
Pool Resolution and its Relation to Regular

Resolution and DPLL with Clause Learning

Allen Van Gelder

University of California, Santa Cruz CA 95060, USA,
WWW home page: http://www.cse.ucsc.edu/~avg

Abstract. Pool Resolution for propositional CNF formulas is intro-
duced. Its relationship to state-of-the-art satis�ability solvers is explained.
Every regular-resolution derivation is also a pool-resolution derivation.
It is shown that a certain family of formulas, called NT��(n) has poly-
nomial sized pool-resolution refutations, whereas the shortest regular
refutations have an exponential lower bound. This family is a variant
of the GT(n) family analyzed by Bonet and Galesi (FOCS 1999), and
the GT0(n) family shown to require exponential-length regular-resolution
refutations by Alekhnovitch, Johannsen, Pitassi and Urquhart (STOC
2002). Thus, Pool Resolution is exponentially stronger than Regular
Resolution. Roughly speaking a general-resolution derivation is a pool-
resolution derivation if its directed acyclic graph (DAG) has a depth-�rst
search tree that satis�es the regularity restriction: on any path in this
tree no resolution variable is repeated. In other words, once a clause is
derived at a node and used by its tree parent, its derivation is forgotten,
and subsequent uses of that clause treat it as though it were an input
clause. This policy is closely related to DPLL search with recording of
so-called con
ict clauses. Variations of DPLL plus con
ict analysis cur-
rently dominate the �eld of high-performance satis�ability solving. The
power of Pool Resolution might provide some theoretical explanation for
their success.

1 Introduction

The reader is assumed to be generally familiar with the propositional satis�a-
bility problem, CNF formulas, and resolution derivations. Some de�nitions are
brie
y reviewed in Section 2, but are not comprehensive.

The history of propositional resolution is interesting. In 1960, Davis and Put-
nam published an algorithm for deciding whether a propositional CNF formula
is unsatis�able [11]. They did not use the term \resolution" but after Robinson
introduced the term in 1965, subsequent literature recognized that what Davis
and Putnam were doing was a particular policy for propositional resolution. In
1962, Davis, Logemann and Loveland published the search algorithm that is well
known today [10]. Interestingly, they described it as an optimization of the 1960
algorithm to conserve memory.

It appears to have been \folklore" in the theory community that it is possi-
ble to extract a resolution refutation from the 1962 search algorithm of Davis,

Logemann and Loveland. This fact was probably known to Tseitin in 1968 and
to Galil soon after, although we are not able to pinpoint any published state-
ment. About this time, the 1962 search algorithm began to be referred to as the
\Davis-Putnam algorithm" or simply \DP" in the literature. This must have
been rather irritating to Logemann and Loveland, particularly since the wrong
1960 paper was consistently cited as the source. This misnomer was not discov-
ered until the 1990s, when the 1962 paper was rediscovered and the acronym
DPLL was proposed for the search algorithm \to recognize the contributions of
all four authors" [26].

In any case, Tseitin introduced the regularity restriction on resolution deriva-
tions, that no variable may be resolved upon more than once on any path in the
derivation, and demonstrated a super-polynomial lower bound for regular reso-
lution [23]. Both DP (resolution) and DPLL (search with resolution extracted)
fell under the umbrella of regular resolution.

In the 1980's practical experience emerged that showed that DPLL (then
called DP) performed unexpectedly well as a propositional decision procedure in
comparison to known published strategies for resolution [20, 21]. In the 1990's
further practical experience showed that DPLL performed poorly when used \as
is" but could be greatly enhanced with additional \preorder" reasoning [14].
Meanwhile, it was recalled or rediscovered that DPLL was able to extract a
resolution refutation from its search [16, 25].

The last decade has apparently seen theory and practice marching in opposite
directions. DPLL produces a resolution derivation that is tree-like, whereas DP
produces a resolution derivation that is a directed acyclic graph (DAG) and also
is ordered (i.e., clashing variables appear in the same order along every DAG
path). Although DP has achieved very little practical success [12], DPLL has
been the work-horse for high performance satis�ability solvers [27, 3, 18, 19, 28,
13]. Yet theory has shown that the best tree-like resolution derivation may be
exponential in length when a DAG resolution derivation is polynomial in length
[5, 6]; indeed the separation holds even when the DAG resolution derivation is
required to be ordered or regular [7, 8].

1.1 Summary of Results

The purpose of this paper is to show that the practice of satis�ability solving has
unknowingly been moving in the direction indicated by proof complexity theory,
away from the limitations of tree-like computations.

We introduce and formalize a new resolution strategy, called Pool Resolution.
We show that pool resolution is \exponentially stronger" than regular resolution.
Speci�cally, we show that pool resolution can linearly simulate regular resolu-
tion on all formulas. Then we exhibit a family of formulas for which there are
polynomial-length pool refutations, but only exponential-length regular refuta-
tions. The exponential lower bound for regular refutations on this family was
already shown by Alekhnovitch, Johannsen, Pitassi and Urquhart [1]; this paper
demonstrates the existence of polynomial-length pool refutations. Beame, Kautz,
and Sabharwal provide an excellent discussion on comparing reasoning systems

Table 1. Summary of notations.

a; : : : ; z Literal; i.e., propositional variable or negated propositional variable.
:x Complement of literal x; ::x is not distinguished from x.
jxj The propositional variable in literal x; i.e., if a is a variable, jaj =

j:aj = a.
A; : : : ; Z Disjunctive clause, or set of literals, depending on context.
A; : : : ;H CNF formula, or set of literals, depending on context.
� Resolution derivation DAG.
� Total assignment, represented as the set of true literals.

