
The Alternating Fixpoint of Logic Programs with Negation�

Allen Van Gelder

Baskin Computer Science Center

University of California

Santa Cruz, CA 95064

February 7, 1995

Abstract

The alternating �xpoint of a logic program with negation is de�ned constructively. The underlying idea is

monotonically to build up a set of negative conclusions until the least �xpoint is reached, using a transformation

related to the one that de�nes stable models. From a �xed set of negative conclusions, the positive conclusions

follow (without deriving any further negative ones), by traditional Horn clause semantics. The union of positive and

negative conclusions is called the alternating �xpoint partial model . The name \alternating" was chosen because the

transformation runs in two passes; the �rst pass transforms an underestimate of the set of negative conclusions into an

(intermediate) overestimate; the second pass transforms the overestimate into a new underestimate; the composition

of the two passes is monotonic.

The principal contributions of this work are (1) that the alternating �xpoint partial model is identical to the

well-founded partial model, and (2) that alternating �xpoint logic is at least as expressive as �xpoint logic on all

structures. Also, on �nite structures, �xpoint logic is as expressive as alternating �xpoint logic.

Desk Editor: Suggested running title: Alternating Fixpoint of Logic Programs.

Figures appearing in text are also on separate pages at end.

�This version appeared in Journal of Computer and System Sciences, 47(1), pp. 185{221, 1993. Preliminaryversion appeared

as an extended abstract in \Proceedings, 8th ACM Symposium on Principles of Database Systems", Philadelphia, March 1989.

1

1 Introduction

Horn clause programs have an intuitive and well accepted semantics de�ned by the least �xpoint of an

operator that essentially performs modus ponens reasoning. Several early attempts to extend this operator

to programs with negative subgoals ran into problems of one sort or another. Two recent proposals to

improve matters are named \stable models", due to Gelfond and Lifschitz [18], and \well-founded partial

models", due to Van Gelder, Ross, and Schlipf [51]. Both stable models and well-founded partial models

were de�ned somewhat nonconstructively, in the sense that certain sets could be recognized as models if

presented, but no algorithm to construct them from the program was given. This paper addresses that

problem.

1.1 Logic Programs

A logic program with negation is a set of rules, some of which have negative subgoals. A rule speci�es that

a certain goal (the head of the rule) can be solved (or proved) if zero or more subgoals (the rule body) can

be solved . However, a negative subgoal is considered solved just when, in some sense, its positive version

cannot be solved. For example, the rule (from Example 8.2)

u(X) e(Y;X); :w(Y):

is read as follows: One way to solve u(X) is to �nd a Y such that e(Y;X) can be solved and w(Y) cannot

be solved.

Salient points about the rule syntax shown here are: (1) \ " is read as \if"; (2) commas separating

subgoals denote conjunction; (3) logical variables begin with capital letters; and (4) variables appearing only

in the rule body are implicitly existentially quanti�ed. Adopting terminology from logic, the goals, such as

u(X), e(Y;X), and w(Y), are called atoms (short for atomic formulas); literals denote either atoms (such

as e(Y;X)) or negated atoms (such as :w(Y)).

An especially trivial form of a rule is one whose body contains no subgoals, and whose head contains no

variables, e.g., e(1; 2). We call such a rule a fact . Tuples in a relational database would be regarded as facts

in a logic program.

1.2 Negation as Failure

Logic programs do not permit negative literals in the heads of rules, so the question arises, what does it mean

to \solve" a negative subgoal? The standard treatment, as mentioned above, is to say that a negative subgoal

is considered solved when, in some appropriate sense, its positive version cannot be proved. This natural

treatment of negation as failure to prove goes back to Clark [11], and to the Closed World Assumption of

Reiter [39]. It works quite smoothly in the case that the rules are not recursive, as proof possibilities can be

explored exhaustively.

Substantial research has been directed at the surprisingly thorny problems surrounding negation in

recursive rules (see Section 2). The right notion of \failure to prove" is not immediately clear, and several

de�nitions have been investigated. One approach that has gained recent popularity is called the strati�ed

semantics. It applies to the class of programs in which negation itself is not recursive; i.e., if relation p

depends negatively on q, there is no chain of dependencies from q back to p (q need not be distinct from

p). Recent research has investigated ways to extend the strati�ed semantics to cover (some or all) programs

that do contain recursive negation. Two recent proposals, closely related to each other, de�ne stable models

[18] and well-founded partial models [51]. This paper extends this line of research, showing the following:

1. The alternating �xpoint is a constructive characterization of the well-founded semantics.

2. One of the operators upon which the alternating �xpoint is based can be used to de�ne stable models.

3. The alternating �xpoint provides at least the expressive power of �xpoint logic [34] uniformly on all

structures. On �nite structures they are equally expressive.

2

4. The alternating �xpoint interpretation extends naturally to programs with �rst order rule bodies; such

an extension of well-founded semantics is not obvious.

These results are described in more detail in Section 2. A preliminary version of this work has been presented

in conference [49].

1.3 Organization

Section 2 provides background, surveys related work, places the new results in context, and gives an informal

overview of the alternating �xpoint construction. Section 3 introduces notation and other preliminaries.

Sections 4 and 5 o�er a new de�nition of stable models in terms of an operator on sets of negative literals,

and use this operator to de�ne the alternating �xpoint. Section 6 and 7 briey review well-founded partial

models, and show that they are equivalent to alternating �xpoint partial models. Section 8 discusses the

expressive power of alternating �xpoint logic vis �a vis �xpoint logic. Finally, Section 9 discusses future

directions.

2 Background and Relation to Other Work

2.1 Program Completion Semantics

The �rst attempt to put negation as failure on a sound footing was the original program completion approach,

due to Clark [11], and discussed in detail by Shepherdson [46, 47] and Lloyd [29]. The \completion" of a

logic program replaces a set of \if" rules with \if and only if" rules to formalize the intuition that facts

are true only if they follow from the rules. As mentioned before, this works out nicely on nonrecursive

rules. However, several researchers observed that serious anomalies could arise with recursion. For one

thing, the completion could produce an inconsistent program, as shown by the example rule p :p, which

leads to the completed form p$:p. To get around this, and other problems, the program completion has

been interpreted in 3-valued logic by Fitting [15], and later by Kunen [24], who de�ned the 3-valued logical

consequence semantics. In the latter approach, \failure to prove" means that at some �nite depth all proof

searches have failed.

However, these developments did not overcome an objection raised in Minker's 1986 workshop [32] that

the usual rules to de�ne transitive closure of a directed graph did not yield the value false on pairs of nodes

not in the transitive closure. Transitive closures arise naturally in applications such as parser generation,

type inference, circuit design, theorem proving, and many others. For example, if a graph has edges e(1; 2)

and e(2; 1) and another node 3, then the search for a path from 1 to 3 keeps going around the 1{2 cycle

inde�nitely, never completely failing. To get around this kind of problem, it was recommended that only

searches for \tight" proofs be acceptable; a goal fails when all tight proof attempts have failed [50]. In the

context of transitive closure, tight proofs correspond to simple paths.

Interestingly, with respect to the 3-valued logical consequence semantics, Kunen has recently shown that

no program that satis�es certain natural restrictions (see Section 8) is able to de�ne a predicate that is true

for node pairs that are in the transitive closure and false for those in its complement [25]. No such program is

known for the closely related Fitting semantics, either. Fitting and Ben-Jacob have proposed a new 3-valued

semantics, but it does not seem to address this problem [16].

2.2 Fixpoint Logic and Variations

A rather di�erent approach to negation grew out of �xpoint logic (FP), in which relations are viewed as being

de�ned by induction on �rst order formulas. Relating this system to logic programming, it is as though rule

bodies were permitted to be �rst order formulas, including formulas with universal quanti�cation. (FP has

no function symbols, but the e�ect of function symbols can be achieved by encoding the graphs of functions

in additional in�nite EDB relations.) In the original �xpoint logic, studied by Moschovakis [34] on in�nite

structures, the inductively de�ned relations are required to appear positively in the de�ning formula (\given"

relations may be positive and/or negative).

3

This positivity restriction is lifted in the extension called inductive �xpoint logic (IFP), studied on in�nite

structures by Aczel [2] and others, and more recently studied on �nite structures by Gurevich and Shelah

[19], Kolaitis [21], Abiteboul and Vianu [1], and others. IFP does not really have a concept of negation as

\failure to prove". Instead, positive conclusions are drawn in rounds, and any negative literal in a formula

that inductively de�nes a relation evaluates to true if the corresponding positive fact has not been concluded

in an earlier round. That fact may well be proved in the same round , or later. However, once a positive

fact is concluded, it is held forever, even if its proof would no longer work. Operators that retain previously

concluded (positive) facts are called inationary [19]. Clearly, the timing of \rule applications" is extremely

critical in IFP. Inductive �xpoint logic is discussed further in Section 2.5 from the point of view of its

expressive power.

2.3 Strati�ed Semantics

Another alternative to the program completion approach is strati�ed semantics, in which the positive facts

are derived in layers so that each layer only depends negatively on (already completed) lower layers, whose

negative facts are taken to be the appropriate complement of the positive facts; in particular, the complement

of the transitive closure comes out in the natural way. This approach has been treated in [8, 4, 27, 50], and

elsewhere. Since it is only applicable to strati�ed programs, there has been a search for useful extensions.

This search was further justi�ed by the limited expressive power of strati�ed programs mentioned above.

Perhaps the earliest extension of the strati�ed class was the locally strati�ed class, de�ned and studied

by Przymusinski [37]. He de�ned perfect models, and showed that every locally strati�ed program has a

perfect model. Again, not every program is locally strati�ed, and Cholak has shown recently that it is not

decidable in general whether a program is locally strati�ed [10]. Another extension, weakly perfect models,

is described in [36].

