
Another Look at Graph Coloring via

Propositional Satis�ability

Allen Van Gelder

Computer Science Dept., SOE-3
University of California

Santa Cruz, CA 95064, USA

Abstract

This paper studies the solution of graph coloring problems by encoding into propo-
sitional satis�ability problems. The study covers three kinds of satis�ability solvers,
based on postorder reasoning (e.g., grasp, cha�), preorder reasoning (e.g., 2cl,
2clsEq), and back-chaining (modoc). The study evaluates three encodings, one of
them believed to be new. Some new symmetry-breaking methods, speci�c to color-
ing, are used to reduce the redundancy of solutions. A by-product of this research
is an implemented lower-bound technique that has shown improved lower bounds
for the chromatic numbers of the long-standing unsolved random graphs known
as DSJC125.5 and DSJC125.9. Independent-set analysis shows that the chromatic
numbers of DSJC125.5 and DSJC125.9 are at least 18 and 40, respectively, but sat-
is�ability encoding was able to demonstrate only that the chromatic numbers are
at least 13 and 38, respectively, within available time and space.

Key words: graph coloring, propositional satis�ability, constraint satisfaction,
symmetry breaking, independent set analysis

1 Introduction

We assume the reader is familiar with the satis�ability problem, which seeks
to determine if any assignment to the propositional variables of a Boolean
formula causes it to evaluate to true. In recent research, planning problems,
hardware and software veri�cation problems and others have been encoded as
satis�ability problems. We look at solving graph coloring via satis�ability.
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Nearly all complete satis�ability solvers are in the DPLL family (for Davis,
Putnam, Loveland, and Logemann [5]). They search for a satisfying assignment
by �xing variables one by one and backtracking when an assignment forces
the formula to be false. The procedure is not very e�ective in its original form,
but it has been enhanced with various techniques to reduce the search space.

Reasoning techniques can be broadly classi�ed as preorder and postorder. Pre-
order techniques are applied as the search goes forward, and include binary-
clause reasoning, equivalent-literal identi�cation, and other eÆcient reasoning
steps whose goal is to show that certain variable bindings cannot lead to a
satisfying assignment [3,19,24,14,1]. The most complete preorder reasoning
is done by 2cl [24], but the implementation is too ineÆcient for currently
challenging problems. A more eÆcient implementation of preorder reasoning
is found in 2clsEq [1], which introduces a special form of resolution named
hyperbinres.

Postorder techniques are applied when the search is about to backtrack, be-
cause a \con
ict" has been discovered [20,25,2,18]. Postorder techniques are
variously called non-chronological backtracking, con
ict-directed back-jump-
ing, clause recording, and learning. These techniques are compared in a recent
paper [26]. As of 2001, the leading implementation in this category is gener-
ally agreed to be chaff [18], although the technique was introduced into high-
performance SAT solvers in grasp [20] and relsat [2] during the 1990s. More
recently, new solvers have been implemented using ideas from chaff. There
are substantial diÆculties in combining full preorder reasoning with postorder
techniques, and only one prototype has been reported [23]. However, 2clsEq
is able to use postorder reasoning, together with carefully selected preorder
reasoning [1].

A somewhat di�erent approach is to use propositional model elimination.
Model elimination is distinguished by being a back-chaining theorem prover
[15,16,13]. It has been adapted for propositional use and is capable of produc-
ing either a proof or a counter-example [22]. The implementation is named
modoc. The motivation for back-chaining is that the proof search spreads out
from the goal and might con�ne itself to relevant clauses.

Since the Dimacs competition for Graph Coloring in 1993, there has been a lot
of progress in satis�ability solvers, so we think it is worth taking another look
at this technique for solving Graph Coloring. In particular, we are interested
in alternative encodings that might perform better than the standard encod-
ing for large problems. In 1993, neither solvers nor computers were powerful
enough to solve large problems. Today the situation is shown to be di�erent.

We are particularly interested in whether there are interactions between en-
coding techniques and solver styles. It is not the purpose of this paper to eval-
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uate the latest and greatest satis�ability solvers; indeed, the bragging rights
will undoubtedly change by the time this paper is published. Therefore, we
used solvers that implement important ideas and have proved to be reliable.
Experimental results are presented in Section 6.

It is now thought that high-performance satis�ability solvers may have com-
mercial value, and this perception has driven the development of such solvers
since the turn of the century. A practical bene�t of solving graph coloring
by translating to satis�ability is that new satis�ability solvers can be uti-
lized as they become available, with almost no implementation e�ort. This
bene�t might be limited to the coloring of \structured" graphs, because the
highest-powered satis�ability solvers are geared toward \structured" formulas
(as opposed to randomly generated formulas). In fact, the large-scale compe-
tition among numerous satis�ability solvers held in conjunction with the 2005
Conference on Theory and Practice of Satis�ability Testing shows almost a
complete dichotomy between the best solvers for \industrial" benchmarks and
the best for \random" benchmarks [10].

