
Preliminary Report on Input Cover Number as

a Metric for Propositional Resolution Proofs?

Allen Van Gelder

University of California, Santa Cruz CA 95060, USA,
WWW home page: http://www.cse.ucsc.edu/~avg

Abstract. Input Cover Number (denoted by �) is introduced as a met-
ric for diÆculty of propositional resolution derivations. If F = fCig is
the input CNF formula, and clauses are regarded as sets of literals, then
the input cover number of a clause D based on F , denoted by �(D; F),
is de�ned as the minimum number of clauses Ci needed to form a super-
set of (i.e., cover) D. The � for a derivation is the maximum � of any
clause in the derivation. Input Cover Number provides a re�nement of the
clause-width metric analyzed by Ben-Sasson and Wigderson in the sense
that it applies to families of formulas whose clause width grows with for-
mula size, such as pigeon-hole formulas and the family GT(n) introduced
by Krishnamurthy (Acta Informatica 1985). Ben-Sasson and Wigderson
(JACM 2001) showed that if formula F has the property that every res-
olution refutation of F contains a clause of width W , then certain lower
bounds can be expressed in terms of (W � width(F)) for the shortest
tree-like refutation and for the shortest refutation. It is shown here that
both bounds apply with (W � width(F)) replaced by �. For families of
formulas whose clause width is bounded by a constant, the two metrics
provide essentially the same bounds. Evidence is presented that � may
be a sharper metric than clause width for distinguishing polynomial fam-
ilies from super-polynomial families. Ben-Sasson and Wigderson showed
that pigeon-hole formulas PHP(m;n) formulas require clause-width to be

(n), and it is well known that pigeon-hole formulas require refutation
length to be exponential in n. Bonet and Galesi (Computational Com-
plexity 2001) showed that GT(n) formulas also require clause-width to
be
(n), although the GT(n) family has polynomial-length refutations.
It is shown here that � is
(n) for pigeon-hole formulas and is O(1) for
GT(n) formulas and variants of GT(n).

1 Introduction

The reader is assumed to be generally familiar with the propositional satis�a-
bility problem, CNF formulas, and resolution derivations. Some de�nitions are
brie
y reviewed in Section 2, but are not comprehensive.

Ben-Sasson and Wigderson [3] showed that, if the minimum-length general
resolution refutation for a CNF formula F has S steps, and if the minimum-
length tree-like refutation of F has ST steps, then there is a (possibly di�erent)
? A short version of this paper appears in SAT06, Aug. 2006, Seattle

refutation of F using clauses of width at most:

w(F ` ?) � w(F) + c
p
n lnS; (1)

w(F ` ?) � w(F) + lgST : (2)

Note that the w(F) terms were omitted from their statement in the introduction,
but appear in their statements of the theorems. The notation for this expression
is:

{ n is the number of propositional variables in F ;
{ w(F) is the width of the widest clause in F ;
{ w(F ` ?) denotes the minimum resolution width of � ranging over all res-
olution derivations that refute F , where the resolution width of �, denoted
wF (�), is the width of the widest clause in �;

{ c is a constant, independent of F ;
{ ln and lg denote natural and binary logs, respectively.

All formulas and clauses are propositional, clauses are disjunctions of literals,
formulas are in CNF, unless speci�ed otherwise.

Our �rst results essentially eliminate the w(F) terms in the Ben-Sasson and
Wigderson theorems [3], and replace resolution width by �F (�), the input cover

number, as de�ned next, in Section 1.1. Input cover number is an improvement
on the input distance metric proposed previously [10]. For families of formulas
whose widest clause is bounded by a constant, input cover number and resolution
width are essentially equivalent measures.

Our interest in input cover number stems from the indications that it sep-
arates polynomial families from super-polynomial families for a wide class of
formulas that represent SAT encodings of constraint satisfaction problems. Typ-
ically, these problems have a small number of wide positive clauses stating that
each element of a set must have a value in a certain �nite domain, together with
a large number of localized constraints on combinations of values among small
numbers of elements.

Two prototypical and widely studied examples are the pigeon-hole family
PHP(n+ 1; n) and the GT(n) family. The latter family was introduced by Kr-
ishnamurthy [7], who conjectured that it required super-polynomial resolution
length. This conjecture remained open for more than a decade before St�almarck
demonstrated a polynomial-length solution. Both families have a similar appear-
ance: �(n) clause width, �(n2) propositional variables,�(n3) clauses, and �(n3)
overall formula length. However, the pigeon-hole family has minimum resolution
length in
(2n) [6, 3], whereas the GT(n) family has minimum resolution length
in O(n3) [9, 4]. The clause-width metric does not distinguish between these two
families: after the standard transformations into 3-CNF, giving EPHP(n+1; n)
and MGT(n), they both have lower bounds for w(F ` ?) in
(n) [3, 4]. The in-
put distance metric [10] also does not distinguish between these two families. We
show that the input-cover-number metric distinguishes sharply between them:
�(PHP(n+ 1; n) ` ?) is in �(n), whereas �(GT(n) ` ?) is in �(1).