[p1; : : : ; pk] Clause consisting of literals p1; : : : ; pk.
? The empty clause, which represents false.
> The tautologous clause, which represents true ; (see De�nition 2.3).
�; : : : ; Æ Subclause, in the notation [p; q; �], denoting a clause with literals p,

q, and possibly other literals, �.
C� Read as \C, or some clause that subsumes C".

p Where context makes it clear, [p] may be abbreviated to p.
C, p In a context where a formula is expected, fCg may be abbreviated to

C and f[p]g may be abbreviated to p.

res(q; C;D) Resolvent of C and D, where q and :q are the clashing literals (see
De�nition 2.3).

through proof complexity and how it applies to DPLL with \clause learning"
[4].

Based on proof-complexity comparisons, it was known that exponential sepa-
rations supported the following strict order: tree-like < regular < general resolu-
tion. This paper shows that regular< pool � general resolution. Finally, we show
that pool resolution provides a framework that encompasses most, if not all, of
the well-known satis�ability solvers based on DPLL and some form of con
ict
analysis, also known as \clause learning," \clause recording," \nonchronological
backtracking," \postorder lemmas," and similar terms. The main di�erence is
that pure pool resolution remembers all derived clauses so they are available for
re-use, whereas implemented satis�ability solvers only remember some of their
derived clauses.

2 Preliminaries

2.1 Notation

This section collects notations and de�nitions used throughout the paper. Stan-
dard terminology for conjunctive normal form (CNF) formulas is used. Notations
are summarized in Table 1. Although the general ideas of resolution and deriva-
tions are well known, there is no standard notation for many of the technical
aspects, so it is necessary to specify our notation in detail. As usual, a �nite set
of propositional variables is assumed (variables for short) and a literal is either
a variable or a negated variable.

De�nition 2.1. (clause, formula, Lits, mention) A clause is either a reg-

ular clause or the unique tautologous clause, denoted by >. A regular clause is
a (possibly empty) consistent set of literals, which are logically connected dis-
junctively. A regular clause C is said to mention a literal q if either q 2 C or
:q 2 C. A CNF formula (formula for short) is a �nite (possibly empty) sequence
of clauses, which are logically connected conjunctively. The set of all literals that
can be constructed from the variables in formula F is denoted by Lits(F). This
set is assumed to have some �xed linear order. ut

There are technical reasons for de�ning a formula as a sequence, rather than
a set, of clauses. First, this permits duplicate clauses. Second, when a procedure
derives clauses sequentially, some or all of the derived clauses can be appended to
the input formula, the structure remains a formula, and the order of derivation
is preserved.

De�nition 2.2. (assignment, satisfaction, model) A partial assignment is
a partial function from the set of variables into ffalse ; trueg. This partial func-
tion is extended to literals, clauses, and formulas in the standard way. If the
partial assignment is a total function, it is called a total assignment, or simply
an assignment.

A clause or formula is satis�ed by a partial assignment if it is mapped to true;
A partial assignment that satis�es a formula is called a model of that formula.

ut

A partial assignment is conventionally represented by the (necessarily con-
sistent) set of unit clauses that are mapped into true by the partial assignment.
Note that this representation is a very simple formula.

2.2 Resolution as a Total Function

The standard de�nition of resolution is a binary operation on two clauses that
contain a distinguished pair of clashing literals ; i.e., one clause contains x and the
other contains :x. It is convenient to extend the de�nition to all pairs of clauses
and all literals, making resolution a total function. Recall that all tautologous
clauses are considered to be indistinguishable and are denoted by >.

De�nition 2.3. (resolution, subsumption, useless clause) Resolution is
an operation that takes as parameters a literal, called the clashing literal, and
two clauses; it produces a clause as its result, called the resolvent. In all cases,
the resolvent is independent of the order of the clause operands C and D, and
is independent of the polarity of the clashing literal q:

res(q; C;D) = res(q;D;C) = res(:q; C;D) = res(:q;D;C):

The variable jqj is called the clashing variable and :q is also called the clashing
literal.

If C = [q; �] and D = [:q; �] are two regular clauses (� and � are subclauses),
then

res(q; C;D) =

�
[� [�] if � [� is consistent;
> otherwise.

This de�nes the standard resolution operation.
Resolution is extended to include > as an identity element:

res(q; C;>) = C:

Resolution is further extended to apply to any two regular clauses and any
literals, as follows. Fix a total order on the clauses de�nable with the current set
of propositional variables such that ? is smallest, > is largest, and wider clauses
are \bigger" than narrower clauses. The smaller of two equally wide clauses is
the one whose literals are lexicographically smaller in the �xed literal ordering
(recall De�nition 2.1).

If C = [�] does not contain q and does not contain :q, and D = [:q; �] or
D = [q; �], then

res(q; C;D) = [�] :

If C = [�] and D = [�] and neither contains q or :q, then

res(q; C;D) = the smaller of C and D.

If clause C � D, we say C properly subsumes D; if C � D, we say C subsumes

D. Also, any regular clause properly subsumes >. Notation D� is read as \D, or
some clause that subsumes D". Alternatively, D� may be read as \some clause
that logically implies D".

A clause is said to be useless for formula F if it is subsumed by a clause in
F ; > is always useless. (Normally, tautologous resolvents are discarded.) ut

De�nition 2.4. (derivation, refutation) A derivation (short for propositional
resolution derivation) from formula F is a directed acyclic graph (DAG) in which
each vertex is labeled with a clause and possibly with a clashing literal. Let D
be the clause label of vertex v. If D = C 2 F , then v has no out-edges and no
clashing literal, and is called a leaf. Otherwise v is called a resolution vertex, has
two out-edges, say to vertices with clause labels D0 and D1. The edge to D1

is labeled with some literal, say q, and the edge to D0 is labeled with :q. The
vertex v is also labeled with the clashing literal q and the clause D such that

D = res(q;D0; D1);

where res is the total function de�ned in De�nition 2.3. When the derivation
contains ?, it is called a refutation. ut

In most analyses a derivation is a rooted DAG, and a derivation is said to
derive its root clause. In actual computation, some clauses might be derived that
turn out to be useless, yet remain in the DAG. In much of the discussion, vertices
are referred to by their clause labels. However, it is possible for the same clause
to label several vertices and in such cases further speci�cation of the vertex is
needed.