2 Notation

In CNF, the formula is a conjunction of clauses and each clause is a disjunction
of literals; each literal is a propositional variable x or its negation :x. If q = :x
is a negative literal, :q is considered to be its complement, x. We denote a
clause as [q1; q2; : : : ; qk] and a formula as fC1; C2; : : : ; Cmg. An empty formula
is true and [], the empty clause, is false. We also de�ne the tautologous clause
>, which is true under any assignment.

3 Traditional Encoding (tr)

We start with an undirected graph G with n vertices and m edges. The ques-
tion is whether it can be colored with K colors, numbered 0, : : :, K � 1.
Vertex numbers range from 1 through n. The traditional encoding uses K
propositional variables for each graph vertex, nK in all. We call this encoding
tr.

If v is a vertex, then vc is a propositional variable that means vertex v has
color c, c = 0; : : : ; K � 1. The propositional formula contains mK negative
binary clauses,

[:uc;:vc] ;
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Fig. 1. Circuit outputs 1 if and only if colors of u and v di�er in at least one bit.

where (u; v) is an edge. It also contains n positive K-clauses,

[v0; v1; : : : ; vK�1] ;

where v is a vertex.

4 Circuit-Based Encodings

We start with an undirected graph G with n vertices and m edges. For sim-
plicity assume the number of colors K is a power of 2. Let L = lg(K) (more
generally, L = dlg(K)e). The colors are integers 0, : : :, K � 1, written with
L bits. Bit 0 is the low-order bit. If v is a vertex, then vb is a propositional
variable that means that bit b of the color of vertex v is 1. There are nL such
variables.

Let (u; v) be an edge in G. The requirement that u and v have di�erent
colors can be stated as the requirement that they di�er on at least one bit.
The circuit in Figure 1 represents this constraint. One point is that there are
several ways to encode this circuit into clauses. Another point is that we do
not need any \positive" clauses to force the the vertex to have \some" color.
If we have \and" together the circuit fragments shown above for each edge,
then the graph is K-colorable if and only if some input setting produces an
output of 1.

4.1 Standard Bitwise ( xg) Encoding

The usual way to represent the bit-wise constraints is equivalent to replacing
\xor" gates with an \and-or" equivalent, and distributing to obtain a product
of sums, i.e., conjunctively joined disjunctive clauses. We call this encoding xg
(see Figure 2).

There are K clauses of 2L literals each for each edge. For example, the starred
clause requires that u and v cannot both have color 3.

4



[u0; v0; u1; v1; u2; v2; : : : ; uL�1; vL�1]

[:u0;:v0; u1; v1; u2; v2; : : : ; uL�1; vL�1]

[u0; v0;:u1;:v1; u2; v2; : : : ; uL�1; vL�1]

[:u0;:v0;:u1;:v1; u2; v2; : : : ; uL�1; vL�1] (�)

� � �

[:u0;:v0;:u1;:v1;:u2;:v2; : : : ;:uL�1;:vL�1]

Fig. 2. Clauses for edge (u; v) in the xg encoding.

The main advantage of the xg encoding is that it uses about n lgK variables
instead of nK in the traditional encoding. The main disadvantage is that all
the clauses are long.

4.2 Xor Explicit ( xe) Encoding

It is interesting that the circuit fragment can be encoded in other ways. In
particular, we can introduce variables to represent the outputs of the \xor"
gates, a trick that goes back to Tseitin in the 1960's. We call this encoding xe
because the \xors" are explicitly represented.

Let xu;v;b represent the gate that \xors" bit b of vertices u and v. There are
L such variables per edge, mL for the whole graph. We need four 3-clauses to
enforce xu;v;b = xor(ub; vb):

[ub; vb;:xu;v;b]

[:ub;:vb;:xu;v;b]

[:ub; vb; xu;v;b]

[ub;:vb; xu;v;b]

Ranging over L bits, this produces 4L 3-clauses for each edge. In addition we
need one L-clause per edge for the \or" gate:

[xu;v;0; xu;v;1; : : : ; xu;v;L�1] :

4.3 Disallowed Combinations of Bits

Finally, we consider the case that K is not a power of 2. De�ne D = 2L �
K, the number of \disallowed" colors. For each vertex we need some clauses
to prohibit that vertex from taking on a disallowed color. We could simply
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Table 1
Sizes of CNF formulas for various encodings. The graph has n vertices and m edges.
There are K colors; L = dlg(K)e.

Encoding Variables Clauses Literals

tr nK mK 2-clauses (n+ 2m)K
n K-clauses

xg nL mK (2L)-clauses 2mKL+ nL2=4
nL=2 (L=2)-clauses

xe (n+m)L 4mL 3-clauses 13mL+ nL2=4
m L-clauses

nL=2 (L=2)-clauses

prohibit each of the D colors separately, using D K-clauses, but we can do
much better when D is large.

