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Using PVsolve to Analyze and Locate
Positions of Parallel Vectors

Allen Van Gelder, Member, IEEE Computer Soc. and Alex Pang, Senior Member, IEEE

Abstract —A new method for finding the locus of parallel vectors is presented, called PVsolve. A parallel-vector operator has been
proposed as a visualization primitive, as several features can be expressed as the locus of points where two vector fields are parallel.
Several applications of the idea have been reported, so accurate and efficient location of such points is an important problem. Previously
published methods derive a tangent direction under the assumption that the two vector fields are parallel at the current point in space,
then extend in that direction to a new point. PVsolve includes additional terms to allow for the fact that the two vector fields may not
be parallel at the current point, and uses a root-finding approach. Mathematical analysis sheds new light on the feature flow field
technique (FFF), as well. The root-finding property allows PVsolve to use larger step sizes for tracing parallel-vector curves, compared
to previous methods, and does not rely on sophisticated differential equation techniques for accuracy. Experiments are reported on
fluid flow simulations, comparing FFF and PVsolve.

Index Terms —Parallel vectors, feature flow field, vortex core, flow visualization, PVsolve, adjugate matrix, Newton-Raphson root
finding, dimensionless projection vector.

✦

1 INTRODUCTION

I N certain scientific visualization applications, especially
those involving fluid flows, the question arises whether

vectors in two different vector fields are parallel. In a seminal
paper, Peikert and Roth proposed a parallel-vector operation
as a visualization primitive [13]. They observed that several
concepts of “vortex core” can be formulated as the set of points
where the vectors drawn from two 3D fields are parallel, and
extremal curves on surfaces can be similarly characterized.
For two smoothly varying 3D vector fields, sayv andw, Roth
observed that the set of points wherev||w, i.e., v is parallel
to w, normally forms some number of smooth curves [14].
Parallel vector curves have been used in several recent applica-
tions. For example, Garthet al. [3] used this, among numerous
other methods, to investigate the swirling and tumbling motion
inside a diesel engine.

In their 1999 paper, Peikert and Roth identified four
schemes for finding the parallel vectors in a pair of vector
fields, as reviewed in Section 2. The fourth scheme, curve
tracing, has seen recent activity and has been found to offer
better numerical algorithms compared to the other approaches.
Theisel and Seidel reformulated the parallel-vector problem
as streamline tracing in afeature flow field(FFF) [20]. For
purposes of this paper, a “feature” is a point where the two
vector fields are parallel, and a feature curve or feature surface
is a connected set of such points. Theiselet al. [19] and
Weinkauf et al. [23] extended the FFF idea, proposing new
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formulations, with vortex core lines as one of the target appli-
cations. Independently, Sukharevet al.proposed an alternative
formulation based on an “analytical tangent,” that facilitates
tracing of the feature curves [18].

This paper introduces a new methodology, calledPVsolve,
that adopts a somewhat different view of the tracing problem.
Whereas the other published tracing-oriented methods view the
problem as integrating an ordinary differential equation, we
view it as root finding. The principal difference in approaches
can be succinctly summarized in nontechnical language, as
follows:

• FFF begins at a point where the cross product of the
two vector fields is zero and ideally progresses to other
points where the cross product is zero. If it gets a little
off course, it tries to pursue a path on which the cross
productretains its current value.

• PVsolve begins at a point where the dimensionless pro-
jection vector is zero and ideally progresses to other
points where the dimensionless projection vector is zero.
(The dimensionless projection vector results from pro-
jecting one normalized vector onto a plane perpendicular
to the other; thus its magnitude is the sine of the angle
between the two vectors.) If it gets a little off course,
it tries to move to a point at which the dimensionless
projection vectorreturns to zero.

The details are presented in Section 3, but we note here that
at points where the two vectors are parallel, both the cross
product and the dimensionless projection vector are zero. At
other points, they stand in a known relation to each other, but
are not the same.

Although the FFF method has been found to be fairly
robust, under unfavorable circumstances error can accumulate.
Using fourth-order Runge-Kutta is not a panacea, as shown by
Nielson and Jung in another context [12]. Essentially, each step
introduces some tiny numerical error, moving to a point where
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the cross product is slightly changed. FFF tries to maintain that
error at its current value by keeping the cross product constant
[20]. As shown in Section 5, maintaining the cross product
at its current value, even though that value is very small,
sometimes forces the trace to depart from the correct curve.
In many cases the method is successful because the trace
approaches a fiducial point (i.e., a point known to be correct
by other methods) before the error has grown significantly,
and the error is reset to zero by continuing from the fiducial
point. PVsolve also encounters numerical errors, but because
of its root-finding orientation, it continuously reduces them.

In terms of mathematical techniques, the previously pub-
lished methods consider homogeneous sets of linear equations,
whereasPVsolve considers more general nonhomogeneous
sets of linear equations, and the analysis is consequently
more complex. However, by working at the abstract level of
vectors and matrices, thePVsolve framework applies to all
combinations of dimensions. That is, the two fields ofn-D
vectors are defined over anm-D Euclidean space, and the main
result applies to general combinations ofn and m. The main
cases of interest aren = 3 andm= 3 (3-D space, fixed time)
or m= 4 (time is the fourth “space” dimension).

The rest of the paper is organized as follows: Section 2
reviews the basic extraction and tracing strategy, and also
describes the differences and similarities among the different
tracing approaches. Section 3 develops the mathematical basis
for PVsolve. Section 4 illustrates the predictor-corrector na-
ture of the method on an analytical example. Section 5 shows
how FFF can occasionally go astray. Sections 6 presents exper-
imental comparison ofPVsolve with FFF, using Runge-Kutta
4/5 as the integration method in FFF. Results on three fluid-
flow simulation data sets are reported. Section 7 summarizes
the paper and points to some future work.

2 RELATED WORK

The four works most closely related to this paper are Banks
and Singer [1, 2], Peikert and Roth [13, 14], Theiselet al.
[19], and Sukharevet al. [18]. We discuss these variations in
turn. We say that the locus of points where two vector fields
are parallel arefeature curvesand points on such curves are
feature points.

Banks and Singer’s work is used in a number of vortex
core tracing papers, including that of Peikert and Roth, and
is therefore briefly summarized here. Their work involve two
steps: an extraction (or seed point location phase) and a tracing
phase using a predictor-corrector strategy. In the extraction
phase, candidate seed points are found where grid points are
found to have low pressure and a large magnitude of vorticity
i.e. those points meeting these two threshold values.

Once these seed points are found, each one is then used to
trace a vortex core line. The prediction stage simply advances
the seed point in both forward and backward directions along
the vorticity vector. That new position is then corrected to
a minimum-pressure point on the plane perpendicular to the
vorticity vector at the predicted location. The search for the
minimum pressure point is carried out via steepest gradient
descent. They note that while vorticity or the pressure gradient
fields are individually unreliable at capturing vortex core lines,
the combination of these two is quite robust, even in cases

where the flow transitions from laminar to turbulent flows.
On the other hand, there is no guarantee that the gradient
descent method will converge to the vortex core on the plane.
In a related paper, Jeong and Hussain combined the predictor-
corrector approach with theλ2 method to improve the effi-
ciency in tracking vortex cores [8]. A key modification was to
replace the pressure field by theλ2 field during the correction
stage [16]. In addition, the gradient descent was replaced by
a direct search approach [7].

