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Abstract. Subsumption-Linear Q-Resolution (SLQR) is introduced for proving

theorems from Quantified Boolean Formulas. It is an adaptation of SL-Resolution,

which applies to propositional and first-order logic. In turn SL-Resolution is

closely related to model elimination and tableau methods. A major difference

from QDPLL (DPLL adapted for QBF) is that QDPLL guesses variable assign-

ments, while SLQR guesses clauses.

In prenex QBF (PCNF, all quantifier operations are outermost) a propositional

formula D is called a nontrivial consequence of a QBF Ψ if Ψ is true (has at

least one model) and D is true in every model of Ψ . Due to quantifiers, one

cannot simply negate D and look for a refutation, as in propositional and first-

order logic. Most previous work has addressed only the case that D is the empty

clause, which can never be a nontrivial consequence.

This paper shows that SLQR with the operations of resolution on both existential

and universal variables as well as universal reduction is inferentially complete

for closed PCNF that are free of asymmetric tautologies; i.e., if D is logically

implied by Ψ , there is a SLQR derivation of D from Ψ . A weaker form called

SLQR–ures omits resolution on universal variables. It is shown that SLQR–ures

is not inferentially complete, but is refutationally complete for closed PCNF.

1 Introduction

Theorem proving, i.e., showing that a given formula F logically implies another for-

mula G, is a fundamental task in any logic. We assume the reader is familiar with

standard terminology of logic, as found in several texts [4, 8]. Recent work on high-

performance solvers for propositional formulas and quantified boolean formulas (QBFs)

has focused on determining a given formula’s satisfiability, or truth value. For propo-

sitional formulas this emphasis is partly justified by the fact that F logically implies G
if and only if (F ∧ ¬G) is unsatisfiable. The QBF analogy of this simple relationship

does not hold. That is,
−→
Q · (F ∧ ¬G) may be false but

−→
Q · F does not logically imply

−→
Q · G, where QBF logical implication is defined in Def. 1.1.

Definition 1.1 Let Φ =
−→
Q.F be a closed QBF; that is,

−→
Q is the quantifier prenex, F

is a propositional formula, and every variable in F appears in the prenex. We say that

a propositional formula D on the same set of variables as F is a logical consequence

of F , written F |= D, if D is true in every model of F . We say that a propositional

formula D on the same set of variables as F is a nontrivial consequence of Φ if Φ is

true (has at least one model tree) and F |= D.
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Due to quantifiers, one cannot simply negate D and look for a refutation, as in

propositional and first-order logic. Most previous work has addressed only the case that

D is the empty clause [3], which can never be a nontrivial consequence. We say a proof

system is inferentially complete if any Ψ that is logically implied by Φ can be proven

from Φ in the proof system; in other words all logical consequences of Φ are provable

in the proof system.

All propositional formulas have a logically equivalent formula in conjunctive nor-

mal form (CNF), i.e., as a set of conjunctively joined clauses that are themselves dis-

junctively joined sets of literals. Propositional resolution is essentially inferentially

complete for propositional CNF; technically, clausal subsumption is also needed in

case a clause derived from F by resolution properly subsumes a clause that is a logical

consequence of F .

Alls QBFs have a logically equivalent formula in prenex conjunctive normal form

(PCNF), i.e., all quantifiers are outermost operations and the remaining propositional

formula, commonly called the matrix, is expressed in CNF. A QBF is said to be closed

if every variable is quantified.

A further technical condition is important for inferential completeness: A QBF is

said to be AT-free if it contains no asymmetric tautologies, as defined and studied by

Heule et al. [6]. QBFs translated from applications are normally AT-free, but certain

preprocessing operations might introduce asymmetric tautologies.

Although the precise definition is quite technical, a simple example of asymmetric

tautology is a set of clauses in which a certain variable, say x is accompanied by some

other variable, say y with the same polarity as x in each clause containing x. The vari-

able y may occur in some other clauses, as well. All resolutions with x as the clashing

variable are tautologous. Please see the cited paper for further details.

Although it is known that QU-resolution is inferentially complete for closed AT-free

PCNF [20], we are not aware of any implemented QBF proof system with this property.

For propositional CNF formulas a model is a partial assignment that satisfies every

clause. For closed PCNF formulas with k universal variables a model is a set of 2k

prefix-ordered total assignments that comprises a strategy for the E-player, such that

each assignment in the set has a different assignment to the universal variables and

satisfies every clause in the matrix [16, 21, 20]. The term model tree is often used to

emphasize the structural constraints. (See Def. 2.4 for structural details). For both log-

ics Φ logically implies Ψ if and only if every model of Φ is also a model of Ψ . The

additional complexity of model trees compared to a single assignment explains why

many theorem-proving ideas do not transfer easily from CNF to PCNF.

This paper introduces Subsumption-Linear Q-Resolution (SLQR) for proving the-

orems from Quantified Boolean Formulas in PCNF. SLQR is an adaptation of SL-

Resolution, which applies to propositional and first-order logic.

A major difference between SLQR and QDPLL (DPLL adapted for QBF) is that

QDPLL guesses and backtracks on variable assignments, while SLQR guesses and

backtracks on clauses. The inferential power of SLQR is compared with other Q-

Resolution and tableau strategies.
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A primary motivation for the SLQR discipline is to reduce the search space com-

pared to ad-hoc heuristics for choosing the next resolution operation. Several optimiza-

tions reduce the choices while preserving completeness:

1. One operand of every resolution operation is the immediately preceding derived

clause (linearity).