An example makes the idea clear, using vertex v. Suppose K = 11, so L = 4
and D = 5. Color 10 in binary is 1010. So if v3 = 1, then v2 must be 0. Also,
if v3 = 1 and v1 = 1, then v0 must be 0. The clauses are:

[:v3;:v2]

[:v3;:v1;:v0]

In general, all the 1-bits to the left of a 0-bit imply the 0-bit, in the binary
representation of K � 1.

One clause is needed for each 0 in the binary representation of the maximum
color using L bits. The scheme works for any maximum color and is also
useful for symmetry breaking. For prohibiting colors greater than K � 1, the
maximum number of clauses needed is L � 1 per vertex; this only occurs
when the high-order bit of (K � 1) is 1. The maximum number of literals is
about L2=4; the exact formula is dL+1

2
e bL+1

2
c. This occurs for about L=2 ones

followed by L=2 zeros. We use this value for size comparisons.

4.4 Comparison of Encoding Sizes

Table 1 shows the sizes of formulas based on various encodings. Examination of
this table suggests that the xe encoding becomes interesting when the number
of colors is in the range 16 to 32, or higher.

5 Breaking Symmetry

It is well known that unsatis�able coloring problems take \forever" because
all permutations of colors are tried due to symmetry, unless something is done
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to prevent this. A standard gimmick is to look for a clique quickly, and force
the colors on that clique. We investigated some generalizations of this idea.

If there are K colors, then we can select any K� 1 vertices, say u1, : : :, uK�1,
and require ui to have a color less than i. If the �rst C of the selected vertices
are in a clique, then the colors of u1, : : :, uC are forced. But more generally,
if u1, : : :, uK�1 comprise a dense subgraph, then there will be relatively few
possible colorings.

Several heuristics for choosing a \hot spot" of this sort can be thought of
easily. We implemented and evaluated two heuristics. They both try to \close
down" on a clique from above, rather than build up from below. In the process,
a subset of the vertices are ordered.

b1 Our �rst try uses the node of maximum degree, d, as the \start," u1. Ties
are broken by the sum of the neighbors' degrees. Then the neighbors of u1

are ordered by decreasing degree and placed in sequence following u1, as u2,
: : :, ud+1. Now, for any number of colors, K, the sequence with restricted
colors is u1, : : :, uK�1. Of course, if the highest-degree node doesn't have
K � 2 neighbors, the graph is trivially K-colorable, even (K � 1)-colorable.
The computation time is in O(n2) for a graph with n vertices.

b2 The second heuristic is more complicated, but also more e�ective in the
experiments. For each vertex v the vertices wi adjacent to v are dynamically
ranked as described below. The sequence produced is v (as u1) followed by
the wi in descending rank order. Now d is the degree of v, but not necessarily
the maximum degree of any vertex in the graph.
The initial ranking of wi is based on how many triangles of the form

(wi; v; wj) exist. Whichever vertex, say wlow, is lowest in rank (for �xed
v) is placed last in the v-sequence; i.e., it is tentatively ud+1. Then wlow

is e�ectively removed as an adjacency of v for ranking purposes; that is,
other wi's no longer get credit for their triangles involving wlow. Repeatedly,
rankings are updated and vertices are placed in front of the suÆx of the
sequence, growing it from ud+1 to ud, to ud�1, and eventually down to u2. In
this way, some pre�x of the �nal sequence is a clique involving v. Whichever
sequence produces the largest clique in this way is kept. Ties are broken by
favoring larger degrees.
Since d is not necessarily an upper bound on the number of colors re-

quired, additional vertices are added arbitrarily after ud+1 to make the se-
quence as long as the maximum degree in the graph; these vertices have
never been needed in practice.
The computation time is in O(n2 + n d 2

max) for a graph with n vertices
and maximum degree dmax.

The �nal sequence, u1, : : :, ud+1, is used in two ways. For encoding K colors it
supplies the u1, : : :, uK�1 mentioned above, upon which colors are restricted. It
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is also used for a greedy coloring procedure to provide the sequence in which
vertices are greedily assigned colors. This produces an upper bound on the
number of colors that require testing.

Thus, during preprocessing, the chromatic number for the graph is bracketed
between the size of the clique at the beginning of the �nal v-sequence and
the number of colors used by the greedy procedure. This range is searched by
encoding the graph coloring problem into a satis�ability problem for various
candidate numbers of colors. The search may be sequential or binary search.

Our implementation, named solvecolor, is written in ANSI C, and is avail-
able from the author. It encodes the problem into a �le containing the CNF for-
mula and forks the satis�ability solver as a separate Unix process. For these ex-
periments, the satis�ability solver was tested on formulas even if solvecolor
knew the answer due to its preprocessing. This experimental design ensures
that

(1) The satis�ability solver veri�es the optimal solution, without relying on
the encoder's opinions about cliques and greedy colorings. It is worthwhile
to emphasize that the encoding uses a sequence of vertices, but does not
rely on any properties of that sequence, except that no vertex appears
more than once.

(2) The satis�ability solver is run on at least one unsatis�able formula related
to each graph. Any satis�able formula might be solved in linear time by
fortunate guesses, but there is no known way to verify unsatis�ability in
polynomial time, even with fortunate guesses.