Peikert and Roth’s contribution is primarily to define the
parallel-vector operator and demonstrate its expressiveness
for capturing different interesting physical properties. One
application is identification of vortex core lines. They describe
how points on such vortex core lines can be specified in
terms of certain vectors being parallel. While they identified
four methods for constructing the loci of parallel vectors,
Roth’s dissertation provided only the heuristic-based approach
of connecting extracted feature points. Briefly, they have a
two stage algorithm in which solution points (where vectors
are parallel) are found in the first stage and connected in the
second stage. Each data set is treated as a discrete set of 3D
cells and Newton-Raphson root finding is used to find solution
points on each of the 2D faces of the cell. Simple connection
rules are used in the second stage to connect points in faces of
the same cell. If a cell contains only two solution points, they
are simply connected. If a cell has four solution points, then
they choose the two connections with the maximal distances
from each other out of the three possible pairs of connections.
Cells with six solution points are not handled, and cells with
an odd number of solution points are subdivided until there
are 0, 2 or 4 solution points in a cell. While this algorithm
may seem simplistic, it was considered state of the art at that
time. However, Sukharevet al. showed cases in which the
Peikert-Roth connection heuristics led to incorrect topology
of the solution curve [18]. Another limitation of the extract-
then-connect approach is the need to extract all the solution
points. Therefore, in practice, Peikert and Roth concluded
that the preferred approach for finding parallel vectors is a
modification of the extraction and tracing strategy described
by Banks and Singer. In the tracing phase, an integration
step is taken alongv (or w, since they are parallel at the
seed point). Each step must immediately be followed by a
correction step to make sure that the new point is still on
the feature curve. For this, they propose a correction step on
N, the plane perpendicular tov (or w if that was the vector
used in tracing). The correction step will seek to minimize the
projection ofw (or v) onto N.

The choice of directionv was heuristic, since the tangent
to the feature curve is different from the direction ofv, in
general. Two subsequent papers derived the tangent direction
analytically, and we review these next.

Theisel et al. also use an extraction and tracing strategy,
but formulated differently [19]. They note that parallel vectors
can be formulated as a “feature flow field,” as introduced
by Theisel and Seidel primarily for time-varying flow fields
[20]. Feature points correspond to places in space-time where
vectors are parallel, and connected sets of points form curves
in 3-D or surfaces in 4-D. This procedure is generalized in
Weinkauf’s dissertation [22].

Using the notations= v×w and C = ∇(s), we now sum-
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marize the 3-D fixed-time construction of Theiselet al. [19].
They construct a vector fieldf over 3-D Euclidean space such
that at a seed pointx0 with s(x0) = 0, a streamline off through
that point also satisfiess(x) = 0. Such a feature flow fieldf
can be constructed by:

f =




det
[
C∗,2, C∗,3, a

]

det
[
C∗,3, C∗,1, a

]

det
[
C∗,1, C∗,2, a

]


 =




C∗,2×C∗,3 ·a
C∗,3×C∗,1 ·a
C∗,1×C∗,2 ·a


 (1)

where C∗, i is the i-th column of C and represents the first-
order partial of the cross products with respect toi. Also,

a =
{

w if |w| ≥ |v|
v otherwise.

(2)

In essence, they formulate the tangent direction of the feature
curve, which allows them to integrate the feature curve starting
from an extracted seed point. (Only the direction off is
significant, so it is normalized before use). Note that some
of the notations were changed from their original paper to be
consistent with the notations used in this paper.

Sukharevet al. formulate an “analytical tangent” to trace
the feature curve from a seed pointx0 where the vectors are
parallel. Such a tangent,t, can be obtained by solving fort
in:

s = ± |v|
|w| , (3)

A = ∇(v) − s∇(w), (4)

At = v, (5)

where the sign ofs depends on whether the two vectors point
in the same direction or not. Rather than computeA−1v, the
authors omit the division by det(A), since they are interested
in the direction of the tangent line and not its magnitude (see
Section 3.4). This also avoids singularity points. Thus, the
components of the analytical tangent are:

t =




det
[
v, A∗,2, A∗,3

]

det
[
A∗,1, v, A∗,3

]

det
[
A∗,1, A∗,2, v

]


 (6)

whereA∗, i is the i-th column ofA.
While developed independently about the same time, and

derived from different viewpoints, the formulations of the
tangent directions given in Equations 1 and 6 have strong
similarities. In Section 3 we show that, even though the
equations have some differences, bothf and t point in the
same direction at points where the underlying vector fields are
parallel. Both formulations are valid when the trace is started
from a seed point or a traced point that ison the feature curve.

3 PARALLEL VECTORS WITHIN VECTOR
FIELDS

This section develops the mathematical basis for our parallel-
vector solving method, which we callPVsolve. It provides
a uniform framework for solving several problems involving

parallel vectors. We say that the locus of points where two
vector fields are parallel is afeature point setin general; it is
called afeature curveor feature linewhen the point set is one
dimensional; it is called afeature surfacewhen the point set
is two-dimensional.

We then show how it is related to other recent tracing
methods, which seek to follow feature curves in 3-D. In
particular, we show that they are essentially equivalent for the
case when the trace is from a point on the feature curve, but
our new formulation also handles the case where the trace has
to continue from a point that is slightly off the feature curve.
That is, within certain bounds, a correction step in the tracing
phase allows our algorithm to home back to the feature curve.

Our development is fairly general in that we consider fields
of n-dimensional vectors defined over anm-dimensional Eu-
clidean space. This generality is useful because there tend to
be several values ofm that are of interest for eachn, and not
assumingm= n ensures that we do not rely on special cases,
such as a 3-D cross product. Our primary interest isn= 3, but
for this n we are interested in three values ofm:

1) Whenm= 2, the problem is to find points in a planar
cell face;

2) Whenm= 3, the problem is to find curves in 3-D;
3) Whenm= 4, the fourth “spatial” dimension is time, and

the problem is to find a two-dimensional surface in 4-D.

Although we are careful to specifym andn in the definitions,
the reader usually does not need to worry about these values
because vector and matrix notation is used.

Vectors are column vectors in our notation, unless specified
otherwise, and superscriptT denotes transpose for vectors and
matrices. Usuallyx denotes a point inm-D Euclidean space,
while v andw are then-D vector fields of interest. The inner
product ofv andw is vTw. The gradient operator, denoted by
∇, is a row vector operator:

∇(v) =
[

∂v
∂x1

,
∂v
∂x2

, . . . ,
∂v

∂xm
.

]
(7)

So the gradient of a scalar is a 1×m row vector and the
gradient of ann-D (column) vectorv is ann×m matrix, which
we denote by∇(v), as in several earlier papers on parallel
vectors. This matrix is also known as the Jacobian matrix,
sometimes writtenJv(x), but our ∇ notation follows earlier
papers on parallel vectors. We useA i,∗ andA∗, j to denote the
i-th row and j-th column of matrixA, respectively. Golub and
Van Loan provide an excellent review of matrix and vector
operations with attention to computational issues [4].

The matrix manipulations in the subsequent subsections are
mostly applications of the identities reviewed in Eqs. 8–15,
whereα denotes a scalar,v andw denote vectors, andA, B,
andC denote matrices (including vectors, as matrices of one
column or one row):

vT w = wT v (8)

α A = A α (9)

(AB)T = BT AT (10)

(AB)C = A (BC) (11)

A (B+C) = (AB)+(AC). (12)
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Fig. 1. Schematic showing relationship between v, q, θ ,
and sw.

Vector forms of the product and quotient rules for differenti-
ation are:

∇(vTw) = vT ∇(w)+wT ∇(v) (13)

∇(αw) = α ∇(w)+w∇(α) (14)

∇
(w

α

)
=

∇(w)
α

− w∇(α)
α2 . (15)

Also, it is important not to confusevwT , which is a matrix and
is called the outer product, withvT w, which is the scalar inner
product. Note thatw∇(α) is an outer product in Equations 14
and 15.

