-refutation π′ of Φ′. Note that π′ has no redundant clauses; they all contribute
to the refutation. Let us attempt to use π′ as a starter for π, which we want to
be a Q-refutation of Φ. For notation, any primed symbol (such as D′) in Φ′ or
π′ represents the corresponding unprimed symbol (such as D) in Φ or π.

What operation of π′ can be incorrect for π? The only possibilities are a
universal reduction involving a clause containing literals on both |u| and |e|. In
π′, |u| is tailing w.r.t. |e|, whereas in π it is not.

The key observation is that a regular tree-like Q-refutation derivation from
Φ′ cannot produce certain clauses containing literals on both |u| and |e|, due to
Theorem 4.3. Any resolution path in Φ from u or u to e or e that is implied by
applying Theorem 4.3 to π′ cannot contain edges labeled with |e|, by regularity.
So such a path is also a resolution path after the transposition of u and e in the
quantifier prefix. Such a resolution path in Φ′ or Φ is also a resolution path at
the corresponding quantifier depth (i.e., d + 1) in Ψ . The theorem hypothesis
that Definition 4.4 holds, together with Lemma 4.6, prohibits certain resolution
paths that would imply that Definition 4.5 holds.

As stated, the only cases where the operation in π′ might not be imitated
in π are where the operation is a universal reduction on u or u in a clause D′.
Let D in π correspond to D′ in π′. Without loss of generality we assume that

all universals other than u or u have already been reduced out of D′. There
are several cases to examine, to show that the problematic operations in π′ can
always be transformed into correct operations in π that achieve a Q-refutation
of Φ. It will follow that transposing u and e does not change the evaluation of
Ψ .

If D′ contains u, in π′ let the clause D′
2

= unrdu(D′). D′
2

must contain e or
e or the same reduction can apply to D.

If D′ contains u and D′
2

contains e, we cannot have case (B), so consider
case (A). The reduced clause D′

2
must resolve on e with some clause, say C ′,

that contains e . But C ′ cannot contain u . Let π resolve D with C, giving
D2. D2 must be non-tautologous and now u can be reduced out, constructing a
Q-refutation of Φ.

If D′ contains u and D′
2

contains e , neither case (A) nor case (B) is possible.
If D′ contains u , in π′ let the clause D′

3
= unrdu (D′). D′

3
must contain e or

e or the same reduction can apply to D.
If D′ contains u and D′

3
contains e, D′

3
must resolve with some clause, say

C ′
3
, that contains e . C ′

3
cannot contain u in either case (A) or (B). Let π resolve

D with C3, giving D3. D3 must be non-tautologous and now u can be reduced
out, constructing a Q-refutation of Φ.

If D′ contains u and D′
3

contains e , we cannot have case (A), so consider case
(B). The reduced clause D′

3
must resolve with some clause, say C ′

4
, that contains

e. But C ′
4

cannot contain u. Let π resolve D with C4, giving D4. D4 must be
non-tautologous and now u can be reduced out, constructing a Q-refutation of
Φ.

Corollary 4.8 If e is an existential pure literal in the matrix of a closed QBF
Ψ , then e may be placed outermost in the quantifier prefix without changing the
value of Ψ . If u is a universal pure literal in a closed QBF Ψ , then u may be
placed innermost in the quantifier prefix without changing the value of Ψ .

Next we consider cases in which u and e are separated by more than one
qdepth. Although it might not be sound to revise the quantifier prefix, we still
might be able to perform universal reduction and other operations soundly.

Theorem 4.9 Let a closed PCNF Ψ =
−→
Q.G be given in which the universal

literal u is at qdepth d and the existential literals e1, . . ., ek are at qdepths greater
than d. Let C0 = [α, u, e1, . . . , ek] be clause in G, where α (possibly empty)
consists of existential literals with qdepths less than d and universal literals.
For each i ∈ {1, . . . , k}, let (|u|, |ei|) satisfy the resolution-path independence
criterion for variables (Definition 4.4). Then deleting u from C0 does not change
the truth value of Ψ . That is, universal reduction on u in C0 is sound.