Point (2) had some surprising consequences in the experiments.

6 Experimental Results

So far we have tried 2cl, chaff, 2clsEq, and modoc on the two circuit-based
encodings, xg and xe, and the traditional encoding tr. The programs represent
three styles of SAT solving: chaff is generally accepted as a pioneer for the
postorder style, although newer solvers in this genre are outperforming it now;
2cl represents the preorder style; 2clsEq is a mix of preorder and postorder;
and modoc represents the back-chaining model-elimination style.

All CPU times are seconds based on an Intel Xeon, 2 GHz, 4 GBmemory, 512K
secondary cache. For calibration, dfmax takes 16.96 seconds on r500.5.b. Runs
that exceeded their allocated CPU time or terminated abnormally for other
reasons, are indicated by \+?" in the tables. Runs done on other platforms
(Sun UltraSparc 60, 450 MHz, or Intel Pentium4, 2.66 GHz) are normalized
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into \Xeon units." For example, 30 UltraSparc seconds = 12 Xeon seconds =
8 Pentium4 seconds.

6.1 Preliminary Results

We report the general �ndings of this phase without giving detailed tables.
We tested without any symmetry-breaking clauses, and with the simple (b1 )
and more complicated (b2 ) symmetry-breaking heuristics described in Sec-
tion 5. The b1 symmetry-breaking heuristic produced one to three orders of
magnitude speedup compared to no symmetry-breaking. For a typical exam-
ple, this table shows some times using the tr encoding on myciel5 for 5 colors
(uncolorable).

Symmetry breaking: none b1 b2

CPU secs. for: chaff 1025 15 20
2clsEq 27 2 3

Other programs and encodings showed similar patterns.

The b2 symmetry-breaking heuristic is much better at �nding large cliques
than the b1 heuristic. In some cases this produced another order of mag-
nitude speedup, especially with graphs that have a high chromatic number.
Aside from speeding up the test for a speci�c number of colors, the better
lower bound eliminates some of the tests that might otherwise be needed. For
these reasons, all tests reported in the tables use the b2 symmetry-breaking
heuristic.

We found that 2cl was considerably slower than the other programs. It was
dropped from later experiments. We also noticed that chaff usually ran out
of memory before it ran out of time. The version in these experiments is the
original version to be distributed, called Mchaff.

All of the graphs studied may be found at the COLOR02 web site and many are
described in the Workshop proceedings [21]. Most of the graphs are generated
from applications. The remaining graphs are the myciel series (constructed)
or the DSJC series (random). Table 2 shows the numbers of vertices and
undirected edges in these graphs.

We chose the myciel series for our initial tests because it has no cliques to
provide an easy way to break symmetries: the clique number remains at 2 while
the chromatic number grows. Thus clique-based symmetry-breaking methods
are doomed, and we were curious whether our symmetry-breaking methods
would be an improvement.
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Table 2
Numbers of vertices and undirected edges in graphs tested, as well as chromatic
numbers (�) and sizes of cliques found by heuristic b2.

Ver- b2

Graph tices Edges � Clique

Matrix Partitioning

abb313GPIA 1557 53356 9 8
ash331GPIA 662 4181 4 3
ash608GPIA 1216 7844 4 3
ash958GPIA 1916 12506 4 3
will199GPIA 701 6772 7 6

Mycielski

myciel5 47 236 6 2
myciel6 95 755 7 2
myciel7 191 2360 8 2

Classroom Scheduling

school1 nsh 352 14612 14 14
school1 sh 385 19095 14 14

Random

DSJC125.1 125 736 5 4
DSJC125.5 125 3891 ?? 10
DSJC125.9 125 6961 ?? 33

Ver- b2

Graph tices Edges � Clique

Register Allocation

fpsol2.i.1 496 11654 65 65
fpsol2.i.2 451 8691 30 30
fpsol2.i.3 425 8688 30 30
inithx.i.1 864 18707 54 54
inithx.i.2 645 13979 31 31
inithx.i.3 621 13969 31 31
mulsol.i.1 197 3925 49 49
mulsol.i.2 188 3885 31 31
mulsol.i.3 184 3916 31 31
mulsol.i.4 185 3946 31 31
mulsol.i.5 186 3973 31 31
zeroin.i.1 211 4100 49 49
zeroin.i.2 211 3541 30 30
zeroin.i.3 206 3540 30 30

The myciel family has instances numbered 2, 3, and 4 that proved to be very
easy, and are omitted from the tables. The �rst mildly challenging instance is
myciel5 for 5 colors (uncolorable), and the myciel6 for 6 colors is extremely
diÆcult. Apparently, the satis�able (i.e., colorable) versions are all pretty easy
in this family.

The DSJC series contains randomly generated graphs, and a small selection
of these are included at the request of the referees. Today's leading complete
sat solvers are designed to solve problems from industrial applications, which
contain a lot of \structure." We anticipate that such solvers will do poorly on
encodings of random graphs, because it has been observed that they do poorly
on randomly generated CNF formulas.