1.1 Input Cover Number

We de�ne input cover number for nontautologous clauses (primarily derived
clauses in a resolution proof) for input CNF formula F .

De�nition 1.1. (input cover number) All clauses mentioned are nontautol-
ogous. Let D be a clause; let C be an input clause, i.e., a clause of formula F .
Regard clauses as sets of literals. The input cover number of D w.r.t. F , denoted
�F(D), is the minimum number of clauses Ci 2 F such that D � Si Ci, i.e., the
cardinality of the minimum set cover.

For a resolution proof � the input cover number of � w.r.t. F , denoted �F(�),
is the maximum over D 2 � of the input cover numbers of D w.r.t. F .

When F is understood from the context, �(D) and �(�) are written. Follow-
ing Ben-Sasson and Wigderson [3], �(F ` D) denotes the minimum of �F(�)
over all � that are derivations of D from F .

1.2 Summary of Results

The theorems shown here are that, if � is a resolution refutation of F and � uses
all clauses of F and the length of � is S, then there is a refutation of F using
clauses that have input cover number w.r.t. F that is at most:

�(F ` ?) � c
p
n lnS; (3)

�(F ` ?) � lgST : (4)

Also, we show that the pigeon-hole family of formulas PHP(m;n) require
refutations with input cover number
(n), although they contain clauses of
width n. This result suggests that input cover number provides a re�nement of
the clause-width metric as a measure of resolution diÆculty. That is, when a fam-
ily of formulas with increasing clause-width, such as PHP(m;n), is transformed
into a bounded-width family, such as EPHP(m;n), and the bounded-width fam-
ily has large resolution width, this is not simply because they rederive the wide
clauses of the original family, then proceed to refute the original family. Rather,
it is the case that wide clauses substantially di�erent from those in the original
family must be derived.

Although the results are promising in some cases, the input-cover-number
metric has an inherent fragility. Although �(GT(n) ` ?) is in �(1) for the
natural encoding of GT(n), for 3-CNF variant, �(MGT(n) ` ?) is necessarily
the same order of magnitude as the clause-width lower bound, w(MGT(n) ` ?),
i.e., in
(n).

Also, the current paper does not have an independent proof, based on input
cover numbers, that the pigeon-hole family in its natural encoding has an
(2n)
lower bound on refutation length. Recall that Bonet and Galesi showed that
w(MGT(n) ` ?) is in
(n), yet MGT(n) has a refutation in �(n3) [4]. Due to
the fragility of � mentioned in the previous paragraph, the following attractive
conjecture must fail : If a family has � in
(n), its refutation length must be

super-polynomial in n. Future work should address whether a more restricted
form of this conjecture can be proven, which will apply to the pigeon-hole family
in its natural encoding.

Another attractive conjecture that must fail is the following: If a family has
� in
(1), its refutation length must be polynomial. Choose any hard family
and add two clauses, one consisting of all the positive literals and one consisting
of all the negative literals. (Of course, these clauses are subsumed by other
clauses in the formula, but they are legal.) Any refutation now has 2 as its
input cover number. Again, future work should examine more restricted forms of
this conjecture, which eliminate trivial counter-examples like this. For example,
eliminating unused clauses before computing � would rule out this speci�c trick,
but more sophisticated tricks like this might survive.

Considering these fragilities, we conclude this summary with a meta-conjecture:
Any \interesting" general theorems about bounds involving � will use a modi-
�ed de�nition that is based on the underlying constraint satisfaction problems,
rather than arbitrary propositional formulas. That is, literals in the CNF en-
coding will be linked to semantic elements of the constraint satisfaction problem
and the metric will take these associations into account. For example, all positive
literals in a clause that refer to the same CSP element and the same property,
but assert various values for that property, might be considered to be \covered"
by one constraint.

2 Preliminaries

2.1 Notation

This section collects notations and de�nitions used throughout the paper. Stan-
dard terminology for conjunctive normal form (CNF) formulas is used. Notations
are summarized in Table 1. Although the general ideas of resolution and deriva-
tions are well known, there is no standard notation for many of the technical
aspects, so it is necessary to specify our notation in detail.