2.4 Well-Founded Semantics and Stable Models

Two further extensions of strati�ed and locally strati�ed semantics were introduced approximately

concurrently, in the forms of well-founded semantics [51] and stable models [18]. Every locally strati�ed

program has a total well-founded model and a unique stable model that coincide with each other and with

the perfect model. For more general programs, the well-founded semantics provides a partial model, while

the stable model semantics provides (possibly multiple, possibly no) total models. Stable models are closely

related to well-founded models, and both ideas have been actively studied since their introduction; some

principle results are summarized below. The alternating �xpoint, introduced here, provides an additional

tie between the well-founded semantics and stable models. First, its de�nition uses a variant of the stability

transformation. Second, it provides a constructive de�nition of the well-founded partial model.

Van Gelder, Ross, and Schlipf [51] established basic properties of the well-founded semantics: All

programs have a well-founded partial model, which can also be interpreted as a 3-valued model in Fitting's

sense. The well-founded partial model is de�ned in terms of a transformation that involves \unfounded

sets", which are not constructively de�ned. Every stable model contains the well-founded partial model. As

a corollary, a well-founded total model is always the unique stable model, but not vice versa.

Gelfond and Lifschitz [18] proposed their semantics based on stable models. Drawing on ideas from

autoepistemic logic [33, 17], they de�ne a \stable model" as one that is able to reproduce itself with a

certain natural transformation, which we call the stability transformation (they call it simply S�). They

argue that when a program has a unique stable model, it is the natural model to associate with the program.

More generally, the stable model semantics considers an atom true if it is in the intersection of all stable

models, and false if it is in the intersection of their complements; no semantics is de�ned when there is no

stable model. The relationship between circumscription and stable models has been explored by Lifschitz

[28].

Elkan [14] has shown that stable models on �nite domains correspond to grounded models of nonmonotonic

truth maintenance systems (TMSs) [12], and that the question of whether a set of propositional rules

has a stable model is NP-complete. (Independently, Marek and Truszczynski have shown the same NP-

4

EDB Rules IDB- - �
��6

Figure 1: A \concept" as a mapping from the EDB to the IDB.

completeness with a di�erent reduction [31]. In contrast, the well-founded partial model of a propositional

program can be found in polynomial time [51].) Elkan also shows stronger results:

1. The question remains NP-complete even if a stable model is known for all but one of the propositional

rules.

2. The question remains NP-complete even if each rule has at most one literal in its body.

Sacc�a and Zaniolo discuss the use of stable models as nondeterministic interpretations [42]. They giving

a backtracking �xpoint procedure to construct stable models over �nite propositional programs, where a

backtracking point corresponds to nondeterministic choice of a (propositional) rule whose only \unde�ned"

premises are negative. These negative premises are presumed to be true, causing the head of the rule to be

concluded. A similar idea is mentioned by Doyle [12] for TMSs, and alluded to in other TMS literature,

but no precise algorithm has been described. The running time may be unpleasant (factorial in the number

of rules!), but this is apparently the only known algorithm that constructs stable models (aside from brute

force generation and testing of all subsets of the ground atoms).

In connection with the well-founded semantics, Ross has described and proved properties of a procedural

semantics [40], and has studied the semantics on a class of programs called modularly strati�ed [41].

Przymusinski has o�ered another procedural semantics [38]. Wellfounded-by-case and stable-by-case models

are extensions of well-founded and stable models that were de�ned and studied by Schlipf [44].

The well-founded semantics apparently has been characterized in several di�erent ways by independent

investigations. Przymusinski has constructively de�ned generalized perfect models, using 3-valued logic and

employing greatest �xpoints to derive negative facts; they are equivalent to well-founded partial models [38,

35]. Other semantics for negation have been proposed independently by Bidoit and Froidevaux [6], by Bry

[7], and by Dung and Kanchanasut [13]. Their points of view are interesting and quite original. However,

they seem to have arrived at the same interpretation as is given by the well-founded semantics.

2.5 Concepts and Expressive Power

One important application of logic programs is as a query language over a given database, usually called

the extensional database (EDB), followingReiter's terminology [39]. The EDB is treated in the logic program

as a set of facts. The relations de�ned by the (nontrivial) rules in the program are called the intentional

database (IDB). From this point of view, a logic program (interpreted in a speci�ed way) de�nes a mapping

from EDB instances to IDB instances, as suggested in Figure 1. (An instance of a database is a set of

relations whose names and arities are in accordance with its schema.) We call such a mapping a concept .

Roughly speaking, a query is a question about a concept.

Example 2.1: Suppose we have an EDB schema consisting of one binary relation e, which we interpret as

edges in a directed graph. Some well-known concepts we might want a program to express are:

There is a path from X to Y : p(X;Y).

There is not a path from X to Y : np(X;Y).

X is a source (has no incoming edges): s(X).

5

X is well-founded (has no in�nite descending chain of edges): w(X).

Some sample queries are:

Is there a path from a to b: p(a; b)?

Is there a path from a to anything: 9Y p(a; Y)?

What nodes have paths to a, but not to b: p(X; a) ^ np(X; b)?

Is there a path from any source to b: 9X [p(X; b) ^ s(X)]?

To handle such queries, the logic program would have rules for relations p, np, s and w. Queries would be

answered by solving appropriate goals.

The separate relation np(X;Y) is listed here because it cannot be represented simply as np(X;Y)

:p(X;Y) in some semantics, as shown in Example 2.2.

One way to compare query languages objectively is in terms of their relative expressive power. Informally,

this means answering the question, \Are there concepts that are expressible in one query language, but not

the other?" If one language is able to simulate another, then it is at least as powerful. Query languages

can be separated in terms of expressivity by proving that a certain concept is impossible to express in the

weaker language.

A major motivation for introduction of new language constructs is to be able to express some concepts

not expressible in the weaker language. The precursors of logic programs were relational calculus queries,

which can be thought of as non-recursive logic programs. One of the �rst results concerning expressive power

of query languages was that no relational calculus formula, indeed no �rst order formula, could express the

concept of transitive closure (e.g., p in Example 2.1). This fact, well known by logicians, was �rst observed

in a database context by Aho and Ullman [3]. Their article spurred research into the expressive power of

various logical systems that incorporated a �xed point operator and were interpreted on �nite structures [52,

8, 20, 19, 21, 1].

Inductive �xpoint logic (IFP), mentioned earlier, is sometimes called the inationary semantics of a logic

program. IFP has been recommended as an interpretation of logic programs with negation because of its

expressive power [22, 21]. IFP was studied on in�nite structures by Aczel [2] and others. Among the known

results are that, on the integers and other suitably well-behaved in�nite structures, the existential fragment

of IFP can express �1
1 sets, while full FP can express �1

1 sets, a proper superset of �1
1. Also, full IFP

expresses a proper superset of �1
1, hence is strictly more expressive than FP. (Consult the cited work for

further details and de�nitions of these classes; these de�nitions are not needed to read this paper.)

More recently, IFP was studied on �nite structures by Gurevich and Shelah [19], who showed the

surprising result that, on �nite structures, FP has the same expressive power as IFP (both methods using

full �rst order formulas). A further, very interesting, result by Abiteboul and Vianu is that the expressive

power of the existential fragment of IFP is equal to that of full IFP [1]. Thus, many of the distinctions in

expressive power on in�nite structures are now known to collapse on �nite structures!

Still considering only �nite structures, Kolaitis [21] showed that the class of unstrati�ed programs has

strictly greater expressive power than the strati�ed class (discussed above). For unstrati�ed programs, he

recommends adoption of IFP.

Example 2.2: Before adopting IFP as the semantics of choice, we would do well to examine a problem

considered earlier: expression of the complement of transitive closure. The obvious set of rules is:

np(X;Y) :p(X;Y):

p(X;Y) e(X;Y):

p(X;Y) e(X;Z); p(Z; Y):

6

or one of its variants, where np is intended to represent the complement of the transitive closure of the

edge relation e. This de�nition works in the strati�ed semantics (and extensions, well-founded and stable

semantics) because p is evaluated completely before considering np, which is in a higher stratum.

However, the inationary semantics (existential IFP) puts all possible tuples into np because it is

evaluated simultaneously with p, and in the �rst round :p(X;Y) is true for all X and Y . Thus it was

a signi�cant achievement when a function-free logic program was found that did express the complement

of transitive closure in the inationary semantics [1]. Presumably, in a practical language, we do not want

expression of such simple concepts to be signi�cant achievements! This subject is discussed further in

Section 8.5.

One contribution of this paper is that the alternating �xpoint semantics (hence well-founded semantics)

is at least as expressive as full �xpoint logic on all structures. In particular, on the integers and other

\reasonable" in�nite structures, alternating �xpoint logic can express the �1
1 sets, and is therefore strictly

more expressive than the existential fragment of IFP, which is limited to �1
1 [2]. In the other direction, on

�nite structures, we show that FP is as expessive as alternating �xpoint logic.

Recent work by Schlipf has shed still more light on the expressive power questions surrounding the well-

founded semantics, the stable model semantics, and the Fitting semantics [45]. He has shown that on the

integers, on Herbrand universes, and on other \reasonable" in�nite structures, all three of these semantics

are equivalent to �1
1. However, on \recursively saturated" in�nite structures, the well-founded semantics

is not contained in �1
1 (but the Fitting semantics, as well as FP, still are). (Consult the cited work for

additional details, and de�nitions, including a precise meaning for \reasonable".)

2.6 Modularity of Concepts

Another interesting measure of expressive power is modularity : to what extent can di�erent parts of a

program be built independently and then �t together? Let C be a concept that is a natural composition

of simpler concepts C1 and C2, which have programs P1 and P2 that express them. It is desirable that

P = P1 [P2 should express the concept C. Many proposed semantics do not enjoy this property.

For example, the global nature of stable models means that combining sets of rules may eliminate some

or all stable models. You and Yuan have described regular partial models that fall somewhere between well-

founded and stable models [53] partly to address this problem. Roughly, if part of a program is \unstable",

it is absent from the regular partial models, leaving \stable" parts alone.