The programs tested permit many parameters to be varied. For chaff, we used
parameters recommended by the author to reduce the memory requirements,
compared to the default parameters. With the parameters used, chaff still
used more than 1 GB of memory routinely. For 2clsEq and modoc, we used
the default parameters. We observed that 2clsEq often used well over 1 GB of
memory, whereas modoc had a much smaller memory footprint, usually under
256 MB.

6.2 Main Results

We now turn to the computationally intensive experiments. For each com-
bination of satis�ability solver and encoding, the same graphs were tested.
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Heuristic b2 was used for symmetry breaking throughout.

The controlling program, solvecolor, started with a number of colors one less
than the clique size that it found, to be sure the satis�ability solver was
exercised on an unsatis�able formula, and to avoid relying on its own clique
computation for correctness. Then, the number of colors was increased by
one repeatedly until the satis�ability solver found a solution. The loop was
terminated when the the number of colors exceeded that found by the well-
known greedy algorithm by two.

It might seem that a more sophisticated procedure to vary the number of
colors would be more eÆcient, especially if the clique size and greedy number
are well separated. An alternative was coded that performs binary search. One
would think that allowing more colors would make the problem easier.

However, our experience is that increasing the number of colors unnecessarily
makes the encoded propositional formulas so much larger that their sheer bulk
degrades performance seriously, and risks exhausting memory after putting in
a lot of time. So after some preliminary experimentation with strategies, we
settled on the simplest, increasing one step at a time.

To avoid a deluge of numbers we show only the times for the chromatic number
and one less. (One exception is myciel7, for which we show the results for
5 colors; no combination of encoding and solver succeeded in showing any
larger uncolorable value. Other exceptions are DSJC125.5 and DSJC125.9.)
We should mention that the preprocessing and encoding times were quite
minor in comparison to the times taken by the satis�ability solvers. In one
extensive run solvecolor tested 24 graphs and consumed 0.76 CPU hours on
its own, while the satis�ability solvers consumed 11.0 CPU hours. The solver
times on the critical numbers of colors are compared for the most challenging
graphs in Table 3. The corresponding data for all 27 graphs tested are shown
in Tables 4, 5, and 6.

6.3 Discussion

One of the goals of this work was to �nd out if various encodings �t better or
worse with various solver techniques. The complete tables (4, 5, and 6) make
it clear that the traditional encoding is usually the best performer, often by
orders of magnitude.

However, looking at the most challenging graphs (see Table 3), we see that the
xg and xe encodings work better for chaff when the chromatic number is high
(fpsol.i.1 and inithx.i.1 ). This large number of colors is where we expect the
bene�ts of xg and/or xe encodings to kick in, but we are reaching the limits of

11



Table 3
Most challenging graphs, critical color numbers. Programs run with b2 symmetry-
breaking heuristic. Time-outs are indicated by \+?".
Graph / no. of Unsat CPU secs. by Encodings no. of Sat CPU secs. by Encodings
Sat Solver colors tr xg xe colors tr xg xe

abb313GPIA
chaff 8 81647 8 50305+? 9 1772 15412+? 30638+?
2clseq 8 18000+? 27000+? 18000+? 9 18000+? 27000+? 18000+?
modoc 8 27000+? 5400+? 5400+? 9 27000+? 5400+? 5400+?

fpsol2.i.1
chaff 64 3 12 9 65 18000+? 17 16
2clseq 64 5 18000+? 387+? 65 6 4961 55+?
modoc 64 2 27000+? 10569+? 65 13 27000+? 27000+?

inithx.i.1
chaff 53 3 18 44 54 7200+? 36 1384
2clseq 53 7 8485+? 2+? 54 12 5400+? 2+?
modoc 53 2 27000+? 27000+? 54 18 27000+? 27000+?

myciel6
chaff 6 3978+? 3253+? 2247+? 7 0 0 0
2clseq 6 2980 18000+? 18000+? 7 0 0 2
modoc 6 27000+? 27000+? 27000+? 7 0 1 2

DSJC125.5
chaff 12 1176 823 3768 19 18000+? 6269 18000+?
2clseq 12 689 18000+? 18000+? 19 18000+? 18000+? 18000+?
modoc 12 18000+? 18000+? 18000+? 19 18000+? 18000+? 18000+?

computer resources. In fact, the quick abnormal terminations of 2clsEq are
apparently due to being unable to allocate its needed data structures. Here
is a comparison of the approximate encoding sizes for inithx.i.1 for 53 colors
(uncolorable) or 54 colors (colorable).

tr xg xe

variables (thousands) 32 5 117
literals (millions) 3.2 11.9 1.7

The numbers for fpsol.i.1 are equally daunting. Notice the rock/paper/scissors
quality of the numbers: there is no clearcut preferred encoding.

