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Using PVsolve to Analyze and Locate
Positions of Parallel Vectors

Allen Van Gelder, Member, IEEE Computer Soc. and Alex Pang, Senior Member, IEEE

Abstract —A new method for finding the locus of parallel vectors is presented, called PVsolve. A parallel-vector operator has been
proposed as a visualization primitive, as several features can be expressed as the locus of points where two vector fields are parallel.
Several applications of the idea have been reported, so accurate and efficient location of such points is an important problem. Previously
published methods derive a tangent direction under the assumption that the two vector fields are parallel at the current point in space,
then extend in that direction to a new point. PVsolve includes additional terms to allow for the fact that the two vector fields may not
be parallel at the current point, and uses a root-finding approach. Mathematical analysis sheds new light on the feature flow field
technique (FFF), as well. The root-finding property allows PVsolve to use larger step sizes for tracing parallel-vector curves, compared
to previous methods, and does not rely on sophisticated differential equation techniques for accuracy. Experiments are reported on
fluid flow simulations, comparing FFF and PVsolve.

Index Terms —Parallel vectors, feature flow field, vortex core, flow visualization, PVsolve, adjugate matrix, Newton-Raphson root
finding, dimensionless projection vector.
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1 INTRODUCTION formulations, with vortex core lines as one of the target appli-
cations. Independently, Sukharetal. proposed an alternative
I N certain scientific visualization applications, especiallgprmulation based on an “analytical tangent,” that facilitates
those inVOIVing f|UId ﬂOWS, the queStion al’ises Whethqfacing of the feature curves [18]

vectors in two different vector fields are parallel. In a seminal 1p,;g paper introduces a new methodology, cafasolve,
paper, Peikert and Roth proposed a parallel-vector operatign; 4qopts a somewhat different view of the tracing problem.
as a visualization primitive [13]. They observed that severgihereas the other published tracing-oriented methods view the
concepts of “vortex core” can be formulated as the set of poiffisplem as integrating an ordinary differential equation, we
where the vectors drawn from two 3D fields are parallel, angly it as root finding. The principal difference in approaches

extremal curves on s_urfaces can bg similarly characterized, pe succinctly summarized in nontechnical language, as
For two smoothly varying 3D vector fields, ssyandw, Roth  ¢510ws:

observed that the set of points whergéw, i.e., v is parallel . )

to w, normally forms some number of smooth curves [14]. * FFF begins at a point where the cross product of the
Parallel vector curves have been used in several recent applica- WO vector fields is zero and ideally progresses to other
tions. For example, Garttt al.[3] used this, among numerous ~ POints where the cross product is zero. If it gets a little

other methods, to investigate the swirling and tumbling motion  Off course, it tries to pursue a path on which the cross
inside a diesel engine. productretains its current value

In their 1999 paper, Peikert and Roth identified four * PVsolve begins at a point where the dimensionless pro-

schemes for finding the parallel vectors in a pair of vector jeqtlon vector Is Z€ro and ideally Progresses tq other
fields, as reviewed in Section 2. The fourth scheme, curve points \_/vhere.the dmens_mn!ess projection vector Is zero.
tracing, has seen recent activity and has been found to offer _(Thga d|men5|onle§s projection vector results from.pro-
better numerical algorithms compared to the other approaches. 1€€ting one normalized vector onto a plane perpendicular
Theisel and Seidel reformulated the parallel-vector problem to the other; thus its magmtuc_ie is the sine of the angle
as streamline tracing in teature flow field(FFF) [20]. For between the two vectors.) If it gets a little off course,
purposes of this paper, a “feature” is a point where the two it t(les'to move to a point at which the dimensionless
vector fields are parallel, and a feature curve or feature surface projection vectoreturns to zero

is a connected set of such points. Theiselal. [19] and The details are presented in Section 3, but we note here that
Weinkauf et al. [23] extended the FFF idea, proposing newt points where the two vectors are parallel, both the cross
product and the dimensionless projection vector are zero. At
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the cross product is slightly changed. FFF tries to maintain thehere the flow transitions from laminar to turbulent flows.
error at its current value by keeping the cross product const@n the other hand, there is no guarantee that the gradient
[20]. As shown in Section 5, maintaining the cross produdescent method will converge to the vortex core on the plane.
at its current value, even though that value is very smalh a related paper, Jeong and Hussain combined the predictor-
sometimes forces the trace to depart from the correct cureerrector approach with th&, method to improve the effi-
In many cases the method is successful because the traieacy in tracking vortex cores [8]. A key modification was to
approaches a fiducial point (i.e., a point known to be correplace the pressure field by theg field during the correction
by other methods) before the error has grown significantlstage [16]. In addition, the gradient descent was replaced by
and the error is reset to zero by continuing from the fiducial direct search approach [7].
point. PVsolve also encounters numerical errors, but becausePeikert and Roth’s contribution is primarily to define the
of its root-finding orientation, it continuously reduces them.parallel-vector operator and demonstrate its expressiveness
In terms of mathematical techniques, the previously pubsr capturing different interesting physical properties. One
lished methods consider homogeneous sets of linear equati@pglication is identification of vortex core lines. They describe
whereasPVsolve considers more general nonhomogeneotmw points on such vortex core lines can be specified in
sets of linear equations, and the analysis is consequeryms of certain vectors being parallel. While they identified
more complex. However, by working at the abstract level ddbur methods for constructing the loci of parallel vectors,
vectors and matrices, thieVsolve framework applies to all Roth’s dissertation provided only the heuristic-based approach
combinations of dimensions. That is, the two fieldsmeD of connecting extracted feature points. Briefly, they have a
vectors are defined over amD Euclidean space, and the mairtwo stage algorithm in which solution points (where vectors
result applies to general combinationsroindm. The main are parallel) are found in the first stage and connected in the
cases of interest are= 3 andm= 3 (3-D space, fixed time) second stage. Each data set is treated as a discrete set of 3D
or m=4 (time is the fourth “space” dimension). cells and Newton-Raphson root finding is used to find solution
The rest of the paper is organized as follows: Section@ints on each of the 2D faces of the cell. Simple connection
reviews the basic extraction and tracing strategy, and alsdes are used in the second stage to connect points in faces of
describes the differences and similarities among the differehe same cell. If a cell contains only two solution points, they
tracing approaches. Section 3 develops the mathematical basés simply connected. If a cell has four solution points, then
for PVsolve. Section 4 illustrates the predictor-corrector nahey choose the two connections with the maximal distances
ture of the method on an analytical example. Section 5 shofvem each other out of the three possible pairs of connections.
how FFF can occasionally go astray. Sections 6 presents exggells with six solution points are not handled, and cells with
imental comparison dPVsolve with FFF, using Runge-Kutta an odd number of solution points are subdivided until there
4/5 as the integration method in FFF. Results on three fluidre O, 2 or 4 solution points in a cell. While this algorithm
flow simulation data sets are reported. Section 7 summarizeay seem simplistic, it was considered state of the art at that
the paper and points to some future work. time. However, Sukhareet al. showed cases in which the
Peikert-Roth connection heuristics led to incorrect topology
of the solution curve [18]. Another limitation of the extract-
2 RELATED WORK then-connect approach is the need to extract all the solution
The four works most closely related to this paper are Banksints. Therefore, in practice, Peikert and Roth concluded
and Singer [1, 2], Peikert and Roth [13, 14], Theiselal. that the preferred approach for finding parallel vectors is a
[19], and Sukhareet al. [18]. We discuss these variations inmodification of the extraction and tracing strategy described
turn. We say that the locus of points where two vector fieldsy Banks and Singer. In the tracing phase, an integration
are parallel ardeature curvesand points on such curves arestep is taken alony (or w, since they are parallel at the
feature points seed point). Each step must immediately be followed by a
Banks and Singer's work is used in a number of vortesorrection step to make sure that the new point is still on
core tracing papers, including that of Peikert and Roth, atige feature curve. For this, they propose a correction step on
is therefore briefly summarized here. Their work involve twi, the plane perpendicular o (or w if that was the vector
steps: an extraction (or seed point location phase) and a tracisgd in tracing). The correction step will seek to minimize the
phase using a predictor-corrector strategy. In the extractiprojection ofw (or v) onto N.
phase, candidate seed points are found where grid points ar€he choice of directiorv was heuristic, since the tangent
found to have low pressure and a large magnitude of vorticity the feature curve is different from the direction wf in
i.e. those points meeting these two threshold values. general. Two subsequent papers derived the tangent direction
Once these seed points are found, each one is then usedralytically, and we review these next.
trace a vortex core line. The prediction stage simply advancesTheisel et al. also use an extraction and tracing strategy,
the seed point in both forward and backward directions alohgt formulated differently [19]. They note that parallel vectors
the vorticity vector. That new position is then corrected toan be formulated as a “feature flow field,” as introduced
a minimum-pressure point on the plane perpendicular to thg Theisel and Seidel primarily for time-varying flow fields
vorticity vector at the predicted location. The search for tH20]. Feature points correspond to places in space-time where
minimum pressure point is carried out via steepest gradiamctors are parallel, and connected sets of points form curves
descent. They note that while vorticity or the pressure gradignt3-D or surfaces in 4-D. This procedure is generalized in
fields are individually unreliable at capturing vortex core line§)Veinkauf’s dissertation [22].
the combination of these two is quite robust, even in casesUsing the notatiors=v x w and C = [(s), we now sum-
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matrize the 3-D fixed-time construction of Theistlal. [19]. parallel vectors. We say that the locus of points where two
They construct a vector fieldover 3-D Euclidean space suchvector fields are parallel is f@ature point setn general; it is
that at a seed poing, with s(x,) = 0, a streamline of through called afeature curveor feature linewhen the point set is one
that point also satisfies(x) = 0. Such a feature flow field dimensional; it is called &ature surfacevhen the point set