3 The Pool Resolution Procedure

In its general form, pool resolution can be regarded as a procedurePoolRes that
takes a clause P , called the current pool, and an input formula F as parameters,
and determines whether F j= P (F logically implies P). Of course, F j= ?
means that F is unsatis�able.

For simplicity of description,PoolRes(P;F) operates on a global proof struc-
ture G. If F j= P , PoolRes modi�es G to be a derivation of some clause D � P
and returns D. Otherwise, PoolRes creates a (global) partial assignment A that
demonstrates that P is not logically implied by F and returns the special value
SAT that is not a clause. Note that PoolRes might not be able to derive P
exactly, but can derive P� whenever F j= P .

The global proof structure G is a resolution DAG (De�nition 2.4) that ini-
tially consists of one vertex Ci for each clause in F and no edges. This is the state
of G when the top-level call PoolRes(P;F) occurs. To produce a refutation, the
top-level call is PoolRes(?;F). The procedure modi�es G as the computation
proceeds. Pseudocode for a recursive implementation of PoolRes is shown in
Figure 1.

PoolRes(P;F)

1) If F has no eligible clauses:
2) construct partial assignment A = :(P);
3) return SAT.
4) If G contains an acceptable clause D � P :
5) return some such clause D.

6) == (If no base case applies, expand the pool P .)
7) Choose a clashing literal q not mentioned in P .

8) D0 = PoolRes([P;:q] ;F).
9) If D0 = SAT, return SAT.
10) If :q 62 D0, return D0.

11) D1 = PoolRes([P; q] ;F).
12) If D1 = SAT, return SAT.
13) == (If q 62 D1, res(q;D0; D1) = D1.)

14) Create a new vertex for G labeled with D = res(q;D0; D1).
Create an edge labeled :q from D to D0 and an edge labeled q from D to D1.

15) Return D.

Fig. 1. Pseudocode for the general version of PoolRes. To produce a refutation, the
top-level call is PoolRes(?;F). A clause C is eligible with respect to pool P if C[P is
consistent. For \pure" PoolRes all clauses are acceptable; other options are discussed
in the text.

Several remarks about PoolRes may be made before analyzing its complete-
ness and performance.

1. An arbitrary clause C is said to be eligible with respect to pool P if C [P is
consistent; otherwise, it is ineligible with respect to P . The idea is that only
eligible clauses might be useful to PoolRes for deriving P�. For a clause
C to be useful to PoolRes for deriving P�, it must eventually play the
role of D on line 4 in the current procedure invocation or in some recursive
invocation. The �rst parameter of PoolRes is called the pool parameter.
But all pool parameters for these invocations are consistent supersets of P
(possibly P itself), so no clause containing a literal that is complementary to
some literal of P can be a subset of P or the pool parameter of any recursive
invocation.
Note that the set of eligible clauses shrinks as recursion depth increases. For
example, when :q is added to the pool at line 8, all clauses containing q
become ineligible in that recursive call.

2. At line 1, suppose there are no eligible clauses in F . Then A = :(P) satis�es
all clauses of F . By the soundness of resolution A must satisfy all clauses
in G, so every clause in G has some literal that is complementary to some
literal of P , and there are no eligible clauses in G, either.

3. There are many possible policies for what is an acceptable clause on line
4. Bookkeeping not shown in the pseudocode might be needed to decide
whether a clause is \acceptable" under a particular policy. As discussed
above, D � P is possible only if D is eligible with respect to P , so it does not
matter whether ineligible clauses are \acceptable." For \pure" PoolRes, all
clauses in G are \acceptable." To force tree-like derivations to be produced,
make all derived clauses unacceptable.
The only restriction on acceptable-clause policies needed to ensure complete-
ness is that, if all variables are mentioned in P and there are any eligible
clauses, then some eligible clause must be acceptable.
By formulatingPoolRes to allow an arbitrary policy for \acceptable" clauses,
it is easier to show that some instantiation of PoolRes is able to simulate,
or imitate, other reasoning systems. With this
exibility, PoolRes is able
to reject clauses that would generate a base case, and continue to line 7 to
derive a better clause.

4. Line 10 is an optimization. Due to resolution being a total function, line 14
would de�ne D to be either D0 or D1 if line 10 were omitted.

5. At line 14, if q 62 D1, then D is in a separate vertex from the vertex of D1,
even thoughD andD1 are the same clause. In this case, the vertex containing
D has an edge to the vertex containing D0. This technicality ensures that
the �nal G is rooted (unless SAT is returned).

6. At line 5, there might be several clauses that could be returned. The selection
could greatly in
uence the future course of the computation.

7. At line 7, there are normally many variables to choose among, then two
polarities for the literal to be called q. The policy for this choice is the
major determinant of the procedure's practical ability to construct small

derivations. The theoretical (non-deterministic) power of pool resolution is
determined (in part) by assuming this choice is always made optimally.

It is quite straightforward to show that PoolRes behaves \correctly"; that
is, it is sound and complete.

Theorem 3.1. Let F be a formula; let G be a resolution DAG with the clauses
of F as leaves; let P be a regular clause, P � Lits(F). Then PoolRes(P;F) as
given in Figure 1 returns a clause P� if and only if F j= P .

Proof. The proof is by structural induction on the call graph of PoolRes. The
callgraph is a directed tree in which each procedure invocation is a vertex and
there is an edge from each procedure invocation to its immediate recursive calls,
if any. The leaves are procedure invocations that make no recursive calls. In these
cases, either line 1 is true or line 4 is true.

Case 1 : line 1 is true. Then PoolRes(P;F) does not return P�. Also A
satis�es all clauses in F and falsi�es P , so F j= P is false.

Case 2 : line 4 is true. Then F j= D by the soundness of resolution and
D = P�, so D j= P . Thus the theorem holds for the base cases.