De�nition 2.1. (assignment, satisfaction, model) A partial assignment is
a partial function from the set of variables into ffalse ; trueg. This partial func-
tion is extended to literals, clauses, and formulas in the standard way. If the
partial assignment is a total function, it is called a total assignment, or simply
an assignment.

A clause or formula is satis�ed by a partial assignment if it is mapped to true;
A partial assignment that satis�es a formula is called a model of that formula.

ut

A partial assignment is conventionally represented by the (necessarily con-
sistent) set of unit clauses that are mapped into true by the partial assignment.
Note that this representation is a very simple formula.

Table 1. Summary of notations.

a; : : : ; z Literal; i.e., propositional variable or negated propositional variable.
:x Complement of literal x; ::x is not distinguished from x.
jxj The propositional variable in literal x; i.e., jaj = j:aj = a.
A; : : : ; Z Disjunctive clause, or set of literals, depending on context.
A; : : : ;H CNF formula, or set of literals, depending on context.
� Resolution derivation DAG.
� Total assignment, represented as the set of true literals.

[p1; : : : ; pk] Clause consisting of literals p1; : : : ; pk.
? The empty clause, which represents false.
> The tautologous clause, which represents true ; (see De�nition 2.2).
�; : : : ; Æ Subclause, in the notation [p; q; �], denoting a clause with literals p,

q, and possibly other literals, �.
C� Read as \C, or some clause that subsumes C".

p In a context where a unit clause is expected, [p] may be abbreviated
to p.

C, p In a context where a formula is expected, fCg may be abbreviated to
C and f[p]g may be abbreviated to p.

+, � Set union and di�erence, as in�x operators, where operands are for-
mulas, possibly using the abbreviations above.

res(q; C;D) Resolvent of C and D, where q and :q are the clashing literals (see
De�nition 2.2).

CjA, FjA,
�jA

C (respectively F , �) restricted by A (see De�nition 2.4).

2.2 Resolution as a Total Function

De�ning resolution as a total function removes the need to include the weak-
ening rule in the proof system. Numerous proof complexity papers include the
weakening rule as a crutch to handle \life after restrictions" [3, 4, 1]. However,
according to Alasdair Urquhart, the weakening rule might add power to some
resolution strategies, such as linear resolution.

De�nition 2.2. (resolution, subsumption, tautologous) A clause is tau-

tologous if it contains complementary literals. All tautologous clauses are con-
sidered to be indistinguishable and are denoted by >.

If C = [q; �] and D = [:q; �] are two non-tautologous clauses (� and � are
subclauses), then

res(q; C;D) = res(q;D;C) = res(:q; C;D) = res(:q;D;C) = [�; �]

de�nes the resolution operation, and [�; �] is called the resolvent, which may be
tautologous. Resolution is extended to include > as an identity element:

res(q; C;>) = C

provided C contains q or :q.

Resolution is further extended to apply any two non-tautologous clauses and
any literals, as follows. Fix a total order on the clauses de�nable with the n
propositional variables such that ? is smallest, > is largest, and wider clauses
are \bigger" than narrower clauses. Other details of the total order are not
important.

If C = [�] does not contain q and D = [:q; �] is non-tautologous, then
res(q; C;D) = res(q;D;C) = res(:q; C;D) = res(:q;D;C) = [�]

If C = [�] and D = [�] and neither contains q or :q, and both are non-
tautologous, then

res(q; C;D) = res(q;D;C) = res(:q; C;D) = res(:q;D;C)
= the smaller of C and D.

With this generalized de�nition of resolution, we have an algebra, and the set
of clauses (including >) is a lattice, based on �, with the convention that every
clause is a subset of >. We shall see later that the bene�t of this structure is that
resolution \commutes up to subsumption" with restriction (see De�nition 2.4),
so restriction can be applied to any resolution derivation to produce another
derivation.

If clause C � D, we say C properly subsumes D; if C � D, we say C subsumes

D. Also, any non-tautologous clause properly subsumes >. Notation D� is read
as \D, or some clause that subsumes D". ut
De�nition 2.3. (derivation, refutation) A derivation (short for propositional
resolution derivation) from formula F is a rooted, directed acyclic graph (DAG)
in which each vertex is labeled with a clause and possibly with a clashing literal.
Let D be the clause label of vertex v. If D = C 2 F , then v has no out-edges
and no clashing literal, and is called a leaf. Otherwise v is called a resolution

vertex, has two out-edges, say to vertices with clause labels D1 and D2, and is
also labeled with the clashing literal q such that

D = res(q;D1; D2);

where res is the total function de�ned in De�nition 2.2. In much of the discus-
sion, vertices are referred to by their clause labels.