2. When a clashing literal needs to be chosen in the first operand, there are restrictions

on which literals need to be considered, and once a literal that meets those restric-

tions has been chosen, alternative choices of clashing literal need not be considered.

3. When backtrackable choices are made for the second clause operand, logical anal-

ysis is used to rule out many unnecessary choices.

SL-Resolution is closely related to model elimination [12, 13, 15, 18, 2] and tableau

methods [11]. Discussions and thorough bibliographies may be found in several texts

[14, 8]. Terminology varies among these sources.

Letz adapted a tableau-oriented point of view for QBF solving [10]. However, his

solver Semprop branches on variables, similarly to QDPLL solvers such as depQBF,

QuBE, and others.

After introducing and analyzing needed technical machinery for prefix-ordered QU-

resolution in Section 2 this paper introduces Subsumption-Linear Q-Resolution (SLQR)

in Section 4, including the special operation ancestor resolution, and proves that SLQR

is inferentially complete.

2 Preliminaries

In their most general form, quantified boolean formulas (QBFs) generalize proposi-

tional formulas by adding universal and existential quantification of boolean variables

(often abbreviated to “variables”). A quantified variable is denoted by ∀u (variable u is

universal) or ∃ e (variable e is existential). A literal is a variable or a negated variable.

See [8] for a thorough introduction and a review of any unfamiliar terminology.

Definition 2.1 The truth value of a closed QBF is either 0 (false) or 1 (true), as defined

by induction on its principal operator.

1. (∃ e Ψ(e)) = 1 iff (Ψ(0) = 1 or Ψ(1) = 1).

2. (∀uΨ(u)) = 0 iff (Ψ(0) = 0 or Ψ(1) = 0).

3. Other operators have the same semantics as in propositional logic.

This definition emphasizes the connection of QBF to two-person games, in which player

E (Existential) tries to set existential variables to make the QBF evaluate to 1, and

player A (Universal) tries to set universal variables to make the QBF evaluate to 0 (see

[9] for more details).

Definition 2.2 For this paper QBFs are in prenex conjunctive normal form (PCNF),

and are closed; i.e., Ψ =
−→
Q.F consists of a quantifier prefix

−→
Q and a set of quantifier-

free clauses F (often called the matrix) such that every variable in F occurs in
−→
Q .

The number of clauses in F is denoted by |F|. In the context of a matrix, clauses are

understood to be combined conjunctively.
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A clause is a disjunctively connected set of literals. A clause is called tautologous

if it contains some literal and its complement; otherwise it is called non-tautologous.

Clauses are frequently written enclosed in square brackets (e.g., [p, q, r ]) and [] denotes

the empty clause.

We follow certain notational conventions for boolean variables and literals (signed

variables) to make reading easier: Lowercase letters near the beginning of the alphabet

(e.g., b, c, d, e) denote existential literals, while lowercase letters near the end of the

alphabet (e.g., u, v, w, x) denote universal literals, while middle letters (e.g., p, q, r)

are of unspecified quantifier type. Quantifier types are implied frequently throughout

the paper without restating this convention.

In contexts where a literal is expected, p might denote a positive or negative literal,

while p denotes the negation of p. To emphasize that p stands for a variable, rather

than a literal, the notation |p| is used. Clauses may be written as [p, q, r ]); [] denotes

the empty clause.

For set-combining operations on clauses, besides ∪ for union and ∩ for intersection,

we use + for disjoint union, − for set difference, and write p instead of [p] when it is

an operand for one of these operations. Thus C + p adds p to a clause that does not

already contain p, while C− p removes p from a clause that might or might not contain

p.

The symbols α, β, and γ denote (possibly empty) sequences of literals or sets of lit-

erals, depending on context; vars(α) denotes the set of variables underlying the literals

of α. (Because a clause is a set, a notation like [p, α] implicitly specifies that p is not in

α.) The symbol ⊥ is sometimes used as a literal denoting false and is treated as being

outer to all other literals.

Definition 2.3 The quantifier prefix (often shortened to prenex) is a sequence of quan-

tified variables. A variable closer to the beginning (end) of the sequence is said to be

outer (inner) to another variable. The prenex is partitioned into quantifier blocks (ab-

breviated to qblocks). Each quantifier block is a maximal consecutive subsequence of

the prenex with variables with the same quantifier type, and has a unique quantifier

depth, denoted as qdepth, with the outermost qblock having qdepth = 1. The notation

p ≺ q means that p is in a qblock outer to the qblock of q. The notation p � q means

that p is the same qblock as q or p ≺ q. There is no special notation for p and q being in

the same qblock. The notation is extended to sets of variables or literals in the obvious

ways; e.g., P ≺ q means that each p ∈ P satisfies p ≺ q. In situations where variables

within a quantifier block are considered to have a fixed order, p ≺≺ q means: p precedes

q in the same quantifier block or p ≺ q.

A few special operations on sets of literals are defined. A prenex
−→
Q is assumed to

be known by the context. For a set S of literals:

exist(S) = {the existential literals in S} (1)

univ(S) = {the universal literals in S} (2)

(S ≺ q) = {the literals in S outer to q} (3)

(q ≺ S) = {the literals in S inner to q} (4)

Depending on context, the set of literals might be a clause, a prenex, a partial assign-

ment, or other logical expression.
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Definition 2.4 Let a closed PCNF Ψ =
−→
Q.F be given. Let V denote the variables of

Ψ . A QBF strategy for Ψ is a set of boolean functions {pj(βj)}, where pj ranges over

the variables of one quantifier type and βj consists of all variables q of the opposite

quantifier type such that q ≺ pj . The function pj(βj) is called a Skolem function if pj is

existential and is called an Herbrand function if pj is universal. For Skolem functions

βj = univ(V) ≺ pj ; for Herbrand functions βj = exist(V) ≺ pj .