Proof: The proof idea is similar to Theorem 4.7, but is more involved because
Theorem 4.3 needs to be invoked on multiple subtrees. It suffices to show that
deletion of u from C0 does not cause Ψ to change from 1 to 0. We show this
holds for all assignments σ to all variables outer to u in Ψ . That is, let

−→
Qrem be

the suffix of
−→
Q beginning immediately after ∀u, and define

Φ = ∀u
−→
Qrem.F , where F = G⌈σ (5)

C0
2����g

D0
1 C0

1��������
CCCCCCCCu g

CCCCCCC
�������� CCCCCC

�������� CCCCCC������� CCCCCC�������
C0

3����g3
D0

4 C0
4����� BBBBBg g3

����� BBBB ���� BBBB C0
8����e j

D0
9�� XXXXz

C0
Fig. 2. Refutation π

′ exhibiting resolution path from u to ej for proof of Theorem 4.9.
Circles contain clashing literals of resolutions that derive clauses immediately above
them.

Φ′ = ∀u
−→
Qrem.F ′, (6)

where F ′ is obtained from F by replacing clause C = C0⌈σ by C ′ = C−{u}. For
notation, any primed symbol (such as D′) in Φ′ or π′ represents the corresponding
unprimed symbol (such as D) in Φ or π.

Suppose Φ′ evaluates to 0. By Theorem 3.1 Φ′ has a regular tree-like Q-
refutation, say π′, which we use as a starter for π. The only operation in π′ that
might be incorrect for π is a resolution involving a clause C1 in π, where u ∈ C1,
u has been reduced out of C ′

1
in π′, and the extra u causes the resolvent to be

tautologous in π. Thus C1 and C ′
1

contain at least one of the literals e1, . . ., ek.
Also C1 and C ′

1
resolve with some clause D1 = D′

1
that contains u . We show

this leads to a contradiction.

Figure 2 shows the proof ideas. Let the resolvent of C ′
1

and D′
1

in π′ be C ′
2

and let the clashing literal in D′
1

be g . By Theorem 4.3 there is a resolution
path from u to g using (some of) the leaves of the subtree rooted at D′

1
.

C provides a resolution-path from u to ei in Φ, for each i ∈ {1, . . . , k} so
to establish the contradiction, it suffices to show that there is a resolution path
from u to ej , for some j ∈ {1, . . . , k}. If g is equal to any of e1, . . ., ek, we are
done, so assume not.

Swap the order of sibling subtrees in π′ as necessary to place C ′ on the
rightmost branch, called the right spline. Find the lowest clause on this spline
containing g. Call this clause C ′

3
and call its left child D′

4
. D′

4
contains g and the

clashing literal used to derive C ′
3
, say g3 . If D′

4
contains ej for any j ∈ {1, . . . , k}

rearrange its subtrees to exhibit a resolution path from g to ej and we are done.
Otherwise, rearrange its subtrees to exhibit a resolution path from g to g3 , as
suggested in the figure. Append this to the path from u to g (from the subtree
deriving D′

1
), giving a resolution path from u to g3 .

Continue extending the path in this manner down the right spline. That is,
let C ′

5
be the lowest clause on this spline containing g3 and let its left child be

D′
6
, etc. The figure does not show these details. Eventually, the left child of a

spline clause contains some ej , shown as C ′
8

in the figure. (This must occur
at some point because the first resolution above C ′ must use some ej as the

clashing literal.) When ej is reached, a resolution path from u to ej has been
constructed, using the subtree that derives D′

9
for the last segment.

5 Clause-Literal Graphs

Let a closed QBF Ψ be given in which the quantifier block at qdepth d + 1 is
existential. We define qdepth-limited clause-literal graphs as follows:

Definition 5.1 The qdepth-limited clause-literal graph denoted as G =
((V0, V1, V2), E) at qdepth d+1 is the undirected tripartite graph in which: The
vertex set V0 consists of clauses containing some existential literal of qdepth at
least d + 1; The vertex set V1 consists of existential positive literals of qdepth
at least d + 1 that occur in some clause in V0. The vertex set V2 consists of
existential negative literals of qdepth at least d + 1 that occur in some clause in
V0. The undirected edge set E consists of (ei, ei), where ei ∈ V1, (ei, Cj), where
ei ∈ V1 and Cj ∈ V0 and ei ∈ Cj , and (ei , Cj), where ei ∈ V2 and Cj ∈ V0 and
ei ∈ Cj . See examples in Figure 3.

Several dependency relations can be specified in terms of paths in the depth-
limited clause-literal graph G. Simple paths and simple cycles in G are defined
as usual for undirected graphs.

Definition 5.2 Let u be a universal literal at qdepth d and let e be an existential
literal at qdepth d + 1. A dependency pair (|u|, |e|) means |e| depends on |u|.

1. Standard dependencies are based on connected components.
stdDepA(|u|, |e|) holds if any path in G connects a clause with universal
literal u or u to a clause with existential literal e or e .