can be constructed by: is two-dimensional.
We then show how it is related to other recent tracing
det{C*’z, C.3 a} C.,xC,3a methods, which seek to follow feature curves in 3-D. In
_ _ _ particular, we show that they are essentially equivalent for the
f= det{C*ﬁ, C.o a} = |CusxCral (@) case when the trace is from a point on the feature curve, but

det{c c a} C.1%xC,,a our new formulation also handles the case where the trace has
H T2 to continue from a point that is slightly off the feature curve.
whereC, ; is thei-th column of C and represents the first-That is, within certain bounds, a correction step in the tracing

order paftial of the cross produstwith respect ta. Also, phase allows our algorithm to home back to the feature curve.
. Our development is fairly general in that we consider fields
a= { woif (W > V] (2) of n-dimensional vectors defined over amdimensional Eu-
v otherwise clidean space. This generality is useful because there tend to

In essence, they formulate the tangent direction of the featd@ several values oh that are of interest for eaafy and not
curve, which allows them to integrate the feature curve startiggsumingm = n ensures that we do not rel_y on spgmal cases,
from an extracted seed point. (Only the direction fofs such as a 3-D cross product. Our primary interest<s3, but
significant, so it is normalized before use). Note that sonfi@r this n we are interested in three valuesrof
of thg notati(_)ns were chgnged from the'ir original paper to be1) Whenm= 2, the problem is to find points in a planar
consistent with the notations used in this paper. cell face;

Sukharevet al. formulate an “analytical tangent” to trace 2) \Whenm= 3, the problem is to find curves in 3-D;

the feature curve from a seed poigf where the vectors are  3) \Whenm= 4, the fourth “spatial” dimension is time, and

parallel. Such a tangent, can be obtained by solving fdr the problem is to find a two-dimensional surface in 4-D.
n- Although we are careful to specify andn in the definitions,
s M 3) the reader usually does not need to worry about these values
lw|’ because vector and matrix notation is used.
A = [O(v) — sOw), 4) Vectors are column vectors in our notation, unless specified
At = v, (5) otherwise, and superscriptdenotes transpose for vectors and

. ~matrices. Usuallyx denotes a point imm-D Euclidean space,
where the sign o depends on whether the two vectors poinfhile v andw are then-D vector fields of interest. The inner

in the same direction or not. Rather than comp&té'v, the  product ofv andw is vTw. The gradient operator, denoted by
authors omit the division by dgk), since they are interested[], is a row vector operator:

in the direction of the tangent line and not its magnitude (see
Section 3.4). This also avoids singularity points. Thus, the ov ov ov

components of the analytical tangent are: Ov) = Txl’ TXZ’ T 0%Xm )
det{v, A2 A*.s} So the gradient of a scalar is axim row vector and the
gradient of am-D (column) vectow is annx m matrix, which
t = det{A*,l’ Vs A*-G} ®) we denote byO(v), as in several earlier papers on parallel
det{A A v} vectors. This matrix is also known as the Jacobian matrix,
w12 sometimes written)y (x), but our O notation follows earlier
whereA _; is thei-th column ofA. papers on parallel vectors. We uag, andA, ; to denote the

While developed independently about the same time, ah#h row andj-th column of matrixA, respectively. Golub and
derived from different viewpoints, the formulations of thé/an Loan provide an excellent review of matrix and vector
tangent directions given in Equations 1 and 6 have strofgerations with attention to computational issues [4].
similarities. In Section 3 we show that, even though the The matrix manipulations in the subsequent subsections are
equations have some differences, bétandt point in the mostly applications of the identities reviewed in Eqgs. 8-15,
same direction at points where the underlying vector fields asdierea denotes a scalav, andw denote vectors, ané, B,
parallel. Both formulations are valid when the trace is starteghd C denote matrices (including vectors, as matrices of one
from a seed point or a traced point thabisthe feature curve column or one row):

Tw, — T

3 PARALLEL VECTORS WITHIN VECTOR Viwe = wiv (8)

FIELDS aA = Aaqa Q)
T _ RTAT

This section develops the mathematical basis for our parallel- (AB)" = B'A (10)

vector solving method, which we caVsolve. It provides (AB)C = A(BC) (11)

a uniform framework for solving several problems involving A(B+C) = (AB)+(AC). (12)
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The matrixPy, is the well knownprojection operatorfor an
orthogonal projection of any-D vector onto a hyper-plane
orthogonal tow.