A winning strategy for player E is a QBF strategy in which pj ranges over the

existential variables such that F always evaluates to 1 if player E always chooses pj =
pj(βj) when pj is the outermost unassigned variable in the two-person game mentioned

in Def. 2.1. A winning strategy for player A is a QBF strategy in which pj ranges over

the universal variables such that F always evaluates to 0 if player A always chooses

pj = pj(βj) when pj is the outermost unassigned variable in the same game. Exactly

one of the players has a winning strategy. Winning strategies can be generalized to

closed QBFs that are not in prenex conjunctive normal form, whose variables may have

only a partial order [9].

A clause D is said to be logically implied by Ψ if
−→
Q. (F ∪ {D}) has the same set

of winning strategies for player E as does Ψ . The term logical consequence is also

used. In this case, D is said to be a strategy-sound inference from Ψ , following [21].

As a less stringent requirement, a clause D is said to be a safe inference from Ψ if
−→
Q. (F ∪ {D}) has the same truth value as Ψ (i.e., adding D does not change the set of

winning strategies for player E from nonempty to empty).

Dually, deletion of a clause D from Ψ is said to be a strategy-sound operation if
−→
Q. (F − {D}) has the same set of winning strategies for player E as does Ψ . A clause

deletion is said to be a safe operation if
−→
Q. (F − {D}) has the same truth value as Ψ

(i.e., deleting D does not change the set of winning strategies for player E from empty

to nonempty).

Definition 2.5 The proof system known as Q-resolution consists of two operations,

resolution and universal reduction. Resolution is defined as usual, except that the clash-

ing literal is always existential; resolvents must be non-tautologous for Q-resolution.

Universal reduction is special to QBF.

rese(C1, C2) = α ∪ β where C1 = [ e , α] , C2 = [e, β] (5)

unrdu(C3) = γ where C3 = [γ, u] . (6)

unrdu(C3) is defined only if u is tailing for γ, which means that the qdepth of u is

greater than that of any existential literal in γ, i.e., (u ≺ exist(γ)) = ∅.

A clause is fully reduced if no universal reductions on it are possible. The fully

reduced form of C is denoted as unrd∗(C). For this paper all clauses in given PCNFs

are assumed to be fully reduced and non-tautological, unless stated otherwise.

Q-resolution is of central importance for PCNFs because it is a strategy-sound and

refutationally complete proof system [7, 8], as restated in Theorem 2.6 below. Recall

that a clause-based proof system is refutationally complete if the empty clause can be

derived from every formula whose truth value is 0.

Theorem 2.6 [7] Let the closed PCNF Ψ =
−→
Q.F be given. Ψ evaluates to false if and

only if [] can be derived from Ψ by Q-resolution.
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We say that a proof system is inferentially complete if whenever D is logically

implied (see Def. 2.4), then some subset of D can be derived in the proof system. Note

that Q-resolution is not inferentially complete. A simple example is

∀u ∃e∃f. {[u, e] , [u , f ]} .

Nothing can be derived by Q-resolution, but the clause [e, f ] is logically implied, which

can be seen by enumerating all the winning strategies {e(u), f(u)} and observing that

[e, f ] evaluates to 1 for all values of u in each strategy.

The proof system known as QU-resolution is Q-resolution with the added operation

of resolution on universal variables. QU-resolution is inferentially complete for closed

PCNF and is able to provide exponentially shorter refutations for certain QBF fami-

lies [20]. However, the challenge for using QU-resolution in practice is knowing when

universal resolution is likely to be productive.

Definition 2.7 A QU-derivation or Q-derivation, often denoted as Π or Γ or Σ, is a

rooted directed acyclic graph (DAG) in which each vertex is either an original clause

(a DAG leaf), or a proof operation (an internal vertex). A Q(U)-refutation is a Q(U)-

derivation of the empty clause. This paper follows the convention that DAG edges are

directed away from the root. A Q(U)-derivation is tree-like if every internal vertex has

only one incoming edge, except that the root has no incoming edge.

A subderivation of a Q(U)-derivation Π is any rooted sub-DAG of Π whose vertices

consist of some root vertex V and all DAG vertices of Π reachable from V and whose

edges are the induced edges for this vertex set.

In a proof DAG, each internal vertex is represented as a tuple with fields consisting

of:

– a specified operation type (resolution or universal reduction or “copy”),

– a specified clashing literal or universal-reduction literal (null for “copy”),

– one or two directed edge(s) to its operand(s),

– a derived clause.

(See Fig. 1.) The same tuple may be used to represent a leaf, in which case the operation

type is “leaf”, the clashing literal is null, there are no outgoing edges, and the clause is

an original clause. When there is no confusion, a vertex may be referred to by its clause;

however, the same clause may appear in more than one vertex.

The “copy” just transfers the same clause to another vertex, and is included for

technical reasons. A DAG containing copy operations (and correctly derived clauses) is

called a generalized derivation. The copy operations can be “spliced out” in the obvious

manner to produce a derivation: If V contains a copy operation, replace all incoming

edges to V by edges to the child of V . See [19] for details on propositional derivations.

The QBF variant is developed in [5].