2. Strict standard dependencies are based on connected components of G.
ssDepA(|u|, |e|) holds if some path in G connects a clause with universal
literal u to a clause with existential literal e or e , and some path in G

connects a clause with u to a clause with e or e .
3. Quadrangle dependencies are based on biconnected components and artic-

ulation points of G, because they involve paths that avoid a certain literal.
(Definitions are reviewed at the beginning of Section 6.) Articulation points
are the only vertices that cannot be avoided. quadDepA(|u|, |e|) holds if; (A)
Some path in G connects a clause with universal literal u to a clause with
existential literal e and avoids vertex e ; and (B) some path in G connects
a clause with universal literal u to a clause with existential literal e and
avoids vertex e.
Note that u and e can independently be chosen as positive or negative literals
to satisfy the above conditions (A) and (B). The name “quadrangle” is chosen
because all four literals on |u| and |e| are involved in the requirement.

4. Triangle dependencies are a relaxation of Quadrangle dependencies, also
based on biconnected components and articulation points of G. Specifically,
triDepA(|u|, |e|) holds under the same conditions as quadDepA(|u|, |e|), ex-
cept in condition (B) the path may start at a clause with either u or u .

Table 1. QBFs for Example 5.4.

Ψ1 ∀u ∃e ∀t ∃d

C1 u t d

C2 u t d

C3 e t d

C4 e t d

C5 e t d

C6 e t d

Ψ2 ∀u ∃e ∀t ∃d

C1 u t d

C2 u t d

C3 e t d

C4 e t d

C7 e t d

C6 e t d

C1

C2

d
d

C4

C6

C3

C5

e

e

C1 d

d

C2 d

C3 C5 C4 C6

d d e e

C1

C2

d
d

C4

C6

C3

C7

e

e

C1 d

d

C2 d

C3 C7 C4 C6

d d e e

Ψ1 Ψ2

Fig. 3. (Above) Clause-literal graphs for Example 5.4. (Below) BCC-based block trees.

5. Paths for resolution-path dependencies, denoted by rpDepA(|u|, |e|), are fur-
ther restricted from those for quadrangle dependencies. Restrictions on paths
are as follows: (C) If a path arrives at a literal node from a clause node,
its next step must be to the complement literal. (D) If a path arrives at
a literal node from its complement literal node, its next step must be to a
clause node.
If a path goes from C1 to literal q, then to C2, then both C1 and C2 contain
q. This path is allowed for triangle and quadrangle dependencies, but not
for resolution-path dependencies.

Curiously, strict standard dependencies relax quadrangle dependencies in the
opposite way from triangle dependencies. The motivation for strict standard
dependencies is that they seem to be more efficient to compute than quadrangle
dependencies, as discussed later.

Theorem 4.7 implies the following:

Corollary 5.3 With the preceding notation: (1) If the universal variable u at
qdepth d has no tuple (u, e) ∈ quadDepA such that the qdepth of e is less than
d + 2k, where k > 0, then u can be placed at qdepth d + 2k in the quantifier
prefix without changing the value of Ψ . (2) If existential variable e at qdepth

d + 1 has no tuple (u, e) ∈ quadDepA such that the qdepth of u is greater than
d− 2k, where k > 0, then e can be placed at qdepth d + 1− 2k in the quantifier
prefix without changing the value of Ψ .

Example 5.4 This example illustrates resolution-path dependencies, quadran-
gle dependencies, and their differences, with reference to various graph struc-
tures. Consider the closed QBFs Ψ1 and Ψ2, given in chart form in Table 1. In
the following, the notation “C1(u)” abbreviates the phrase “C1, which contains
the literal u,” etc., and does not represent any operation on C1.

In both formulas a quadrangle dependency quadDepA(|u|, |e|) is established

by the paths C1(u)
|d|
→ C4(e) and C2(u)

|d|
→ C3(e). However, the first path is not

a resolution path because d does not occur with opposite signs in C1 and C4.
Indeed, in Ψ1 neither u nor u presses on e by any resolution path, recalling
that the universal t cannot be used for connection. Therefore e is independent of
u based on rpDepA. It follows that u and e may be exchanged in the quantifier
prefix without decreasing the value of Ψ1 (and such a swap can never increase
the value). Following this exchange, it is easy to see that u may be exchanged
with t, then with d, and universally reduced out of all clauses.