Clearlyg = 0if and only if v andw are parallel. Toward the
goal of instantiatingy in Eq. 17 either tay or to an expression
involving g, we first derive an expression faf(q). In the
Fig. 1. Schematic showing relationship between v, g, 8, following lemma, the term witlg" does not appear in earlier

and sw. formulas related to tracing parallel vectors. This term makes
the expression fol(q) correct for allx, not just points where
g=_0.
Vector forms of the product and quotient rules for differenti- The proof is presented in detail so interested readers can
ation are: confirm that all the manipulations are correct for general
T T T andm; In particular, there are no special cases that require 3-
O(viw) = v O(w)+w 0O(v) (13) D (e.g., cross products) or that assume square matrices (e.g.,
O(aw) = aD(w)+wD(a) (14)  matrix inverses). Readers may skip the proof without loss of
W Ow) wl(a inui
0 (a) _ % B a(z ). (15) continuity.
Lemma 3.1: Using the terminology defined in Egs. 18-20,
Also, it is important not to confusew’ , which is a matrix and waT
is called the outer product, with' w, which is the scalar inner Oa) = Pw(O(v)—sO(w))— TLD(W). (21)
product. Note thaw () is an outer product in Equations 14 (whw)
and 15. Proof: Applying the definitions in Egs. 19 and 18, as well

At a high level, the root finding technique we use is thas Eq. 14:
standard Newton-Raphson method, which can be applied to
any vector functiorg that measures how far two vector fields (@) = 0(v) =0(sw) = 0(v) —sb(w) —w(s). (22)
are from being parallel, and Gwhen theyare parallel. Letting Next comes a careful derivation to rewrifis) into a usable
v andw be the two vector fields of interest, suppose we kKnogjm.
their values, and their gradients(v) and O(w), at a point - - T T
Xo- We use subscript 0 for quantities evaluatekgtWe can (g — (V W) _ O('w)  (vIw)B(wTw) 23)
approximate the values in the neighborhood with first-order whw whw (whw)?
Taylor series: O(vTw) s

= wtw wrw W) @4

g(XO +0x) = g(Xo) + D(g)oéx. (16) YU O(w) +w' O(v) — S(WT O(w) +w' D(W))
In other words, if = W (25)
1
g(xg) +0(g)gdx = 0, (17) = (9" O(w) +wT (O(v) —sO(w))) . (26)

then x, + 8x is a point wherev and w are expected to be Equation 23 used Eq. 15; Eq. 24 used Eq. 18; Eq. 25 used
parallel (based on first-order terms). In the course of the paplef]: 13 twice; and Eq. 26 collected terms and used Eq. 19.
we shall instantiate to several functions. To use Eq. 17, it isSubstituting Eq. 26 into Eq. 22 and collecting terms yields:

necessary to have workable expressionsg). This is the wwT waT ) O(w
objective of the next subsection. O(q) = ( - WTW) (O(v) —sO(w)) — %7 (27)
which, together with Eq. 20, completes the proof. O

3.1 Mathematical Development

. , Corollary 3.2: With definitions as above, in a region where
Let v andw be smoothly varying vector fields, and supposm £0

|w| # 0 locally (otherwise interchange their roles in the fol-
lowing). Throughout this papefl denotes the absolute angle q
betweenv andw, which is between 0 and 180Decompose M
v into a component parallel tev, denoted bysw, and a
componentq that is orthogonal tov (see Figure 1). Then,
by the well-known Gram-Schmidt proceduseandq can be a 1 q

expressed as = (m) - MD(Q) T v DdvD

)
> _ %'D(q) - %D(v» (28)

Proof: Apply Eq. 15 to get

s — viw (18) and use the identityd(|v]) = vT O(v)/|v|. O
= —;
wiw The vectorq can be, and effectively has been [18], used
> = Pyv; (19) as the measure of non-parallelism (i.e., as the funcgan
Eq. 17). However, Corollary 3.2 is motivated by the fact that
P — (I WWT> 20) g/|v| is dimensionless; its Euclidean length is exactly6sin
" .

T wTw recalling that@ is the angle betweem andw. Since we are

w'v

a <WTW
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concerned with finding points whegein Eq. 17 isO without Lemma 3.3: (Reduced rank principle) The rank ofA, is
necessarily being at such a point, we would prefer that tlé mostn— 1.
gradient of our measure not be negative simply because Proof: The rank ofP,, is exactlyn— 1. O]

and/orw is getting smaller in magnitude. A function whose An immediate consequence is thatxif is a feature point
value is independent of the magnitudesvaindw is theoret- quer XY point,
nd n = m, then the direction of the homogeneous tracing

ically superior. We believe that Eq. 28 is the first workablg utions is tangent to a feature curve passing throxigh
expression for the gradient of a dimensionless measurepé)fhough it is possible that the rank ok, is less than

parallelism. . :
L . — 1, Theiselet al. and others before them argue that this
Combining Egs. 17, 21 and 28, and multiplying through b's an unstable condition and can be disregarded in practice

[v|, we have a formula that we ca@fVsolve for dx such that : is at leasin — 1 it is in all fint ¢
X+ Ox is estimated to be a feature point (based on first-ord(hé"lésrzl)"mmgm IS at leasin—1, as 1L IS in all cases of Interes

terms). In this equation, all terms exc are evaluated at L . . .
) q et Another consequence appliesif=n-+1; in practice, time

Xor is the extra “space” dimension. Then the rankdgf is at most
g + Py (O(v)—sO(w))dx m-— 2 (stable cases are exacthy—2). This implies that its null
- - space is two-dimensional and is tangent to a feature surface
( wq (W) + qv D(v)) 5x = 0. (29) inmD passing through the feature poiy. The solutions of
(whw) (VTv) Eg. 37 define this 2-D linear subspace.
Notice that the matrix multiplyingdx is nx m and dx is an  In the third case of interesm=n-—1, if X, is a feature

mD vector. Before looking at detailed solution procedure®0int, it is isolated in the stable cases. This applies to feature

we review the general structure of solutions of linear systenfints restricted to cell faces (3-D) or cell edges (2-D).
Before looking at how to solve the various cases, we con-

3.2 Homogeneous and Particular Solutions sider how Eq. 37 is related to previously published solutions.

The structure of solutions to linear systems in general is
characterized byiomogeneousolutions andparticular solu- 3.3 Relationship to Other Tracing Formulations

tions. The characterization encompasses square and NONSAHRE subsection mathematically compam¥solve (Eq. 29
matrices, as .WeII as smg_ular and nonglngular matrlc_es (onjy 33) in the special case thay is a feature point with two
square nonsingular matrices have an inverse). We introdygi@yiously published 3-D tracing formulations. To accomplish

the abbreviations this, we first need to analyze the formulas of Theitel. and
A = (O)—sOWw)), (30) find matrix expressions for thefeature flow fieldwhen the
wq' qv’ vector fields are in 3-Dr(= 3). Their formulas use derivatives
B = ——0O O 31) of the cross product, which are somewhat challenging to
WTw) (w) + V) (v), (31) p ging

express with matrix algebra.

Ap = PwA-B, (32) The key is to use theross-product matrixepresentation.
so that thePVsolve equation (See Eq 29) becomes With the notatiOﬂ\N(i) for thei-th Component OfN, define
q 0 —w@d) w?
O(—)ox = A,dx = —q. 33
wo(g)o = A= o @ o= |w® 0 —wn|. @9

We haven equations irm unknowns. Ifm < n there may be no —w(2)  w(l) 0
solutions. When there are solutions (for anyn), we require Then for allv, w x v = xwV, which is a 3-D column vector by

Apdxe = -0, 34) our convention. _ o
p_7P q (34) A useful relationship betweer, and P,, which is the
Apdxy = 0. (35) projection matrix forw, can be observed by noting that all

Then solutions of Eq. 33 take the fordx = 6xp + ydx,, columns of the projection matrix fow are orthogonal to
where the scalay ranges over all reals. Solutions of Eq. 33v. Therefore, the cross-product operation, applied to such
constitute thenull spaceof Ap. If A, has rankm, its null  columns, simply rotates by/2 aroundw as an axis (denoted
space is the single poiri, and &%, is unique if it exists. If by R(w,71/2)) and scales byw]:

Ap has rank less tham, its null space has positive dimension

and &x, is not unique. X = XuPw = [W[R(W,/2)Py. (39)

Now we consider the special cage- 0 in more detail. Note Now a matrix expression for the gradient of the cross product
that this impliesB = 0 also. We define can be derived. The authors have not seen this identity in the

Ay = PuA (36) literature, so it is stated as a lemma here.
Then Eq. 33 reduces to Lemma 3.4: Letv andw be 3-D vectors defined over amD
Euclidean space. Then
PwAdxy = Ayoxy = 0. (37)
. . . . Owxv) = XwO(V)—xvO(w). (40)

and we call solutions to this equation themogeneous tracing
solutions Recall thatA,, is annx m matrix. We make the Proof: First we observe the rule for differentiation with

following important observation. respect to a scalar variable, which is verified by applying the
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TABLE 1

. . a feature point. We have shown that two previously published
Homogeneous tracing equations for three methods.

tracing methods are essentially equivalent to each other and
are special cases &fVsolve (see Eq. 37).