In the normal case of a resolution operation, the first, or left, edge goes to a vertex

whose clause contains the negation of the clashing literal, and the second, or right, edge

goes to a vertex whose clause contains the clashing literal. In any case, the union of the

two operand clauses may not contain any complementary pair of literals other than the

clashing literals.
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We say that a literal q has a proof operation at the (internal) DAG vertex V if q or

q is the literal specified in V ; we say that a literal q has a proof operation in Π if q has

a proof operation at some DAG vertex in Π .

For a proof DAG Π , root(Π) is the clause at the root, leaves(Π) is the set of

clauses in the leaves, and

support(Π) =
−→
Q

′

. leaves(Π), (7)

where
−→
Q

′

is the subsequence of
−→
Q that contains only the variables that appear in

leaves(Π).

Definition 2.8 An assignment is a partial function from variables to truth values, and

is usually represented as the set of literals that it maps to true. Assignments are denoted

by ρ, σ, τ , etc. A total assignment assigns a truth value to every variable.

Application of an assignment σ to a logical expression, followed by truth-value

simplifications,1 is called a restriction. Restrictions are denoted by q⌈σ , C⌈σ , F⌈σ, etc.

If σ assigns variables that are quantified in Ψ , those quantifiers are deleted in Ψ⌈σ , and

their variables receive the assignment specified by σ.

3 Prefix-Ordered QU-Resolution

This section examines the restriction on QU-resolution derivations to be prefix-ordered,

as defined below. The main result of this section is Lemma 3.6, which concludes that

prefix-ordered QU-resolution is inferentially complete. This is a stepping stone to the

main results of the paper about SLQ resolution in Section 4.

In analogy with regular propositional resolution as defined by Kleine Büning and

Lettmann [8], who cite Tseitin’s classical paper, we define regularity for QU-resolu-

tion derivations. Definition Def. 3.1 is more precise than one that is often seen, which

specifies that no variable has more than one proof operation on any path in Γ . The two

definitions are equivalent for refutations, but not for derivations in general.

For example, the four propositional clauses [b, ¬e] [e, ¬c] [c, ¬d] [b, e] derive [d, e],
but the derivation should not be called regular because a proof operation on e is needed..

Definition 3.1 A QU-resolution derivation Γ is said to be regular in p if no derived

clause D that contains |p| has a proof operation on |p| on some path in Γ from D to

a leaf. A QU-resolution derivation Γ is said to be regular if it is regular in p for all

variables |p| that have proof operations in Γ .

Definition 3.2 We define QU-resolution to be prefix-ordered if the literals that have

proof operations appear in the quantifier-prefix order on every path in the proof DAG,

with the outermost closest to the root.

A prefix-ordered QU-refutation is necessarily regular, but other prefix-ordered QU-

derivations are not necessarily regular. The ensuing material requires some technical

terminology, defined next.

1 I.e., simplifications where one operand is 0 or 1.
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Ψ ∃d ∃e ∀u ∃f

C1 e u f

C2 d f

C3 d e f e, u, f d, f d , e , f

✍✌
✎☞
f

��✠ ❅❅❘

d, e, uD1:

❄

✡✡❏❏u

d, eD2:

Fig. 1. PCNF Ψ in chart form (left) and proof DAG (right) for Example 3.5. Circles enclose the

clashing literal for resolution; triangles denote universal reduction. C3 is not part of the DAG

rooted at D2, but is its own trivial DAG.

Definition 3.3 A clause C subsumes clause D if the literals of C comprise a subset of

the literals of D or if D is tautologous. Subsumption is proper if the subset is proper.

In this sense, any tautologous clause is treated as containing every possible literal and

is properly subsumed by any non-tautologous clause.

Minimality of clauses and sets of clauses is important in the technical material. A set

of clauses is minimal under stated conditions if no proper subset of its clauses satisfies

all of the conditions. Minimality of the set does not require minimum cardinality.

A clause C is QU-minimal for a PCNF Ψ if it is derivable from Ψ by QU-resolution

and no proper subset of unrd∗(C) is derivable from Ψ by QU-resolution. A clause C is

Q-minimal for a PCNF Ψ if it is derivable from Ψ by Q-resolution and no proper subset

of unrd∗(C) is derivable from Ψ by Q-resolution.

Q-minimality of C does not require minimum cardinality; that is, some other clause

E such that |E| < |C| may be derivable by Q-resolution, provided that E does not

properly subsume unrd∗(C). The same holds for QU-minimality.

Definition 3.4 A QU-derivation Π is QU-irreducible if:

1. The clause derived in root(Π), say D, is QU-minimal for support(Π),
2. leaves(Π) is minimal for the QU-derivation of D from support(Π),
3. Π contains no proof operations on variables in D,

4. all proper subderivations of Π are QU-irreducible.

Note that this definition does not require that the set of DAG vertices is minimal. In

particular, every QU-irreducible derivation has a tree-like version.

Q-irreducible derivations are defined analogously.

Example 3.5 To illustrate Q-minimality and QU-minimality, consider the formula Ψ ,

shown in Fig. 1 as a clause-literal incidence graph (chart form for short). No universal

resolutions are possible so Q and QU properties are the same. Let:

D1 = resf (C1, C2) = [d, e, u] Π1 = the subderivation whose root is D1

D2 = unrdu(D1) = [d, e] Π2 = the derivation of D2

Π3 = the zero-step derivation of C3.
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Then D1 is Q-minimal for Ψ even though D2 is a proper subset, because the difference

is only tailing universal literals. Also, [d, f ] is Q-derivable and narrower than D1, but

it is not a subset of D1.

