Contributions to the Theory of Practical QBF Solving

Allen Van Gelder
Computer Science Dept.
Univ. of California
Santa Cruz, CA, USA

http://www.cse.ucsc.edu/~avg/

http://www.cse.ucsc.edu/~avg/Papers/
These slides are qpup-trans.pdf

http://www.cse.ucsc.edu/~avg/ProofChecker/
Software directory, contains QdpllexpSimple.tar.
Overview of Topics in QBF Solving

Exponential Case for Usual Clause Learning Procedure

Shaky Proposal for QBF Pseudo-Unit Propagation (QPUP)

Observations on Pure Literals

- Treat Existential Pure Literals as Assumptions
- Treat Universal Pure Literals as Universal Reductions

Depth-Monotonic Literals
Exponential Case for Usual Clause Learning Procedure

Assume outermost existential 41 is true, implying 11 and 12 at innermost scope.

Now 55 is tailing, allowing 9 and 10 to be implied.

• In each four-literal clause the two negative existential literals “block” the universal literal.

• After they are falsified by unit-clause propagation, the universal literal can be reduced, yielding a new implied existential literal.

This pattern continues until \([2, 1]\) is falsified.
Exponential Case for Usual Clause Learning Procedure, Part 2

Learning Scheme

- Try to resolve out most recently assigned (i.e., trail latest) existential.
- If tautology, resolve out innermost quantifier scope (max qdepth).

Walk through shows 11 and 12 get resolved out 2^k times.
Exponential Case for Usual Clause Learning Procedure, Part 3

Running times in seconds on $qdllexp$ family

<table>
<thead>
<tr>
<th>family index</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
</tr>
</thead>
<tbody>
<tr>
<td>QuBE 1.3</td>
<td>10</td>
<td>22</td>
<td>47</td>
<td>105</td>
<td>segv</td>
<td>segv</td>
</tr>
<tr>
<td>depQBF 0.1</td>
<td>8</td>
<td>16</td>
<td>32</td>
<td>69</td>
<td>140</td>
<td>298</td>
</tr>
<tr>
<td>CirQit3.15</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>11</td>
<td>21</td>
</tr>
</tbody>
</table>

Running times in seconds on a tougher version of $qdllexp$ family

<table>
<thead>
<tr>
<th>family index</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
</tr>
</thead>
<tbody>
<tr>
<td>QuBE 1.3</td>
<td>>5hr</td>
<td>>5hr</td>
<td>>5hr</td>
<td>>5hr</td>
<td>memout</td>
<td>memout</td>
</tr>
<tr>
<td>depQBF 0.1</td>
<td>175</td>
<td>365</td>
<td>777</td>
<td>1606</td>
<td>3364</td>
<td>6934</td>
</tr>
<tr>
<td>CirQit3.15</td>
<td>9</td>
<td>17</td>
<td>33</td>
<td>67</td>
<td>135</td>
<td>267</td>
</tr>
</tbody>
</table>
An Alternative: QBF Pseudo-Unit Propagation

\[
\begin{align*}
\text{qpup}(12) &= [12, 41] \\
\text{qpup}(11) &= [11, 41] \\
\text{qpup}(10) &= [10, 41] \\
\text{qpup}(9) &= [9, 41] \\
\ldots \\
\text{qpup}(\bot) &= [41]
\end{align*}
\]

Last is the learned clause.

In general, the learned clause has negations of some of the assumptions.
Making QPUP Practical: a Fuzzy idea

- Find a safe UIP literal.
- Treat assignments at lower decision levels as assumptions.
- Make latest assumption the safe UIP literal.
- Do QPUP from there through the falsified clause.

Safe means: Since the UIP will be in all derived clauses it should not block any universal reductions.

The *most recent* existential assumed literal is a safe UIP.

Complications:
- Unit clauses with large qdepth (very inner scopes)
- Decision levels with Universal assumed literals.
- Existential pure literals
- Universal pure literals
- Universal “implied” literals — from unit cubes
- Oh No! *Dependency Schemes.*
Existential Pure Literals

These are *not* logically implied from the assumptions.

So, treat as a new assumption.

However, *never* let it be the UIP literal for learning

- Pretend it was assigned at a lower decision level; choose something else.

Theorem

If e is existential pure based on original clauses and . . .

If \overline{e} is in a learned clause, say C, then . . .

then $C - \overline{e}$ is also logically implied by the original formula (as restricted at the time that e became pure).

An existential pure literal cannot have a *quadrangle dependency* on any universal literal, so it can move scopes without changing the truth value of the formula.
Universal Pure Literals

These are *not* logically implied from the assumptions.

So, treat as a universal reductions (i.e., clause by clause).

Justification:
No existential literal can have a *quadrangle dependency* on any universal pure literal, so the universal pure literal can “sink” to innermost scope without changing the truth value of the formula.
Depth-Monotonic Literals

See the proceedings.
Conclusion

Theory is a lot easier than implementation.

Useful theory should make implementation easier.