Schlipf [45] de�ned a notion of uniform translatability between semantics. Roughly, semantics A is

uniformly translatable into semantics B if programs that compose in semantics A to express a concept can

be translated individually and independently into programs that compose in semantics B to express the same

concept. This means that B enjoys the above modularization/composition property at least to the extent

that A does. Schlipf showed that the Fitting program completion semantics is uniformly translatable into

the well-founded semantics, but not vice versa. In other words, although the Fitting semantics can express

any concept on Herbrand structures that is expressible by the well-founded semantics, it cannot necessarily

do so modularly.

2.7 Overview of the Alternating Fixpoint

This paper gives a new formulation of the stability transformation (originally called simply S� [18]) for a

given logic program P. We observe that the stability transformation, upon which stable models are based, is

antimonotonic, a fact that has not been emphasized in previous work, but serves to explain the intractability

surrounding stable models. We de�ne ~SP as an operator on a set of negative literals, or negative facts, ~I.

We shall show in Section 7 that ~SP has a remarkable relationship to the well-founded partial model, which

is illustrated in Figure 2. Across the top of the picture, the Herbrand base H is partitioned into the

various parts of the well-founded partial model: the negative portion, ~W , the positive portion, W+, and

the unde�ned portion, W?. If ~I is any subset (underestimate) of the negative portion (~W), then ~SP (~I) is a

superset of the negative and unde�ned portions combined (~W [W ?), and ~SP (~SP (~I)) is again a subset of ~W .

As suggested by the picture, the sequence alternates, with one subsequence converging to ~W from below and

7

~W (negative) W ? (unde�ned) W+ (positive)

~I

~SP (~I)

AP (~I) = ~S2P (
~I)

~S3P (
~I)

A2
P (~I) = ~S4P (

~I)

~S5P (
~I)

� � �

A1

P (~I)

� � �

Figure 2: Relationship of ~SP to the well-founded partial model, represented on the top row.

and the other converging to (~W [W ?) from above. More precisely, let AP (~I) = ~SP (~SP (~I)). Then AP is

monotonic and its least �xpoint is ~W . Finally, W+, the positive portion of the well-founded partial model,

is found by positive induction, using ~W as a �xed set of negative facts.

3 Preliminaries

This section covers notational conventions and preliminary facts about �xpoints, operators, and models.

We follow established terminology for logic programming as far as possible, which can be found in several

standards works, such as [48, 23, 29]. We assume logic programs are normal, in Lloyd's terminology [29],

unless stated otherwise; the de�nition is repeated below.

De�nition 3.1: A normal rule is one whose body is a conjunction of literals; a normal logic program is a

�nite set of normal rules.

The Herbrand universe of a logic program P is the set of all ground (variable-free) terms in the language

of P, that is, terms composed of function symbols and constants that appear in P. The Herbrand base H is

the set of atoms (atomic formulas) that can be formed from the relations of the program and terms in the

Herbrand universe.

We shall distinguish two classes of relations, as described in Section 2.5. The extensional database

relations (EDB) are relations for which all rules are simply facts (rules without variables or subgoals).

The intentional database relations (IDB) are relations that are de�ned by (nontrivial) rules. Since no new

conclusions can be drawn about the EDB, its relations are often not mentioned in the Herbrand base and in

interpretations.

3.1 Notation

We shall be working with sets of literals (atoms and negated atoms) based on an underlying universe of

atoms, usually H, the Herbrand base. We normally use names with a tilde (\�") for sets of negative literals,

and use \+" superscripts in the names of sets of positive literals. These symbols are part of the names of

the sets, not operations upon them. We introduce now some notation for frequently used operations on such

sets.

8

De�nition 3.2: If I is a set of literals, then : � I denotes the set in which each literal in I has been

complemented.

1. When H is the Herbrand Universe, ~H denotes : �H.

2. We use I + J and I � J to denote disjoint union and set di�erence, respectively. Disjoint union is used

primarily when one set consists of positive and the other of negative literals.

3. The conjugate of a set of literals is essentially the complement in H, but with the polarity reversed as

well; conjugate is only de�ned for sets that are all positive or all negative.

(a) If I is a set of positive literals, its conjugate is the negative set I = ~H � (: � I).

(b) If J is a set of negative literals, its conjugate is the positive set J = H � (: � J).

3.2 Fixpoints of Transformations

In our usage a transformation is a mapping of a domain into itself. Let S be a set and let 2S be its powerset.

The important property of 2S for this section is that it is a complete lattice with partial order �. Let

T : 2S ! 2S denote a transformation.

The ordinal powers, or stages, of T are de�ned inductively as follows [5]:

T 0(;) = ;

T�(;) = T (T��1(;)) for � a successor ordinal

T�(;) = [
�<�

T �(;) for � a limit ordinal

T1(;) = [
�
T�(;)

When S is in�nite, we may have trans�nite induction. As usual, we denote the smallest in�nite ordinal by

!.

Often T will be parameterized; it is important that the arguments, which vary through the stages, be

clearly separated from the parameters, which are constant through the stages.

De�nition 3.3: Let M : D ! R be a general mapping, where both domain D and range R are partially

ordered (both partial orders are denoted �).

1. M is monotonic (or monotonic nondecreasing) if, whenever I � J 2 D, then M (I) � M (J) 2 R.

2. M is antimonotonic (or monotonic nonincreasing) if, whenever I � J 2 D, then M (J) �M (I) 2 R.

Monotonic transformations have many nice properties, which we shall repeatedly exploit. In particular,

the following properties of monotonic transformations are well known.

Theorem 3.1: If T is a monotonic transformation, then T�(;) � T�+1(;) for all ordinals �, and T has a

least �xpoint, which is given by T1(;).

Proof: See Moschovakis [34] and elsewhere.

Corollary 3.2: If T is a monotonic transformation and T (I) � I, then the least �xpoint of T is a subset of

I.

Proof: A routine induction shows that T�(;) � I for all ordinals �.

9

3.3 Partial Interpretations

A partial interpretation I is a partial function from the Herbrand base H into ftrue; falseg. A total

interpretation I is such a total function. We shall have no occasion to consider interpretations that do not

\correctly interpret" the EDB relations. Therefore, partial and total interpretations are understood to have

implicitly I(r) = true if r is an EDB fact of P, and I(r) = false if r is an EDB atom that is not a fact of P.

We shall use sets of IDB literals (atoms and negated atoms) to represent partial interpretations: positive

literal p 2 I denotes that I(p) = true and negative literal :p 2 I denotes that I(p) = false. If both p and

:p are absent from I, then I(p) is unde�ned. We denote both the function and the set of literals by I.

De�nition 3.4: A partial interpretation I is extended to a partial function on literals and conjunctions of

literals. The phrase \� is true in I(resp. false in I)", where � is a formula means the same as I(�) = true

(resp. false); and similarly for \� is unde�ned in I". First, if p is an atom, then I(:p) inverts true and

false for I(p), as expected. However, I is not extended to other negative formulas. Second, let � def
= A^B

have no free variables. Then

� I(�) = true if I(A) = true and I(B) = true.

� I(�) = false if I(A) = false or I(B) = false.

� Otherwise, I(�) is unde�ned.

These speci�cations are su�cient to extend I to normal rule bodies (De�nition 3.1). We postpone

consideration of more general formulas until Section 8.1. In particular, I is not extended to rules themselves,

or to negations other than negative literals.

For a given normal program P, let PH be its Herbrand instantiation, in which ground terms in the

Herbrand universe are substituted for variables in the rules in every possible way. (PH is often in�nite.)

Each such substitution gives rise to an instantiated rule, one in which all variables have been replaced by

ground terms.

De�nition 3.5: We shall say a partial interpretation I satis�es an instantiated normal rule p � if any

of the following hold:

1. the head of the rule, p is true in I; or

2. the body of the rule, � is false in I; or

3. both p and � are unde�ned in I.

A partial (resp. total) interpretation that satis�es every rule of PH is called a partial (resp. total) model of

PH and of P.

Observe that satisfaction of a rule cannot be expressed in terms of its truth value in I if we simply

interpret p � as p_:� (even if we extend I to negations). Under condition 3 the rule's value is unde�ned.

However, not all rules whose truth value is unde�ned are satis�ed. In particular, the value of the rule p q

is unde�ned if I(p) = false and I(q) is unde�ned, but this rule is not satis�ed by I. Some authors introduce

3-valued logic and give a special meaning to to be able to de�ne satisfaction in terms of truth of the rules

[15, 24, 38], but we prefer to simply de�ne satisfaction separately. The de�nition is further motivated by the

following theorem and example.

Theorem 3.3: ([51]) For any instantiated normal logic program: (A) a partial model can always be extended

to a total model, and (B) there is always a minimum (least de�ned) partial model.

10

Example 3.1: This example shows that the above Theorem 3.3 does not hold for reasonable looking

alternative de�nitions of satisfaction.

A partial model might not extend to a total model if any rule whose body \evaluated to unde�ned" were

considered satis�ed. Consider the program

p q

p r

q :r

r :q

The partial interpretation I1 = f:pg cannot be extended to a total model, because p is true in all models.

But the values of all rules are unde�ned in I1.

If we drop condition 3 of De�nition 3.5 to strengthen the requirements for satisfaction, then there may

be no minimum partial model. Without condition 3, I2 = fpg is not a partial model (neither is I3 = fg).

We are forced to include q or r arbitrarily, giving two incomparable minimal models.

3.4 The Immediate Consequence Mapping

In this section we provide a uniform framework for a variety of transformations whose �xpoints have been

used as the semantics of logic programs. In subsequent sections transformations leading to stable models

and to the alternating �xpoint are cast in this framework.

As a starting point, let us consider a Horn clause program P with associated instantiated program PH .

