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Abstract

The problem of dynamic processor allocation in PRAMs is discussed, and differentiated
from that of static allocation. The version of the PRAM we consider, also called the
CREW model, is a parallel computer with global. memory accessible in unit time
that allows concurrent reads, but requires exclusive writes. Two dynamic processor
allocation problems for P processors are distinguished. One, called assignment from
numbers, has an Q(log P) lower bound, even when the number of tasks is O(V/P).
The second, called assignment from leaders, has faster solutions. A constant time
solution for O(V/P) tasks was known; we generalize it to O(P'~1/*) tasks in time
O(k). Handling O(P) tasks requires a different approach and we offer an algorithm
that runs in time O(loglog P), which we conjecture is asymptotically optimal within a
constant fa.gtor. We discuss the implications of these two versions of dynamic allocation
on sublogarithmic merge algorithms proposed in the literature.

1 Introduction

The term PRAM, which stands for parallel random access machine, has been used in the
literature to designate a variety of theoretical parallel computation models that permit
processors to access global memory simultaneously and in unit time. Each processor
executes its own instruction stream. Borodin and Hopcroft [BH85] describe a hierarchy of
parallel computation models. We shall be concerned with the model that allows concurrent
reads of the same global memory cell by many processors, but requires exclusive writes;
all processors can write simultaneously, but each must write into. a unique global memory
location. This has lately been called the CREW model (concurrent read, exclusive write)
to distinguish it from the more restricted EREW model (exclusive read, exclusive write),
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sometimes called the PRAC (parallel random access computer), which requires both exclu-
sive reads and exclusive writes to global memory. The reader is referred to [BH85, Ull84]
for additional particulars of these standard models.

Some PRAM algorithms require dynamic processor allocation. By this, we mean that
the processors’ task assignments cannot be computed ahead of time using just a few
parameters of the problem instance, but instead depend upon the actual progress of the
computation. In contrast, the task assignments for certain other algorithms, such as bitonic
merge, FFT, etc. [Ull84], can be computed easily from the parameters of the problem, such
as number of data elements; we call this static processor allocation because it does not
depend on the data itself. In cases of dynamic allocation, the overhead of computing these
task assignments has frequently been ignored, on the reasoning that the allocation-related
computations are simple in relation to other parts of the algorithm, so can be absorbed
into the “real work” with at most an increase in some constant factor. However, when

the “real work” can be done very quickly, then dynamic processor allocation becomes a
possible bottleneck.

1.1 Previous Work

Valiant [Val75] demonstrated that merging two lists of lengths m < n could be done in
time O(loglogm) stages, each stage requiring constant time, with \/nm processors in the
parallel comparison tree model,! but did not address the issue of processor allocation. Then
Borodin and Hopcroft [BH85] showed that dynamic processor allocation in the CREW
model was achievable in constant time per stage for a merge algorithm based on Valiant’s
approach, thus O(loglog m) time for the whole algorithm. A close look at their allocation
method shows that it depends on three crucial properties of the particular underlying
algorithm: , '

1. The number of processors P is linear in n + m, the sum of the lengths of the lists.

(In the parallel comparison tree model, \/nm processors are sufficient.)
2. The number of tasks (recursive merge subproblems) to be dynamically allocated for

the next stage was A = O(\/]_D)

3. The processors were to be allocated in contiguous groups whose leaders could be
calculated in constant time. That is, the array

b() - O,Z)l,bg,. .. 7bA—1-;bA =P

specifies that processors b; through b;,; — 1 are to work together on task j; this array
was computable in constant time. Only knowing the numbers of processors to be

assigned to each task would have been insufficient; it would take time O(log A) to
determine the leaders.

!The parallel comparison tree model is more powerful than the CREW; it allows 37 branching based on
any set of P key comparisons at each step.
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Thus care must be exercised before assuming that the Borodin-Hopcroft allocation algo-
rithm can be used on other problems.