Observe that Ψ2 is the same as Ψ1 except that it has C7 instead of C5. There

is no obvious difference in the chart appearance, but now C1(u)
|d|
→ C7(e) is a

resolution path and rpDepA(|u|, |e|) holds in Ψ2, so transposing u and e in the
quantifier prefix is unsafe by this criterion.

The role of the block trees is explained in Section 6, in connection with
biconnected components and articulation points of the clause-literal graph. The
definitions are reviewed at the beginning of that section. Here we just note that
the circular node is an articulation point and the rounded rectangular nodes are
biconnected components.

6 Finding Dependency-Related Paths

Now we turn to the issue of computing quadDepA. Biconnected components play
a central role. After reviewing the standard theory, this section describes how
the specific information needed for quadrangle dependencies is extracted.

Recall that a subgraph, say B, of an undirected graph G is biconnected if
and only if removing any one vertex and all edges incident upon that vertex does
not disconnect the remaining subgraph. A biconnected component (BCC) of
any undirected graph G is a maximal biconnected subgraph of G.

Each edge of G is in exactly one BCC. Also, two BCCs have at most one
vertex in common. A vertex that is in more than one BCC is called an articu-

lation point (AP). Removal of an articulation point increases the number of
connected components in G.

The BCCs and APs of the depth-limited clause-literal graph G can be found
in time linear in its size. The code in [1, Fig. 7.26] avoids putting edges redun-
dantly into the BCCs.

As a by-product, the BCC algorithm can determine simple connected com-
ponents (CCs). An additional by-product of this algorithm is the creation of
an acyclic undirected bipartite graph associated with each CC, called the block

tree , in which the BCCs are collapsed to single vertices and are separated by
the APs (see Figure 3). All universal literals incident upon each BCC can be
collected, as well.

We continue with the terminology of Definition 5.1 for G, d, u, e, etc. It is
easy to determine if there is a path in G between some clause containing u or
u and a literal e in V1: just check if one of those clauses is in the same CC
as e. Since e and e are always in the same CC, the same clauses can reach e .
However, the triangle and quadrangle dependency relations require paths to e

and e that avoid the complement literal. If neither e nor e is an AP of G, both
of these paths must exist. In this case, the relevant universal literals for |e| are
just those that occur in some clause in the same CC as e. These sets of universal
literals can be collected once, during the BCC algorithm.

Now suppose e or e or both are APs of G. The relevant universal literals
for e can be found by starting a graph search of the block tree containing |e|,
from e, and avoiding a visit of e . The relevant universal literals for e can be
found by starting a graph search of the block tree containing |e|, from e , and
avoiding a visit of e. As each BCC is visited, any universal literals at qdepth d

can be collected. It appears that adapting this approach to compute triangle de-
pendencies instead of quadrangle dependencies will not save much time. Details
are omitted for lack of space, but are straightforward.

At this time, the question of whether resolution-path dependencies can be
computed in polynomial time is open. We conjecture that it is possible, but the
requirement that two consecutive edge labels in the resolution graph cannot be
the same makes it difficult.

7 Empirical Data

A prototype program was implemented in C++ with the Standard Template Li-
brary to gauge the amount of variable independence that might be found by
various dependency relations.2 The program computes dependency-related quan-
tities on QBF benchmarks. It was run on the 568 QBFEVAL-10 benchmarks.
Two benchmarks had no universal variables, so the tables include data on 566
benchmarks. The platform was a 2.6 GHz 64-bit processor with 16 GB of RAM,
Linux OS.

The computation was limited to the outermost universal block and the adja-
cent enclosed existential block. The number of “trivial dependencies” is simply
the product of the sizes of these two blocks. The primary purpose of the program
is to find out the relative sizes of the relations for standard dependencies, strict
standard dependencies, and quadrangle dependencies. Only the outermost block
pair is analyzed because this provides a direct comparison between standard

2 Please see http://www.cse.ucsc.edu/∼avg/QBFdeps/ for the prototype program.

Table 2. Eight largest QBFEVAL-10 benchmarks.

Fraction of Trivial
Trivial Strict

Benchmark (000,000) CCs Standard Standard Quadrangle

s3330 d10 u-shuffled 627 1 1 1 0.000076
s3330 d4 s-shuffled 68 1 1 1 0.000069
s499 d15 s-shuffled 15 1 1 1 0.000125
s510 d12 s-shuffled 16 1 1 1 0.000028
s510 d31 s-shuffled 122 1 1 1 0.000082
szymanski-24-s-shuffled 1293 1 1 1 0.001944
vonNeumann-rip...-13-c- 278 1 0.999999 0.999999 0.992812
vonNeumann-rip...-15-c- 627 1 0.999999 0.999999 0.993727

Table 3. Dependency fractions as unweighted ratios.