Method Equation Eg. no.
Sukharevet al. AdX =V (5) .
PVsolve(q = 0) P, AdX =0 37) 3.4 Solution Methods
Theiselet al. |w|R(w, 1/2)PyAdXx =0 (44) We now turn to solution procedures for the various cases of
PVsolve, Eq. 29 or 33. The most familiar case is whagp
is nonsingular, which implies that, is not a feature point, as
o discussed above. Then the solution is unique and is a Newton-
definitions: Raphson step toward a nearby feature point:
0
G WXV) = WX VoV X S W= X ooV Xy W, 3 = —Axtq(x). (45)

with similar formulas fory and z (andt for the 4-D Case). This case requires\ =m, but not necessar”y] = 3. Con-
Lining the results up irm columns gives Eq. 40. 1 vergence is guaranteed by repeating this step if the second-
Returning to the problem addressed by Theisehl, as- deriva_tive_tensor satigfies a definiteness <_:ondition3 but the
suming we are at a feature poix, we seek to solve condition is toc_) complicated to make checking practlca!.
A problematic case occurs whem=n—1. Whenn = 3 this
Owxv),ox = 0. (41) corresponds to finding a feature point in a plane, usually a cell
face. Solutions are isolated points, sxifis a feature point,

Using Eq. 40, this becomes there is nothing to do. Otherwise the system is over-determined

(XwO(V) —xvO(w)) dx = 0, (42) and (in the stable cases) no solution exists. An approach that
N has been reported is to find a point that has the least error
where all quantities excegdix are evaluated at,. in some sense, then repeat the search from there. Previously

So far, this is a succinct version of the derivation in Theiseéported procedures (for= 3) minimize the magnitude of the
et al. But now we exploit the matrix notation to simplify cross product, based on a local linear model of it [13, 14, 19,
further. We havex, = sxw at x,, so Eq. 42 reduces to 18]. A standard least-squares problem is solved [4], based on
the matrix that multipliedx in Eq. 42 (which is 3« 2).
O(v) —sO(w))ox = Adx = 0. 43 . . .
Xor (V) W) Xw (43) Equation 29 provides an alternative that deserves to be
Using Eq. 39, this constraint becomes explored. The least-squares problem minimiggsinstead of
[vx w|. Since|v x w| = |w||q|, the two problems are related,
W[R(w, /2Py AdX = 0. (44) " put not equivalent.

We are now ready to compare the equations of the variouOther cases are the underdetermined syste_ms, either because
methods for homogeneous tracing solutions. The equations #r¢ matrix has more columns than rows or is not full rank.
collected in Table 1. We want to emphasize that the thiftheir solutions are most succinctly expressed usinggere
equation is a mathematical representation of the matrix us@@lized cross producfll, page 700], [5] and thadjugate
by Theiselet al, chosen for analytical clarity. One shouldMatrix [10, 17]. Both concepts are closely related to Cramer’s
not infer that their method is more complicated or costly. Thelle. The adjugate is a kind of “surrogate inverse.” For this
actual computation is based on cross products (see Eq. 1 diggussion, leM be the matrix of the linear system.

Eq. 43), and has about the same cosP¥solve(q = 0); the ~ The first important case is wheM is square if=m) and
first equation in the table (see Eq. 5 and 6) should be fash&s rankn—1. The obvious case of interestns= 3, but we
than the others. proceed generally, and we shall see later that 4 is also

Supposedx solves the first equation in the table. Thertiseful; in additionn= 2 applies to 2-D fields.
due to collinearity ofv andw at x,, Pwv = 0, so the second A handy mnemonic for X% 3 matrices may already be
and third equations hold. In the stable case fioe m= 3, familiar to some readers as part of a rule for inverses: The
the matrices in the second and third equations have rank tivéh columnof the adjugate oM is the cross product of the
and their null space is 1-D, so all solutions are collinear witl®ws of M indexed byj +1 andj+ 2, with indexes wrapping
the &x found with the first equation. Sincev|R(w,t/2) is around.
nonsingular, the second and third equations have the saméhe adjugate matrix of a square mathikis written adjM)
solutions, even in unstable cases, where the null space hetwe denote it aM* for conciseness, following Stewart [17];
dimension greater than one, and evenmif£ 3 (n= 3 is itis defined as follows: Let; be row vectors representing the

required for the cross products to be defined). rows of M. Then thej-th columnof M* is
This completes the proof of mathematical equivalence of all
three methods for stable casgdeature pointsTo summarize, M1
we have derived a constrairPysolve, Eq. 29 or 33) whose r'j”l
solutions indx are such thax, + dx is a feature point (to first- MR, = det| e.e,....em |, (46)
order terms), even i, is not a feature point. This constraint is ' r

valid for generah andm. We have analyzed the relationships .jfl
of several methods for the special case thatm= 3 andx is m
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where theeg are treated symbolically (i.e., as uninterpreted 1) If ¢ is an eigenvector of)\j for M, then & is an
symbols) for the computation of the determinant. This yields  eigenvector ofu]. for MA, where
an expressioM? ; = (b; ;& + - +by, ; &m) in which theb, ;

are real numbers. Then tlegare treated as the standard basis _ Ao (50)
vectors, so thaM? ;= [b, ;,..., b, ;" is the final result. Hi = 17|1_||¢j i
Some important properties of the adjugate matrix are found ’
in the references [10, 17]. Continuing the conventf = 2) If & is an eigenvector oft for MA, whereu # 0, then
adj(M), it is known that: ¢ is an eigenvector ok = (detM )/ for M.
A A Proof: (Sketch) The lemma is trivial when the rank of

MM?™ = M"M = (detM)l; (47) M is n (inverse exists) or i —2 or less 1A = 0). The
(MDA = (MYHT; (48) remaining case, rank— 1, involves eigen-decomposition into
(MN)A — NAMA (49) real Jordan form [6, 21]. For any reM, there is a matrix

T with determinant 1 such tha@t=T~IMT is in real Jordan
When deM +# 0, then MA can be used to computel form, and every real eigenvector bf appears as a column of
! ' ; ; -1_TA

through Eq. 47. HoweveMA is sometimes useful even whenTA(nOt Plecissarlly unit length). Bt =T" by Eq. 47, so
detM = 0. It is worth noting that Eq. 1 and 6 have succindd = T “M”T by Eq. 49. Since] has the same eigenvalues

expressions using adjugates and Eq. @8a and AAv, re- S M and these include precisely one eigenvalue equal to
spectively. ' zero, it suffices to prove the lemma fdrand JA, and this is

The expression on the right-hand side of Eq. 46, possib:i}t;aightforward with Lemma 3.5 and standard linear algebra.