However, C3 is not Q-minimal for Ψ even though it is an original clause, because

resd(C3, C2) is a proper subset of unrd∗(C3). But the trivial subderivation Π3 is Q-

irreducible, because leaves(Π3) = {C3}.

To see that points 1 and 2 of Def. 3.4 are consistent, add a new “indicator” literal

aj to each clause Cj ∈ F , the matrix. Replace the clause to be derived by
[

D,
∨

j aj

]

.

Then points 1 and 2 are both true if and only if
[

D,
∨

j aj

]

is Q-minimal for the modi-

fied clauses.

We need the following Lemma 3.6 for analyzing SLQR. QU-minimal clauses and

minimal sets of clauses are important in the ensuing material. Recall the terminology in

Def. 3.3 and Def. 3.4.

Lemma 3.6 Let the closed PCNF Ψ =
−→
Q.F be given. By convention, every clause

in F is non-tautological and fully reduced. Let clause D be QU-minimal for Ψ . Then

D can be derived from Ψ by a QU-derivation Γ such that Γ is prefix-ordered, regular,

tree-like and QU-irreducible.

Proof: Let G ⊆ F be any subset such that D is not logically implied by any proper

subset of G. Let Φ =
−→
Q.G. Then D is also QU-minimal for Φ. The proof of inferential

completeness of QU-resolution in [20, Th. 5.4] constructs a QU-derivation of D from Φ

with the required properties, and this is also a QU-derivation from Ψ . The cited theorem

promises to derive D(−) but by minimality of D it must derive D exactly.

4 Subsumption-Linear Q-Resolution

This section defines subsumption-linear Q-resolution (SLQR) derivations and derives

the main results of the paper.. We show that SLQR has the same inferential power as

full QU-resolution; i.e., SLQR is inferentially complete for AT-free PCNF formulas.

As mentioned in Section 1, a QBF is said to be AT-free if it contains no asymmetric

tautologies [6]. QBFs translated from applications are normally AT-free, but certain

preprocessing operations might introduce asymmetric tautologies.

We also define a weaker variant SLQR–ures that does not include resolution on

clashing universal literals, and show that SLQR–ures has the same inferential power as

full Q-resolution when all literals in the derived clause are outermost. Hence SLQR–

ures is refutationally complete. Lemma 3.6 is an important stepping stone. We also

show a PCNF and a Q-derivable clause for which there is no SLQR–ures derivation.

Definition 4.1 Given a QBF Φ =
−→
Q.F and a target clause T , a subsumption-linear

Q-resolution (SLQR)) derivation of T consists of a top clause D0 ∈ F and a sequence

of m ≥ 0 derivation steps with Dm = T of the form

Di =

{

resp(i)(Di−1, Ci) where p(i) is any literal and 1 ≤ i ≤ m

unrdu(i)(Di−1) where u(i) is universal and 2 ≤ i ≤ m
(8)

such that each Ci is either a clause in F or is an earlier derived clause Dj that meets

the precise criteria given below and is called an ancestor clause.
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The Di are called center clauses. The Ci are called side clauses. The literals of a

side clause Ci are categorized as follows: p(i) is the clashing literal; if Ci is derived,

p(i) is also called an ancestor literal; q ∈ Ci is a target literal if q ∈ T ; q ∈ Ci is a

merge literal if q ∈ Di−1 and q is not a target literal; q ∈ Ci is an extension literal if

q ∈ Di and q is not in any of the preceding categories.

At the step where Di is to be derived let Dj (j ≤ i− 2) be an earlier derived clause

and let q ∈ Dj be the clashing literal for the derivation of Dj+1. Then Dj is defined

to be an ancestor clause at this step in the proof if Dj − {q} is a proper subset of

each subsequently derived clause Dj+1, . . ., Di−1. If q = p(i) (the clashing literal in

Di−1), then the resolution of Di−1 and Dj is called ancestor resolution, p(i) is called

the ancestor literal, and Di consists of all literals in Di−1 except p(i) . The word

“subsumption” in the name “SLQR” is explained by the last relationship. If ancestor

resolution is possible, other choices for side clause can be disregarded.

If Dj is an ancestor clause but q 6= p(i) , q still plays a role as an ancestor literal:

Some original clause must be chosen to resolve with Di−1. If any extension literal of

this resolution would be q, then this clause is inadmissible as a side clause at this step.

A derivation that adheres to this policy (and also disallows derivation of tautologous

clauses) is called tight [14].

Considering SLQR as a proof search system, the procedure to extend Di−1 to Di

consists of selecting a literal in Di−1 for the proof operation, and if the operation is

resolution, selecting a side clause. It is known from antiquity [1] that propositional

SL-resolution is complete for any literal-selection policy; i.e., it is not necessary to

backtrack on the selected literal and try other selections. For simplicity and attention to

implementation concerns, we consider only the LIFO policy for SLQR, defined next.

Definition 4.2 Given a QBF Φ =
−→
Q.F and a target clause T , the LIFO selection

policy, also called the most recently introduced policy is defined informally as follows.

In a SLQR derivation, assume that each center clause Di−1 is represented by a last-in,

first-out stack (LIFO) of its literals that are not in T , called the L-stack, as well as a

separate set of literals that are in T , which we call the T-subset.

The L-stack is partitioned into contiguous sections such that all literals in a given

section were introduced into a center clause Dj , j ≤ i − 1, as extension literals in the

earlier resolution operation that derived Dj , and these literals are in quantifier order

within the section with the innermost closest to the top of the L-stack. Further, this

section has been intact for all center clauses between Dj and Di−1. The L-stack as a

whole may not be quantifier ordered. The LIFO selection policy selects the literal on

top of the L-stack of the current center clause, say Di−1.