To keep things in perspective, remember that solvecolor, the encoding pro-
gram has identi�ed a 54-clique in this graph and is encoding it for only 53
colors in the unsatis�able case. As described in Section 5, the vertices of the
54-clique have their colors restricted so that u1 must get color 0, u2 must get
color 0 or 1, but is adjacent to u1, so it must get color 1, and so on, through
u53, which must eventually get color 52. There is no color available for the
54-th vertex of the clique.

We thought that the satis�ability solvers would detect this condition quite
trivially. With the tr encoding, unsatis�ability can be shown with unit-clause
propagation. Indeed, all the solvers succeed handily in this case.

We were quite surprised to discover that the circuit-based encodings conceal
this \trivial" refutation. If the solver is smart enough, it only needs to con-
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sider the variables associated with 54 vertices, about 6 percent of the total
variables. It is evident that 2clsEq and modoc have drifted away from this
critical set of variables somehow. Although chaff takes longer than it did on
the tr encoding, it seems to have maintained the focus.

Turning to the satis�able versions of fpsol.i.1 and inithx.i.1, we observe that
chaff succeeded only with the circuit-based encodings. For some reason the
other programs had no diÆculty with the tr encoding, while chaff had great
diÆculty. We do not understand why this happened; a conjecture is that the
random restarts and the large number of variables caused chaff to keep for-
getting its progress.

The xg encoding was also very e�ective for chaff to show that abb313GPIA is
not 8-colorable; this is the largest graph tested, with 1557 vertices, although
its chromatic number is moderate. The tr encoding took almost 24 hours on
this problem. If the time limit had been comparable to other runs, this would
have showed up as a failure. The xe encoding ran out of memory after about
14 hours. Again, we conjecture that random restarts may have slowed the
progress of chaff, and possibly the smaller number of variables used by the
xg encoding turned out to reduce or eliminate restarts.

On the other hand, there is no indication that 2clsEq and modoc ever do better
with the circuit-based encodings, and often do orders of magnitude worse with
them, compared to the traditional encoding. The data are insuÆcient to draw
a �rm conclusion, but there is a suggestion that the strategy of chaff, rapid
searching and limited reasoning, is more compatible with the circuit-based
encodings. The xg encoding minimizes the number of variables, making a
smaller search space than the alternatives.

Both 2clsEq and modoc are based on more extensive reasoning, and the wide
clauses of the xg encoding are an impediment for them. Reasoning seems to
have carried the day for 2clsEq to prove thatmyciel6 cannot be 6-colored. The
tr encoding produces mostly binary clauses, and 2clsEq performs extensive
binary-clause reasoning. We note that another program, 2cl, also performs
extensive binary-clause reasoning, and also solved this problem, in 3247 CPU
seconds.

The best competition on myciel6 seems to be from smallk, a graph coloring
decision program designed for testing 3 through 8 colors [4]. Some results are:

graph colors smallk time best sat-solver time sat-solver (encoding)

myciel6 6 2728 2980 2clsEq (tr)
abb313GPIA 8 86400+? 8 chaff (xg)

This program, which does many reasoning steps that are also done by 2clsEq

and 2cl, showed that myciel6 cannot be 6-colored in 2728 CPU seconds. It
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also showed that myciel5 cannot be 5-colored in 0.52 CPU seconds, whereas
the best of the satis�ability solvers required about 2 CPU seconds.

Another interesting result was the demonstration that abb313GPIA has a 9-
coloring. This graph was produced by Hossain and Steihaug, who reported
that the question of whether this graph is 9-colorable is open, and that two
graph-coloring programs, dsatur and smallk, were unsuccessful after 3 days
[7]. We were able to solve this problem with the traditional encoding, but not
with the xg or xe encodings. Only chaff has solved it so far, taking 1772
seconds.

As supplied, smallk does not attempt to �nd a 9-coloring, but the authors
provide instructions on how to change some parameters so that it will make
the attempt, along with a warning that it is likely to run very slowly. We
tried smallk for 24 hours to test for an 8-coloring on abb313GPIA and it did
not terminate. As mentioned above chaff proved that abb313GPIA is not
8-colorable. We are unsure whether any other program has duplicated this
feat.

The numbers for fpsol.i.1 are equally daunting. Notice the rock/paper/scissors
quality of the numbers: there is no clearcut preferred encoding.

Two of the three random graphs studied are open problems and we made only
minor progress toward resolving them. Unfortunately, there has been erroneous
information about DSJC125.5 and DSJC125.9 propagated through the Inter-
net and some conference proceedings. The largest clique size for DSJC125.5
is 10, as shown by running dfmax [21]. Our b2 heuristic found a clique of this
size.

Our sat encodings for 12 colors were found to be unsatis�able, establishing a
lower bound of 13 for the chromatic number of DSJC125.5 ; this appears to be
an improvement on previously published lower bounds, but see the next para-
graph. However, no valid coloring with fewer than 19 colors was discovered,
whereas other researchers have achieved 17 colors [8,12,17].