1.2 Notation and Assumptions

We shall use P to denote the number of processors, and we assume that they are indexed

0,1,...,P—1, and know their own indices. We let A stand for the number of tasks, or
subproblems, among which the processors are to be allocated; the tasks are numbered
0,1,...,A~1. Arrays have zero-based indices, in general. It is often convenient to use the

values A and P at the ends of arrays as “sentinels”, to simplify boundary conditions; keep
in mind that they do not designate an actual task or processor.

For timing estimates, we assume that the running time of PRAM algonthms (at least
the ones we consider here) is dominated by global memory references; a global memory read
or write takes unit time. We assume that local operation times, including comparisons of
integers and addresses, are neglible. However, in merge and sort routines, we assume that
the (local) comparison of data keys takes time C; if a key is not already in the processor’s
local memory, then the time to fetch it must be added. Processors have bounded local
memory. We also assume that a Pascal-type “record” that stores several items can be
accessed in one step, and that a single array element may be such a record.

2 Two Versions of the Processor Allocation vProblem

We describe two superficially similar processor allocation problems that have a marked
difference in difficulty in the CREW model. These can also be looked at as memory

allocation problems by considering the array a below to contain as31gnments of segments
of a P-element array to A tasks.

Problem 2.1: Assign from Numbers
INPUT:

1. The number of processors P and the number of tasks A.
2. The array ng,...,n4_, with n; > 0 that specifies the number of processoré assigned
to each task, and sums to P.
OUTPUT: )
1. The array ag,a1,...,ap_1,ap = A that specifies each processor’s task assignment;
processor ¢ 1s assigned to task a;.
SPECIFICATIONS:
Each output array element q; is to contain j if and only if

donp<i< > oy

k<j k<j+1



Recall that task A and processor P do not exist; those array positions simplify boundary
conditions. [

Problem 2.2: Assign from Leaders
INPUT:

1. The number of processors P, and the number of tasks A.

2. The array by = 0,by,b,...,ba—1,b4 = P with b; < b;4;. Actually, each array element
is a pair (bj,b]) such that b = bj4,.
OUTPUT:

1. The array ag,as,...,ap—1,ap = A that specifies each processor’s task assignment;
processor ¢ is assigned to task a;.

SPECIFICATIONS:

The b array specifies that proéeésors b; thru b}' — 1 are to work together on task j. (If
b; = b}', then task j has no processors assigned.) Processor b; is called the leader for task
J.

Each output array element a; is to contain j if and only if b; <1 < bj'. Note that task
A and processor P do not exist; those array positions simplify boundary conditions. [J

In both problems, we assume that the input array contains what we call arbitrary
values. For our purposes, an arbitrary value is one that cannot reasonably be computed

locally by some processor that does not already have it; the only practical way to get it is
to read 1t from global memory.

Theorem 2.1: Problem 2.1, Assign from Numbers, requires time (log A) in the CREW
model.

Proof: Cook and Dwork [CDR86] have shown that computing the logical OR of A boolean
items with any number of processors in the CREW model has an Q(log A) lower bound.
It is easy to reduce the A-way OR problem to an instance of Problem 2.1. 1

We shall see in the next section that Problem 2.2, Assign from Leaders, can be done
much faster. Thus, when considering dynamic processor allocation in sublogarithmic
CREW algorithms, it is important to distinguish between these two versions of the problem.

An alternative approach to processor allocation is to dedicate a processor to a certain
data element (or fixed number of elements), and as the element migrates from problem to
subproblem to subsubproblem, the processor “follows it around”. (C. Leiserson terms this
the active element approach.) However, as a rule, in order to know its precise function
within the subproblem, the processor will have to know “its” data element’s exact position
within the overall data structure for the subproblem. With array data structures, this very
often reduces to an equivalent of one of the allocation problems described above.



3 CREW Processor Allocation Algorithms

First we describe a simple generalization of the Borodin-Hopcroft allocation algorithm for
Problem 2.2, Assign from Leaders. This algorithm is parameterized by the integer k > 2,
which we call the degree of the algorithm. Degree 2 corresponds to [BHS5].