Whatever proof operation derives Di, the selected literal will not be in Di, so the

L-stack of Di may be formed by starting with that of Di−1, popping the selected literal,

and then possibly pushing a new section on top consisting of extension literals. A SLQR

derivation develops by working on the section on top of the current L-stack until the

current L-stack is empty. Readers familiar with Prolog will recognize the similarity to

how the Prolog interpreter works.
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4.1 Derivation Power of SLQR

This section investigates when a QU-derivable clause T also has a SLQR derivation.

For propositional resolution, it is well known that the answer is essentially “always”.2

The situation for closed PCNF is not so simple.

The proof of the next theorem employs the framework first published by Anderson

and Bledsoe [1]. Minimal clauses and minimal sets of clauses are important in the

ensuing material. Recall the terminology in Def. 3.3.

Theorem 4.3 Given a closed PCNF Ψ =
−→
Q.F , let T be a minimal clause such that

there is a QU-resolution derivation of T from Ψ , call it Π , and no proper subset of

F permits derivation of T . Then for every clause C0 ∈ F and for the LIFO selection

function (see Def. 4.2) there exists a SLQR derivation of T from Ψ whose top clause is

C0. Further, for each literal q ∈ T , q has no proof operation in the SLQR derivation.

Proof: See Appendix A.

4.2 Derivation Power of SLQR–ures

SLQR–ures is the same as SLQR except that resolution on clashing universal liter-

als is not permitted. This section investigates when a Q-derivable clause T also has a

SLQR–ures derivation. For propositional resolution, it is well known that the answer is

essentially “always,” and this is just a special case of Theorem 4.4 below.3 The situation

for closed PCNF is not so simple.

The proof of the next theorem employs the framework first published by Anderson

and Bledsoe [1]. Minimal clauses and minimal sets of clauses are important in the

ensuing material. Recall the terminology in Def. 3.3.

Theorem 4.4 Given a closed PCNF Ψ =
−→
Q.F , let T be a minimal clause such that

there is a Q-resolution derivation of T from Ψ , call it Π , and no proper subset of F per-

mits derivation of T by Q-resolution. Further, let the literals of T be outermost among

the literals of F . Then for every clause C0 ∈ F there exists a SLQR–ures derivation of

T from Ψ whose top clause is C0. Further, for each literal q ∈ T , q has no proof oper-

ation in the SLQR–ures derivation. In particular, SLQR–ures is refutationally complete

for closed PCNF.

Proof: The proof is similar to that of Theorem 4.3 and is omitted. The hypothesis

that T is outer to all literals with proof operations ensures that whenever a universal

literal is the selected literal universal reduction is available, so universal resolution is

not needed. Refutational completeness follows by letting T = [].

The preceding Theorem 4.4 shows that SLQR–ures has the full inferential power of

Q-resolution for a very restricted set of derived clauses.

In fact, there are important clauses that can be derived by prefix-ordered tree-like

Q-resolution, but not by SLQR–ures.

2 If the derived clause is not minimal, propositional resolution may derive a subsuming clause.
3 If the derived clause is not minimal, propositional resolution may derive a subsuming clause.
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Theorem 4.5 There exists a closed PCNF such that the clause [u, h] is derivable by

prefix-ordered tree-like Q-resolution and not by SLQR–ures, u is universal and outer-

most, h is existential and innermost, [u, h] is minimal, and the matrix is minimal.

Proof: See Appendix B.

4.3 Details for LIFO SLQR

Definition 4.6 The details of updating the stack are important, and some helpful termi-

nology is now introduced. Proof operations are classified as follows:

1. Reduction operation: a universal reduction on a universal literal;

2. Extension operation: a resolution that introduces at least one literal not in the U-set

or in the E-stack of the current center clause;

3. Contraction operation: a resolution that introduces no literals into the U-set or the

E-stack, but possibly adds some literals to the T-subset.

For a resolution operation, the literals in the side clause are classified as follows:

1. Clashing literal: does not appear in the resolvent; pop its complement from the top

of the E-stack;

2. Target literal: any literal in T ; union this with the T-subset;

3. Universal literal: any universal literal not in T ; union this with the U-set;

4. Merge literal: already in the E-stack; do not push this on the E-stack;

5. Extension literal: none of the above; all extension literals are pushed on the E-stack

in outer to inner prefix order; the innermost extension literal is on top of the new

E-stack.

Extension and merge literals are existential and the terminology stems from model elim-

ination.

To get the center-clause data structure started, define the initial center clause to be

⊤, a tautologous clause that contains all literals. We use the sound extension that

rese(⊤, C) = C for all non-tautologous C that do not contain the existential vari-

able |e|. If the desired top clause is C0, the literal selection rule simply chooses some

literal whose variable is not among vars(C0). Then C0 becomes the side clause for

step 0. This artificial protocol makes all original clauses in the derivation appear as

side clauses and simplifies later descriptions. The literals of the C0 are processed as

described in Def. 4.6.

The foregoing description can be formalized in mathematical terms of sets and se-

quences. We only note that the center clauses, disregarding the T-subset and U-set, can

be regarded as existential literal sequences that can be partitioned into contiguous sub-

sequences such that each subsequence is in prefix order and contains some subset of the

extension literals of a single extension operation.

Definition 4.7 A LIFO SLQR is an SLQR that uses the LIFO selection function and

also has an admissibility requirement for side clauses used for an extension operation.