The transformation TP (I+), where I+ � H, is called the immediate consequence transformation for P [48,

5]. It is de�ned by

TP (I
+) = fp j

PH contains a rule whose head is p and

every literal of whose body is in I+
g

In Horn clause programs both I+ and TP (I+) may represent partial interpretations of P; whether the other

atoms are considered false or unde�ned is immaterial. Essentially the same transformation is used in �xpoint

logic [34], where the rule bodies may be �rst order formulas, but there are still no negative IDB literals.

From now on we distinguish carefully between a transformation, which maps a domain into itself, and a

mapping , which is an arbitrary function. The above transformation for Horn programs has been extended to

sets of rules with negative literals in several ways by various researchers. We shall de�ne a mapping with two

arguments: a set of positive literals and a set of negative literals. Then all transformations can be de�ned

in terms of this two-argument mapping.

De�nition 3.6: The immediate consequence mapping is the transformation CP (I+; ~J), where I+ � H and
~J � ~H, de�ned by

CP (I
+; ~J) = fp j

PH contains a rule whose head is p

and every literal of whose body is in in

(I+ + ~J)

g

(The combined set (I++ ~J) is not required to be a partial interpretation, i.e., it may contain complementary

literals.)

Clearly, for Horn programs TP (I
+) = CP (I

+; ;); here ; can be replaced by an arbitrary negative set,

due to the lack of negative literals in P. The most straightforward extension of TP to rules with negative

literals is to keep the argument of TP as a set of positive literals I+, and simply consider a negative

literal true if its positive counterpart is not in I+. Recalling De�nition 3.2, TP (I
+) def

= CP (I
+; I+).

Under this nonmonotonic de�nition T�
P (;) � T�+1

P (;) frequently fails to hold (cf. Theorem 3.1). This

extension was studied in [22] and found not to be very satisfactory, in that it led immediately to intractable

problems. A modi�cation of the above extension is the one used in inductive �xpoint logic (IFP):

TP (I+) def
= CP (I

+ ; I+) [I+. While this guarantees that T�
P (;) � T�+1

P (;), it is still not monotonic;

the term inationary has been used for this operator. Its properties have been studied recently on �nite

structures [19, 22, 21, 1], and it is the basis for nonmonotone induction in older works [2].

A di�erent approach, involving a monotonic extension, has been taken by the logic programming

community [5, 30, 29, 15, 24, 46, 37, 50, 51] and elsewhere, and is taken in this paper:

11

EDB

~I

Rules IDB+-

�

- �
��6

Figure 3: The eventual consequence mapping SP (~I) treats the negative IDB like the EDB.

De�nition 3.7: The transformation TP (I) is de�ned for I a set of literals, both positive and negative. Let

I = I+ + ~I, where I+ is positive and ~I negative. Then

TP (I) def
= CP (I

+; ~I)

In this approach, TP produces only positive literals; negative literals in the rules are not inuenced by

positive literals in I. A separate mechanism is used to draw negative conclusions, and various de�nitions for

that mechanism have been studied.

4 The Stability Transformation Revisited

The stability transformation for a normal logic program P, introduced by Gelfond and Lifschitz [18], was

described as a transformation on I+, the set of atoms that are true in the total interpretation I. Here I+

is a subset of H, the Herbrand base of P. Stable models are �xpoints of this transformation. As originally

presented, the transformation involves three stages, intended to correspond to a rational agent's operations

on beliefs:

1. Eliminate each rule of PH with a negative literal whose atom is in I+. (Can't believe :p if believes p.)

2. Drop negative literals from bodies of remaining rules. (OK to believe :p here.)

3. The transformation outputs the minimum model of the resulting Horn program. (Every positive belief

is \founded".)

We give an alternative formulation of this transformation, and note that it is antimonotonic. This

antimonotonicity property seems to be at the heart of the intractability of stable models (and nonmonotonic

truth maintenance systems).

It is quite customary to represent a (total) interpretation I of a logic program as the set I+ of ground

atoms that are true in it; then I+ denotes the set of negative literals that are true in I. However, it turns

out to be simpler and more intuitive, at least for our purposes, to describe the transformation in terms of a

set of negative literals.

De�nition 4.1: Let I+ � H and let ~I � ~H. Then

TP[~I (I
+) def

= CP (I
+; ~I)

That is, ~I is thought of as a parameter of a transformation whose domain is H.

Perhaps the clearest view of P[~I is that negative literals in P can be treated as \additional EDB

relations" in a Horn program, whose facts are given by ~I .

12

De�nition 4.2: Let ~I � ~H. Then the eventual consequence mapping is the least �xpoint of TP[~I , i.e.:

SP (~I)
def
= T1

P[~I (;)

Now, our version of the stability transformation operates on sets of negative literals (recall De�nition 3.2):

~SP (~I)
def
= SP (~I) = ~H � (: � SP (~I))

That is, make each atom in SP a negative literal and take the complement in ~H.

Intuitively, SP (~I) gives the set of positive facts that can be (eventually) derived using P and the �xed

set of negative facts ~I , as suggested in Figure 3. Clearly, SP is a monotonic mapping. Note that the closure

ordinal of TP[~I is at most ! [34, 5].

If we adopt the convention that a total model is represented by its negative literals, then a �xpoint of
~SP represents a stable model, by a direct translation of the three-stage de�nition above. Monotonicity of

SP implies antimonotonicity of ~SP .

5 The Alternating Fixpoint

One way to get a monotonic transformation from an antimonotonic transformation is to compose it with

itself, and this is precisely the transformation used for the alternating �xpoint.

De�nition 5.1: The alternating transformation is de�ned for ~I � ~H by:

AP (~I) def
= ~SP (~SP (~I))

where ~SP is given by De�nition 4.2. It is monotonic, so its least �xpoint is given by

~A = A1

P (;)

This is called alternating �xpoint of a program P.

By its de�nition, it is clear that every stable model is a �xpoint of AP ; but AP may have additional

�xpoints, which may or may not correspond to total models.

The closure ordinal of ~A may be trans�nite when the Herbrand universe H is in�nite. Of course, for

�nite H, it is routine to show that the least �xpoint of AP is computable in time that is polynomial in the

size of H, if the program P is regarded as �xed.

De�nition 5.2: Let ~A be as de�ned above and let A+ = SP (~A). Then the alternating �xpoint partial model

(AFP model) is (A++ ~A). If this is a total model, it is called the alternating �xpoint total model (AFP total

model).

Example 5.1: Consider the rules below, where H = pfa; b; c; d; e; f; g; h; ig. (We abbreviate fp(a); p(b); : : :g

by pfa; b; : : :g.) The main point of this example is that pfd; e; fg eventually become false, while pfa; bg

remain unde�ned.

p(a) p(c); :p(b):

p(b) :p(a):

p(c).

p(d) p(e); :p(f):

p(d) p(f); :p(g):

p(d) p(h):

p(e) p(d):

p(f) p(e):

p(f) :p(c):

p(i) p(c); :p(d):

Let us analyze the alternating �xpoint computation, which is governed by ~Ik+1 = ~SP (~Ik), and is summarized

in the following table.
k ~Ik SP (~Ik)

0 ; pfcg

1 : � pfa; b; d; e; f; g; h; ig pfa; b; c; ig

2 : � pfd; e; f; g; hg pfc; ig

3 : � pfa; b; d; e; f; g; hg pfa; b; c; ig

4 : � pfd; e; f; g; hg pfc; ig

13

na
Z

Z
Z~

�
�

�= ne
@

@R
�

�	

nb
�

�	
@

@Rnc nd nf ng
S

Sw
�

�/ ninh
(a)

na �
�

�
� �

-

nb
?nc
?nd

(b)

na �
�

�
� �

-

nb
?nc

(c)

Figure 4: Graphs for Example 5.2: (a) Acyclic; (b) Cyclic with partial model; (c) Cyclic with total model.

We begin with ~I0 = ;, so only rules with no negative subgoals \have a chance" initially. Thus SP (;) = fp(c)g.

Recall that we treat :p(a) and :p(b) as separate facts, not as denials of p(a) and p(b), for purposes of

SP . Thus SP (~I1) = pfa; b; c; ig. This illustrates that overestimates of negative facts permit us to derive

overestimates of positive facts, and the combination can easily be \contradictory". However, combinations

of negative and positive underestimates are always \consistent" and de�ne a partial interpretation. By

de�nition, A1
P (;) = ~I2.

Continuing, we see that A2
P (;) =

~I4 = ~I2, so this is the least �xpoint of AP . (However, ~Ik oscillates

without converging.) Also, SP (~I4) = pfc; ig gives the corresponding positive derived facts. Thus

fp(c); p(i);:p(d);:p(e);:p(f);:p(g);:p(h)g

is the AFP partial model.

Example 5.2: This example was discussed in previous work [18, 51], and is one of the examples that led to

the formulation of well-founded semantics, as well as stable models. Interestingly, this program turns out to

be closely related to a game described by Kolaitis, and used to prove that there are queries in �xpoint logic

that are not expressible by strati�ed programs [21]. In this respect, the program can be viewed as describing

a game where one wins if the opponent has no moves, as in checkers (or draughts).

wins(X) move(X;Y); :wins(Y):

Some sample move graphs are shown in Fig. 4. Whenever the move EDB relation is acyclic, successive

applications of AP �nd nodes that \lose" immediately, then those that lose after one move, then after two

moves, etc. For example, in part (a) of the �gure, abbreviating wins to w, SP (;) = ;, so ~I1 = ~SP (;) is

\everything". Then SP (~I1) is everything with an out-arc, so

AP (;)
def
= ~I2 def

= ~SP (~I1)

= : �wfc; d; f; h; ig

using the same abbreviation as in the previous example. Continuing, SP (~I2) = wfb; e; gg, so

~I3 = ~SP (~I2)
def
= : �wfa; c; d; f; h; ig

Finally, ~I4 = ~SP (~I3) is the same as ~I3, so is the least �xpoint of both AP and ~SP .