Algorithm 3.1: Assign from Leaders by Generalized BH(k)
INPUT:

1. The number of processors P, and the number of tasks A4, where A < | P %Jk‘l.
2. The array by = 0, by, b,...,b4_1,bs = P with bj < bj+1. Actually, each array element

is a pair (b;,b]) such that bF = b;;1. Processor b; is called the leader for task J-
OUTPUT:

1. The array ag,ay,...,ap_1,ap = A that spec1ﬁes each processor’s task assignment;
processor 7 is asmgned to task q;.
PROCEDURE:

1. Each processor does the following:
(a) Read A and P.
(b) Compute Q = |P%| > AFT.
Note that AQ < P. Time = 1.

2. Form A groups of @) processors each. All processors in the j-th group compute b —b;.
If this value is less than or equal to @, then they write j in locations a(b;) through
a(bf —1).2 In this case, we call j a short task. Time = 2.

3. Form A groups of @ processors each. For 1 < i < A, the i-th group will determine
the “fencepost” assignment a(iQ) in k — 1 steps. The method is a (Q+1)-ary search
[Kru83] on the b array to find the j such that b; < iQ < bf. Time = 4k — 6.

4. For each processor ¢, let iy be the index of the “fencepost” of step 3 at or below
4 e, i = Q|i/Q]. Each processor ¢ now checks whether j;, or Ju 1s its correct
assignment, where j; = a(iz) and jy = a(ip + Q).

o Ifi, > 0and b(yr) <@ <bF(jr), then it sets a; = 5.
o If i < Aandb(jy) <i<bdF(jy), then it sets a; = ju.

o If both j and jy fail, then, as shown in [BHS5], processor 7 has been assigned
to a short task in step 2, and so reads its assignment from a;.

Time = 5.

5. Each processor 7 reads its new task boundaries, b(a;) and b*(a;). Time = 1.

2To avoid double subscripts we denote array elements by a(?) as well as a;.



The total time required, which includes time for processors to get their new assignments
and task boundaries into local memory, is 4k + 3. [J

As the number of tasks grows in relation to the number of processors, we see that the
performance of the above algorithm degrades, as illustrated in the following table:®

A | Ak
P/lgP |41gP/lglg P
P/2h Slg P

P 00

One way to handle values of A very close to P more efficiently is to balance the times
of steps 2 and 3 in Algorithm 3.1 by defining a short task to be one assigned no more than
w() processors, for an appropriate positive integer w. Then in step 3 it suffices to find the
assignment of every wQ-th element, using groups of w@Q processors to speed up the search.

Algorithm 3.2: Assign from Leaders by Optirh‘ized BH
INPUT:

1. The number of processors P, and the number of tasks A, where 4 < P.

2. The array b = 0,b1,bs,...,b4-1,b4 = P with b; < b;,;. Actually, each array element
is a pair (bj, 1) such that b} = b;;1. Processor b; is called the leader for task j.
OUTPUT:

1. The array ag,a1,...,ap—1,ap = A that specifies each processor’s task assignment;
processor ¢ is assigned to task a;.
PROCEDURE:

1. Each processor does the following:
(a) Read A and P.
(b) Compute @ = | £].
(c) Iflg@ > 2/Ig P, then set w = 1, reducing to Algorithm 3.1; otherwise, solve

41g A
(lg @ +1glg A)>

w =

approximately for an integer w.

Time = 1.

o

Form A groups of ) processors each. All processors in the j-th group compute b}" —-b;.
If this value is less than or equal to w(@Q, then they write j in locations a(b;) through
a(bf —1). In this case, we call j a short task. Time = 1 + w.

3We use “Ig” for base 2 log, and use “log” when the base is immaterial.



3. Form A/w groups of wQ processors each. For 1 < i < A/w, the i-th group will
determine the “fencepost” assignment a(1w@) in k — 1 steps, where k = lg A/(Ig Q +
lgw). The method is a (w@+1)-ary search on the b array to find the j such that
bj < 1w < bf. Time = 4k — 6.