At a high level, the root finding technique we use is the
standard Newton-Raphson method, which can be applied to
any vector functiong that measures how far two vector fields
are from being parallel, and is0 when theyareparallel. Letting
v andw be the two vector fields of interest, suppose we know
their values, and their gradients,∇(v) and ∇(w), at a point
x0. We use subscript 0 for quantities evaluated atx0, We can
approximate the values in the neighborhood with first-order
Taylor series:

g(x0 +δx) = g(x0)+∇(g)0δx. (16)

In other words, if

g(x0)+∇(g)0δx = 0, (17)

then x0 + δx is a point wherev and w are expected to be
parallel (based on first-order terms). In the course of the paper,
we shall instantiateg to several functions. To use Eq. 17, it is
necessary to have workable expressions for∇(g). This is the
objective of the next subsection.

3.1 Mathematical Development

Let v and w be smoothly varying vector fields, and suppose
|w| 6= 0 locally (otherwise interchange their roles in the fol-
lowing). Throughout this paper,θ denotes the absolute angle
betweenv and w, which is between 0 and 180◦. Decompose
v into a component parallel tow, denoted bysw, and a
componentq that is orthogonal tow (see Figure 1). Then,
by the well-known Gram-Schmidt procedure,s and q can be
expressed as

s =
vTw
wTw

; (18)

q = v−sw = v−w
(

wTv
wTw

)
= Pw v; (19)

Pw =
(

I − wwT

wTw

)
. (20)

The matrixPw is the well knownprojection operatorfor an
orthogonal projection of anyn-D vector onto a hyper-plane
orthogonal tow.

Clearlyq = 0 if and only if v andw are parallel. Toward the
goal of instantiatingg in Eq. 17 either toq or to an expression
involving q, we first derive an expression for∇(q). In the
following lemma, the term withqT does not appear in earlier
formulas related to tracing parallel vectors. This term makes
the expression for∇(q) correct for allx, not just points where
q = 0.

The proof is presented in detail so interested readers can
confirm that all the manipulations are correct for generaln
andm; In particular, there are no special cases that require 3-
D (e.g., cross products) or that assume square matrices (e.g.,
matrix inverses). Readers may skip the proof without loss of
continuity.

Lemma 3.1: Using the terminology defined in Eqs. 18–20,

∇(q) = Pw
(
∇(v)−s∇(w)

)− wqT

(wTw)
∇(w). (21)

Proof: Applying the definitions in Eqs. 19 and 18, as well
as Eq. 14:

∇(q) = ∇(v)−∇(sw) = ∇(v)−s∇(w)−w∇(s). (22)

Next comes a careful derivation to rewrite∇(s) into a usable
form.

∇(s) = ∇
(

vT w
wTw

)
=

∇
(
vTw

)
wTw

− (vT w)∇
(
wTw

)
(wTw)2 (23)

=
∇

(
vTw

)
wTw

− s
wTw

∇
(
wTw

)
(24)

=
vT ∇(w)+wT ∇(v)−s

(
wT ∇(w)+wT ∇(w)

)
wTw

(25)

=
1

wTw

(
qT ∇(w)+wT (∇(v)−s∇(w))

)
. (26)

Equation 23 used Eq. 15; Eq. 24 used Eq. 18; Eq. 25 used
Eq. 13 twice; and Eq. 26 collected terms and used Eq. 19.
Substituting Eq. 26 into Eq. 22 and collecting terms yields:

∇(q) =
(

I − wwT

wTw

)(
∇(v)−s∇(w)

)−
(
wqT

)
∇(w)

wTw
, (27)

which, together with Eq. 20, completes the proof.

Corollary 3.2: With definitions as above, in a region where
|v| 6= 0,

∇
(

q
|v|

)
=

1
|v|∇(q)− qvT

|v|3 ∇(v). (28)

Proof: Apply Eq. 15 to get

∇
(

q
|v|

)
=

1
|v|∇(q)− q

|v|2 ∇(|v|),

and use the identity∇(|v|) = vT ∇(v)/|v|.
The vectorq can be, and effectively has been [18], used

as the measure of non-parallelism (i.e., as the functiong in
Eq. 17). However, Corollary 3.2 is motivated by the fact that
q/|v| is dimensionless; its Euclidean length is exactly sinθ ,
recalling thatθ is the angle betweenv and w. Since we are
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concerned with finding points whereg in Eq. 17 is0 without
necessarily being at such a point, we would prefer that the
gradient of our measure not be negative simply becausev
and/orw is getting smaller in magnitude. A function whose
value is independent of the magnitudes ofv andw is theoret-
ically superior. We believe that Eq. 28 is the first workable
expression for the gradient of a dimensionless measure of
parallelism.

Combining Eqs. 17, 21 and 28, and multiplying through by
|v|, we have a formula that we callPVsolve for δx such that
x0+δx is estimated to be a feature point (based on first-order
terms). In this equation, all terms exceptδx are evaluated at
x0.

q + Pw (∇(v)−s∇(w))δx

−
(

wqT

(wTw)
∇(w)+

qvT

(vTv)
∇(v)

)
δx = 0. (29)

Notice that the matrix multiplyingδx is n×m and δx is an
m-D vector. Before looking at detailed solution procedures,
we review the general structure of solutions of linear systems.

3.2 Homogeneous and Particular Solutions
The structure of solutions to linear systems in general is
characterized byhomogeneoussolutions andparticular solu-
tions. The characterization encompasses square and nonsquare
matrices, as well as singular and nonsingular matrices (only
square nonsingular matrices have an inverse). We introduce
the abbreviations

A = (∇(v)−s∇(w)) , (30)

B =
wqT

(wTw)
∇(w)+

qvT

(vTv)
∇(v), (31)

AP = Pw A−B, (32)

so that thePVsolve equation (see Eq. 29) becomes

|v|∇
(

q
|v|

)
δx = AP δx = −q. (33)

We haven equations inm unknowns. Ifm< n there may be no
solutions. When there are solutions (for anym, n), we require

AP δxP = −q, (34)

AP δxH = 0. (35)

Then solutions of Eq. 33 take the formδx = δxP + γδxH ,
where the scalarγ ranges over all reals. Solutions of Eq. 35
constitute thenull spaceof AP. If AP has rankm, its null
space is the single point0, and δxP is unique if it exists. If
AP has rank less thanm, its null space has positive dimension
andδxP is not unique.

Now we consider the special caseq = 0 in more detail. Note
that this impliesB = 0 also. We define

AH = Pw A (36)

Then Eq. 33 reduces to

Pw A δxH = AH δxH = 0. (37)

and we call solutions to this equation thehomogeneous tracing
solutions. Recall thatAH is an n×m matrix. We make the
following important observation.

Lemma 3.3: (Reduced rank principle) The rank ofAH is
at mostn−1.

Proof: The rank ofPw is exactlyn−1.

An immediate consequence is that, ifx0 is a feature point,
and n = m, then the direction of the homogeneous tracing
solutions is tangent to a feature curve passing throughx0.
Although it is possible that the rank ofAH is less than
n− 1, Theiselet al. and others before them argue that this
is an unstable condition and can be disregarded in practice
(assumingm is at leastn−1, as it is in all cases of interest
here).

Another consequence applies ifm= n+1; in practice, time
is the extra “space” dimension. Then the rank ofAH is at most
m−2 (stable cases are exactlym−2). This implies that its null
space is two-dimensional and is tangent to a feature surface
in m-D passing through the feature pointx0. The solutions of
Eq. 37 define this 2-D linear subspace.

In the third case of interest,m = n−1, if x0 is a feature
point, it is isolated in the stable cases. This applies to feature
points restricted to cell faces (3-D) or cell edges (2-D).

Before looking at how to solve the various cases, we con-
sider how Eq. 37 is related to previously published solutions.