negated, is also known as the generalized cross product. In -
this case it denotes Xn(r 4, ...,rn,M1,...,1;_1). We usel The practical importance of Lemma 3.6 for our purposes
to denote the last row index & (n if indexing is 1-based). If is this: If M is diagonalizable, as it is in stable cases, and
nis even and — j is odd, the minus sign must be used; in alhas one eigenvalue that is much smaller than the others, then
other cases, the plus sign is correct. Note that the generalized eigenvector for the small eigenvalue varies continuously
cross product ofn-D vectors requiresn— 1 operands. It is the and is well approximated by large columns Mf*; it is not
usual cross product whem= 3, and shares many propertiesiecessary to decide whether the small eigenvalue is precisely
of the usual cross product when# 3. zero. To relate this to integrating in a feature flow field, if there
Two other important properties of the adjugate matrix afe a nearby point on a feature curve, the appropriate matrix
relevant to the problem we address here, but we hateeen M has a zero eigenvalue on that curve and the eigenvector is
these in the literature. in the tangent direction. IM and M” are evaluated nearby,
_ A ) M will not have an eigenvalue that is precisely zero, but the
Lemma 3.5: Let M benxn and letM™ = adj(M). direction given by the eigenvector corresponding to the small
1) When the rank oM is n— 1, any nonzero column oi”  eigenvalue will be close to the tangent direction.
lies in the 1-D null space df1; specifically, if removing ~ Now we turn to the case in whiaglhi=m—1. This is typically
row i from M would leaven— 1 linearly independent a case with time as the “extra” space dimension. The main case
rows, then columri of MA is nonzero and provides aof interest isn=3, m=4.

homogeneous solution &l 5x = 0. First, we cover the case thgj is nota feature point, ant¥
2) When the rank oM is n—2 or less,M” is identically has full rank. Equation 29 is nonhomogeneous, sigeé0.
zero. The complete solution involves both a particular part and a

Proof. For part 1, by hypothesis, after removing ro
i, leavingn—1 linearly independent rows, it is possible t
remove some column, sgyleaving a nonsingular matrix. The
determinant of this matrix (possibly negated)l\ﬂsﬁi. Since
detM) =0, Eq. 47 implies thaMM%; = 0.
For part 2, by hypothesis, after removiragy row i, the
remainingn— 1 rows arenot linearly independent, slsil?i =0
for all choices ofj. O

y adding a row of zeros to the bottom bf. This reduces
the homogeneous problem f’ to the one just considered
(Lemma 3.5, part 1), witm’ = m and a matrix of ranky — 1.
Only columnm of the adjugate matriz* need be computed
(the rest are identically zero), and the homogeneous solution
is (any scalar multiple of) the generalized cross product of the
original m—1 rows ofM, x(My _,.... M, ;).

To find aparticular solution, discard a column d¥l that

Thus, in the casen = m= 3 wherex, is a feature point, leavesn linearly independent columns (in stable cases the first
any nonzero cross product of two rows[6fq), (see Eq. 37) N columns are linearly independent), set Fhe corresponding
provides a vector in the tangent direction. Using the largegfement ofdx to zero, and solve the resultingx n system
such vector should give the best numerical accuracy. for the remaining elements dix. _

Another important property of the adjugate matrix is easy It iS important to note that the above procedureiseless
to derive, but we have not seen it in the literature. Informali§t @ feature pointbecauseM has rankn—1, soM’ has rank

stated, eigenvectors of nonzero eigenvalues transfer betweéha2 (at most), and the adjugate matrix is identically zero
matrix and its adjugate. by Lemma 3.5, part 2. Thus the feature flow field proposed

by Theisel and Seidel [20, Eq. 9] is seen to be identically
Lemma 3.6: Let M benx n and letM” = adj(M). Let the zero, using Eq. 44. (Theiset al. note that this proposed FFF
eigenvalues oM be indexed as\j, ji=1,...,n “appears” to be identically zero. Our lemma confirms this.)

\ggomogeneous part. We can defikE with ' = n+1 rows
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Finally, we consider the case that=m—1 andx, is a
feature point. In the stable case, as discussed aldvbhas & . J
rank n—1=m-— 2. Becauseg = 0 in Eq. 29, it suffices to 5
consider homogeneous solutions. Choose two colujramdk ‘ 2~
such that deleting them would leane- 2 linearly independent b f
columns. Normally,j = m, the column associated with time, ,
is an acceptable choice, akadtan be one ofm—1 andm— 2. ot/
However, different choices might be more robust, numerically. 5]

This time, we defineM’ with n" =n+1 rows by adding -
a row ejT (zeros, except a 1 in columj) to M. This again ™ 5
produces amM’ with rank ' — 1, so the solution given above
provides one homogeneous solution, whpdk component is
zero. (See Eq. 46, but colunmof M need not be computed, 7M

as it is zero.) Ifj = m, this is just the fixed-time homogeneous ™ o i i : 2

tracing solution. . . ) .
For the final step, we definb” using k instead ofj in Fig. 2. PVsolve moves with step .20. Blue: analytical

the preceding paragraph, and get a homogeneous solutcfShu“on curve. Red: trace for 63 points counting both

whosek-th component is zero. Assuming a stable case, tggdclzztr?\:e?ng dczgiztsgmoves' Left: 2D, all moves. Right:
two solutions are linearly independent and span the null spate. 9 Y-

If it is desirable to have orthogonal homogeneous solutions for
some reason, just use the Gram-Schmidt procedure [4]. 4

ILLUSTRATIVE ANALYTICAL EXAMPLE

To see whether the predictor-corrector procedure, using the
3.5 A Predictor-Corrector Procedure for Tracing extra term in Eqg. 27 worked in practice, we tested it on pairs
A predictor-corrector procedure is easily formulated, usi linear vector fields. We considered this a reasonable first test

Egs. 18-29, and Section 3.4. To simplify the notation, we u gcause nonlinear vector fields are nearly linear at the small
Q for A as defined in Ec.] 32 and we usefor AA the Scales used in numerical procedures. We compared our results
p - ) p

adjugate ofQ (Eq. 46). Forn — m— 3, with the convention with the analytical solution [21]. We note that the equations

that the cross product of row vectors is a row vector, we hafeviously published for tangent-based tracing [19, 18] traced
this curve very accurately using Runge-Kutta 4/5 with tight

Q,,xQs, 17 error tolerances (1@ or 1012, see Section 6 for configuration
o details).
S = X . 51 . . .
83’* " 81** (51) First, we consider the following 2D flow.
1,% 2, %
0 -1 1 . 1
That is, cross products of rows §f give columns ofS. When v o= [1 0] X+ [1} crit. pt. M )
detQ # 0 andQ is sufficiently well conditioned, we uséx =
—(S/detQ)q. Otherwise, all three columns & are collinear W = [2 0 } X+ {_2] crit. pt. { 1 ] .
(within numerical tolerance) and the one of largest magnitude 11 0 -1

is selected to provide thdirection for dx. The length ofdx This paper’s predictor-corrector methd@y/solve, is shown in

in the latter case is chosen heuristically. Figure 2, on the left. We see that the corrector-moves converge
Starting from aseed pointx,, calculateQ, S, and deQ to the correct feature curve. The picture shows both predictor

according to those equations. ®f is a feature point, d& points and corrector points to illustrate the method. Only the

will be O or very close. In this case, use the maximumfinal corrector point of a sequence is output®ysolve as a

magnitude column ofS in Eq. 51 as the tangent direction feature point.