4. For each processor i, let 77, be the index of the “fencepost” of step 3 at or below

ie., i = wQ|i/wQ|. Each processor i now checks whether j;, or jy is its correct
assignment, where j;, = a(21) and ju = a(if, + wQ).

o If i, > 0and b(j) <7 < b™(jr), then it sets a; = jy.
o If iy < Aand b(jy) < i < bt(ju), then it sets a; = jy.

e If both j; and jy fail, then, processor ¢ has been assigned to a short task in
step 2, and so reads its assignment from a;.

Time = 5.
5. Each processor 7 reads its new task boundaries, b(a;) and b*(a;). Time = 1.
The total time required, which includes time for processors to get their new assignments
and task boundaries into local memory, is 4k + w + 2. In the cases where w > 1, at best
1g Q is near 2,/Ig P and we get a time of about 2./Ig P. However, as Q gets significantly

smaller (in relation to P) the time goes up to approximately 41g A/(lg Q@ +lglg A). Note
that w does not contribute to the leading term. See Fig. 1 for some sample values. [J

- - As the number of tasks grows in relation to the number of processors, Algorithm 3.2
performs somewhat better than Algorithm 3.1, as illustrated in the table in Fig. 1.
 We shall present a different allocation algorithm with better asymptotic performance
in this range of A vs. P. But first, we describe a useful operation on sorted arrays.
Let  and y be sorted arrays, of lengths m and n, respectively. The operation cross-
ra,nk(:c, y) consists of computing two new arrays, r and s, such that
o 7; is the rank of @; in y, i.e., is the number of elements in y that are less than «;.

e s; is the rank of y; in .

o We assume that elements from different arrays never compare equal; if there is no

other way to break a tie, the element from the first operand () is considered to be
less. ' '

Cross-rank is a frequently used building block in CREW algorithms for merging and
sorting, since it can be done in time O(loglog(n + m)) with O(n + m) processors [Val75,
BHS85]. After z and y are cross-ranked, then their merger into a new array z 1s accomplished
in constant time with O(n 4+ m) processors by moving z; to 2(i + r;) and moving y; to
z(j + s;). Less obviously, Preparata [Pre78] showed that k arrays of combined length n
could be merged with kn processors by cross-ranking all (12“) pairs of arrays, then summing
their individual ranks to obtain the merged ranks. With the choice £ = lgn, this leads
to an O(logn) sort using O(nlogn) processors. We shall show how cross-ranking can be

~1



used for processor allocation in order to get good performance when the number of tasks
is large in relation to the number of processors.

Algorithm 3.3: Assign from Leaders by Cross-Ranking
INPUT:

1. The number of processors P, and the number of tasks A, where A < P.

2. The array by = 0,b1,bs,...,b4-1,b4a = P with b; < b;4;. Actually, each array element
is a pair (b;,b]) such that b = ;1. Processor b; is called the leader for task j.
OUTPUT:

1. The array ag,a1,...,ap-1,ap = A that specifies each processor’s task assignment;
processor ¢ 1s assigned to task a;.
PROCEDURE:

1. Initialize a work al}ray pi:=tfor 0 <7< P.

2. Perform cross-rank(b*, p), giving output arrays ¢t and a. (The work array ¢ may be
discarded; however, ¢; contains the number of the next nonnull task above 7, which
may be useful in some problems.) For processor allocations required within the cross-

rank procedure, use Algorithm 3.1. The discussion of Fig. 1 below shows why this
algorithm should not be used recursively.

The time required is essentially 1 plus the time required for cross-ranking, which is analyzed
in Section 4. We used C' = 0 (recall that C is the time for local comparison of data keys),
since the keys being compared were integers. Time = 201glg A + 8. O

A CREW lower bound of Q(loglogn) to merge two n-element arrays was shown in
[BH85]. Algorithm 3.3 solves Problem 2.2, Assign from Leaders, by treating it as a special
case of merging, where one array is just consecutive integers. We do not see any way to
take advantage of this special case, and ccnjecture that its lower bound is also (loglog n).