A derivation derives its root clause. When the root clause is ?, the derivation
is called a refutation. ut

2.3 The Restriction Operation

De�nition 2.4. (restricted formula, restricted derivation) Let A be a
partial assignment for formula F . Let � be a derivation from F . The clause
CjA, read \C restricted by A", and the formula FjA, read \F restricted by A",
are de�ned as follows.

1. CjA = >, if C contains any literal that occurs in A.

2. CjA = C � fq j q 2 C and :q 2 Ag, if C does not contain any literal that
occurs in A. This may be the empty clause.

3. FjA =
�
CjA �� C 2 F	; i.e., apply restriction to each clause in F .

Usually, occurrences of > (produced by part (1)) are deleted in FjA.
4. �jA is the same DAG as � structurally, but the clauses labeling the vertices

are changed as follows. If a leaf (input clause) of � contains C, then the
corresponding leaf of �jA contains CjA. Each derived clause of �jA uses
resolution on the same clashing literal as the corresponding vertex of �.

The operation Fjp (i.e., Fjf[p]g) is sometimes called \unit simpli�cation". ut

The term \restrict" is sometimes called \strengthen" in the theorem-proving
community [8]. Ben-Sasson and Wigderson [3] and others in the proof-complexity
community use the term \restriction" for \unit simpli�cation" or \restriction by
a single literal"; several di�erent terms for this operation may be found in the
literature.

Example 2.5. Let F consist of clauses C1 = [a; b], C2 = [:a; c], C3 = [:b; e],
and C4 = [:c;:d]. Let � consist of leaves C1, C2 and C4 and the derived clauses

D1 = res(a; C1; C2) = [b; c] ;

D2 = res(c;D1; C4) = [b;:d] ;
D3 = res(b;D2; C3) = [e;:d] :

Then Fja = f[c] ; [:b; e] ; [:c;:d]g, Also, Fjfa; cg = f[:b; e] ; [:d]g.
Now consider �ja. The leaves are C1ja = >, C2ja = [c], C3ja = C3, and

C4ja = C4. The derived clauses are E1, E2 and E3, where:

E1 = res(a;>; [c]) = [c] ;

E2 = res(c; [c] ; [:c;:d]) = [:d] ;
E3 = res(b; [:d] ; [:b; e]) = [:d] :

Notice that Ei 6= Dija in any case, but Ei = (Dija)� in all cases. Also notice
that the clashing literal is absent from one operand in the resolution for E3, so
the resolvent is just the other operand. ut

Lemma 2.6. Given formula F , and a restriction literal p,

res(q;D1jp;D2jp) � res(q;D1; D2)jp:

Proof. The principal case that requires checking is when q = p and q 2 D1 and
:q 2 D2 (or vice versa). In this case,

res(q;D1; D2)jp = res(q;D1; D2) = (D1 � p) [(D2 �:p):

Then res(q;D1jp;D2jp) = D2jp = (D2�:p). Therefore,D2jp � res(q;D1; D2)jp.
ut

Lemma 2.7. Given formula F , and a restriction literal p, if � is a derivation of
C from F , then �jp is a derivation of (Cjp)� (a clause that subsumes Cjp) from
Fjp.
Proof. The proof is by induction on the structure of � with edge v ! w inter-
preted to mean that v is greater than w. Thus, the base cases are the vertices
that are clauses in F , called the leaves. By Lemma 2.6, if a vertex of � contains
the derived clause C, and the two adjacent operand vertices satisfy the lemma,
then the corresponding vertex of �jp contains (Cjp)�. ut

If C is the root of � and Cjp 6= >, then a >-free derivation of (Cjp)� can be
constructed from �jp by changing all resolution vertices that have exactly one >
operand to \copy" vertices that use the non-> operand, then deleting all the >
vertices, then compressing out all the copy vertices. Finally, the resulting DAG
might have multiple sources, so delete all vertices that cannot be reached from
the original root, which now contains (Cjp)�. This procedure does not change
the clause in any vertex of �jp.

Notice that Ben-Sasson and Wigderson [3] de�ne �jp di�erently, as clause-
by-clause restriction of the originally derived clauses. As Example 2.5 showed,
this de�nition does not necessarily produce a derivation; they do not discuss this
issue. The de�nitions used herein do ensure that the restriction of a derivation
is a derivation, without using weakening. The point of Lemma 2.7 is that the
clauses derived from the restricted formula are at least as strong as the clause-
by-clause restrictions of the originally derived clauses.

2.4 Input Cover Number and Restriction

A few properties of input cover number on clauses that result from restriction
are stated.