Take a “predictor” step in this direction t&(®, which is  Turning to 3D linear fields, we traced the following:
slightly off the feature curve. The length of this step is chosen

heuristically. Now use Egs. 21, 45 and 51 to take corrector 0 -10 1 : !
steps until de® is sufficiently close to 0. vo= 1 0 Opx4-l Lk
1 -1 1 0 0
-1 -
x = — (Q(X(ln))> a(”) w o= i (1) 8 X+ _02 crit. pt 11
X(ln+1> _ X(ln)+5x(n)_ (52) _71 -1 1 0 - P 5 .

Call the final pointx,;. This is numerical root finding in 3D As seen in Figure 2, on the riglRVsolve tracks the analytical
and subject to all the pitfalls typical of Newton-Raphson isolution to sub-pixel accuracy. (The same accuracy is achieved
higher dimensions, but under reasonable circumstargés by published methods using Runge-Kutta 4/5 with tight error
on the feature curve. When Eq. 45 is us&ad™ may need tolerances.) This view is looking primarily toward positixe

to be clamped to stay within the cell in which interpolation i¥he three circles show where the curve crosse®. Looking
being done. The procedure is repeated to trace a poly|jne toward negativez, the projection ontx-y is the same as the
Xy, X5, ... Experimental results are reported in Section 6. 2D example (if traced t@= o andz= —oo); i.e., in the limit
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the projection completes one oval and approaches the limitiisgactually going left, while thé®?Vsolve (thinner) is going
point (2,—1) from both sides. right, so the two curves really have no part in common. The

We observed that the 2D flows required only one correctaiolet arrows ares (velocity) and the green arrows ane(curl
move for each predictor move, even though the predictof velocity). The center image shows them almost parallel
move was fairly large, at.Q. The threshold for convergencein the blue region. The right image shows them becoming
was deQ/|Q|r < 1019 (F denotes Frobenius matrix norm).perpendicular, then returning to a smaller angle (green is 30
However, the more complicated feature curve associated withsind = 0.5). The magnitudes are scaled differently in the
the 3D flows required an average of three corrector-moves faro closeups, and are different between the violet and green
each predictor-move. Other predictor-corrector schemes thatows, to improve clarity of direction at the important places.
have been proposed specify that the corrector-moves are iAdually, v is orders of magnitude smaller thanthroughout.
plane normal to the predictor-move. This is definitely not a Holding the cross product constant is consistent with the
requirement for this paper’s method. description of feature flow fields in general [20]. Indeed, the
tangent direction is defined by the criterion that the gradient of
the cross product, informally stated, is “zero in this direction.”
5 FEATURE FLOW FIELD GOES ASTRAY Ideally, it would be held constant at zero. However, in this
This section reports on a surprising pattern of behavior thése, although it starts at zero, the fields appear to vary by
we observed using the feature flow field method (FFF) diigher order polynomials than Runge-Kutta can compensate
several curvilinear datasets. Actually, the analysis in Sectiorf@, and the cross product grows to a slightly nonzero value.
explains the behavior. By FFF in this section, we mean thehis happens in essentially every cell. In most cases it is
equations given by Theiselt al. [19] for steady flows, inte- harmless.
grated withode45, a Runge-Kutta 4/5 procedure supplied by In this case, an unintended consequence of the FFF strategy
matlah The tolerance options were set for maximum accuragyaterializes. As the right closeup showsjs decreasing in
Additional details of the experimental setup are given imagnitude along the curve. How can the cross product be
Section 6. The online supplement contains additional imagesid constant ifv| is decreasing? The answer iscrease the
related to this section. angle betweew and w!

In the majority of cases, FFF traced feature curves verySo the system is forced into a region of largerin its
accurately. However, we noticed a strange phenomenoneifiort to keep the cross product constant along the curve.
occasional cases, while examining the numerical values géie question arises, since the systenmds computing at a
erated for the curve. In these cases, the trace would “hgamint where the cross product is zero, is the computed tangent
for” a region where the two vector fields, and w, were direction still a “direction of zero gradient?” More precisely,
perpendicular. Recall th& denotes the positive angle betweeloes the gradient matrix have an eigenvector close to the
these two fields. The trace seemed to be acting “deliberatelgdmputed tangent direction, and is the associated eigenvalue
in the sense that the sthvalues climbed steadily until they very small? The analysis in terms of the adjugate matrix (see
exceeded @9 for several points, then receded steadily. Sudiscussion after Lemma 3.6 in Section 3) answers the question
occurrences would be very unlikely due to noise-like erroraffirmatively. The experimental data confirms that the FFF
in such cases we would expect 8irto vary more or less system is quite successful at keeping the cross product constant
randomly. in both magnitude and direction.

This phenomenon is illustrated in Figure 3. The left image Another instance of the same phenomenon is shown in
shows the overview. The FFF curve starts from the seed poifigure 4. In the overview, FFF an@Vsolve start along
indicated by the sphere on the right, makes a barely visililee same curve, proceeding from the seed point (marked by
jog to the left, then quickly turns right, continues through the middle sphere) toward the upper right, but FFF changes
section where its color changes from cyan to red and badikection, whilePVsolve continues to the cell face. The color
to green, then makes a sharp turn and heads towards dhéhe lines are mapped to diras before: blue is zero, green is
left. The PVsolve curve starts from the same seed point an@l5. Gray arrows indicate the cross product on the FFF curve.
simply proceeds to the right, its blue color indicating@inear Before making the sharp turn, the blue color informs us that
zero. The FFF curve varies in color, reflecting various anglédse magnitude of the cross product is quite small. However,
betweernv andw; blue denotes sii=0 and red is si@ =1. FFF is formulated to keeping a gradient of the cross product
The gray arrows show the cross product (about every 8 poictnstant, and is therefore concerned with both the direction
in the overview, and every point in the closeups). Pwsolve and magnitude. We observe that FFF not just preserving the
curve stays mostly on track, has one bad point in the middlagnitude; it also “wants to” preserve the direction. So when
reaches a cell face to the right of the picture, and continué® direction on the true curve varies, FFF is forced off.
into the adjoining cell. The FFF curve exits at an incorredthe closeups show that in order to keep the cross product
face, and does not continue, because the vectors there arecoostant, there are regions whétés increasing, as needed to
sufficiently parallel. balance magnitude decreasesviand/orw. On the the other

The center image is an extreme closeup, which shows timand, PVsolve, which does not use the cross product at all,
the cross products grow steadily from zero for several stepsncentrates on keeping €lrsmall.
during the initial jog to the left, after which time they stay Although such instances are not frequent, over the whole
fairly constant in both magnitude and direction as indicaté®bst dataset, the FFF method traced to nearly 18,000 points
by the overview image. At this zoom factor, this image als@here sirf > 0.90, i.e., 0 is between 60 and 120. This is
shows that the initial direction of the FFF curve (thickerabout 7% of the 242,000 traced points. In contr@tsolve
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Fig. 3. Feature curve traced by FFF, color mapped to sin@, going from blue for zero to red for one, on the Post dataset.
Gray arrows are the cross product of v and w. Left: overview. Center: beginning of trace. Right: the v and w fields

become perpendicular where the curve is red.
1 Q©
M \‘ﬁéf‘é
i L

ot
fl

Fig. 4. Left: overview. Center: v and w arrows on FFF curve. Right: cross product shown by gray arrows.