For procedure invocations that make at least one recursive call, we assume the
theorem holds for the immediate recursive calls, by the inductive hypothesis. Line
1 is false, so there is some eligible clause. Line 4 is false, so every clause D 2 G
is not acceptable or is not a subset of P . If every variable is mentioned in P , the
acceptable-clause policy is required to make some eligible clause acceptable, and
any eligible clause is a subset of P . It follows that some variable is not mentioned
in P , so it is possible to choose some literal q at line 7.

If SAT is returned by a recursive call, then (by the inductive hypothesis)
some superset of P is not logically implied by F , hence neither is P . In this case,
SAT is returned by the current invocation, as required by the theorem.

If SAT is not returned by either immediate recursive call, then by the in-
ductive hypothesis, at line 8, F j= D0 = [P;:q]

�

, and at line 11 (if reached),
F j= D1 = [P; q]�. If :q 62 D0 at line 8, then D0 is returned at line 10 and,
D0 = P� j= P . If q 62 D1 at line 11, then D1 = P� j= P and at line 14 D = D1

and D is returned.
Finally, if :q 2 D0 and q 2 D1, then D is a standard resolvent at line 14 and

F j= D by soundness of resolution. But D = P�, so F j= P . ut

4 Pool Resolution Graphs

By the time the pool resolution procedure PoolRes given in Figure 1 has exited
at top level, assuming it did not return SAT, it has produced a rooted resolution
DAG G. Essentially, all rooted resolution DAGs can be characterized according
to whether some instantiation of a pool resolution procedure could produce them.
For analysis, we are only concerned with refutation DAGS, i.e., those whose
root is ?. This section shows that there is a close connection, and an important
di�erence, between refutation DAGs produced by regular resolution and those
produced by pool resolution.

De�nition 4.1. A rooted resolution DAG based on input formula F is called
a pool resolution DAG if it can be produced by some sequence of choices in the
pool resolution procedure PoolRes given in Figure 1. These choices include:

1. Which clauses are \acceptable" at line 4 (without loss of generality, we can
assume at most one clause is deemed \acceptable" each time line 4 is exe-
cuted);

2. Which literal to choose as q at line 7.
ut

De�nition 4.2. Let G be a subgraph of a resolution DAG (but not necessarily
a resolution DAG in its own right). A path in G is a regular path if no clashing
variable occurs twice among the vertices of the path. The subgraph G is said to
be a regular DAG if every path in G is regular. ut

As de�ned by Tseitin [23], regular resolution is the resolution system that
produces resolution DAGs that are regular DAGs, in accordance with De�ni-
tion 4.2. Our use of the term regular is simply extended to include DAGs that
are not resolution derivations.

Theorem 4.3. If a rooted resolution refutation DAG G (based on input formula
F) is a pool resolution DAG, then there is some depth-�rst search ofG (beginning
at its root) whose depth-�rst search tree (DFST) is a regular DAG.

Proof. By hypothesis, G can be produced by the execution of some pool resolu-
tion procedure. Each derived vertex v of G is created in exactly one invocation
of PoolRes. Let q be the clashing literal for that procedure invocation. When
the depth-�rst search visits v it processes the outgoing edge corresponding to :q
before the edge corresponding to q. For every path in the resulting DFST, there
is a path in the call graph in which the vertices created at line 14 appear in the
same order. But the same clashing variable cannot appear twice on any path in
the call graph. Therefore, the DFST is a regular DAG. ut

Theorem 4.4. Let G be a rooted resolution refutation DAG (based on input
formula F) that contains only standard resolution operations (i.e., the clash-
ing literal q is present in one operand and :q is present in the other operand
and > never occurs). If there is some depth-�rst search of G (beginning at its
root) whose depth-�rst search tree (DFST) is a regular DAG, then G is a pool
resolution DAG.

Proof. By hypothesis, there is a DFST that is a regular DAG. Order the edges
leaving any vertex ofG to be in the same order as those edges were processed dur-
ing the depth-�rst search. Let the pool resolution procedure imitate the depth-
�rst traversal. The top-level call is PoolRes(?;F); each recursive invocation of
PoolRes corresponds to an edge of G and they occur in the same order that
the edges are processed by the depth-�rst search (recall that depth-�rst search
processes both tree and non-tree edges, but only traverses across tree edges).

We need to show that this pool resolution procedure constructs (an isomorphic
copy of) G.

Case 1 : Suppose the traversal is visiting vertex v; i.e., the edge p ! v has
just been traversed, where p is the DFST parent of v. The pool parameter P for
current invocation of PoolRes consists of the clashing literals on the edges of
the DFST path from the root of G to v (if v is the root, P = ?). Assuming v is
not the root, PoolRes(P;F) corresponds to the tree edge p! v.

Case 1-A: Suppose the operation at v is D = res(q;D0; D1), so that v has
edges to w0, labeled with D0 and to w1, labeled with D1. Without loss of gener-
ality, assume the depth-�rst search processes the edge v ! w0, which is labeled
with :q, before processing v ! w1. By the regularity of the DSFT, q is not men-
tioned in P . So the procedure invocation PoolRes(P;F) considers all clauses to
be \not acceptable" at line 4 and chooses q as the clashing literal at line 7. By
induction on the structure of G, we may assume PoolRes recursively derives
D0 at line 8, recursively derives D1 at line 11. It then resolves them at line 14,
deriving D, and creates (an isomorphic copy of) v, v ! w0, and v ! w1.

Case 1-B : Now suppose v is a leaf vertex of G, i.e., is labeled with a clause
C 2 F . The sequence of resolutions on the path back to the root of G must
remove all literals of C because the root contains ?. Thus C � P . Let the
acceptable-clause policy accept C at line 4. So C is returned at line 5 and the
parent invocation will create (an isomorphic copy of) the edge p! v.

Case 2 : Suppose the depth-�rst traversal is processing a non-tree edge u! v;
i.e., v has been visited earlier and u is being visited currently. Let the operation
at u be D = res(q;D0; D1), where v is labeled with D0 and u ! v is labeled
with :q. Thus :q 2 D0. (It is easy to see that u cannot be the root of G in this
case because then there would be a regular DFST path from u to v whose �rst
edge label is q.)