3.3 Relationship to Other Tracing Formulations

This subsection mathematically comparesPVsolve (Eq. 29
or 33) in the special case thatx0 is a feature point with two
previously published 3-D tracing formulations. To accomplish
this, we first need to analyze the formulas of Theiselet al.and
find matrix expressions for theirfeature flow fieldwhen the
vector fields are in 3-D (n= 3). Their formulas use derivatives
of the cross product, which are somewhat challenging to
express with matrix algebra.

The key is to use thecross-product matrixrepresentation.
With the notationw(i) for the i-th component ofw, define

χw =


 0 −w(3) w(2)

w(3) 0 −w(1)
−w(2) w(1) 0


 . (38)

Then for allv, w×v = χwv, which is a 3-D column vector by
our convention.

A useful relationship betweenχw and Pw, which is the
projection matrix forw, can be observed by noting that all
columns of the projection matrix forw are orthogonal to
w. Therefore, the cross-product operation, applied to such
columns, simply rotates byπ/2 aroundw as an axis (denoted
by R(w,π/2)) and scales by|w|:

χw = χw Pw = |w|R(w,π/2)Pw. (39)

Now a matrix expression for the gradient of the cross product
can be derived. The authors have not seen this identity in the
literature, so it is stated as a lemma here.

Lemma 3.4: Let v andw be 3-D vectors defined over anm-D
Euclidean space. Then

∇(w×v) = χw ∇(v)−χv ∇(w). (40)

Proof: First we observe the rule for differentiation with
respect to a scalar variable, which is verified by applying the



6 TVCG SOMETIME 2009

TABLE 1
Homogeneous tracing equations for three methods.

Method Equation Eq. no.
Sukharevet al. A δx = v (5)
PVsolve(q = 0) Pw A δx = 0 (37)
Theiselet al. |w|R(w,π/2)Pw A δx = 0 (44)

definitions:

∂
∂x

(w×v) = w× ∂
∂x

v−v× ∂
∂x

w = χw
∂
∂x

v−χv
∂
∂x

w,

with similar formulas fory and z (and t for the 4-D case).
Lining the results up inm columns gives Eq. 40.

Returning to the problem addressed by Theiselet al., as-
suming we are at a feature pointx0, we seek to solve

∇(w×v)0 δx = 0. (41)

Using Eq. 40, this becomes

(χw ∇(v)−χv ∇(w)) δx = 0, (42)

where all quantities exceptδx are evaluated atx0.
So far, this is a succinct version of the derivation in Theisel

et al.. But now we exploit the matrix notation to simplify
further. We haveχv = sχw at x0, so Eq. 42 reduces to

χw (∇(v)−s∇(w))δx = χw A δx = 0. (43)

Using Eq. 39, this constraint becomes

|w|R(w,π/2)Pw A δx = 0. (44)

We are now ready to compare the equations of the various
methods for homogeneous tracing solutions. The equations are
collected in Table 1. We want to emphasize that the third
equation is a mathematical representation of the matrix used
by Theisel et al., chosen for analytical clarity. One should
not infer that their method is more complicated or costly. The
actual computation is based on cross products (see Eq. 1 and
Eq. 43), and has about the same cost asPVsolve(q = 0); the
first equation in the table (see Eq. 5 and 6) should be faster
than the others.

Supposeδx solves the first equation in the table. Then,
due to collinearity ofv and w at x0, Pwv = 0, so the second
and third equations hold. In the stable case forn = m = 3,
the matrices in the second and third equations have rank two
and their null space is 1-D, so all solutions are collinear with
the δx found with the first equation. Since|w|R(w,π/2) is
nonsingular, the second and third equations have the same
solutions, even in unstable cases, where the null space has
dimension greater than one, and even ifm 6= 3 (n = 3 is
required for the cross products to be defined).

This completes the proof of mathematical equivalence of all
three methods for stable casesat feature points. To summarize,
we have derived a constraint (PVsolve, Eq. 29 or 33) whose
solutions inδx are such thatx0+δx is a feature point (to first-
order terms), even ifx0 is not a feature point. This constraint is
valid for generaln andm. We have analyzed the relationships
of several methods for the special case thatn= m= 3 andx0 is

a feature point. We have shown that two previously published
tracing methods are essentially equivalent to each other and
are special cases ofPVsolve (see Eq. 37).

3.4 Solution Methods

We now turn to solution procedures for the various cases of
PVsolve, Eq. 29 or 33. The most familiar case is whenAP
is nonsingular, which implies thatx0 is not a feature point, as
discussed above. Then the solution is unique and is a Newton-
Raphson step toward a nearby feature point:

δx = −A−1
P q(x0). (45)

This case requiresn = m, but not necessarilyn = 3. Con-
vergence is guaranteed by repeating this step if the second-
derivative tensor satisfies a definiteness condition, but the
condition is too complicated to make checking practical.

A problematic case occurs whenm= n−1. Whenn= 3 this
corresponds to finding a feature point in a plane, usually a cell
face. Solutions are isolated points, so ifx0 is a feature point,
there is nothing to do. Otherwise the system is over-determined
and (in the stable cases) no solution exists. An approach that
has been reported is to find a point that has the least error
in some sense, then repeat the search from there. Previously
reported procedures (forn= 3) minimize the magnitude of the
cross product, based on a local linear model of it [13, 14, 19,
18]. A standard least-squares problem is solved [4], based on
the matrix that multipliesδx in Eq. 42 (which is 3×2).

Equation 29 provides an alternative that deserves to be
explored. The least-squares problem minimizes|q| instead of
|v×w|. Since|v×w|= |w| |q|, the two problems are related,
but not equivalent.

Other cases are the underdetermined systems, either because
the matrix has more columns than rows or is not full rank.
Their solutions are most succinctly expressed using thegen-
eralized cross product[11, page 700], [5] and theadjugate
matrix [10, 17]. Both concepts are closely related to Cramer’s
rule. The adjugate is a kind of “surrogate inverse.” For this
discussion, letM be the matrix of the linear system.

The first important case is whereM is square (n = m) and
has rankn−1. The obvious case of interest isn = 3, but we
proceed generally, and we shall see later thatn = 4 is also
useful; in addition,n = 2 applies to 2-D fields.

A handy mnemonic for 3× 3 matrices may already be
familiar to some readers as part of a rule for inverses: The
j-th columnof the adjugate ofM is the cross product of the
rows of M indexed by j +1 and j +2, with indexes wrapping
around.

The adjugate matrix of a square matrixM is written adj(M)
but we denote it asMA for conciseness, following Stewart [17];
it is defined as follows: Letr i be row vectors representing the
rows of M . Then the j-th columnof MA is

MA
∗, j = det




r1
. . .

r j−1
e1, e2, . . . ,em

r j+1
. . .
rm




, (46)
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where theei are treated symbolically (i.e., as uninterpreted
symbols) for the computation of the determinant. This yields
an expressionMA∗, j = (b1, j e1 + · · ·+bm, j em) in which thebi, j
are real numbers. Then theei are treated as the standard basis
vectors, so thatMA∗, j = [b1, j , . . . , bm, j ]

T is the final result.
Some important properties of the adjugate matrix are found

in the references [10, 17]. Continuing the conventionMA =
adj(M), it is known that:

MM A = MAM = (detM) I ; (47)

(MT)A = (MA)T ; (48)

(MN)A = NAMA. (49)

When detM 6= 0, then MA can be used to computeM−1,
through Eq. 47. However,MA is sometimes useful even when
detM = 0. It is worth noting that Eq. 1 and 6 have succinct
expressions using adjugates and Eq. 48:CAa and AAv, re-
spectively.

The expression on the right-hand side of Eq. 46, possibly
negated, is also known as the generalized cross product. In
this case it denotes±×n(r j+1, . . . , rn, r1, . . . , r j−1). We use`
to denote the last row index ofM (n if indexing is 1-based). If
n is even and̀ − j is odd, the minus sign must be used; in all
other cases, the plus sign is correct. Note that the generalized
cross product ofm-D vectors requiresm−1 operands. It is the
usual cross product whenm= 3, and shares many properties
of the usual cross product whenm 6= 3.