TABLE 2
PVsolve tracing times (CPU) and numbers of points for
steady-flow curvilinear datasets.

the two fields tested for collinearity werefor velocity and
w for vorticity (curl of velocity), as calculated by the NASA
Ames programFAST

First we present some evaluation data compaRNgolve

Dataset Grid points  Seed Points  Traced Points  Minutes . .

Blunt Bin 45960 331 39,444 59  With the feature flow field method (FFF) that uses the homo-
Post 109,744 763 109,762 18.78 geneous formulas from Theiset al. discussed in Section 3,
Delta-40 211,680 1377 186,026 62.72  driven by an explicit Runge-Kutta (4,5) solver suppliedriat-

lab. This solver,0de45, is sophisticated and highly optimized
[15]. Then we show some visualizations of the parallel vector
g curves obtained by our procedures in context with other visual
information.
The statistics are based on all feature curves discovered,
6 RESULTS sometimes calledaw feature curves. For particular applica-

Our tracing methodPVsolve, was implemented inmatlab t?ons it is usually appropriate to add some additional criteria to
and integrated into a prototype parallel-vector program unddfer out feature curves that are not pf mt_erest. For exploratory
development by Jeff Sukharev, for which results on regulRK"Poses, we applied one such filter in some of the runs.
grids have been reported [18]. We thank the author for makik§t us call a seed poinswirling if the velocity gradient
his code available. Tests were performed on a 2.6 GHz xp8s two complex eigenvalues at that point. Theawarling
Linux platform. We are not aware of published times Of,eatu_re_ curves defl_ned to be a feature curve generated from
measures of accuracy for other methods that analyze paraeiwirling seed point. Such a curve might also pass through
vectors, so we can only present our own times and measuf@§er seed points that are not “swirling.” Applying tisisirling
The tests reported here are intended to serve mainly as a pf8it’ eliminated about 70% of the raw feature curves, fairly
of concept, rather than an exhaustive evaluation. consistently across the datasets studied. The curves used for
For the curvilinear simulations we set the threshold fdiustrations in Section 5 qualified as swirling feature curves.
convergence of corrector steps to @¢tQ[2 < 1078 (sub- o . .
script F denotes Frobenius matrix norm). We set a limit of-1 Statistical Evaluation and Comparisons
20 corrector steps for each predictor step to protect agaifi$ie columns of Table 3 require some explanation. The first
nonconvergence. All steps were clamped not to move out adlumn describes the procedure. TREF/ode45 procedure
the current curvilinear cell, and corrector steps were clampeds tested with three levels of error tolerance, as described
to be the same order of magnitude as the preceding prediaiader the table. The second column shows the total length of
step. The average number of corrector steps per predictor steyged curves measured in computational space (i.e., each cell
was 1.72, with 95% of the calls taking one or two correctaide is unit length). This choice is based on the fact that cells
steps, while 2.5% limited out at 20. are smaller in the important regions, so measuring physical
We used several well known curvilinear datasets distributéshgth would over-weight curves in less important regions.
by NASA Ames in theplot3dformat (see Table 2). In all casesThe third column is how many distinct curves were traced.

arrived at only 16 such points out of about 102,000 trace
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TABLE 3 . .
i - . . failure rates were about half, while average error decreased
Comparison of FFF/ode45 with several configurations 15' l:O 35% w u while averag

and PVsolve on the Post curvilinear dataset. See
Section 6.1 for discussion.

6.2 Pictures
i ATc—NUTof ArcLength — Avg Failre Figures 5 to 10 show the feature curves extracted u@Mg_
Method Length  Curves per CPU Sec.  8in Rate SOIve on the three stead_y flow, curvilinear data sets. Since
ode45 (default) 2634 370 306 0.0511 o.0sthe choice and formulation of the parallel vectors, using
ode45 (10’2 2540 349 17.8  0.0409  0.05%selocity and vorticity, are intended to identify vortex cores,
ode45 (10°1?) 2409 334 50 0.0212  0.02 ; i :
VoI 2065 o1 36 0.0004 0mgNe also seeded streamlines in the regions where vortex core

structures are known to exist. All streamlines are integrated
ode45 _configurations: “default” means 18 for RelTol '106 for AbsTol using ParaView’s [9] implementation of Runge-Kutta 4/5 with
Otherwise, both parameters are the number shown in parentheses. atolerance of 16° for maximum error. The results confirm the
locations of the vortex structures in the Blunt Fin and Delta-40
TABLE 4 datasets, but the major vortical streamlines do not correspond

Comparison of FFF/ode45 and PVsolve on the Bluntfin 0 @ny feature curve found in the Post dataset. This raises the

and Delta-40 curvilinear datasets. See Section 6.1 for  Possibility that parallelism of velocity and vorticity is not a
discussion. suitable criterion for vortex cores in the Post. but also point to

the inadequacy of the choice of parallel velocity and vorticity
_ criterion to find the proper vortex core lines in the Post dataset.
Tot. Arc  Num. of — ArclLength — Avg. Fallure | general, the feature curves look reasonable—with two

mﬁmg Length _ Curves perCPUSec. 8in Rale caveats. First, they may not identify vortex cores in all cases
ode45 (10-12) 764 221 29 00621 0.165 because other flow phenomena might cause these fields to be
PVsolve 1414 194 45 00297  0.100parallel. It is possible to apply a post-processing operation
Delta-40 to filter out these spurious or non-physical feature curves by
ode45 (10°1?) 3079 554 40 00213 0.065Using some of the application dependent criteria suggested by
PVsolve 6339 516 1.7 0.0025  0.041pejkert and Roth [13]. In this paper, we decided not to apply

any filtering operation to overview pictures (see Figures 5 to
7), since the focus of the paper is on the abilityRdfsolve
to locate curves where the underlying vector fields are parallel
The fourth column measures efficiency, with arc length beirfge. @ mathematical rather than a physical description). In
the same as the second column; this measure avoids rewardigigition, presenting all the raw feature curves facilitates future
a program that finishes faster but produces less product. comparisons with this work. Thus, while the parallel vector
The last two columns contain error measures. The fiffarmulation used in the examples in this section is motivated
column is the average of sth where@ is the angle between by finding the vortex cores, the raw feature curves in the
v andw. The sixth column is the fraction of cells in which thefigures include those that are not physically realistic candidates

traced curve had > 1° upon exit from the cell. The curve for vortex cores.
always begins the cell wit® < 1°, and when it begins at A second caveat is that there are numerous ways to formu-

a seed point in the face of that ceB,< 1010 degrees. If late what constitutes a vortex core, even with parallel vectors.
6 > 1° upon exit, tracing a|ong this curve is discontinuedThe feature curves, while faithful to the requirement of having
Hence different methods have differing total arc lengths f@0oth v and w parallel to each other, may not be an ideal
part due to discontinuing at different cell faces. representation of the true vortex cores. In fact_, it is pos;ible

Since tighter error tolerances have produced greater #tat a true vortex core is entirely missed by this formulation.
curacy for FFF/ode45 in the table, the natural question isR€Search on vortex core extraction is active and challenging,
whether more is better. We tried 18 but the program slowed Put is beyond the scope of this paper. o
way down and failed by exceeding our limit of 3000 integra- ON€ may also note from the overview images in Figures 5
tion steps in a single cell. So it appears that #0is about to 7 that whilePVsolve generally produced less feature lines
the tightest we can go. Unless stated otherw#del-/ode45
will refer to runs using the 10 tolerances.

The error columns show th&Vsolve is more accurate than
FFF/ode45 by a factor of about 50 using average 8ias the
criterion. Column six shows a factor of about two difference
in failure rates. Column four shows that the gains come at ¢
modest price in time.