As in Case 1, the pool parameter P for the PoolRes invocation correspond-
ing to the tree-edge to p! u consists of the clashing literals on the edges of the
DFST path from the root to u. This invocation calls PoolRes([P;:q] ;F) at line
8. The latter invocation corresponds to the non-tree edge u ! v in G. Because
D0 labels v, as in Case 1-B, the sequence of resolutions on the backward path
that begins v ! u and continues back to the root by reversing the DSFT path
to u must remove all literals of D0. So D0 � [P;:q]. Let the acceptable-clause
policy for PoolRes([P;:q] ;F) accept D0 at line 4. So D0 is returned at line 5
and the parent invocation will create (an isomorphic copy of) the edge u ! v.
The case where v corresponds to D1 is similar. ut

Corollary 4.5. Let G be a rooted resolution refutation DAG (based on input
formula F) that contains only standard resolution operations (i.e., the clashing
literal q is present in one operand and :q is present in the other operand and
> never occurs). If G was produced by regular resolution, then G is a pool
resolution DAG.

Proof. Any DFST for G is a regular DAG. Apply Theorem 4.4. ut

5 Exponential Separation of Pool Resolution from

Regular Resolution

In this section we consider a family of graphs NT�(n), which has N = n(n� 1)
variables. It is known that there is a positive constant � such that any regu-
lar refutation DAG for NT�(n) has more than 2�n vertices, for large enough
n, whereas general refutations of length �(n3) are known (see discussion of
Theorem 5.7 below). An empirical test indicates that zChaff [28] takes time
proportional to e0:75n on this family, although it is not limited by the regularity
restriction. We introduce a related family NT��(n) whose regular refutations are
at least as long, but has a pool refutation DAG with O(n3) vertices. The name
NT is an abbreviation for \no triangles."

5.1 The Family NT�(n) and Related Formulas

The de�nition of the family NT�(n) is facilitated by some terminology. For this
section, let n be a �xed positive integer, and let N = n(n�1). Some expressions
will depend implicitly on n.

For all of the formulas considered, there is an underlying semantic interpreta-
tion that guides our understanding. We suppose there is a setW whose elements
are denoted wi, 1 � i � n. The propositional variables of NT�(n) and related
formulas correspond to possible directed edges between distinct elements of this
set. A variable is true if the edge is present.

De�nition 5.1. Let hi; ji, where i and j are distinct integers in the range [1; n]
(1 through n) denote a propositional variable (the semantic interpretation is
wi ! wj). De�ne V = fhi; jig. ut

De�nition 5.2. A qualifying triple is an ordered triple of distinct positive inte-
gers (i; j; k) in the range 1 through n, such that i is the maximum of the three;
i.e., 1 � j < i � n, 1 � k < i, and j 6= k. The set of all qualifying triples is
denoted by Q. There are n(n� 1)(n� 2)=3 qualifying triples.

An integer-valued function f(i; j; k) : Q ! [0; N � 1] is called �-fair if it
maps at least � n qualifying triples into each value in its range. ut

De�nition 5.3. Let � : V ! [0; N � 1] be the permutation of V that arranges
its elements in lexicographical order. De�ne s : [0; N � 1] ! V by the equation
s(x) = ��1(x). For example, s(0) = h1; 2i, s(2n) = h3; 4i, etc. (The results hold
for �(hi; ji) being any permutation of V , but this degree of generality is not
important.) ut

De�nition 5.4. Clauses are named as follows for indexes indicated. In clause
types A0 and A1 r(i; j; k) is some function whose range is [0; N � 1] (see De�ni-
tion 5.2 and (8) for particulars).

C(j) � [h1; ji; : : : ; hj � 1; ji; hj + 1; ; ji; : : : ; hn; ji] 1 � j � n (1)

B(i; j) � [:hi; ji;:hj; ii] 1 � i < j � n (2)

B+(i; j) � [hi; ji; hj; ii] 1 � i < j � n (3)

A0(i; j; k) � [:hi; ji;:hj; ki;:hk; ii;:s(r(i; j; k))] (i; j; k) 2 Q (4)

A1(i; j; k) � [:hi; ji;:hj; ki;:hk; ii; s(r(i; j; k))] (i; j; k) 2 Q (5)

A(i; j; k) � [:hi; ji;:hj; ki;:hk; ii] (i; j; k) 2 Q (6)

T (i; j; k) � [:hi; ji;:hj; ki;:hk; ii] 1 � i; j; k � n and i; j; k distinct. (7)

The C(j) are called long clauses ; the others are short clauses. ut

De�nition 5.5. Formulas are named as follows:

Formula name Clauses included

NT�(n) C(j), B(i; j), B+(i; j), A0(i; j; k), A1(i; j; k)
NT(n) C(j), B(i; j), B+(i; j), A(i; j; k)
GT(n) C(j), B(i; j), T (i; j; k)

ut

Note that A0(i; j; k) and A1(i; j; k) can be resolved to produce A(i; j; k), after
which A0(i; j; k) and A1(i; j; k) are subsumed and can be discarded. Further
resolutions with B+ clauses produce transitivity clauses T (i; j; k) for all distinct
(i; j; k) triples. Thus any model of the short clauses of NT�(n) must be a complete
linear order, where x! y is interpreted as x > y. The same holds for the short
clauses of NT(n) and the short clauses of GT(n). But with this interpretation,
C(j) states that wj is not a maximal element. Thus NT

�(n), NT(n) and GT(n)
are unsatis�able. The earlier work on the proof complexity of these families is
reviewed here.