Part (b) shows a cyclic case in which the AFP model is partial. ~I2 = AP (;) = f:w(d)g. Then

SP (~I2) = fw(c)g, so the next overestimate is

~I3 = ~SP (~I2) = : �wfa; b; dg

14

which leads back to ~I4 = AP (~I2) = f:w(d)g. Thus the AFP model is fw(c);:w(d)g.

But even when a cycle is present in the EDB, there may be a total AFP model, as in part (c). Here
~I2 = AP (;) = f:w(c)g. Then SP (~I2) = fw(b)g, so the next overestimate is ~I3 = ~SP (~I2) = : �wfa; cg, from

which ~I4 = AP (~I2) = ~SP (~I3) = : �wfa; cg. Thus fw(b);:w(a);:w(c)g is the AFP total model.

In parts (a) and (c), we reach �xpoints of not only AP , but ~SP as well. These are examples of the fact

that every AFP total model is also a unique stable model.

6 Well-Founded Partial Models

This section reviews the de�nitions of unfounded sets and the transformations UP and WP from [51].

Unfounded sets provide the basis for negative conclusions in the well-founded semantics.

De�nition 6.1: Let a program P, its associated Herbrand base H, and a partial interpretation I be given,

represented as a set of literals. We say U � H is an unfounded set of P with respect to I if each atom p 2 U

satis�es the following condition: For each instantiated rule r of P whose head is p, (at least) one of the

following holds:

1. Some literal, q or :q, in the body of rule r occurs in : � I, i.e., is false in I.

2. Some positive literal in the body of rule r occurs in U .

A literal that makes (1) or (2) above true is called a witness of unusability for rule r (with respect to I).

(Note that any atom p that is not in the head of any rule vacuously satis�es the condition to be in U .)

The union of all unfounded sets with respect to a given I is also unfounded, and is called the greatest

unfounded set (of P with respect to I).

Example 6.1: Consider again the rules in Example 5.1. Let I = fp(c);:p(g);:p(h)g. Then U1 =

fp(d); p(e); p(f)g is an unfounded set with respect to I: The third rule for p(d) and the second rule for

p(f) satisfy condition 1 above, and the other rules for p(d), p(e), and p(f) satisfy condition 2.

Note, however, that U2 = fp(a); p(b)g is not an unfounded set with respect to I.

De�nition 6.2: For I a set of literals:

� TP (I) is the immediate consequence transformation (see De�nition 3.7).

� UP (I) is the greatest unfounded set of P with respect to I.

� WP (I) = TP (I) [: �UP (I).

It is immediate that TP , UP and WP , are monotonic transformations. The well-founded partial model

is the least �xpoint of WP .

7 Properties of the Alternating Fixpoint

We now establish the claim presented informally in Section 2.7 and Figure 2, that the alternating �xpoint

constructs the well-founded partial model. This section is rather technical. The main points are Lemma 7.5,

which states that the alternating �xpoint is contained in the negative portion of the well-founded partial

model, and Lemma 7.7, which states that the alternating �xpoint is a superset of the negative portion of

the well-founded partial model. They lead to Theorem 7.8, which states the equivalence of the alternating

�xpoint and well-founded semantics.

We assume throughout that the program isP, the Herbrand base isH, and the well-founded partial model

is W , which consists of positive literals W+ and negative literals ~W . Let W ? be the unde�ned portion, but

represented as negative literals, i.e., W ? + ~W = W+. Recall the De�nition 4.2 of SP and ~SP .

15

Lemma 7.1: SP (~W) = W+.

Proof: Let I = SP (~W) and recall De�nition 4.1. Thus I is the least �xpoint of TP[~W . But

TP[~W (W+) = TP (W
+ + ~W) + ~W = (W+ + ~W)

by de�nition, so by Cor. 3.2, I � W+.

Now let J = UP (I + ~W). Then : � J � ~W by monotonicity of UP . Thus

WP (I + ~W) = I + : � J � I + ~W

Again, by Cor. 3.2, W � I + ~W , so W+ � I.

Corollary 7.2: If ~I � ~W , then ~SP (~I) � ~W +W ?.

Proof: SP is monotonic; so by Lemma 7.1, SP (~I) � W+. By de�nition, ~SP (~I) = SP (~I) � W+.

Lemma 7.3: SP (~W +W ?) � : �W ?, which is the unde�ned portion of H as positive literals.

Proof: Let U � H be the set of positive literals:

U = fp j p 62 SP (~W +W ?) and p 2 : �W ?g

Note that SP (~W +W ?) � W+ by monotonicity and Lemma 7.1. Let p q1; : : : ; qk be any rule for p 2 U .

We claim that some qi is a \witness of unusability" (see De�nition 6.1) for the purpose of showing that U

is an unfounded set of P with respect to W . To prove the claim, note that it cannot be the case that every

positive qi is in SP (~W +W ?) and every negative qi is in (~W +W ?), or p would be in SP (~W +W ?). Since

SP (~W +W ?) � W+, we have three cases:

1. Some positive qi is not in SP (~W +W ?) and is in W ?, or

2. Some positive qi is not in SP (~W +W ?) and is in ~W , or

3. Some negative qi is in : �W+.

Cases (2) and (3) are clear; qi is false in W . In case (1), qi is also in U , so the claim is proved. It follows by

the de�nition of WP that U � UP (W) = : � ~W . But by de�nition, U � W ?, so U = ;.

Corollary 7.4: If ~I � (~W +W ?), then ~SP (~I) � ~W .

Proof: By Lemma 7.1 and monotonicity, SP (~I) � W+. By monotonicity and Lemma 7.3, SP (~I) �

SP (~W +W ?) � : �W ?.

Lemma 7.5: A1

P (;) � ~W .

Proof: By de�nition of AP , Corollaries 7.2 and 7.4, we have AP (~W) � ~W . The conclusion follows from

Cor. 3.2.

Lemma 7.6: Let ~A = A1

P (;), A+ = SP (~A), and recall De�nition 4.1. Then for all ordinals �,

T�

P[A+
(;) \UP (A

+ + ~A) = ;

Proof: The proof is by induction on �. The basis, � = 0, is immediate. For � > 0, assume the lemma

holds for ordinals � < �. For limit �, the conclusion is immediate by the inductive hypothesis. For successor

ordinal �, let p 2 T�

P[A+
(;). Then there is some rule p q1; : : : ; qk;:r1; : : : ;:rm such that all qi are

in T��1

P[A+
(;) and all :rj are in A+. We shall show that this rule has no \witness of unusability" (see

De�nition 6.1) with respect to (A+ + ~A), hence p 62UP (A+ + ~A). First, by de�nition:

~A = SP (A+) � T��1

P[A+
(;)

so no qi of this rule is in : � ~A. By the inductive hypothesis, no qi of this rule is in UP (A
+ + ~A). Thus no qi

is a witness of unusability. Similarly, no :rj of this rule is in : �A+, so no :rj is a witness of unusability.

16

Lemma 7.7: A1

P (;) � ~W .

Proof: Let ~A = A1

P (;) and A+ = SP (~A). By Lemma 7.5, ~A � ~W . By monotonicity of SP and Lemma 7.1,

A+ � W+. Consider

WP (A
+ + ~A) = TP (A

+ + ~A) + : �UP (A
+ + ~A)

But TP (A+ + ~A) = A+, and it follows from Lemma 7.6 that

: �UP (A
+ + ~A) � SP (A+) = ~A

Thus WP (A+ + ~A) � (A+ + ~A), and therefore by Cor. 3.2, W � (A+ + ~A).

Theorem 7.8: The alternating �xpoint partial model is identical to the well-founded partial model.

Proof: By the preceding Lemmas 7.5 and 7.7, the least �xpoint of AP is ~W , the negative portion of the

well-founded partial model. For the positive portion, we have A+ = SP (~W) = W+ by Lemma 7.1.

8 First Order Rule Bodies and Expressive Power

A generalization of logic programs permits rule bodies to be arbitrary formulas of �rst order logic with

equality, instead of being restricted to existential conjunctions of literals; this generalization has been studied

by Lloyd and Topor [30], and others. As in [30], we adopt the Clark Equality Theory [11], which essentially

speci�es that ground terms are equal if and only if they are syntactically identical. In the terminology of

[29] a general logic program is one that permits arbitrary �rst order formulas in its rule bodies, whereas a

normal logic program requires rule bodies to be (existentially quanti�ed) conjunctions of literals.

If a rule body may be any formula of �rst order logic with equality, then there is no loss of generality in

requiring each IDB relation to have just one rule, and we are led to formats that look the same as �xpoint logic

[34] and nonmonotonic or inductive �xpoint logic [2, 19]. We show how to generalize the alternating �xpoint

(and thus the well-founded semantics) to rules with �rst order bodies; we call this extension alternating

�xpoint logic.

Recall that a system in �xpoint logic (FP) is essentially a logic program in which rule bodies may be

�rst order formulas, but the inductively de�ned (IDB) relations are required to appear only positively in

those rule bodies, i.e., under an even number of negations. The EDB subgoals may be positive or negative.

Fixpoint logic was studied on in�nite structures by Moschovakis [34], and more recently on �nite structures

by numerous researchers [9, 52, 19, 20, 21, 26]. Permitting �rst order rule bodies in logic programs was

studied from the \program completion" point of view by Lloyd and Topor [30].

We show that any FP system can be rewritten into a normal logic program such that the positive part

of the AFP model agrees with the original FP model.

8.1 Truth of First Order Rule Bodies

It is reasonably straightforward to generalize alternating �xpoints to programs in which rule bodies may be

arbitrary �rst order formulas, but some care is required. The main point is to be careful about identi�cation

of positive and negative atoms, since an atom may be under several negation symbols in the rule body.