Lemma 2.8. Let C be a clause of F and let A be a partial assignment. If
CjA 6= > (i.e., A does not satisfy C), then �F (CjA) = 1.

Proof. CjA � C. ut
Lemma 2.9. Let D be a clause of F , let A be a partial assignment, and let
G = FjA. If DjA 6= > (i.e., A does not satisfy D), then �F(D) � �G(DjA)+ jAj.
Proof. D � DjA [A, and �F ((DjA) [A) � �F(DjA) + jAj. But �F (DjA) �
�G(DjA). ut

3 Size vs. Input Cover Number Relationships

Ben-Sasson andWigderson [3] derived size-width relationships that they describe
as a \direct translation of [CEI96] to resolution derivations." Their informal
statement, \if F has a short resolution refutation then it has a refutation with
a small width," applies only when F has no wide clauses.

This section shows that by using input cover number rather than clause
width, the restriction on the width of F can be removed. That is, the relation-
ships are restricted by removing the additive term, width(F).

The use of restriction for recursive construction of refutations with special
properties originates with Anderson and Bledsoe [2], who used it as a uniform
framework for showing completeness of various restrictions on resolution, in-
cluding linear resolution, set-of-support strategy, positive resolution, and others.
Clegg et al. [5] used it in connection with Groebner-basis refutations. Ben-Sasson
and Wigderson [3] used it to construct resolution refutations of small width. Van
Gelder used it to construct resolution refutations of small input distance. We use
it here to construct resolution refutations of small input cover number, closely
following Ben-Sasson and Wigderson.

Lemma 3.1. Given formula F , and a restriction literal p, let G = Fjp. If deriva-
tion �1 derives clause D from G with input cover number �G(�1) = (d� 1), then
there is a derivation �2 that derives (D+:p)� from F with input cover number
�F(�2) � d.

Proof. Since G contains neither p nor :p, we can assume w.l.o.g. that no vertices
of �1 have p or :p as the clashing literal. De�ne �2 to have the same DAG
structure as �1, and the same clashing literal at each vertex, but wherever a
leaf of �1 is labeled with Cjp, label the corresponding leaf of �2 with C. Each
clause of F has at most one additional literal, :p, compared to the corresponding
clause of G, or else contains p. But no clauses of F containing p are leaves of
�2. Complete the clause labeling of �2 according to the de�nition of resolution.
Clearly �2 derives (D+:p)�. For each clause E in �2, the corresponding clause
in �1 is Ejp. By Lemma 2.9, �F(E) � �G(Ejp) + 1. So �F (�2) � d. ut

Lemma 3.2. Given formula F , and a restriction literal p, let G = Fjp and
H = Fj:p. If derivation �1 derives ? from G with input cover number �G(�1) =
d� 1, and derivation �2 derives ? from H with input cover number �H(�2) = d,
then there is a derivation �3 that derives ? from F with input cover number
�F(�3) � d.

Proof. Using Lemma 3.1, there is a derivation �4 that derives [:p]� from G with
input cover number �F(�4) � d. If the root of �4 is ?, let �3 = �4 and we are
done. Otherwise, construct �3 as follows:

1. Use �4 as the initial part of �3. This part of �3 has input cover number at
most d w.r.t. F .

2. Resolve every clause of F that contains p with the root of �4, which contains
[:p]. Call this set of resolvents F1. All of these resolvents have input cover
number 1 w.r.t. F (Lemma 2.8), so they do not contribute to �F(�3); also,
they and are in H.

3. Let F2 consist of those clauses in F that contain neither :p nor p. Note that
F1 +F2 = H.

4. Complete the derivation �3 according to the derivation �2, using clauses
from F1 and F2 in place of H at the leaves of �2. Since �F(D) � �H(D) for
any clause D, this part of �3 has input cover number at most d w.r.t. F .

Thus �F (�3) � d. ut
Theorem 3.3. Let F be an unsatis�able formula on n � 1 variables and let
d � 0 be an integer. Let ST be the size of the shortest tree-like refutation of F .
If ST � 2d, then F has a refutation � with input cover number �F(�) � d.

Proof. The proof is by induction on the pair (n; d) with the component-wise
partial order, and follows Ben-Sasson and Wigderson [3], except that it uses
input cover number and Lemma 3.2 above. The bases cases are d = 0 or n = 1,
and are immediate. For d > 0 and n > 1 assume the theorem holds for smaller
pairs. Let x be the clashing literal at the root of �, a shortest tree-like refutation
of F . The children of the root are themselves the roots of tree-like derivations
of x and :x; call them �1 and �0. Assume the size of �1 is at most 2d�1. But
�1j:x is a tree-like refutation of G = Fj:x. By the inductive hypothesis, G has
a refutation �2 with input cover number �G(�2) � d� 1. Also, H = Fjx has at
most n � 1 variables, so by the inductive hypothesis, H has a refutation with
input cover number �H(�1) � d. By Lemma 3.2, F has a refutation � with input
cover number �F(�) � d. ut
Corollary 3.4. ST (F) � 2�(F`?).