Theorem 5.6. ([22, 8, 1]) The families GT(n) and NT(n) have regular refuta-
tions of length O(n3). ut

The family NT�(n) is a variant of the family GT0(n) invented by Alekhnovitch,
Johannsen, Pitassi and Urquhart [1]; the modi�cations are introduced to avoid
some possible minor technical problems with the original de�nitions. They prove
very ingeniously that if r(i; j; k) is �-fair, then any regular refutation of NT�(n)
requires at least 20:1� n resolution steps. They de�ne (in e�ect|their notation is
di�erent) a particular r(i; j; k) and claim that it is 1-fair; but the claim was not
proved and turns out to be incorrect.1 However, the idea of the proof is perfectly
sound and only needs to be adjusted for an achievable value of �.

Theorem 5.7. ([1]) Any regular refutation of NT�(n) requires at least 20:02n

resolution steps.

Proof. (Sketch) The following function can be shown to be �-fair for � = 0:2
and n � 50:

r(i; j; k) = ((n+ 1) i+ 2n j + k) mod N (8)

1 Their function was actually 0-fair, as it did not map any distinct triples to n or
2n+ 1, among other values.

To show that any x in the range [0; N�1] is mapped to by at least � n qualifying
triples, it is convenient to consider four cases according to whether bx=nc < n=2
and whether x mod n < n=2. Then the analysis of each case is straightforward.
The rest of the proof is the same as in the cited paper [1]. ut

5.2 The Family NT��(n)

To demonstrate an exponential separation between regular resolution and pool
resolution, we introduce the family of formulas NT��(n), inspired by Beame et
al. [4]. The formula NT��(n) contains all variables in NT�(n), plus the variables
xi;j;k and yi;j;k for each qualifying triple (i; j; k) 2 Q. The formula NT��(n)
consists of all clauses in NT�(n), plus the following

[xi;j;k;:yi;j;k] ; [:xi;j;k ; yi;j;k] ;

[xi;j;k; hi; ji] ; [xi;j;k ; hj; ki] ; [xi;j;k ; hk; ii] ; (i; j; k) 2 Q (9)

The variables xi;j;k are called proof-trace variables [4]. The clauses containing
yi;j;k are added so that the xi;j;k are not pure literals.

Theorem 5.8. Any regular refutation of NT��(n) requires at least 20:02n reso-
lution steps.

Proof. By setting all xi;j;k = 1 in NT��(n), and simplifying, the resulting clauses
are those in NT�(n), plus unit clauses [yi;j;k], which are useless for refuting
NT�(n). By De�nition 2 and Proposition 1 of Beame et al. [4], the shortest
regular refutation of NT��(n) is at least as long as the shortest regular refutation
of NT�(n). The lower bound follows by Theorem 5.7. ut

The idea for the polynomial-length pool refutation of NT��(n) is to use the
proof-trace variables xi;j;k to derive A(i; j; k) from A0(i; j; k) and A1(i; j; k) for
all (i; j; k) 2 Q without leaving any variables of NT(n) in the pool. Then the pool
refutation can proceed as it would for NT(n) (no asterisks), treating A(i; j; k)
as input clauses. The resulting entire refutation is not regular because some
non-tree paths leading to A(i; j; k) have r(s(i; j; k)) or :r(s(i; j; k)) as a clashing
literal.

Theorem 5.9. The formula NT��(n) has a pool refutation with O(n3) steps.

Proof. Beginning with an empty pool, derive A(i; j; k) for each (i; j; k) 2 Q as
indicated in Figure 2; after each derivation :xi;j;k and :yi;j;k are added to the
pool on the right branch. This part of the derivation requires O(n3) steps.

After all A(i; j; k) have been derived, attach a pool refutation of NT(n) of
size O(n3) to the lowest vertex on the rightmost branch. Such a refutation exists
by Theorem 5.6 and Corollary 4.5. The derived clause at this vertex is ?, so it
is propagated back up to the root of the entire derivation. ut

@R

����9
XXXXz

xi;j;k xi;j;k

xi;j;k

��� HHj ��� HHj
yi;j;k yi;j;k

xi;j;k; hi; ji xi;j;k; hi; ji xi;j;k; yi;j;k

PoolRes
continues

��� HHj

xi;j;k; hi; ji; hj; ki xi;j;k; hj; ki
��� HHj

hi; ji; hj; ki; hk; ii xi;j;k; hk; ii
��� HHj

hi; ji; hj; ki; hk; ii; s(r(i; j; k)) hi; ji; hj; ki; hk; ii; s(r(i; j; k))

Fig. 2. Derivation of all A(i; j; k) without leaving any V variables in the pool. Overbars
denote negation.

6 Relation of Pool Resolution to DPLL with Clause

Learning

Recall the pseudocode of PoolRes in Figure 1. Any execution of a DPLL-style
search, including popular methods of \clause learning," can be simulated by
PoolRes by following two basic principles:

1. True assigned literals in DPLL are the negations of pool literals in PoolRes.
2. \Learned clauses" in the DPLL version are the same as (a subset of) clauses

derived by PoolRes.

Assignment of a literal q = 1 as a \decision" (backtrackable \guess," use of split-
ting rule) in DPLL corresponds to adding :q to the pool at line 8. Backtracking
to the assignment q = 0 in DPLL corresponds to adding q to the pool at line 11.

When DPLL deletes clauses that are satis�ed, this corresponds to such
clauses becoming ineligible in PoolRes. When DPLL shortens clauses due to
complements of true literals, the remaining literals are just the nonpool literals
in PoolRes.

Unit clause propagation in DPLL, say assigning x = 1, following a \guess"
or \backtrack" assignment to q is simulated in PoolRes by adding x to the pool
at line 8 and adding :x to the pool at line 11. See Section 6.1.

However, if DPLL is enhanced with preorder reasoning operations, the cor-
responding operations would need to be added to PoolRes to enable it to con-
tinue simulating the search procedure. Examples of preorder reasoning include

equivalent-literal recognition, binary-clause reasoning, subsumption resolution,
etc. Such operations are diÆcult to combine eÆciently with clause learning and
most leading satis�ability solvers do not implement them.