De�nition 8.1: A subformula of a �rst order formula is called positive if there are an even number of

negations above it, and negative otherwise. The positivity or negativity of a subformula is called its polarity .

A formula is said to be in explicit literal form if every negative atom appears in a negative literal, i.e.,

has a negation immediately above it. In explicit literal form, the literals of the formula are de�ned to be

those subformulas of positive polarity that are either atoms or negations of atoms.

It is easy to convert a formula to explicit literal form by replacing negative atom q by :(:q) where

necessary. For example, � def
= :9X p(X) � :9X [::p(X)] � 8X :p(X).

De�nition 8.2: Let I be an arbitrary set of literals. The truth value assigned by I to a �rst order formula

without free variables is determined by the following procedure.

17

1. Put the formula into explicit literal form and identify the literals of the formula.

2. A ground literal is assigned true if it occurs in I, and false otherwise. Literals must be instantiations of

those identi�ed in step 1, and their polarity is based on the whole formula.

3. Logical connectives and quanti�ers are evaluated in the standard way.

With some abuse of language we sometimes say \� is true (false) in I", rather than \I assigns true (false)

to �".

Example 8.1: Applying this de�nition to the example formula above, � def
= :9X p(X), an explicit literal

form is 8X :p(X). For � to be assigned true by I we require :p(t) to be in I for all ground terms t in H.

Absence of positive p literals is not enough.

However, let def
= :�. Then p(X) is positive in , so is assigned false if I contains p(t) for any

ground term t in H.

Having de�ned what it means for a �rst order formula to be assigned true by I, the de�nitions of TP ,

SP , ~SP , and AP generalize immediately: The head of the rule is in the output if the body is assigned true

by I. TP , SP , and AP are still monotonic, and ~SP is still antimonotonic. However, we observe that the

closure ordinal of SP is no longer bounded by !, since rule bodies are not necessarily existential formulas.

8.2 Dependency Graphs and Strictness

The dependency graph of a logic program describes how its relations depend on each other with respect

to negation [4, 50]. The concept of strictness is de�ned in terms of this graph. Strictness was de�ned in

[4] for normal logic programs (see also [25]); the extension of both concepts to general logic programs is

straightforward.

De�nition 8.3: The dependency graph of a logic program is a directed graph in which the relation symbols

are nodes. There is an arc from p to q if the program contains a rule in which p occurs in the head and q

occurs as a subgoal in the body. The arc is labeled according to the polarity of q in the body:

1. if q occurs only negatively, the arc is called \negative";

2. if q occurs only positively, the arc is called \positive";

3. if q occurs both positively and negatively, the arc is called \mixed".

Strictness is based on (directed) paths in this graph. In the de�nitions below p and q may be the same

relation symbol. The null path is considered a path for these purposes, so p always has a path to itself with

zero negative arcs. Also, paths need not be simple.

1. We say p is strictly positive in q if every path from p to q traverses an even number of negative arcs and

no mixed arcs.

2. We say p is strictly negative in q if every path from p to q traverses an odd number of negative arcs and

no mixed arcs.

3. We say the ordered pair of relations (p; q) is strict if p is strictly positive in q, or p is strictly negative in

q, or there is no path from p to q; otherwise we say the pair (p; q) is mixed .

4. A program is called strict if every ordered pair of relations is strict.

5. A program is called strict in the IDB if every ordered pair of IDB relations is strict.

18

A general logic program that �ts the requirements of �xpoint logic is strict in the IDB simply because

there are no negative IDB subgoals. We shall study programs that are strict in the IDB but do contain

negative subgoals. It is clear that for such programs the IDB relations may be partitioned into two sets,

which we call the globally positive and globally negative relations, such that all pairs from the same set are

either strictly positive or unrelated. Similarly, all pairs with one relation from each set are either strictly

negative or unrelated.

8.3 Simulation of Fixpoint Logic

It is easy to see (Theorem 8.1 below) that a �xpoint logic system can be interpreted in alternating �xpoint

logic as a general logic program with the same resulting semantics. This shows that alternating �xpoint

logic is an extension of �xpoint logic, but that in itself is not very signi�cant. The more interesting result

is that this general logic program can be transformed straightforwardly into a normal logic program while

preserving the positive part of the AFP model on the relations in the original program. This is established by

a series of technical lemmas culminating in Theorems 8.6 and 8.7. Thus normal logic programs in alternating

�xpoint logic have at least the expressive power of full �xpoint logic.

Theorem 8.1: Let P be a general logic program with only positive IDB literals in the rule bodies. Then

the positive part of the AFP model is the same as the set of relations de�ned by �xpoint logic for P.

Proof: Since there are no negative IDB literals, SP (~J) is the same for any set of negative literals. But

SP (;) is the result of �xpoint logic.

To convert a system 	 with �rst order rule bodies into a normal logic program P, it is necessary to

eliminate universal quanti�ers, de�ne new relations to represent negative existential subformulas, and put

the �nal rule bodies into disjunctive normal form (DNF); the procedure is implemented as a system of rewrite

rules. The details, and proof of termination may be found in [30]. We call the set of auxiliary relations the

auxiliary database (ADB) to di�erentiate it from the original IDB relations of 	.

Example 8.2: Consider a general program 	 to determine the well-founded set of nodes in a binary relation

e, which may be �nite or in�nite. Recall that a node is \well-founded" in standard mathematical terminology

if it has no in�nite descending chain from it, and unfounded otherwise. Let w represent \well-founded". The

well-founded property is expressible in FP by:

w(X) :9Y [e(Y;X) ^ :w(Y)]

The w(Y) subgoal is positive, but within a negative existential subformula. Since 	 has no negative IDB

subgoals, S	(~I) is the same for any set of negative literals, ~I , and contains the w atoms that represent the

well-founded nodes within e. It follows that A1

	 (;) contains all the elements not in the set of well-founded

nodes in e.

To transform 	 into a normal logic program P, we \extract" the negative existential subformula, and

give it an auxiliary relation name, u. (Think of u as \unfounded".)

w(X) :u(X)

u(X) 9Y [e(Y;X) ^ :w(Y)]

The �nal program, in normal syntax, is:

w(X) :u(X):

u(X) e(Y;X); :w(Y):

It is easily veri�ed that the positive w literals in its AFP model are indeed the well-founded part of e, as are

the negative u literals. The point is that w atoms succeed when the corresponding u atoms fail, but failure

of u atoms is inuenced by successful w atoms.

19

Notice that there will be no positive literals for the auxiliary relation u in the AFP model. This is typical

for auxiliary relations that replace negative subformulas of the original system. Similarly, there are no

negative w literals in A1

P (;), in contrast to what happened with A1	 (;). This suggests that the alternating

�xpoint on normal programs captures the negation of positive existential closures (such as transitive closure),

but not the negation of positive universal closures (such as well-foundedness).

Let 	 be a general logic program that is strict in the IDB (see De�nition 8.3). To transform 	 into

a normal logic program in a way that we can prove preserves the positive part of the AFP model, we use

a special case of the procedure described in [30]. We �rst put the rule bodies into existential disjunctive

normal form (EDNF); then we perform a series of rewrites called elementary simpli�cations.

Rewriting a �rst order formula into EDNF is accomplished as follows:

1. Replace 8X by :9X :.

2. Push :'s down to atoms or 9; eliminate ::.

3. Push ^ down through _ (distribute).

4. Push 9 through _; unnecessary 9 may be eliminated.

Do the above until no more changes are possible. Note that the only _ in an EDNF formula is at the top.

De�nition 8.4: Consider a general logic program P with IDB relation p, �rst order rule bodies in EDNF

form, and only one rule per IDB relation, such that

1. p(~X) (~X) is the rule for p;

2. �(~U) appears as a subformula of (~X), the rule for p;

3. �(~U) is an existentially quanti�ed literal or conjunction of literals;

4. � and have no variables other than ~U in common.

De�ne P0 to be the same program as P except for these changes:

1. There is a new relation symbol q with the rule q(~U) �(~U), which is a normal rule.

2. The subformula �(~U) in is replaced by the atom q(~U).

Then P0 is said to be obtained from P by an elementary simpli�cation.

Once in EDNF we continue \extracting" lowest existential subformulas and introducing new relation

names and rules for them until it is no longer possible. The quanti�er-free part of a lowest existential

subformula must be in the form of a literal or a conjunction of literals; therefore the extraction is an

elementary simpli�cation. The �nal result is a normal logic program P whose IDB relations are those of 	

plus the auxiliary relations. We shall show that each elementary simpli�cation preserves the IDB relations

in the AFP model.

De�nition 8.5: Each auxiliary relation is classi�ed as globally positive or globally negative in accordance

with the polarity of the subformula in 	 that it represents. The original inductive (IDB) relations in 	 are

globally positive.

For the discussion leading up to the next theorem we shall be considering two general logic programs P

and P0 that we may think of as intermediate forms in the transformation from 	 to a normal logic program.

Their relations include IDB relations p and q. P and P0 have �rst order rule bodies, only one rule per IDB

relation, and are related by elementary simpli�cation. Speci�cally, P is a program such that

20

1. p(~X) (~X) is the rule for p;

2. �(~U) appears as a subformula of (~X), the rule for p;

3. �(~U) is an existentially quanti�ed literal or conjunction of literals;

4. � and have no variables other than ~U in common;

5. q(~U) �(~U) is the rule for q, but q occurs nowhere in any rule body.

P0 is the same program as P with the subformula �(~U) in replaced by the atom q(~U). Thus P without

the rule for q could lead to P0 by an elementary simpli�cation. Clearly the rule for q in P does not a�ect

any other relations in the AFP model; it merely gives P and P0 the same set of relation symbols.