We gathered similar statistics for the Blunt Fin and Delta- | -
40 datasets, but only using the most accurate settings fo,
FFF/ode45. The results are shown in Table 4. These datasets
show generally the relationship between the methods as ffig- 5. Overview images of the Blunt Fin showing ex-
Post, but both methods achieve less accuracy. We also chedkagted feature curves in red using PVsolve with 194 lines
the statistics for “swirling” feature curves and found tha®@n the left, and FFF/ode45 with 221 lines on the right.
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Fig. 6. Overview image of the Delta-40 extracted
feature curves using PVsolve with 516 lines on top,

and FFF/ode45 with 554 lines on the bottom. Curves Fig. 7. Overview images of extracted feature curves
are colored differently to show crowding of lines at the from Post in red using PVsolve with 291 lines on the
nose. left, and FFF/ode45 with 334 lines on the right.

thanFFF/ode45, the feature lines are longer and have highesymmetric, but the major features at the scale of the images
connectivity. in Figure 10 can be considered symmetric.
. The image on the top shows how the streamlines, seeded
Blur_1t Fin. from various selected places in the data set, come together
Figure 8 shows the feature curves extractedPysolve. 1o form one of two, very distinct, vortex core structures
The prominent (half) horseshoe vortex core feature curve jist downstream of the post. The other, very similar vortex
red is easily seen on the left image. This particular featuggre structure would be on the opposite side of the plane of
is also correctly traced byFF/ode45 and the method of gymmetry, and is not shown.
Sukharewet al. The middle image shows only the “swirling” “\what is clearly noticeable is that there is no feature curve
feature curves, as defined at the beginning of Section 6, whilgs\» or “swirling”) running through this vortex structure.
the right image shows the “raw” feature curves, i.e., all 6fhe main feature curve that is supposed to be the vortex core
them. is extracted and analyzed further on the bottom image. The
- boxes indicate places where seed points were found and used
Delta Wing. . .
Th : . to.trace the rest of this feature curve. We verified that the
e next data set is the Delta wing at a 40 degree angle of : .

: — v,and w vectors along this curve are indeed parallel (very
attack. F|gure 9 ShOW‘Q’. the *swirling feat_ure curves extract%dma" sinB). Furthermore, seeding along this vortex core, e.g.
by PVsolve in red against (half of) the wing In magenta. ,,Asm,,the vicinity of the seed point, does not produce streamlines
with the other datasets, these comprise about 30% of the “r ¢ foin up with the vortical flow. This is not a failin
feature curves. Streamlines are seeded near the nose and &%Q\J/solvep(indeed FEE/oded5 produced substantially th?e
near the.leadmg edge of the wing. We see the main vortex “Lome results), but rather points to the inadequacy of using the
off the wing as well as one along the leading edge of the win
The streamlines are colored by integration time, and goes frrim st in the Post data set
green to red to improve the contrast. Flow reversal is apparen? '

in the main core off the wing where one can observe some
of the yellowish streamline heading back towards the nose. CoNCLUSION AND FUTURE WORK

arallel velocity and vorticity criterion to find vortex cores, at

The image on the bottom shows a closeup of the leading ed\%/e . .
where one can observe a similar behavior. e have presented new formulatioRVsolve, and applied

it to tracing parallel vectors. It is more robust in some ways
Post. than previous tracing methods. The main properti?gtolve

The next data set is the flow past a cylinder and is referresla correction step that allows the trace to home in on the
to as the Post data set. Unlike the other two datasets, tf@ature curve, i.e., where the two vector fields are parallel. The
one simulates an incompressible fluid flow; i.e., the density fiearmulation also generalizes the two previous formulations:
constant throughout, although pressure varies. The curvilindeature flow fields (FFF) [20, 19] and analytical tangents [18].
grid wraps around on itself on the plane directly downwindlthough they both required the seed point as well as points
of the post. This plane also forms a plane of symmetry of tladong the trace to be on the feature line (ge= 0), PVsolve
extracted feature curves. Note that the flow is not perfecthandles the case wheee# 0.
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Fig. 8. Feature curves extracted using this paper's method (red) and streamlines illustrating a well-known vortex in
the Blunt Fin. Streamlines are colored by velocity magnitude. Left: the dominant vortex feature curve. Middle: feature
lines with complex eigenvalues of velocity gradient. Right: all “raw” feature lines.

Fig. 10. Feature curves in red, streamlines colored by
their seeding location. Top: The swirling pattern shows
one of two prominent vortex structures in this data set.
There is no feature curve detected within this vortex struc-
ture using the criterion of parallel velocity and vorticity.

Fig. 9. The Delta Wing at a 40 degree angle of attack.
This data set models half of the wing shown in magenta,
the extracted feature curves in red, and streamlines col-
ored by integration time. Top: overview image showing

the main vortex structure off the wing and a smaller one
along the leading edge of the wing. Note reverse flow as
streamlines turn from green to yellow in the larger vortex.
Bottom: closeup of the vortex along the leading edge. The

Tan streamlines originated at a feature curve, but that
curve did not continue into the vortex region using any
of the tracing methods studied. Bottom: Analysis of the
supposedly main feature curve shows that streamlines

seeded along this curve do not join up with the main

closeup shows reverse flow in the smaller vortex also. : -
vortical structure on the top image.

Initial experiments on linear fields indicated that the cor-, ) . .
rector steps converged rapidly to the correct feature curgnulations. Statistics show th&Vsolve achieved between

with fairly large predictor steps. Another observation wa¥/0 and SO times lower average error, based orfswith
that the corrector steps art in the plane orthogonal to a modest increase in compute time. Features were identified

the predictor step, which differs from previously propoself the regions _vvhere vortex cores are known to exist based
predictor-corrector schemes for tracking vortex cores and pp Other techniques, such as streamlines. However, we only
allel vectors. Future work should address how to determifjg®cked the results visually and are not sure how accurate
appropriate step sizes for predictor steps. Furthermore, the d{Jf correspondence is. The experiments turned up a surprising
rent formulation is based on first order approximations. UsiRj'€nomenon, discussed in Section 5: Once a small error is
higher order information, accumulated through a number tablished in FFF, the system undergoes “contortions” to
probes, would be another avenue for improvement. preserve that error, occasionally leading it away from the
The method was tested on three well known curviline&CITecCt feature curve. ,
fluid-flow datasets, and compared to tracing BiyF traced A topic for futur_e work is to look gt using the cross product,
usingode45 in matlah An electronic supplement in the digitalrather than the dimensionless projection vector, as the quan-

library has additional images and coti&hese are steady flow iy for root finding, as suggested by an anonymous referee.
A quick test showed that the method works (as everyone

1. See alsdittp://avis.soe.ucsc.edu/PVsolveSupplemental. expected), but in view of the findings in Section 5, hidden
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problems related to scale may surface.

An unexplored alternative for seed point location that de-
serves future investigation is to use the (nhonlinear) closed-fofh!
solution for the locus of parallel vectors in a general pair gfg]
3D linear (more precisely, affine) vector fields [21]. (When the
linear fields have a common critical point, the locus is in the
direction of a certain eigenvector, emanating from the criticgil,

point [14].)
The model of a feature flow field [19] is appealing, bu
does not provide for correcting drift, which is inevitable i

numerical procedures. This paper’s method, in its current
form, is more appropriately viewed as root finding, rather
than streamline integration. Future work should study how s

combine these ideas to obtainsmoothfeature flow field in

which the directions at points somewhat away from the correes]

feature curve tend to send the trace closer to that curve.
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