Several clause learning schemes have been analyzed by Zhang et al. [28], and
more formally by Beame et al. [4]. They are primarily outgrowths of the GRASP
scheme [18], and much of the terminology originates from that paper. Please see
these papers for details. We show how pool resolution can simulate them.

6.1 Pool Expansion Strategies

Recall the pseudocode of PoolRes in Figure 1. As mentioned, the policy for
choosing q at line 7 is crucial for both theoretical and practical performance. It
is useful, at least in practice, to de�ne the nonpool literals in an eligible clause
C to be those literals in C that are not in the pool P . The nonpool count for C
is the number of such nonpool literals, i.e., jC � P j. If the nonpool count is 0
(and C is \acceptable"), the base case of lines 4 and 5 applies.

If the nonpool count is 1, C is analogous to a unit clause in DPLL. In this
case, let :q be the sole nonpool literal of C and choose q as the clashing literal
at line 7. The recursive call at line 8 returns immediately, with D0 = C or some
other \acceptable" clause whose only nonpool literal was :q. Then for the second
recursive call, at line 11, the set of eligible clauses is reduced by discarding all
clauses containing :q. Thus the problem has been simpli�ed without branching.

Another practical strategy is analogous to the pure literal rule of DPLL. If q
is a nonpool literal and no eligible clause contains :q, choose q as the clashing
literal at line 7. Now :q is added to the pool at line 8, causing all clauses
containing q to become ineligible. In addition, line 10 (if reached) must be true.
Thus the problem has been simpli�ed without branching.

6.2 Correspondence with RelSat Learning

The learning procedure of RelSat [3] has the simplest correspondence with
PoolRes. Say q = 1 was a \decision" assignment and ? was derived, possibly
after some additional assignments by unit-clause propagation. RelSat \learns"
a clause of the form [:q; �] where the subclause � consists of complements of
(some of the) literals that were assigned true before the q = 1 \decision." Us-
ing the straightforward simulation described above, PoolRes derives the same
clause in the procedure invocation where q was chosen as the clashing literal at
line 7.

6.3 Correspondence with GRASP, First UIP

Marques-Silva and Sakallah [18] introduced the term unique implication point

(UIP) to refer to a vertex, say x, in their implication graph such that all paths
from the decision literal, say q, to ? pass through x. Van Gelder and Okushi
[24] independently analyzed similar structures, used the term articulation point,
and gave a linear-time algorithm for detecting them.

If x is a UIP, then a clause [:x; �] can be inferred from the implication graph,
where subclause � consists of complements of (some of the) literals that were
assigned true before the q = 1 \decision." This clause is called the UIP clause.
The decision literal is always a UIP and gives rise to the RelSat clause, as in
Section 6.2.

Marques-Silva and Sakallah studied the scheme consisting of learning the
UIP clause of the �rst UIP, i.e., the one closest to ? in the implication graph.
Suppose q = 1 is the decision literal, x 6= q is the �rst UIP, and [:x; �] is the UIP
clause. Using the straightforward simulation described above, PoolRes derives
the same clause in the procedure invocation that chooses :x as the clashing
literal at line 7, to simulate the unit-clause propagation assignment x = 1 in
DPLL. The call at line 8 returns the same D0 that was used for the antecedent
edges of x in the implication graph; this applies to all literals that DPLL assigns
through unit-clause propagation. Then :x is added to the pool and D1 = [:x; �]
is derived and returned at line 11.

However, GRASP and some other search engines have an option to learn
only the �rst UIP clause. When x 6= q, this means they do not backtrack to the
assignment q = 0. Instead, they erase all assignments at the current \decision
level," i.e., those at and after q = 1, then they learn (assert) the �rst UIP clause,
[:x; �]. At this point all literals of � are false, so :x becomes a failure driven

assertion.

For PoolRes to simulate �rst UIP, it needs to \look ahead" at the point
where q = 1 is the \decision" and anticipate that x will become the �rst UIP.
So PoolRes skips choosing q as the clashing literal, and skips subsequent steps
until x = 1 is assigned by unit-clause propagation. At this point it chooses x as
the clashing literal. That is, :x is added to the pool at line 8 as though x were a
decision variable in DPLL. Next it \plugs in" the same derivation that occurred
in the RelSat style simulation, except that :x was added to the pool at line 11
in that simulation, as described a few paragraphs above. Thus D0 = [:x; �] is
derived and returned. Then it adds x to the pool at line 11, which simulates
GRASP's failure-driven assertion of :x.

6.4 Correspondence with Decision Learning

The decision learning strategy requires the learned clause to contain only the
negations of \decision" literals. For PoolRes to simulate this strategy, it only
simulates \decision" assignments, and defers all unit-clause propagations until a
decision assignment has been made that allows unit-clause propagation to derive
?. Suppose that decision is q = 1. The decision-literal UIP clause can be derived,
and contains only decision literals. All derived clause are available for later use,
so those that depend only on decision literals at early levels can potentially be
used in many branches.

6.5 Correspondence with FirstNewCut

The First New Cut strategy was proposed recently by Beame et al. [4]. We refer
the reader to that paper for details. Relying on their Proposition 4, the clause
speci�ed as First New Cut, can be derived by what they de�ne as a trivial

resolution. This involves a series of resolution steps in a chain each one with a
di�erent clashing literal.

Such a trivial resolution is easy to simulate with pool resolution: just add
the clashing literals to the pool in the reverse order of the trivial resolution, and
derive the clauses on the way back out of the recursions.

The idea to simulate the First New Cut strategy is to simulate only the deci-
sion assignments. The pool P contains their complements. When a contradiction
can be derived, say after the decision q = 1, let the pool be [P;:q]. Simulate the
implication graph by adding literals to the pool in a topological order consistent
with the implication graph, such that all literals on the opposite side of the cut
from the empty clause are added before any on the same side. This policy derives
the First New Cut clause. Continue derivations based on the implication graph
until [P;:q]

�

has been derived. Continue with the pool [P; q].