Using analysis by independent sets, we have shown that the chromatic number
of DSJC125.5 is at least 16. Because this is somewhat o� the topic of this
paper, it is presented in Appendix A. The satis�ability solvers we used ran
out of time or memory or both trying to solve the encodings for 13, 14, and
15 colors, all of which must be unsatis�able by the result in Appendix A.

For DSJC125.9, our b2 heuristic found a clique of size 33, whereas 34 is opti-
mum, per dfmax. The tr encoding for 37 colors was shown to be unsatis�able.
A lower bound of 40 is shown via analysis by independent sets in Appendix A.
The best valid coloring found was 46 colors. Johnson et al. have achieved 44
colors [8]. The sparser graph DSJC125.1 presented no problems.
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The method we used seems to be fairly robust. We have solved a fair range
of problems, at least one previously open. We have myciel6 with 6 colors, a
relatively small graph, but one that is structurally very diÆcult. Then we have
fpsol2.i.1 with 64{65 colors and inithx.i.1 with 53{54 colors, both large graphs
with large coloring numbers. Finally, we have abb313GPIA, which dwarfs the
rest of the graphs, but needs only 9 colors. However, the success needs to be
quali�ed by the observation that there was no one combination of encoding
and satis�ability solver that solved all of the problems within the resource
limits.

In terms of the general merit of using satis�ability solvers for graph coloring,
we believe there are a few signi�cant accomplishments among these tests.
First, one solver succeeds on myciel6 with 6 colors; that is, it proves the
graph is uncolorable. We understand that this is beyond the reach of most
graph coloring programs. Second, we were able to prove that abb313GPIA is
9-colorable and is not 8-colorable. The question of 9-colorability of this graph
was open and the question of 8-uncolorability might also have been open [7].

7 Conclusion

We were able to \piggy-back" on the large amounts of software development
e�ort invested in satis�ability over the last decade. We introduced a few new
heuristics to guide the encoding and handed the problem over to several exist-
ing satis�ability solvers (as of 2002). The preprocessing and encoding took a
minor fraction of the overall running time. The results seem to be comparable
to, if not better than, those obtained by full-
edged coloring algorithms.

Extensive empirical testing of \all possible" satis�ability solvers on the encod-
ings is beyond the scope (and computational resources) of this research. Our
simple strategy of invoking the solver for successive numbers of colors requires
the use of complete solvers. Possible future work would be to test incomplete
satis�ability solvers on the encodings and compare results to incomplete graph
coloring heuristics, both of which abound.

The method of symmetry breaking described here might be applicable both
to algorithms that work on graph coloring directly and to other constraint
satisfaction problems. By dynamically pruning from an overly large set of
candidates, a sequence is formed once that is useful for varying numbers of
colors. On the instances tested, the method often found a maximum clique,
but the sequence is useful even if this does not happen.

The circuit-based encodings showed disappointing results, but were not com-
plete failures. More study is needed to see if the xe encoding can be improved,
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Table 4
Chaff runs with b2 symmetry-breaking heuristic, critical color numbers.

no. of Unsat CPU secs. by Encodings no. of Sat CPU secs. by Encodings
Graph colors tr xg xe colors tr xg xe

abb313GPIA 8 81647 8 50305+? 9 1772 15412+? 30638+?
ash331GPIA 3 0 0 0 4 0 0 17
ash608GPIA 3 0 0 0 4 0 1 235
ash958GPIA 3 0 0 1 4 0 4 733
fpsol2.i.1 64 3 12 9 65 18000+? 17 16
fpsol2.i.2 29 1 155 2089 30 1 5 11
fpsol2.i.3 29 1 5 2366 30 1 5 7
inithx.i.1 53 3 18 44 54 7200+? 36 1384
inithx.i.2 30 1 8 34 31 1 13 2063
inithx.i.3 30 1 7 46 31 1 13 7053
mulsol.i.1 48 1 4 1 49 1 4 6
mulsol.i.2 30 0 3 7200+? 31 0 3 5
mulsol.i.3 30 0 10 4363+? 31 0 3 5
mulsol.i.4 30 0 16 3651+? 31 0 4 6
mulsol.i.5 30 0 1 5 31 0 3 1
myciel5 5 20 8 6 6 0 0 0
myciel6 6 3978+? 3253+? 2247+? 7 0 0 0
myciel7 5 22 18000+? 50 8 0 0 0
school1 nsh 13 1 54 1702 14 1 1253 156
school1 sh 13 1 4 294 14 1 23 111
will199GPIA 6 0 0 1 7 0 2 158
zeroin.i.1 48 1 4 2 49 1 4 1
zeroin.i.2 29 0 1 1 30 0 1 8
zeroin.i.3 29 0 1 1 30 0 1 9
DSJC125.1 4 0 0 0 5 0 1 1
DSJC125.5 12 1176 823 3768 19 18000+? 6269 18000+?
DSJC125.9 37 6529 18000+? 18000+? 46 18000+? 10133+? 18000+?

and to understand under what circumstances the xg or xe encodings are likely
to outperform the traditional encoding.
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A Independent-Set Analysis of DSJC125.5 and DSJC125.9

In this appendix we consider lower bounds for the chromatic numbers of
DSJC125.5 and DSJC125.9, two random graphs in the COLOR02 benchmark
suite that have been unsolved for more than a decade. The largest cliques in
DSJC125.5 and DSJC125.9 were found to be sizes 10 and 34, respectively,
using dfmax. These provide what turn out to be rather weak lower bounds.