Let us denote

�(~U) def
= 9~V (s1(~U; ~V) ^ � � � ^ sk(~U; ~V) ^ :r1(~U; ~V) ^ � � � ^ :rm(~U; ~V))

Since this is a normal rule body, it makes sense to talk about \the instantiated rules for q(~t)", where ~t is a

ground tuple. (These rules range over all assignments of ground terms to ~V .) Then

:�(~t) � 8~V (:s1(~t; ~V) _ � � � _ :sk(~t; ~V) _ r1(~t; ~V) _ � � � _ rm(~t; ~V))

In the terminology of normal rules, �(~t) is true when some instantiated rule for q(~t) is true; but :�(~t) is

true when every such instantiated rule contains a literal whose complement is true. This relationship will

be used in subsequent lemmas.

Lemma 8.2: Let general programs P and P0 be as described above. Let ~I be a �xpoint of AP . Then

f~t j :q(~t) 2 ~Ig = f~t j :�(~t) is true in (SP (~I) + ~I)g

The same holds with P replaced by P0 throughout.

Proof: De�ne I+ = SP (~I). Then the set on the left is the same as f~t j q(~t) =2 SP (I+)g, which is the same

as

f~t j �(~t) is false in (SP (I+) + I+)g

Note that it is necessary to distinguish between \�(~t) false" and \:�(~t) true" because of partial interpretation

(see Example 8.1). Tuple ~t is in the last set if and only if every instantiated rule for q(~t) contains a literal

that is false. We show that the complement of that literal is true in (SP (~I) + ~I). This is immediate for

EDB literals by our convention that partial interpretations must contain a correct total interpretation of the

EDB. Of course, a positive literal cannot be true in I+, and a negative literal cannot be true in SP (I+).

A positive IDB literal s(~t;~v) is false in SP (I+) if and only if its negation is in ~I , because ~I = ~SP (I+). A

negative IDB literal :r(~t;~v) is false in I+ if and only if its positive version is in I+ = SP (~I). This completes

the proof because :�(~t) is true in (SP (~I)+ ~I) if and only if in each instantiated rule for q(~t) the complement

of some literal is true.

When a positive subformula is extracted by elementary simpli�cation, we show that the entire AFP

model is preserved.

Lemma 8.3: Let general programs P and P0 be as described above, and suppose that the replaced

subformula �(~U) occurs positively in (~X). Then for all ordinals �,

(a) A�
P 0 (;) = A�

P (;)

(b) SP 0(A�
P 0 (;)) = SP (A

�
P (;))

Also, P and P0 have the same AFP model.

Proof: By monotonicity, SP 0 (~J) = SP (~J) for an arbitrary set of negative literals ~J , so A�
P 0(;) = A�

P (;) by

a trivial induction.

21

The case where �(~U) occurs negatively is much less obvious, and normally the entire AFP model is not

preserved. Once :q(~t) appears in A�
P 0 (;) it stays there, but the truth of :�(~t) has to be rederived in P each

time. We also have to consider the possibility that :�(~t) can be derived in P in some cases that :q(~t) does

not appear in A�
P 0 (;). First we show inclusion in one direction.

Lemma 8.4: Let general programs P and P0 be as described above, and suppose that the replaced

subformula �(~U) occurs negatively in (~X). Then for all ordinals �,

(a) A�
P 0 (;) � A�

P (;)

(b) SP 0(A�
P 0 (;)) � SP (A

�
P (;))

Thus, the AFP model of P0 is a subset of that of P.

Proof: The proof is by induction on �. Clearly the lemma holds for � = 0. For the induction, let � > 0

and assume that the lemma holds for ordinals � < �.

Consider successor ordinal � = � + 1 �rst. Let ~I = A�
P 0 (;), and let I+ = SP 0(A�

P 0 (;)). Let ~J = A�
P (;),

and let J+ = SP (A
�
P (;)). By the inductive hypothesis, ~I � ~J and I+ � J+, so I+ � J+.

To prove part (a) we need ~SP 0(I+) � ~SP (J+), so we need to show that SP 0 (I+) � SP (J+). The only

problem is that P0 has :q(~U) where P has :�(~U) in the rule for p. It is su�cient to show that

f~t j :�(~t) is true in (SP (J+) + J+)g � f~t j :q(~t) 2 I+g

If :�(~t) is true in (SP (J+) + J+), then each instantiated rule for q(~t) has a literal whose complement is

true in (SP (J+) + J+). The same EDB literals are true in (SP 0 (I+) + I+), so consider IDB literals. The

complement of positive IDB literal s(~t;~v) is true in (SP (J+) + J+) if and only if :s(~t;~v) 2 J+ � I+, in

which case s(~t;~v) =2 I+. The complement of negative IDB literal :r(~t;~v) is true in (SP (J+) + J+) if and

only if r(~t;~v) 2 SP (J+). But then :r(~t;~v) =2 AP (~J), and by Theorem 3.1, :r(~t;~v) =2 ~J , either. By the

inductive hypothesis, :r(~t;~v) =2 ~I. Since these conclusions hold for every instantiated rule for q(~t), we have

that q(~t) =2 I+, hence :q(~t) 2 I+. This proves part (a) for successor ordinals. Part (a) for limit ordinals

follows immediately from the de�nitions.

For part (b), where � = � + 1 we need to show

f~t j :q(~t) 2 AP 0 (~I)g � f~t j :�(~t) is true in (SP (AP (~J)) +AP (~J))g

The set on the left is the same as f~t j q(~t) =2 SP 0(I+)g. Every instantiated rule for such q(~t) has a literal

that is not in (SP 0 (I+)+ I+). Again, EDB literals in each instantiated rule for q(~t) are interpreted the same

in P and P0, so it is su�cient to consider IDB literals. Suppose s is a positive literal of an instantiated rule

for q(~t) that is not in SP 0 (I+). Then s =2 SP (J+), so :s 2 AP (~J). Suppose :r is a negative literal of an

instantiated rule for q(~t) that is not in I+. Then r 2 SP 0 (A�

P 0 (;), which implies that r 2 SP (A
�

P (;)) by the

inductive hypothesis, and so r 2 SP (AP (~J)) by Theorem 3.1. This completes part (b) for successor ordinals.

For � a limit ordinal, and :q(~t) 2 A�
P 0 (;), there is some successor ordinal � < � such that :q(~t) 2 A�

P 0(;).

Then, as shown, :�(~t) is true in (SP (A
�
P (;)) +A�

P (;)), and part (b) follows by monotonicity of SP .

The preceding lemma shows that P0 is \slower" than P in some sense. The next lemma shows that,

with additional hypotheses, P0 does eventually \catch up" on critical relations. Examples can easily be

constructed that show that additional hypotheses are necessary. First we introduce some notation.

De�nition 8.6: Let the partition of the set of IDB relations into globally positive and globally negative be

understood. If I is any set of literals, then

[I]+
def
= fliterals in I of globally positive relationsg

[I]
�

def
= fliterals in I of globally negative relationsg

22

Lemma 8.5: Let general programs P and P0 be as described above, and suppose that the replaced

subformula �(~U) occurs negatively in (~X). Furthermore, assume that P and P0 are strict in the IDB,

have the same sets of globally positive and globally negative relations, and that p is globally positive. Then

for all ordinals �,
(a) [A�

P (;)]� � A1

P 0 (;)

(b) [SP (A
�
P (;))]+ � SP 0(A1

P 0(;))

Proof: Let ~A def
= A1

P 0 (;), and let A+ def
= SP 0(~A). We note that ~A = SP 0(A+) and A+ = ~SP 0 (~A). The

lemma is proved by induction on �. The basis, � = 0, is immediate for part (a), and the induction is trivial

for part (a) when � is a limit ordinal. For successor ordinal �, assume part (a) of the lemmaholds for ordinals

less than �. Let ~I def
= A��1

P (;), and let I+ def
= SP (~I). (We suppress the dependence of \local variables" ~I

and I+ on �.) We have
h
~I
i
�

� ~A by the inductive hypothesis. First we shall show that [I+]+ � A
+, which

establishes part (b) for �� 1; note that this covers both successor and limit ordinals, including 0.

To show that [I+]+ � A
+, we claim (Claim 1) that for all ordinals �:

1.
h
T�

P[~I
(;)

i
+
� A+

2. f~t j :�(~t) is true in (
h
T�

P[~I
(;)

i
=
+

h
~I
i
�

)g � f~t j :�(~t) is true in (A+ + ~A)g.

The claim holds for � = 0 and the induction is trivial for � a limit ordinal. For � a successor ordinal,

assume the claim holds for ordinals less than �. Suppose :�(~t) is true in (
h
T�

P[~I
(;)

i
+
+

h
~I
i
�

). Then each

instantiated rule for q(~t) has a literal whose complement is true in (
h
T�

P[~I
(;)

i
+
+

h
~I
i
�

). The same EDB

literals are true in (A++ ~A), so consider IDB literals. Of course, a positive literal cannot be true in
h
~I
i
�

, and

a negative literal cannot be true in
h
T�

P[~I
(;)

i
+
. Since the programs are strict in the IDB and p is globally

positive, q is globally negative. Let s(~t;~v) be a positive IDB literal of an instantiated rule for q(~t). Then s is

globally negative, too. The complement, :s(~t;~v), is true in ~I if and only if :s(~t;~v) 2
h
~I
i
�

� ~A. Let :r(~t;~v)

be a negative IDB literal of an instantiated rule for q(~t). Then r is globally positive. The complement,

r(~t;~v), is true in T�

P[~I
(;) if and only if

r(~t;~v) 2 TP[~I (T
��1

P[~I
(;))

By strictness in the IDB this is true if and only if the body of the rule for r(~t;~v) is true in (
h
T��1

P[~I
(;)

i
+
+
h
~I
i
�

).