7 Conclusion

We introduce a system called pool resolution and show that it simulates regular
resolution linearly and has exponentially shorter refutations on at least one fam-
ily of formulas. This paper draws heavily on earlier work in proof complexity [1,
4]. Thus pool resolution is one of the strongest known re�nements of general res-
olution. Whether it has the full power of general resolution (within a polynomial
factor) is unknown, but seems unlikely.

We also show that pool resolution is able to simulate several strategies for
clause learning within DPLL. These simulations are natural enough that they
provide some hope that most of the power of pool resolution can be realized, at
least on practical problems, by some form of DPLL with clause learning. Beame
et al. have obtained related results for their First New Cut learning strategy [4].

References

1. Alekhnovich, M., Johannsen, J., Pitassi, T., Urquhart, A.: An exponential separa-
tion between regular and unrestricted resolution. In: Proc. 34th ACM Symposium
on Theory of Computing. (2002) 448{456

2. Anderson, R., Bledsoe, W.W.: A linear format for resolution with merging and
a new technique for establishing completeness. Journal of the ACM 17 (1970)
525{534

3. Bayardo, Jr., R.J., Schrag, R.C.: Using CSP look-back techniques to solve real-
world SAT instances. In: Proc. AAAI. (1997) 203{208

4. Beame, P., Kautz, H., Sabharwal, A.: Towards understanding and harnessing the
potential of clause learning. Journal of Arti�cial Intelligence Research 22 (2004)
319{351

5. Beame, P., Pitassi, T.: Simpli�ed and improved resolution lower bounds. In: Proc.
28th ACM Symposium on Theory of Computing. (1996)

6. Ben-Sasson, E., Wigderson, A.: Short proofs are narrow | resolution made simple.
JACM 48 (2001) 149{168

7. Bonet, M., Galesi, N.: A study of proof search algorithms for resolution and poly-
nomial calculus. In: Proc. 40th Symposium on Foundations of Computer Science.
(1999) 422{432

8. Bonet, M., Galesi, N.: Optimality of size-width tradeo�s for resolution. Compu-
tational Complexity 10 (2001) 261{276

9. Clegg, M., Edmonds, J., Impagliazzo, R.: Using the Groebner basis algorithm
to �nd proofs of unsatis�ability. In: Proc. 28th ACM Symposium on Theory of
Computing. (1996) 174{183

10. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving.
Communications of the ACM 5 (1962) 394{397

11. Davis, M., Putnam, H.: A computing procedure for quanti�cation theory. Journal
of the Association for Computing Machinery 7 (1960) 201{215

12. Dechter, R., Rish, I.: Directional resolution: the davis-putnam procedure, revisited.
In: Proc. 4th Int'l Conf. on Principles of Knowledge Representation and Reasoning
(KR'94), Morgan Kaufmann, San Francisco (1994) 134{145

13. Goldberg, E., Novikov, Y.: Berkmin: a fast and robust sat-solver. In: Proc. Design,
Automation and Test in Europe. (2002) 142{149

14. Johnson, D.S., Trick, M.A., eds.: Cliques, Coloring, and Satis�ability: Second
DIMACS Implementation Challenge. Volume 26 of DIMACS Series in Discrete
Mathematics and Theoretical Computer Science. American Mathematical Society
(1996)

15. Krishnamurthy, B.: Short proofs for tricky formulas. Acta Informatica 22 (1985)
253{274

16. Lee, S.J., Plaisted, D.A.: Eliminating duplication with the hyper-linking strategy.
Journal of Automated Reasoning 9 (1992) 25{42

17. Letz, R., Mayr, K., Goller, C.: Controlled integration of the cut rule into connection
tableau calculi. Journal of Automated Reasoning 13 (1994) 297{337

18. Marques-Silva, J.P., Sakallah, K.A.: GRASP{a search algorithm for propositional
satis�ability. IEEE Transactions on Computers 48 (1999) 506{521

19. Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik, S.: Cha�: Engineering
an eÆcient SAT solver. In: 39th Design Automation Conference. (2001)

20. Plaisted, D.A. (private communication) (1984)
21. Plaisted, D.A.: The search eÆciency of theorem proving strategies. In: 12th Inter-

national Conference on Automated Deduction, Springer-Verlag (1994) 57{71
22. St�almarck, G.: Short resolution proofs for a sequence of tricky formulas. Acta

Informatica 33 (1996) 277{280
23. Tseitin, G.S.: On the complexity of derivation in propositional calculus. In Slisenko,

A.O., ed.: Seminars in Mathematics v. 8: Studies in Constructive Mathematics
and Mathematical Logic, Part II. Steklov Math. Inst., Leningrad (1968) 115{125
(English trans., 1970, Plenum.).

24. Van Gelder, A., Okushi, F.: Lemma and cut strategies for propositional model
elimination. Annals of Mathematics and Arti�cial Intelligence 26 (1999) 113{132

25. Van Gelder, A., Tsuji, Y.K.: Incomplete thoughts about incomplete satis�ability
procedures. In: Second DIMACS Challenge Workshop: Cliques, Coloring and Sat-
is�ability. (1993) (also at
ftp://ftp.cse.ucsc.edu/pub/avg/incomplete.ps.Z).

26. Van Gelder, A., Tsuji, Y.K.: Satis�ability testing with more reasoning and less
guessing. In Johnson, D.S., Trick, M., eds.: Cliques, Coloring, and Satis�ability:
Second DIMACS Implementation Challenge. DIMACS Series in Discrete Mathe-
matics and Theoretical Computer Science, American Mathematical Society (1996)
(also at
ftp://ftp.cse.ucsc.edu/pub/avg/kclose-tr.ps.Z).

27. Zhang, H., Stickel, M.E.: Implementing the davis-putnam method. Journal of
Automated Reasoning 24 (2000) 277{296

28. Zhang, L., Madigan, C., Moskewicz, M., Malik, S.: EÆcient con
ict driven learning
in a boolean satis�ability solver. In: ICCAD. (2001)