Two other important properties of the adjugate matrix are
relevant to the problem we address here, but we havenot seen
these in the literature.

Lemma 3.5: Let M be n×n and letMA = adj(M).

1) When the rank ofM is n−1, any nonzero column ofMA

lies in the 1-D null space ofM ; specifically, if removing
row i from M would leaven− 1 linearly independent
rows, then columni of MA is nonzero and provides a
homogeneous solution ofMδx = 0.

2) When the rank ofM is n−2 or less,MA is identically
zero.

Proof: For part 1, by hypothesis, after removing row
i, leaving n− 1 linearly independent rows, it is possible to
remove some column, sayj, leaving a nonsingular matrix. The
determinant of this matrix (possibly negated) isMA

j,i . Since
det(M) = 0, Eq. 47 implies thatMM A∗, i = 0.

For part 2, by hypothesis, after removingany row i, the
remainingn−1 rows arenot linearly independent, soMA

j,i = 0
for all choices of j.

Thus, in the casen = m = 3 wherex0 is a feature point,
any nonzero cross product of two rows of∇(q)0 (see Eq. 37)
provides a vector in the tangent direction. Using the largest
such vector should give the best numerical accuracy.

Another important property of the adjugate matrix is easy
to derive, but we have not seen it in the literature. Informally
stated, eigenvectors of nonzero eigenvalues transfer between a
matrix and its adjugate.

Lemma 3.6: Let M be n×n and letMA = adj(M). Let the
eigenvalues ofM be indexed asλ j , j = 1, . . . ,n.

1) If ξ is an eigenvector ofλ j for M , then ξ is an
eigenvector ofµ j for MA, where

µ j =
n

∏
1=1,i 6= j

λi (50)

2) If ξ is an eigenvector ofµ for MA, whereµ 6= 0, then
ξ is an eigenvector ofλ = (detM)/µ for M .

Proof: (Sketch) The lemma is trivial when the rank of
M is n (inverse exists) or isn− 2 or less (MA = 0). The
remaining case, rankn−1, involves eigen-decomposition into
real Jordan form [6, 21]. For any realM , there is a matrix
T with determinant 1 such thatJ = T−1MT is in real Jordan
form, and every real eigenvector ofM appears as a column of
T (not necessarily unit length). ButT−1 = TA by Eq. 47, so
JA = T−1MAT by Eq. 49. SinceJ has the same eigenvalues
as M and these include precisely one eigenvalue equal to
zero, it suffices to prove the lemma forJ and JA, and this is
straightforward with Lemma 3.5 and standard linear algebra.

The practical importance of Lemma 3.6 for our purposes
is this: If M is diagonalizable, as it is in stable cases, and
has one eigenvalue that is much smaller than the others, then
the eigenvector for the small eigenvalue varies continuously
and is well approximated by large columns ofMA; it is not
necessary to decide whether the small eigenvalue is precisely
zero. To relate this to integrating in a feature flow field, if there
is a nearby point on a feature curve, the appropriate matrix
M has a zero eigenvalue on that curve and the eigenvector is
in the tangent direction. IfM and MA are evaluated nearby,
M will not have an eigenvalue that is precisely zero, but the
direction given by the eigenvector corresponding to the small
eigenvalue will be close to the tangent direction.

Now we turn to the case in whichn= m−1. This is typically
a case with time as the “extra” space dimension. The main case
of interest isn = 3, m= 4.

First, we cover the case thatx0 is not a feature point, andM
has full rank. Equation 29 is nonhomogeneous, sinceq 6= 0.
The complete solution involves both a particular part and a
homogeneous part. We can defineM ′ with n′ = n+ 1 rows
by adding a row of zeros to the bottom ofM . This reduces
the homogeneous problem forM ′ to the one just considered
(Lemma 3.5, part 1), withn′ = m and a matrix of rankn′ −1.
Only columnm of the adjugate matrixMA need be computed
(the rest are identically zero), and the homogeneous solution
is (any scalar multiple of) the generalized cross product of the
original m−1 rows ofM , ×(M1,∗, . . . , Mm−1,∗).

To find a particular solution, discard a column ofM that
leavesn linearly independent columns (in stable cases the first
n columns are linearly independent), set the corresponding
element ofδx to zero, and solve the resultingn×n system
for the remaining elements ofδx.

It is important to note that the above procedure isuseless
at a feature pointbecauseM has rankn−1, soM ′ has rank
n′ − 2 (at most), and the adjugate matrix is identically zero
by Lemma 3.5, part 2. Thus the feature flow field proposed
by Theisel and Seidel [20, Eq. 9] is seen to be identically
zero, using Eq. 44. (Theiselet al. note that this proposed FFF
“appears” to be identically zero. Our lemma confirms this.)
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Finally, we consider the case thatn = m− 1 and x0 is a
feature point. In the stable case, as discussed above,M has
rank n− 1 = m− 2. Becauseq = 0 in Eq. 29, it suffices to
consider homogeneous solutions. Choose two columnsj andk
such that deleting them would leavem−2 linearly independent
columns. Normally,j = m, the column associated with time,
is an acceptable choice, andk can be one ofm−1 andm−2.
However, different choices might be more robust, numerically.

This time, we defineM ′ with n′ = n+ 1 rows by adding
a row eT

j (zeros, except a 1 in columnj) to M . This again
produces anM ′ with rank n′ −1, so the solution given above
provides one homogeneous solution, whosej-th component is
zero. (See Eq. 46, but columnm of MA need not be computed,
as it is zero.) If j = m, this is just the fixed-time homogeneous
tracing solution.

For the final step, we defineM ′′ using k instead of j in
the preceding paragraph, and get a homogeneous solution
whosek-th component is zero. Assuming a stable case, the
two solutions are linearly independent and span the null space.
If it is desirable to have orthogonal homogeneous solutions for
some reason, just use the Gram-Schmidt procedure [4].

3.5 A Predictor-Corrector Procedure for Tracing

A predictor-corrector procedure is easily formulated, using
Eqs. 18–29, and Section 3.4. To simplify the notation, we use
Q for AP, as defined in Eq. 32, and we useS for AP

A, the
adjugate ofQ (Eq. 46). Forn = m= 3, with the convention
that the cross product of row vectors is a row vector, we have

S =


 Q2,∗ ×Q3,∗

Q3,∗ ×Q1,∗
Q1,∗ ×Q2,∗




T

. (51)

That is, cross products of rows ofQ give columns ofS. When
detQ 6= 0 andQ is sufficiently well conditioned, we useδx =
−(S/detQ)q. Otherwise, all three columns ofS are collinear
(within numerical tolerance) and the one of largest magnitude
is selected to provide thedirection for δx. The length ofδx
in the latter case is chosen heuristically.

Starting from aseed pointx0, calculateQ, S, and detQ
according to those equations. Ifx0 is a feature point, detQ
will be 0 or very close. In this case, use the maximum-
magnitude column ofS in Eq. 51 as the tangent direction.
Take a “predictor” step in this direction tox(0)

1
, which is

slightly off the feature curve. The length of this step is chosen
heuristically. Now use Eqs. 21, 45 and 51 to take corrector
steps until detQ is sufficiently close to 0.

δx(n) = −
(

Q(x(n)
1

)
)−1

q(x(n)
1

)

x(n+1)
1

= x(n)
1

+δx(n). (52)

Call the final pointx1. This is numerical root finding in 3D
and subject to all the pitfalls typical of Newton-Raphson in
higher dimensions, but under reasonable circumstancesx1 is
on the feature curve. When Eq. 45 is used,δx(n) may need
to be clamped to stay within the cell in which interpolation is
being done. The procedure is repeated to trace a polylinex0,
x1, x2, . . . Experimental results are reported in Section 6.