Theorem 3.5. Let F be an unsatis�able formula on n � 1 variables and let
d � 0 be an integer. Let S(F) be the size of the shortest refutation of F . If
S(F) � e(d

2=8n), then F has a refutation �1 with �F (�1) � d.

Proof. The proof is by induction on the pair (n; d) with the component-wise
partial order, and follows Ben-Sasson and Wigderson [3], except that it uses
input cover number and Lemma 3.2 above. Their local variable d is renamed to
f here and denotes the input cover number that causes a clause to be classi�ed
as fat ; f = dp2n lnS(F)e. For any derivation �, let �� be the set of clauses
D 2 � with �F (D) > f . De�ne a = 2n=(2n� f). The theorem follows from this
claim:

Claim: For all b � 0 and 1 � m � n, if formula G has m variables and � is a
refutation of G and j��j < ab, then �(G ` ?) � f + b.

Setting b = f and G = F , and using the identity � ln(1�f=2n) > f=2n, ensures
that ab � S(F), so ensures the hypothesis, j��j < ab, is true. Setting d = 2f
proves the theorem.

The claim is proved by induction on on the pair (m; b) with the component-
wise partial order. The base cases are b = 0 or m = 1, for which the claim is
immediate, as j��j = 0. For b > 0 and m > 1, there is some literal x that appears
in at least j��j f=2n clauses of ��. Let �jx be as de�ned in De�nition 2.4. By
Lemma 2.7 and the discussion following it, there is a >-free derivation �1 with

the same nontautologous clauses as �jx. Then j��1 j � (1�f=2n)j��j � ab�1. But
�1 refutes Gjx, so by the inductive hypothesis, �(Gjx ` ?) � f + b � 1. Let �0
be the >-free version of �j:x, which refutes Gj:x. Since Gj:x has fewer than
m variables and j��0 j � ab, by the inductive hypothesis, �(Gj:x ` ?) � f + b.
Applying Lemma 3.2 proves the claim. ut

Corollary 3.6. S(F) � e(�(F`?)2=8n).

4 Pigeon-Hole Formulas

The well-known family of Pigeon-Hole formulas for m pigeons and n holes
(PHP(m;n)) is de�ned by these clauses:

Ci = [xi;1; : : : ; xi;n] for 1 � i � m

Bijk = [:xi;k ;:xj;k] for 1 � i � m; 1 � j � m; 1 � k � n:

For the standard version, m = n + 1. We shall show that any refutation of
PHP(m;n) with m > n has input cover number
(n). An (already known)
exponential lower bound for tree-like refutations follows by Corollary 3.4, but
no useful lower bound for general refutations follows by Corollary 3.6, since the
\n" in that corollary is the number of variables, which is nm in the notation of
this section. The method follows Ben-Sasson and Wigderson [3], except that it
uses input cover number and the original PHP clauses of width n.

Theorem 4.1. Any refutation of PHP(m;n) with m > n has input cover num-
ber at least n=6.

Proof. For 1 � i � m, de�ne

Ai = fCi; Bijk ; 1 � j � m; 1 � k � ng

which consists of all the constraints on pigeon i. De�ne �(D), the complexity of
a clause D, as the minimum number of Ai's needed to logically imply D. Then
�(?) = n+1 and �(C) = 1 where C is any input clause. Suppose I is the index
set for a minimum-cardinality set of Ai's that imply D and n=3 � jI j < 2n=3.
That is,

�^
i2I

Ai

�
! D (5)

is a tautology. Such an I must exist, because �(res(q;D1; D2)) � �(D1)+�(D2).
Equation (5) holds if and only if the following is unsatis�able (note that :(D)

constitutes a set of unit clauses):

�^
i2I

Ai

�
^ :(D) (6)

Let P0 be the set of pigeons (�rst index of variables) that have negative literals
in D; let P1 be the set of pigeons that have positive literals in D. If D has at
least n=3 negative literals, then its input cover number is at least n=6; assume
this is not the case. Therefore, I � P0 is nonempty.

The plan of the proof is to show that, if I �P0 is nonempty and D has fewer
than n=3 negative literals, either there is an assignment that satis�es (6) or P1

has at least n=3� 1 pigeons. Table 2 illustrates some of the notation.