At step i (to derive Di) suppose the selected literal is p . A side clause C (which nec-

essarily contains p) is inadmissible if for some j < i−1, Dj subsumes resp(Di−1, C)
(including the case that the resolvent is tautologous). A derivation attempt fails if the
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current center clause was formed by resolution with an inadmissible side clause. In this

case the LIFO-selected literal is ⊥.

Example 4.8 The motivation for inadmissible clauses is that it prevents looping [14].

Suppose the current center clause is Di = ({} , {β} ,
[

α, f
]

), where the T-subset

is empty, the U-set is β, and the E-stack is
[

α, f
]

. Thus f is selected. Suppose

there are clauses C1 = [f, g ] and C2 =
[

g, f
]

. Resolving (extending) Di with

C1 gives Di+1 = ({} , {β} , [α, g ]), then extending with C2 would give Di+2 =
({} , {β} ,

[

α, f
]

), creating a cycle. So C2 is inadmissible to resolve with Di+1. If no

other side clause containing g is admissible, then the LIFO SLQR selected literal at step

i + 2 is ⊥, forcing the derivation attempt to fail. Thus a successfully completed LIFO

SLQR never contains an inadmissible side clause.

Corollary 4.9 Given a QBF Ψ =
−→
Q.F , let T be a minimal clause such that there is

a Q-resolution derivation of T from Ψ , call it Π , and no proper subset of F permits

derivation of T . Further, let the literals of T be outermost among the literals of F . Then

for every clause C0 ∈ F there exists a LIFO SLQR derivation of T from Ψ whose top

clause is C0. Further, for each literal q ∈ T , q has no proof operation in the LIFO SLQR

derivation.

Proof: See Appendix C.

5 Conclusion

Subsumption-Linear Q-Resolution (SLQR) was introduced for proving theorems from

Quantified Boolean Formulas. It is an adaptation of SL-Resolution, which in turn is

closely related to model elimination and tableau methods. A major difference from

QDPLL (DPLL adapted for QBF) is that QDPLL guesses variable assignments, while

SLQR guesses clauses. Inferential completeness of SLQR for AT-free PCNFs is shown

when it is allowed to use resolution with universal clashing variables; without that op-

eration it is refutationally complete.

Future work should study heuristics for clause selection and lemma retention.
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A Proof of Theorem 4.3

This section proves Theorem 4.3 in Section 4.1.

Although many prefix orders may be equivalent, fix one for the proof. The proof

is by induction on n, the number of variables in the quantifier prefix. The base case is
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n = 0, in which case T = []. Then F = {[]} to satisfy the hypotheses of the theorem,

and D0 = T is the only choice.

For n > 0, assume the claim holds for m < n variables. By Lemma 3.6 we can

assume Π is prefix-ordered and tree-like. If Π has no proof operations, F = {T} and

D0 = T is the SLQR proof. Otherwise, note that every literal q that is in F and not

in T must have a proof operation, because the clauses containing q are needed in the

derivation. Let p be an outermost literal with a proof operation. Let the top clause for

which a SLQR is to be constructed be C0 ∈ F .

Suppose p is universal and the operation is universal reduction. By the inductive

hypothesis there is an SLQR derivation of T from Ψ2 = Ψ⌈ p . Applying the same proof

operations to F derives T + p, and all steps are valid because p is outermost. Then

append a universal reduction on p to give an SLQR derivation of T .

Suppose the operation at the root of Π is resolution. Let E0 and E1 be the operands

of the resolution, i.e., T = resp(E0, E1). (By our notation, p ∈ E0.) Partition the

clauses of F into F0, which contain p , F1, which contain p, and F2, which contain

neither literal. Note that neither F0 nor F1 may be empty.

Let Ψ0 = Ψ⌈p and Ψ1 = Ψ⌈ p . Let Φ0 be like Ψ0 except that its matrix is G0, which

contains only those clauses needed to derive E0⌈p. Also let Φ1 be like Ψ1 except that

its matrix is G1, which contains only those clauses needed to derive E1⌈p. Note that

G0 ⊆ (F0⌈p∪F2) and G1 ⊆ (F1⌈ p∪F2). Moreover, G0 must include all of F0⌈p and

G1 must include all of F1⌈p or else T could be derived from a proper subset of F .

Suppose C0⌈p 6∈ G0 and C0⌈ p 6∈ G1. Then T could be derived from Ψ without using

C0, which contradicts an hypothesis of the theorem. Therefore C0⌈p∈ G0 or C0⌈ p∈ G1

or both. W.l.o.g., assume C0⌈p∈ G0. By the inductive hypothesis, there is a SLQR

derivation of E0⌈p from Φ0, in which the top clause is any clause in G0, and the deriva-

tion has no proof operations on any literal in E0⌈p. Choose C ′

0 = C0⌈p to be the top

clause, and call the resulting SLQR Γ0.

Construct Γ by beginning with the proof operations of Γ0, except that they are

applied to clauses in F . The final center clause of this phase is E0, which contains p

and possibly some literals in T .

Now comes the most complicated part of the proof. Let C1 be any clause in F1 and

define C ′

1 = C1⌈ p ; so C ′

1 ∈ G1. Now define B′

1 = C ′

1 ∪ E0⌈p. Finally, define H1

to be all the clauses in G1 except that C ′

1 is replaced by B′

1 and let Φ1 =
−→
Q.H1; i.e.,

H1 = (G1 − {C ′

1)} ∪ {B′

1)}.