We present lower bounds for the chromatic numbers of the graphs DSJC125.5
and DSJC125.9, using independent-set analysis. Johri and Matula used indep-
endent-set analysis to obtain probabilistic lower bounds on random graphs,
giving tables for probability .999999 [9]. Johnson et al. state probabilistic lower
bounds for these graphs, attributed to a program written by Thomason, but
do not explain what the phrase \with high probability" means for speci�c
values of n [8]. Numerous researchers have proposed heuristic algorithms for
graph coloring based on independent-set analysis [11,9,6,8]. The underlying
idea is that each color class must be an independent set and each pair of color
classes must be disjoint. For conciseness we use the abbreviation \j-IS" for
\independent set of size j." The size of the largest independent set of a graph
G is conventionally denoted as �(G), or just � if the graph is understood from
context.

A partition of n is de�ned to be a nonincreasing sequence of positive integers
that total to n. Its length is the number of elements in this sequence. A sub-
partition is a pre�x of a partition. For any valid k-coloring of a graph with n
vertices, the sizes of the color classes can be arranged to form a partition of n
with length k [9]. To determine whether a particular graph G with n vertices
can be k-colored, it suÆces to consider all partitions of n of length k, where
the �rst number in the partition is at most �(G). For the remainder of this
discussion n = 125.

The �rst step is to �nd �(DSJC125.5 ), for example, using dfmax [8] to �nd
a maximum clique in the complement graph. Throughout, the computer pro-
cedures �nd cliques in the complement graph whenever independent sets are
mentioned. We found �(G) = 10. This immediately yields a lower bound of
d125=10e = 13 for the chromatic number, which seems to be an improvement
on any previously published for DSJC125.5. We are able to strengthen this to
16.

The second step is to enumerate all the independent sets of sizes 10, 9, and
8. The procedures are implemented in matlab and are available from the
author. The logic is similar to dfmax, but simpli�ed and modi�ed to record all
independent sets of the target size. Some independent sets of size 9 are subsets
of those of size 10, etc. This step reveals that there are two independent sets
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of size 10 and 100 of size 9 and 2352 of size 8.

The third step is to enumerate all the disjoint unions of independent sets of
sizes 10 and 9. The technique is to repeating try to expand a previously found
disjoint union by including one more disjoint independent set. First, it is found
that the two 10-IS's are not disjoint. Next enumerate disjoint unions of one 10-
IS and one 9-IS to give all 2-colorable subsets of size 19, and enumerate disjoint
unions of two 9-IS's to give all 2-colorable subsets of size 18. Extend these to
include one more 9-IS in all possible ways to give all 3-colorable subsets of
sizes 28 and 27. Extend these to include one more 9-IS in all possible ways,
etc.

A subpartition is called achievable if there is some disjoint union of indepen-
dent sets whose sizes correspond to the subpartition. It turns out that the
only achievable subpartitions using 10 and 9 are (10, 9, 9, 9, 9) and (9, 9,
9, 9, 9) and pre�xes of those subpartitions. In other words there are no dis-
joint unions of six independent sets of sizes 10 and 9. This whole approach
is opportunistic, and becomes feasible because of the few subpartitions that
require further analysis. Actually, the programming time was greater than the
computing time, overall.

There are only a few partitions of 125 of length 15, once we are restricted to
those having only achievable subpartitions involving sizes 9 and 10. They are
shown in the following table, with gaps following the parts already known to
be achievable.

10 9 9 9 9 8 8 8 8 8 8 8 8 8 7
10 9 9 9 8 8 8 8 8 8 8 8 8 8 8
9 9 9 9 9 8 8 8 8 8 8 8 8 8 8

The fourth and �nal step is to try to expand the disjoint unions shown to
the left of the gaps above to include 8-IS's, shown to the right of the gaps.
The following table shows the longest achievable subpartitions that extend
the above table by using 8-IS's.

10 9 9 9 9 8 8 8
10 9 9 9 8 8 8 8 8
9 9 9 9 9 8 8 8 8 8

It follows that there are no partitions of 125 of length 15 all of whose subpar-
titions are achievable.

Claim 1 The chromatic number of DSJC125.5 is at least 16.

ForDSJC125.9 the same approach yields a lower bound of 40 for the chromatic
number. The largest independent set is size 4. There are nine 4-IS's, but at
most �ve can be combined with disjoint unions. Thus at least 105 vertices
need to be partitioned into color classes of size at most 3; 35 disjoint 3-IS's is
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the best that might be achieved.

Claim 2 The chromatic number of DSJC125.9 is at least 40.
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