Fig. 2. PVsolve moves with step .20. Blue: analytical
solution curve. Red: trace for 63 points counting both
predictor and corrector moves. Left: 2D, all moves. Right:
3D, converged moves only.

4 ILLUSTRATIVE ANALYTICAL EXAMPLE

To see whether the predictor-corrector procedure, using the
extra term in Eq. 27 worked in practice, we tested it on pairs
of linear vector fields. We considered this a reasonable first test
because nonlinear vector fields are nearly linear at the small
scales used in numerical procedures. We compared our results
with the analytical solution [21]. We note that the equations
previously published for tangent-based tracing [19, 18] traced
this curve very accurately using Runge-Kutta 4/5 with tight
error tolerances (10−8 or 10−12, see Section 6 for configuration
details).

First, we consider the following 2D flow.

v =
[
0 −1
1 0

]
x+

[
1
−1

]
crit. pt.

[
1
1

]
,

w =
[
2 0
1 1

]
x+

[−2
0

]
crit. pt.

[
1
−1

]
.

This paper’s predictor-corrector method,PVsolve, is shown in
Figure 2, on the left. We see that the corrector-moves converge
to the correct feature curve. The picture shows both predictor
points and corrector points to illustrate the method. Only the
final corrector point of a sequence is output byPVsolve as a
feature point.

Turning to 3D linear fields, we traced the following:

v =


0 −1 0

1 0 0
1 −1 1


 x+


 1
−1
0


 crit. pt.


1

1
0


 ,

w =


 2 0 0

1 1 0
−1 −1 1


 x+


−2

0
0


 crit. pt.


 1
−1
0


 .

As seen in Figure 2, on the right,PVsolve tracks the analytical
solution to sub-pixel accuracy. (The same accuracy is achieved
by published methods using Runge-Kutta 4/5 with tight error
tolerances.) This view is looking primarily toward positivex.
The three circles show where the curve crossesz= 0. Looking
toward negativez, the projection ontox-y is the same as the
2D example (if traced toz= ∞ andz=−∞); i.e., in the limit
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the projection completes one oval and approaches the limiting
point (2,−1) from both sides.

We observed that the 2D flows required only one corrector
move for each predictor move, even though the predictor
move was fairly large, at 0.2. The threshold for convergence
was detQ/|Q|F < 10−10 (F denotes Frobenius matrix norm).
However, the more complicated feature curve associated with
the 3D flows required an average of three corrector-moves for
each predictor-move. Other predictor-corrector schemes that
have been proposed specify that the corrector-moves are in a
plane normal to the predictor-move. This is definitely not a
requirement for this paper’s method.

5 FEATURE FLOW FIELD GOES ASTRAY

This section reports on a surprising pattern of behavior that
we observed using the feature flow field method (FFF) on
several curvilinear datasets. Actually, the analysis in Section 3
explains the behavior. By FFF in this section, we mean the
equations given by Theiselet al. [19] for steady flows, inte-
grated withode45, a Runge-Kutta 4/5 procedure supplied by
matlab. The tolerance options were set for maximum accuracy.
Additional details of the experimental setup are given in
Section 6. The online supplement contains additional images
related to this section.

In the majority of cases, FFF traced feature curves very
accurately. However, we noticed a strange phenomenon in
occasional cases, while examining the numerical values gen-
erated for the curve. In these cases, the trace would “head
for” a region where the two vector fields,v and w, were
perpendicular. Recall thatθ denotes the positive angle between
these two fields. The trace seemed to be acting “deliberately”,
in the sense that the sinθ values climbed steadily until they
exceeded 0.99 for several points, then receded steadily. Such
occurrences would be very unlikely due to noise-like errors;
in such cases we would expect sinθ to vary more or less
randomly.

This phenomenon is illustrated in Figure 3. The left image
shows the overview. The FFF curve starts from the seed point
indicated by the sphere on the right, makes a barely visible
jog to the left, then quickly turns right, continues through a
section where its color changes from cyan to red and back
to green, then makes a sharp turn and heads towards the
left. The PVsolve curve starts from the same seed point and
simply proceeds to the right, its blue color indicating sinθ near
zero. The FFF curve varies in color, reflecting various angles
betweenv andw; blue denotes sinθ = 0 and red is sinθ = 1.
The gray arrows show the cross product (about every 8 points
in the overview, and every point in the closeups). ThePVsolve
curve stays mostly on track, has one bad point in the middle,
reaches a cell face to the right of the picture, and continues
into the adjoining cell. The FFF curve exits at an incorrect
face, and does not continue, because the vectors there are not
sufficiently parallel.

The center image is an extreme closeup, which shows that
the cross products grow steadily from zero for several steps
during the initial jog to the left, after which time they stay
fairly constant in both magnitude and direction as indicated
by the overview image. At this zoom factor, this image also
shows that the initial direction of the FFF curve (thicker)

is actually going left, while thePVsolve (thinner) is going
right, so the two curves really have no part in common. The
violet arrows arev (velocity) and the green arrows arew (curl
of velocity). The center image shows them almost parallel
in the blue region. The right image shows them becoming
perpendicular, then returning to a smaller angle (green is 30◦
or sinθ = 0.5). The magnitudes are scaled differently in the
two closeups, and are different between the violet and green
arrows, to improve clarity of direction at the important places.
Actually, v is orders of magnitude smaller thanw throughout.

Holding the cross product constant is consistent with the
description of feature flow fields in general [20]. Indeed, the
tangent direction is defined by the criterion that the gradient of
the cross product, informally stated, is “zero in this direction.”
Ideally, it would be held constant at zero. However, in this
case, although it starts at zero, the fields appear to vary by
higher order polynomials than Runge-Kutta can compensate
for, and the cross product grows to a slightly nonzero value.
This happens in essentially every cell. In most cases it is
harmless.

In this case, an unintended consequence of the FFF strategy
materializes. As the right closeup shows,v is decreasing in
magnitude along the curve. How can the cross product be
held constant if|v| is decreasing? The answer is:increase the
angle betweenv and w!

So the system is forced into a region of largerθ in its
effort to keep the cross product constant along the curve.
The question arises, since the system isnot computing at a
point where the cross product is zero, is the computed tangent
direction still a “direction of zero gradient?” More precisely,
does the gradient matrix have an eigenvector close to the
computed tangent direction, and is the associated eigenvalue
very small? The analysis in terms of the adjugate matrix (see
discussion after Lemma 3.6 in Section 3) answers the question
affirmatively. The experimental data confirms that the FFF
system is quite successful at keeping the cross product constant
in both magnitude and direction.

Another instance of the same phenomenon is shown in
Figure 4. In the overview, FFF andPVsolve start along
the same curve, proceeding from the seed point (marked by
the middle sphere) toward the upper right, but FFF changes
direction, whilePVsolve continues to the cell face. The color
of the lines are mapped to sinθ as before: blue is zero, green is
0.5. Gray arrows indicate the cross product on the FFF curve.
Before making the sharp turn, the blue color informs us that
the magnitude of the cross product is quite small. However,
FFF is formulated to keeping a gradient of the cross product
constant, and is therefore concerned with both the direction
and magnitude. We observe that FFF not just preserving the
magnitude; it also “wants to” preserve the direction. So when
the direction on the true curve varies, FFF is forced off.
The closeups show that in order to keep the cross product
constant, there are regions whereθ is increasing, as needed to
balance magnitude decreases inv and/orw. On the the other
hand,PVsolve, which does not use the cross product at all,
concentrates on keeping sinθ small.