We claim that T = E0⌈p∪E1⌈ p is logically implied by Φ1 and that H1 and T are

minimal for this logical implication. If this claim is true, by the inductive hypothesis,

there is a SLQR derivation of T from Φ1 using B′

1 as the top clause, call it Γ1.

Continue Γ by using C1 as the side clause to be resolved with the center clause E0.

That is, the first center clause in Γ following E0 is resp(E0, C1) = B′

1. (Note that p

must be the selected literal at this point.) Subsequent proof operations are in the same

sequence as in Γ1, except that side clauses are in F rather than in G1 and any use of B′

1

in Γ1 for ancestor resolution uses the copy of B′

1 in Γ instead. In addition, whenever the

side clause now contains p, an extra step is inserted to perform ancestor resolution with

E0 as the ancestor clause, producing a resolvent without p. This is always valid because
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p is the only literal in E0 that is not in T and no literals in T are complementary to any

literals in F . The final derived clause of Γ is T .

It remains to prove the claim: T = E0⌈p∪E1⌈ p is logically implied by Φ1 and H1

and T are minimal for this logical implication.

We know that
−→
Q.G1 logically implies E1⌈ p and therefore logically implies T . Let

M be any model tree for Φ1. We need to show that M is also a model tree for T . If M

satisfies C ′

1 on every branch, then M is also a model tree for E1⌈ p , hence for T . If M

falsifies C ′

1 on some branches, then for all branches τ such that τ(C ′

1) = 0 some literal

in E0⌈p is true, or else that branch would falsify B′

1. So τ satisfies T in these cases.

For minimality, it is straightforward to verify that if Φ1 logically implies a proper

subset of T , then so does Ψ . Also, if a proper subset of H1 suffices to logically imply

T , then a proper subset of F also suffices.

This concludes the proof of Theorem 4.3.

B Proof of Theorem 4.5

This section proves Theorem 4.5 in Section 4.2 by exhibiting a specific QBF that sup-

ports the claim.

Let Ψ be

∀u ∃a ∃d ∃e ∃b ∃c ∀v ∀w ∃f ∃g ∃h. {
C1 :

[

v , f
]

, C2 : [d, b, f ] , C3 : [v, f ] , C4 :
[

d, b , f
]

, C5 :
[

u, a , d , h
]

,

C6 : [w , g ] , C7 : [e, c, g] , C8 : [w, g] , C9 : [e, c , g ] , C10 : [u, a, e , h] }

A nonlinear prefix-ordered tree-like Q-resolution derivation of [u, h] from Ψ is straight-

forward. For example, clauses C1−−C4 derive [d], while clauses C6−−C9 derive [e],
both by prefix-ordered tree-like Q-resolution. It is also easy to see that all clauses are

needed, since removal of any one clause followed by adding the unit clause
[

h
]

leaves

a PCNF that evaluates to true.

Due to symmetries, it suffices to consider the top clauses C1, C2, and C5 for SLQR

attempts.

For SLQR, we note that once h enters a center clause, no further universal reduc-

tions are possible, so if a clause with either |v| or |w| has not been used yet, the deriva-

tion of [u, h] cannot be completed, and this SLQR attempt may be abandoned.

The only variable that has proof operations and occurs both among the first five

clauses and the last five clauses is |a|. The only clauses with |a| also have h. Therefore,

if the top clause of a SLQR attempt is among C1 − −C5, then |w| cannot be reduced;

also, if top clause is among C6 − −C10, then |v| cannot be reduced. Since all clauses

must be used and neither |v| nor |w| is in the target clause [u, h], all SLQR attempts

must fail. This concludes the proof of Theorem 4.5.

C Proof of Cor. 4.9

We observe that the LIFO selected literal ,say ℓ, does not depend on the contents of T

when the literals in T are outermost, and does not change if a restriction on some literal
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p ≺≺ ℓ is applied to the proof. It suffices to show that the admissibility requirement

does not prevent some LIFO SLQR from being found when one exists. Then apply

Theorem 4.3.

Let Π be any LIFO SLQR derivation with no proof operation on the outermost

literal p. Thus p is never the selected literal. Let the current center clause be Di−1 for

some LIFO SLQR. Restriction on p does not change which universal literals are tailing

in Di and does not alter their relative order in the stack that represents Di, so if a

universal literal is selected from Di, it is also selected from Di⌈p. Restriction on p does

not change the relative order of existential literals in the stack that represents Di−1, so

if an existential literal is selected from Di−1, it is also selected from Di−1⌈p.

If the selected literal is existential, restriction on p does not change which clauses

are inadmissible according to Def. 4.7. This is because p can affect admissibility only if

it has been a clashing literal earlier in the SLQR or it allows a tautology to be derived.

But by hypothesis F is minimal, so p and p cannot both occur in F . Thus if Ci is the

side clause at step i, Ci⌈p also is admissible as the side clause after restriction, and the

selected literal is the same as before the restriction on p.

It remains to show that whenever a LIFO SLQR exists, then one exists in which no

derived clause is subsumed by an earlier derived clause. This kind of result is common

in the literature and we use the usual idea. Look at the proof suffix beginning at the

last derived clause Dk that is subsumed by an earlier derived clause Dj . Let α be

the literals in Dk − Dj . Restrict the proof suffix beginning at Dk by ¬(α) (literal by

literal complementation of α). After discarding satisfied clauses and splicing out copy

operations, the result serves as a LIFO SLQR derivation suffix for Dj and removes at

least one subsumption. Continue until all subsumptions are removed.

This concludes the proof of Cor. 4.9. in Section 4.