Average Avg. Fraction of Trivial
Benchmark Num. in Trivial Avg. Strict
Group Group (000) CCs Standard Standard Quadrangle

Eight Largest 8 219363 1 1.0000 1.0000 0.2486
Str.Std. Helped 239 158 34.6 0.3722 0.3718 0.1928
Str.Std. No Help 319 359 9.8 1 1 0.7278

dependencies and quadrangle dependencies. Including multiple blocks would ob-
scure the size relationships because standard dependencies use transitive closure
when multiple blocks are involved, while quadrangle dependencies do not.

The benchmarks were partitioned into several groups to try to make the
statistics more informative. Table 2 shows data for the eight largest benchmarks,
as measured by the number of trivial dependencies. For six of these benchmarks,
the Quadrangle relation is 3-5 orders of magnitude smaller than the Trivial,
while the Strict Standard gives no reduction. On two others, no relation gives
reduction.

Table 3 shows the eight largest as a group, and separate the remaining bench-
marks according to whether Strict Standard Dependencies gave any reduction
at all. Quadrangle dependencies give substantial additional reductions, beyond
standard and strict standard dependencies. Although Strict Standard gave very
little improvements in this test, they are essentially free, once the overhead of
Standard has been incurred.

A serious question is whether the time needed to compute Quadrangle De-
pendencies pays back in more efficient solving. Experience with depqbf indicates
tentatively that Standard Dependencies pay back in the long run [5]. For the 566
runs to get these statistics, the three longest runs took 75628, 2354, and 1561
seconds. The average of the remaining 563 runs was 9.40 seconds. Only finding
the Strict Standard dependencies and the BCCs averaged 0.50 seconds on all
566 instances.

Concerning the three longest runs, two of these instances have never been
solved by any solver, so in a sense, nothing has been lost. However, the third

instance, szymanski-24-s-shuffled, is not considered exceptionally difficult. It
took 75628 seconds to find the quadrangle dependencies, yet finding the BBCs
took only three seconds, and computing the Standard Dependencies took only
four additional seconds. We do not have an explanation for this outlier behavior.

8 Conclusion

This paper analyzes several new dependency relations for QBF solving, and
shows they form a hierarchy, together with the standard and triangle relations
proposed by Samer and Szeider. The root of the hierarchy and strongest for
detecting variable independence is the resolution-path dependency relation. Its
soundness is proved; soundness of supersets (more restrictive relations) is a corol-
lary. Whether the resolution-path relation has an efficient implementation is an
open question, so quadrangle dependencies, the next relation down in the lattice
(Figure 1), were studied in more detail. Computational methods for quadrangle
dependencies are described, using the theory of biconnected components, and a
prototype was implemented to gauge the sizes of BCCs and related structures
in benchmarks.

Future work includes a trial implementation of quadrangle dependencies in
a QBF solver, but the publicly available solvers we looked at are not good can-
didates for such a retrofit by anyone except one of the original programmers, in
most cases because the source code is not public. The few with public source
code tend to lack documentation and contain numerous short-cuts to improve
solver speed. Also, there are numerous ways to use dependencies, so one imple-
mentation experience will not be definitive.
Acknowledgment We thank Florian Lonsing and Armin Biere for many helpful
email discussions. We thank the anonymous reviewers for helpful comments.

References

1. Baase, S., Van Gelder, A.: Computer Algorithms: Introduction to Design and Anal-
ysis. Addison-Wesley, 3rd edn. (2000)

2. Kleine Büning, H., Karpinski, M., Flögel, A.: Resolution for quantified boolean
formulas. Information and Computation 117, 12–18 (1995)

3. Kleine Büning, H., Lettmann, T.: Propositional Logic: Deduction and Algorithms.
Cambridge University Press (1999)

4. Klieber, W., Sapra, S., Gao, S., Clarke, E.: A non-prenex, non-clausal QBF solver
with game-state learning. In: Proc. SAT, LNCS (2010)

5. Lonsing, F., Biere, A.: Integrating dependency schemes in search-based QBF solvers.
In: Proc. SAT. pp. 158–171. Springer (2010)

6. Samer, M., Szeider, S.: Backdoor sets of quantified boolean formulas. J. Automated
Reasoning 42, 77–97 (2009)

7. Yates, R.A., Raphael, B., Hart, T.P.: Resolution graphs. Artificial Intelligence 1,
257–289 (1970)