Although such instances are not frequent, over the whole
Post dataset, the FFF method traced to nearly 18,000 points
where sinθ ≥ 0.90, i.e.,θ is between 60◦ and 120◦. This is
about 7% of the 242,000 traced points. In contrast,PVsolve
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Fig. 3. Feature curve traced by FFF, color mapped to sinθ , going from blue for zero to red for one, on the Post dataset.
Gray arrows are the cross product of v and w. Left: overview. Center: beginning of trace. Right: the v and w fields
become perpendicular where the curve is red.

Fig. 4. Left: overview. Center: v and w arrows on FFF curve. Right: cross product shown by gray arrows.

TABLE 2
PVsolve tracing times (CPU) and numbers of points for

steady-flow curvilinear datasets.

Dataset Grid points Seed Points Traced Points Minutes
Blunt Fin 40,960 331 39,444 5.20
Post 109,744 763 109,762 18.78
Delta-40 211,680 1377 186,026 62.72

arrived at only 16 such points out of about 102,000 traced.

6 RESULTS

Our tracing method,PVsolve, was implemented inmatlab
and integrated into a prototype parallel-vector program under
development by Jeff Sukharev, for which results on regular
grids have been reported [18]. We thank the author for making
his code available. Tests were performed on a 2.6 GHz x86
Linux platform. We are not aware of published times or
measures of accuracy for other methods that analyze parallel
vectors, so we can only present our own times and measures.
The tests reported here are intended to serve mainly as a proof
of concept, rather than an exhaustive evaluation.

For the curvilinear simulations we set the threshold for
convergence of corrector steps to detQ/|Q|3F < 10−8 (sub-
script F denotes Frobenius matrix norm). We set a limit of
20 corrector steps for each predictor step to protect against
nonconvergence. All steps were clamped not to move out of
the current curvilinear cell, and corrector steps were clamped
to be the same order of magnitude as the preceding predictor
step. The average number of corrector steps per predictor step
was 1.72, with 95% of the calls taking one or two corrector
steps, while 2.5% limited out at 20.

We used several well known curvilinear datasets distributed
by NASA Ames in theplot3d format (see Table 2). In all cases

the two fields tested for collinearity werev for velocity and
w for vorticity (curl of velocity), as calculated by the NASA
Ames program,FAST.

First we present some evaluation data comparingPVsolve
with the feature flow field method (FFF) that uses the homo-
geneous formulas from Theiselet al. discussed in Section 3,
driven by an explicit Runge-Kutta (4,5) solver supplied inmat-
lab. This solver,ode45, is sophisticated and highly optimized
[15]. Then we show some visualizations of the parallel vector
curves obtained by our procedures in context with other visual
information.

The statistics are based on all feature curves discovered,
sometimes calledraw feature curves. For particular applica-
tions it is usually appropriate to add some additional criteria to
filter out feature curves that are not of interest. For exploratory
purposes, we applied one such filter in some of the runs.
Let us call a seed pointswirling if the velocity gradient
has two complex eigenvalues at that point. Then aswirling
feature curveis defined to be a feature curve generated from
a swirling seed point. Such a curve might also pass through
other seed points that are not “swirling.” Applying thisswirling
filter eliminated about 70% of the raw feature curves, fairly
consistently across the datasets studied. The curves used for
illustrations in Section 5 qualified as swirling feature curves.

6.1 Statistical Evaluation and Comparisons
The columns of Table 3 require some explanation. The first
column describes the procedure. TheFFF/ode45 procedure
was tested with three levels of error tolerance, as described
under the table. The second column shows the total length of
traced curves measured in computational space (i.e., each cell
side is unit length). This choice is based on the fact that cells
are smaller in the important regions, so measuring physical
length would over-weight curves in less important regions.
The third column is how many distinct curves were traced.
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TABLE 3
Comparison of FFF/ode45 with several configurations

and PVsolve on the Post curvilinear dataset. See
Section 6.1 for discussion.

Tot. Arc Num. of Arc Length Avg. Failure
Method Length Curves per CPU Sec. sinθ Rate
ode45 (default) 2634 370 30.6 0.0511 0.080
ode45 (10−8) 2540 349 17.8 0.0409 0.052
ode45 (10−12) 2409 334 5.0 0.0212 0.025
PVsolve 4065 291 3.6 0.0004 0.012

ode45 configurations: “default” means 10−3 for RelTol, 10−6 for AbsTol.
Otherwise, both parameters are the number shown in parentheses.

TABLE 4
Comparison of FFF/ode45 and PVsolve on the Bluntfin
and Delta-40 curvilinear datasets. See Section 6.1 for

discussion.

Tot. Arc Num. of Arc Length Avg. Failure
Method Length Curves per CPU Sec. sinθ Rate
Bluntfin
ode45 (10−12) 764 221 2.9 0.0621 0.165
PVsolve 1414 194 4.5 0.0297 0.100

Delta-40
ode45 (10−12) 3079 554 4.0 0.0213 0.065
PVsolve 6339 516 1.7 0.0025 0.041

The fourth column measures efficiency, with arc length being
the same as the second column; this measure avoids rewarding
a program that finishes faster but produces less product.

The last two columns contain error measures. The fifth
column is the average of sinθ , whereθ is the angle between
v andw. The sixth column is the fraction of cells in which the
traced curve hadθ > 1◦ upon exit from the cell. The curve
always begins the cell withθ < 1◦, and when it begins at
a seed point in the face of that cell,θ < 10−10 degrees. If
θ > 1◦ upon exit, tracing along this curve is discontinued.
Hence different methods have differing total arc lengths in
part due to discontinuing at different cell faces.

Since tighter error tolerances have produced greater ac-
curacy for FFF/ode45 in the table, the natural question is
whether more is better. We tried 10−13 but the program slowed
way down and failed by exceeding our limit of 3000 integra-
tion steps in a single cell. So it appears that 10−12 is about
the tightest we can go. Unless stated otherwise,FFF/ode45
will refer to runs using the 10−12 tolerances.

The error columns show thatPVsolve is more accurate than
FFF/ode45 by a factor of about 50 using average sinθ as the
criterion. Column six shows a factor of about two difference
in failure rates. Column four shows that the gains come at a
modest price in time.

We gathered similar statistics for the Blunt Fin and Delta-
40 datasets, but only using the most accurate settings for
FFF/ode45. The results are shown in Table 4. These datasets
show generally the relationship between the methods as the
Post, but both methods achieve less accuracy. We also checked
the statistics for “swirling” feature curves and found that

failure rates were about half, while average error decreased
15 to 35%.

6.2 Pictures
Figures 5 to 10 show the feature curves extracted usingPV-
solve on the three steady flow, curvilinear data sets. Since
the choice and formulation of the parallel vectors, using
velocity and vorticity, are intended to identify vortex cores,
we also seeded streamlines in the regions where vortex core
structures are known to exist. All streamlines are integrated
using ParaView’s [9] implementation of Runge-Kutta 4/5 with
a tolerance of 10−6 for maximum error. The results confirm the
locations of the vortex structures in the Blunt Fin and Delta-40
datasets, but the major vortical streamlines do not correspond
to any feature curve found in the Post dataset. This raises the
possibility that parallelism of velocity and vorticity is not a
suitable criterion for vortex cores in the Post. but also point to
the inadequacy of the choice of parallel velocity and vorticity
criterion to find the proper vortex core lines in the Post dataset.

In general, the feature curves look reasonable—with two
caveats. First, they may not identify vortex cores in all cases
because other flow phenomena might cause these fields to be
parallel. It is possible to apply a post-processing operation
to filter out these spurious or non-physical feature curves by
using some of the application dependent criteria suggested by
Peikert and Roth [13]. In this paper, we decided not to apply
any filtering operation to overview pictures (see Figures 5 to
7), since the focus of the paper is on the ability ofPVsolve
to locate curves where the underlying vector fields are parallel
(i.e. a mathematical rather than a physical description). In
addition, presenting all the raw feature curves facilitates future
comparisons with this work. Thus, while the parallel vector
formulation used in the examples in this section is motivated
by finding the vortex cores, the raw feature curves in the
figures include those that are not physically realistic candidates
for vortex cores.