If this conjecture is true, it follows that Algorithm 3.3 is asymptotically optimal within a
constant factor when 4 = O(P).

We see in Fig. 1 that Algorithfn 3.3 asymptotically is faster than Algorithm 3.2 in all
cases where the latter uses a value of w greater than 1. However, this is a theoretical
victory only, as the cross-over point is somewhere in the neighborhood of P = 2350,

4 A Closer Look at Krﬁskal’s Merge

Kruskal [K{ru83] gives a family of merge algorithms with parameter k, which we shall call
the degree. The algorithms cross-rank two arrays of lengths m and n. We assume m < n.
In the parallel comparison tree model he shows that the number of processors required is

k=1

the sublinear quantity (%‘) . However, his remark that [BH85] shows how to allocate

processors for CREW versions of these algorithms is an overstatement, in view of the
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Tasks Optimized BH | Cross-rank
(A) (4k +w+2) |(201glgA)
P12 11 201glg P
p/p/k 4k +3 201glg P
p/(2VieP) | o /5P 201glg P
P/lgP 41g P/1glg P | 201glg P
p/2" 41g P/lglg P | 20lglg P
P 41g P/1glg P | 201glg P

Figure 1: Asymptotic performance of allocation algorithms for the Assign from Leaders
problem, where k =1g A/(1g @ + lgw) and h is a constant.

limitations mentioned in Section 1.1. However, with a linear number of processors, say
P =n+m, Algorithm 3.1 performs the allocation in time that is linear in the degree, k,
but independent of problem size.

It is interesting to. re-analyze the performance of Kruskal’s family of merge algorithms
as a function of k, using global memory references as the measure, and accounting for
processor allocation. Briefly, the algorithm of degree k runs in lglgm/lgk “nonfinal”
stages, plus a “final” stage. The “real work” of each nonfinal stage consists of k Q-ary
searches to determine the exact ranks of equally spaced “samples” from the shorter array in
the longer array. This allows one merge problem to be partitioned into A smaller merges
in the next stage, where A = P*F. We estimate the time for the “real work” to be
(54 C)k + 1 for nonfinal stages. The final stage requires 7 + C. However, the overhead
time for processor allocation adds 4k + 3 to the time for each nonfinal stage. Thus nearly
half the time is spent in processor allocation!

By varying k we can trade off time per stage against the number of stages. In order to
find the optimum choice of k, we minimize

lglgm
Igk

with respect to k. Assuming C' < 1, the value of T is about equally small when £ is 3 or
4; these choices are about 10 percent better than & = 2. For computational ease, we use

k = 4 as representative, giving the following e\pressmn for time to cross-rank two arrays
of lengths m < n with n + m processors:

T(m, k) = ((9+C)L +4) +7+C

T(m)=(20+2C)lglgm + 7+ C

We note in passing that the bitonic merge, or even-odd merge, upon which Batcher’s
sort is based [Bat68, Ull84], is easily implemented in time (2 + C')lg(n + m). Note the



low multiplicative constant of (2 + C') vs. (20 + 2C') for the sublogarithmic merge. This
results from the “static” nature of the processor allocation for the bitonic merge: no global
memory accesses are needed for processors to determine their tasks. If C' < 2 and both
arrays are about the same size, then the bitonic merge outperforms the sublogarithmic

versions up to about n = 230 This conclusion would not be reached by only looking at
the number of comparisons.

5 Conclusion

We have shown that processor allocation may play a significant role in sublogarithmic
CREW algorithms. In addition, it appears that counting both comparisons and global
memory accesses gives a significantly different picture of merging algorithms from that
given by just counting comparisons. We leave as open questions whether {)(loglog P) is

the lower bound for Assign from Leaders with A = P, and whether the constant factor
can be improved. ‘

We thank the referees for their careful reading of the paper.
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