Since I �P0 is nonempty, let p 2 I �P0 and let I� = I �fpg. Thus p is some
pigeon whose hole is not forced by :(D). By the minimality of I there is an
assignment � that makes :(D) true, makes Ap false and satis�es Ai for i 2 I�.
W.l.o.g. let � be chosen to have as few positive literals as possible. Then � sets
all xik = 0 for i not in I [P0 [P1 and 1 � k � n. Further, � sets all xpk = 0,
1 � k � n, since none of these positive literals occur in :(D). Choose a function
k(i) for i 2 I� such that xi;k(i) = 1 in �. Necessarily, k(i1) 6= k(i2) for distinct
i1; i2 2 I�. Let K be the set of indexes in the range 1 through n that are not

in the range of k(i); jKj � n=3 + 2. These are the holes that are available for
pigeon p.

Recall that � sets xpk = 0 for all k 2 K. Also, � sets xik = 1 for i 2 I�

and k 6= k(i) only if xik 2 :(D). If, for any k 2 K, xpk can be
ipped to 1
and xik can be set to 0 for all i 6= p without falsifying :(D), that would create
a satisfying assignment for (6). Therefore, for each k 2 K, :(D) contains :xpk
or xik for some i 6= p. Since jKj > n=3 and we assumed D has fewer than n=3
negative literals, it must be the case that :(D) contains :xpk for some k 2 K.

Finally, we argue that since :(D) contains :xpk , for some k 2 K, it must
contain :xik for all i 2 I�. Suppose this fails for some i. Then modify � by setting
xp;k(i) = 1, xp;k = 0, xi;k(i) = 0, and xi;k = 1 (see Table 2). This produces a
satisfying assignment for (6).

To summarize, if :(D) contains :xpk for some k 2 K, then D contains
positive literals for at least n=3� 1 di�erent pigeons, i.e., jP1j � n=3� 1. Since
each positive clause refers to only one pigeon, at least n=3 � 1 positive clauses
are needed to \cover" D in this case. ut

Table 2. Changing � to expose a faulty index set I, in proof of theorem.

D = [:x11; x32; x52] ; :(D) = [x11] ^ [:x32] ^ [:x52] ; I = f2; 3; 5g; I� = f2; 3g:

Original �

pige{ holes

ons 1 2 3 4

1 1 0 0 0
2 0 0 1 0
3 0 0 0 1
4 0 0 0 0

p = 5 0 0 0 0
6 0 0 0 0

i k(i)

2 3
3 4

K = f1; 2g

Modi�ed �

pige{ holes

ons 1 2 3 4

1 1 0 0 0
2 0 1 0 0
3 0 0 0 1
4 0 0 0 0

p = 5 0 0 1 0
6 0 0 0 0

5 The GT(n) Family

The GT(n) family was proposed by Krishnamurthy [7], who conjectured that
refutations required exponential length. St�almarck demonstrated the �rst poly-
nomial solution, then Bonet and Galesi found another [9, 4]. However, both of
these solutions produce derived clauses of width about double that of the input
and have input cover numbers of two. This section describes a refutation with
input cover number 3, which also has no derived clause wider than an input
clause. This new refutation is about half as long as those previously published.

For the GT(n) family, there is an underlying semantic interpretation that
guides our understanding. We suppose there is a set W whose elements are
denoted wi, 1 � i � n. The propositional variables of GT(n) correspond to
possible directed edges between distinct elements of this set. A variable is true if
the edge is present. To describe the GT(n) formulas, we introduce some clause
names.

De�nition 5.1. The clauses of GT(n) are named as follows for indexes indi-
cated.

Cn(j) � [h1; ji; : : : ; hj � 1; ji; hj + 1; ji; : : : ; hn; ji] 1 � j � n (7)

B(i; j) � [:hi; ji;:hj; ii] 1 � i < j � n (8)

A(i; j; k) � [:hi; ji;:hj; ki; hi; ki] 1 � i; j; k � n and i; j; k distinct. (9)

The Cn(j) are called long clauses ; the others are short clauses. ut

Note that A(i; j; k) and B(i; j) collectively enforce that the directed edge
relation is a partial order, hence it is acyclic. Finally, Cn(j) asserts that element
j is not a source.

We now describe a refutation with input cover number 3, which also limits
derived clause width to that of the input. The construction is recursive. The
base case is GT(1), in which C1(1) = ?, so refutation is immediate. For GT(n),
where n > 1, the refutation begins by deriving Cn�1(m) for 1 � m � n � 1.
Then GT(n� 1) is refuted.