A second caveat is that there are numerous ways to formu-
late what constitutes a vortex core, even with parallel vectors.
The feature curves, while faithful to the requirement of having
both v and w parallel to each other, may not be an ideal
representation of the true vortex cores. In fact, it is possible
that a true vortex core is entirely missed by this formulation.
Research on vortex core extraction is active and challenging,
but is beyond the scope of this paper.

One may also note from the overview images in Figures 5
to 7 that whilePVsolve generally produced less feature lines

Fig. 5. Overview images of the Blunt Fin showing ex-
tracted feature curves in red using PVsolve with 194 lines
on the left, and FFF/ode45 with 221 lines on the right.
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Fig. 6. Overview image of the Delta-40 extracted
feature curves using PVsolve with 516 lines on top,
and FFF/ode45 with 554 lines on the bottom. Curves
are colored differently to show crowding of lines at the
nose.

Fig. 7. Overview images of extracted feature curves
from Post in red using PVsolve with 291 lines on the
left, and FFF/ode45 with 334 lines on the right.

thanFFF/ode45, the feature lines are longer and have higher
connectivity.

Blunt Fin.
Figure 8 shows the feature curves extracted byPVsolve.

The prominent (half) horseshoe vortex core feature curve in
red is easily seen on the left image. This particular feature
is also correctly traced byFFF/ode45 and the method of
Sukharevet al.. The middle image shows only the “swirling”
feature curves, as defined at the beginning of Section 6, while
the right image shows the “raw” feature curves, i.e., all of
them.

Delta Wing.
The next data set is the Delta wing at a 40 degree angle of

attack. Figure 9 shows the “swirling” feature curves extracted
by PVsolve in red against (half of) the wing in magenta. As
with the other datasets, these comprise about 30% of the “raw”
feature curves. Streamlines are seeded near the nose and also
near the leading edge of the wing. We see the main vortex core
off the wing as well as one along the leading edge of the wing.
The streamlines are colored by integration time, and goes from
green to red to improve the contrast. Flow reversal is apparent
in the main core off the wing where one can observe some
of the yellowish streamline heading back towards the nose.
The image on the bottom shows a closeup of the leading edge
where one can observe a similar behavior.

Post.
The next data set is the flow past a cylinder and is referred

to as the Post data set. Unlike the other two datasets, this
one simulates an incompressible fluid flow; i.e., the density is
constant throughout, although pressure varies. The curvilinear
grid wraps around on itself on the plane directly downwind
of the post. This plane also forms a plane of symmetry of the
extracted feature curves. Note that the flow is not perfectly

symmetric, but the major features at the scale of the images
in Figure 10 can be considered symmetric.

The image on the top shows how the streamlines, seeded
from various selected places in the data set, come together
to form one of two, very distinct, vortex core structures
just downstream of the post. The other, very similar vortex
core structure would be on the opposite side of the plane of
symmetry, and is not shown.

What is clearly noticeable is that there is no feature curve
(“raw” or “swirling”) running through this vortex structure.
The main feature curve that is supposed to be the vortex core
is extracted and analyzed further on the bottom image. The
boxes indicate places where seed points were found and used
to trace the rest of this feature curve. We verified that the
v and w vectors along this curve are indeed parallel (very
small sinθ ). Furthermore, seeding along this vortex core, e.g.
in the vicinity of the seed point, does not produce streamlines
that join up with the vortical flow. This is not a failing
of PVsolve (indeedFFF/ode45 produced substantially the
same results), but rather points to the inadequacy of using the
parallel velocity and vorticity criterion to find vortex cores, at
least in the Post data set.

7 CONCLUSION AND FUTURE WORK

We have presented new formulation,PVsolve, and applied
it to tracing parallel vectors. It is more robust in some ways
than previous tracing methods. The main property ofPVsolve
is a correction step that allows the trace to home in on the
feature curve, i.e., where the two vector fields are parallel. The
formulation also generalizes the two previous formulations:
feature flow fields (FFF) [20, 19] and analytical tangents [18].
Although they both required the seed point as well as points
along the trace to be on the feature line (i.e.q = 0), PVsolve
handles the case whereq 6= 0.
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Fig. 8. Feature curves extracted using this paper’s method (red) and streamlines illustrating a well-known vortex in
the Blunt Fin. Streamlines are colored by velocity magnitude. Left: the dominant vortex feature curve. Middle: feature
lines with complex eigenvalues of velocity gradient. Right: all “raw” feature lines.

Fig. 9. The Delta Wing at a 40 degree angle of attack.
This data set models half of the wing shown in magenta,
the extracted feature curves in red, and streamlines col-
ored by integration time. Top: overview image showing
the main vortex structure off the wing and a smaller one
along the leading edge of the wing. Note reverse flow as
streamlines turn from green to yellow in the larger vortex.
Bottom: closeup of the vortex along the leading edge. The
closeup shows reverse flow in the smaller vortex also.

Initial experiments on linear fields indicated that the cor-
rector steps converged rapidly to the correct feature curve
with fairly large predictor steps. Another observation was
that the corrector steps arenot in the plane orthogonal to
the predictor step, which differs from previously proposed
predictor-corrector schemes for tracking vortex cores and par-
allel vectors. Future work should address how to determine
appropriate step sizes for predictor steps. Furthermore, the cur-
rent formulation is based on first order approximations. Using
higher order information, accumulated through a number of
probes, would be another avenue for improvement.

The method was tested on three well known curvilinear
fluid-flow datasets, and compared to tracing byFFF traced
usingode45 in matlab. An electronic supplement in the digital
library has additional images and code.1 These are steady flow

1. See alsohttp://avis.soe.ucsc.edu/PVsolveSupplemental.

Fig. 10. Feature curves in red, streamlines colored by
their seeding location. Top: The swirling pattern shows
one of two prominent vortex structures in this data set.
There is no feature curve detected within this vortex struc-
ture using the criterion of parallel velocity and vorticity.
Tan streamlines originated at a feature curve, but that
curve did not continue into the vortex region using any
of the tracing methods studied. Bottom: Analysis of the
supposedly main feature curve shows that streamlines
seeded along this curve do not join up with the main
vortical structure on the top image.

simulations. Statistics show thatPVsolve achieved between
two and 50 times lower average error, based on sinθ , with
a modest increase in compute time. Features were identified
in the regions where vortex cores are known to exist based
on other techniques, such as streamlines. However, we only
checked the results visually and are not sure how accurate
the correspondence is. The experiments turned up a surprising
phenomenon, discussed in Section 5: Once a small error is
established in FFF, the system undergoes “contortions” to
preserve that error, occasionally leading it away from the
correct feature curve.

A topic for future work is to look at using the cross product,
rather than the dimensionless projection vector, as the quan-
tity for root finding, as suggested by an anonymous referee.
A quick test showed that the method works (as everyone
expected), but in view of the findings in Section 5, hidden
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problems related to scale may surface.
An unexplored alternative for seed point location that de-

serves future investigation is to use the (nonlinear) closed-form
solution for the locus of parallel vectors in a general pair of
3D linear (more precisely, affine) vector fields [21]. (When the
linear fields have a common critical point, the locus is in the
direction of a certain eigenvector, emanating from the critical
point [14].)

The model of a feature flow field [19] is appealing, but
does not provide for correcting drift, which is inevitable in
numerical procedures. This paper’s method, in its current
form, is more appropriately viewed as root finding, rather
than streamline integration. Future work should study how to
combine these ideas to obtain asmoothfeature flow field in
which the directions at points somewhat away from the correct
feature curve tend to send the trace closer to that curve.
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