It remains to show how Cn�1(m) is derived from Cn(m), Cn(n), and some of
the B(i; j) and A(i; j; k), where 1 � m � n� 1. This subderivation is presented
in Figure 1.

To reduce GT(n) to GT(n � 1) requires n(n � 1) resolutions, so the whole
refutation is length n(n2 � 1)=3.

The only non-tree-like part of the refutation is the multiple use of Cn(n). At
the leaves, Cn(n) is an input clause, but inside the recursion it is derived; e.g.,
the last line of the �gure when m = n� 1. It turns out that the number of steps
for the tree-like version of this scheme is about n 2n.

The attentive reader may have noticed that the only A(i; j; k) used were those
with j > i and j > k. Thus GT(n) is not minimally unsatis�able.

derived clause second operand cover

0 Cn(n) .B(m;n) Cn(n)

1 Cn(n) � [hm;ni] Cn(n); B(m;n)
+ [:hn;mi] .A(1; n;m)

2 Cn(n) � [h1; ni; hm;ni] Cn(m); Cn(n); B(m;n)
+ [h1; mi;:hn;mi] .A(2; n;m)

3 Cn(n) � [h1; ni; h2; ni; hm;ni] Cn(m); Cn(n); B(m;n)
+ [h1; mi; h2; mi;:hn;mi] .A(3; n;m)

� � �

n�2 Cn�1(m) + [hn�1; mi;:hn;mi] .A(n�1; n;m) Cn(m); Cn(n); B(m;n)

n�1 Cn�1(m) + [:hn;mi] .Cn(m) Cn(m); B(m;n)

n Cn�1(m) Cn(m)

Fig. 1. Subderivation for refutation of GT(n).

6 Conclusion

We proposed the input cover number metric (�) as a re�nement of clause width
and input distance for studying the complexity of resolution. For families with
wide clauses, the trade-o� between resolution refutation size and input cover
number is sharper than the trade-o� between resolution refutation size and clause
width.

We showed that any refutation of PHP(m;n) requires � � n=6. Moreover,
the proof showed that this input cover number can arise in two possible ways:
by having n=6 negative literals in a derived clause, or by having n=3�1 positive
literals that refer to distinct pigeons.

We showed that GT(n) [7], which has general refutations of polynomial size
[9], but for which tree-like refutations are exponential [4], behaves quite di�er-
ently: its � = 3. This family can be modi�ed so that regular refutations are also
exponential [1]. The modi�ed family also has � = 3. These results suggest (very
tentatively) that � might be the sharper metric for general resolution, while
clause-width is sharper for tree-like resolution.

Some open problems remain. Can input cover number improve the lower
bound for weak PHP(m;n), wherem� n? Ben-Sasson and Wigderson [3] trans-
formed this problem into a family with clause width proportional to logm. Are
there other natural families to which input cover number can be applied? Is
there a trade-o� between regular refutation size and input cover number? Can
input cover number be de�ned in terms of an underlying constraint satisfaction
problem to avoid losing all power under a transformation into 3-CNF?

References

1. Alekhnovich, M., Johannsen, J., Pitassi, T., Urquhart, A.: An exponential separa-
tion between regular and unrestricted resolution. In: Proc. 34th ACM Symposium
on Theory of Computing. (2002) 448{456

2. Anderson, R., Bledsoe, W.W.: A linear format for resolution with merging and
a new technique for establishing completeness. Journal of the ACM 17 (1970)
525{534

3. Ben-Sasson, E., Wigderson, A.: Short proofs are narrow | resolution made simple.
JACM 48 (2001) 149{168

4. Bonet, M., Galesi, N.: Optimality of size-width tradeo�s for resolution. Compu-
tational Complexity 10 (2001) 261{276

5. Clegg, M., Edmonds, J., Impagliazzo, R.: Using the Groebner basis algorithm
to �nd proofs of unsatis�ability. In: Proc. 28th ACM Symposium on Theory of
Computing. (1996) 174{183

6. Haken, A.: The intractability of resolution. Theoretical Computer Science 39

(1985) 297{308
7. Krishnamurthy, B.: Short proofs for tricky formulas. Acta Informatica 22 (1985)

253{274
8. Letz, R., Mayr, K., Goller, C.: Controlled integration of the cut rule into connection

tableau calculi. Journal of Automated Reasoning 13 (1994) 297{337
9. St�almarck, G.: Short resolution proofs for a sequence of tricky formulas. Acta

Informatica 33 (1996) 277{280
10. Van Gelder, A.: Lower bounds for propositional resolution proof length based on

input distance. In: Eighth International Conference on Theory and Applications
of Satis�ability Testing, St. Andrews, Scotland (2005)