If r has the same rule in P0 as in P, then r(~t;~v) 2 A+, because (
h
T��1

P[~I
(;)

i
+
+

h
~I
i
�

) � (A+ + ~A). The

only other case is that r is the same relation as p, in which case the rule in P0 has a literal :q where the

rule in P has :�. But by part (2) of the inductive hypothesis, Lemma 8.2, and the fact that :� occurs

positively in the rule for p, we have r(~t;~v) 2 A+ in this case, too. It follows that :�(~t) is true in (A+ + ~A),

establishing part (2) of the lemma for �. An argument similar to the one for r(~t;~v) shows that any atom inh
T�

P[~I
(;)

i
+
, being globally positive, is also in A+. This completes the proof of Claim 1.

From Claim 1 we have �
I+

�
+
= [

�

h
T�

P[~I
(;)

i
+
� A+

and it follows that h
~SP (~I) def

= I+
i
+
�

h
A+

i
+

(�)

We now claim (Claim 2) that (�) implies that

h
SP (~SP (~I))

i
�

�
h
SP 0 (A+)

i
�

23

To prove Claim 2, we note that all the globally negative relations have the same rules in P0 and P. Excluding

dependence on the EDB, which is not an issue, these rules depend positively only on globally negative IDB

relations, and they depend negatively only on globally positive IDB relations. That is,
h
SP (~SP (~I))

i
�

is

inuenced only by
h
~SP (~I)

i
+
, and

h
SP 0 (A+)

i
�

is inuenced only by
h
A+

i
+
. By a trivial induction, for all

ordinals �, �
T�

P[~SP (~I)
(;)

�
�

�
h
T�

P 0[A+
(;)

i
�

and Claim 2 follows.

To complete the main induction, we observe that

A�
P (;) = ~SP (~SP (~I)) � ~SP 0(A+) = ~A

Pulling the pieces together, we have:

Theorem 8.6: Let general programs P and P0 be as described above. Furthermore, assume that P and P0

are strict in the IDB, have the same sets of globally positive and globally negative relations, and that p is

globally positive. Then for all ordinals �,

(a) [A1

P (;)]
�

= A1

P 0 (;)

(b) [SP (A
1

P (;))]+ = SP 0(A1

P 0 (;))

In particular, the globally positive relations of P and P0 have the same positive literals in their respective

AFP models.

Proof: If q is globally positive, then � occurs positively in , the rule body for p, and Lemma 8.3 applies.

If q is globally negative, then � occurs negatively in , and the conclusion follows from Lemmas 8.4 and 8.5.

Theorem 8.7: Let an FP system 	 be transformed into a normal logic program P by a sequence of

elementary simpli�cations. Then the positive part of the alternating �xpoint partial model of P agrees

with the least �xpoint of 	 on the relations of 	.

Proof: Elementary simpli�cations can only be applied to rules for relations in the IDB of 	, which are

globally positive. By Theorem 8.6 the AFP model of 	 agrees with the AFP model of P on the positive

literals of the relations of 	, since all of these relations are globally positive. By Theorem 8.1 the positive

part is the least �xpoint of 	 interpreted in FP.

8.4 Expressive Power on Finite Structures

We now show how a lemma due to Immermann can be used to prove that, on �nite structures, the converse

of Theorem 8.7 holds; i.e., FP can simulate the positive part of AFP in this case. (That it can also simulate

the negative part (on �nite structures) follows from other results in [20], as well as from [19, 26].) For

simplicity of presentation we assume the AFP program P has a single IDB relation, p(~X).

The main di�culty is the conicting notation. To restate Immermann's lemma, we introduce the notation

� ~X: �p�[s; p](~X) to denote the relation representing the least �xpoint of the rule

p(~X) �[s; p](~X)

where p and s are relation names whose occurrences in � are positive, and ~X is the vector of the free

variables of �. Note that p, being the subscript of �, functions as the carrier of the induction; and s acts as

a parameter.

24

Lemma 8.8: ([20, Lemma 4.7]) Let �[s; p](~X) and [q; r](~U) be �rst order formulas, positive in (p; s) and

(q; r), respectively. Then

�(�;) def
= �p�[�~U::�r [:p; r](~U); p](~X)

is equivalent to an FP formula on �nite structures.

Let P be an AFP program for p(~X). We collect all the bodies of rules for p into a single �rst order

formula, and replace all the negative p literals by positive s literals, giving �[s; p](~X). Let be the same

formula. Thus

�(�; �) def
= �p�[�~U::�r�[:p; r](~U); p](~X)

Now in AFP, recall that ~SP and AP transform a set of negative literals into another set of negative literals.

Thus the expression �~U::�r�[:p; r](~U) corresponds to H �SP (p) in AFP, so �(�; �) is the least �xpoint of

the operator Q(J) that operates on sets of positive literals, and is de�ned by:

Q(J) def
= TP (J + ~SP (J))

Let J0 = ; and Jn+1 def
= Q(Jn). Then J1

def
= [

n
Jn = �(�; �). (The closure ordinal is �nite on �nite

structures.)

The positive part of the AFP model can be expressed in terms of the closure of a slightly di�erent

operator.

QA(I) def
= SP (~SP (I))

Clearly, QA is monotonic. Let I0 = SP (;), In+1 def
= QA(In), and I1 def

= [
n
In.

Lemma 8.9: I1, as de�ned above, is the positive part of the AFP model of P.

Proof: By de�nitions, In+1 = SP (~SP (In)). A trivial induction shows that In = SP (A
n
P (;)).

Theorem 8.10: For �nite structures, the positive part of the alternating �xpoint partial model of P has a

representation in �xpoint logic (FP).

Proof: We shall show that the above relation �(�; �) equals I1, that is, J1 = I1, as de�ned above. The

theorem then follows by Lemmas 8.8 and 8.9.

By de�nition of SP , for any set of positive literals I:

I = QA(I), I = SP (~SP (I))) I = TP (I + ~SP (I)), I = Q(I)

Thus I1 is a �xpoint of Q, so I1 � J1.

To complete the proof, we claim that In � J1 for all n. Clearly this holds for I0. For any n, suppose

In � J1. Then ~SP (In) � ~SP (J1), and In+1 = SP (~SP (In)) � SP (~SP (J1)) by monotonicity of SP . But

J1 = TP (J1 + ~SP (J1)) implies that SP (~SP (J1)) � J1, by Corollary 3.2. Thus In+1 � J1, establishing

the claim by induction.

8.5 Complement of Finite Transitive Closure

Even when the theoretical expressive powers of two languages are equal, there is a substantial practical issue

of usability. While this issue can only be resolved through experience, it appears that FP requires great

contortions to express certain concepts that are straightforward in AFP.

For example, ntc, the complement of the transitive closure, (on a �nite graph with edge relation e) is

expressed naturally and concisely in AFP (and the strati�ed semantics) by

tc(X;Y) e(X;Y):

tc(X;Y) e(X;Z); tc(Z; Y):

ntc(X;Y) :tc(X;Y):

25

Kunen has addressed the problem of expressing this concept in the 3-valued logical consequence semantics

by a program without function symbols [25]. He shows that no strict program (see De�nition 8.3) is able to

express this concept (again, with the restriction to �nite structures, which in logic programs means absence

of function symbols). Kunen left as an open question whether such a nonstrict program exists.

It is known that ntc is expressible in FP, but it requires a system that includes several intermediate

relations, some of them 4-ary, and it is far from obvious by a casual inspection what the system computes.

The simplest FP program for ntc that we know of is based on a construction by John Schlipf [43]; some earlier

constructions used 6-ary predicates. He has also shown that, by a sequence of elementary simpli�cations,

any FP system can be reduced to a normal logic program that is correctly interpreted (on �nite structures)

by Fitting's semantics. This is not identical to Kunen's 3-valued logical consequence semantics, even on

�nite structures, so Kunen's question is still open.

As previously discussed, the transformation of an FP system into a normal logic program by a sequence

of elementary simpli�cations creates a program that is strict in the IDB (including the ADB). Thus the only

possible nonstrictness in this situation is with respect to the EDB. In Schlipf's FP de�nition, ntc depends

both negatively and positively on e. Intuitively, one might expect only negative dependence because the

mapping from e to ntc is antimonotonic.

To summarize this discussion, it is hopeless to expect that any FP expression for the complement of

transitive closure will be considerably simpler or more straightforward than those presently known.

9 Conclusion

The alternating �xpoint provides additional insights into the well-founded semantics, and its relation to

stable models. It o�ers a constructive de�nition for the well-founded partial model, and an extension of

�xpoint logic. The use of monotonic transformations in the de�nitions has made the study of its properties

tractable, and seems to be related to the simplicity with which concepts can be expressed. Future work

should explore how to identify classes of unstrati�ed programs and queries on them for which the alternating

�xpoint semantics is computationally tractable; successively more tractable classes of interest are recursively

enumerable, decidable, and polynomial. Another avenue is further study of programs that are not strict in

the IDB.

Acknowledgements

We thank Phokion Kolaitis and John Schlipf for many helpful discussions of this work. We thank the

referees for many helpful suggestions, and for bringing the paper by Elkan [14] to our attention. This work

was supported in part by NSF grants CCR-8958590 and IRI-8902287.

References

[1] S. Abiteboul and V. Vianu. Procedural languages for database queries and updates. Journal of

Computer and System Sciences, 41(2):181{229, 1990. Preliminary version appeared in 1988 ACM

Symposium on Principles of Database Systems.

[2] P. Aczel. An introduction to inductive de�nitions. In J. Barwise, editor, Handbook of Mathematical

Logic, pages 739{782. North-Holland, New York, 1977.

[3] A. V. Aho and J. D. Ullman. Universality of data retrieval languages. In 6th ACM Symp. on Principles

of Programming Languages, pages 110{120, 1979.

[4] K. R. Apt, H. Blair, and A. Walker. Towards a theory of declarative knowledge. In J. Minker, editor,

Foundations of Deductive Databases and Logic Programming, pages 89{148. Morgan Kaufmann, Los

Altos, CA, 1988.

[5] K. R. Apt and M. H. Van Emden. Contributions to the theory of logic programming. JACM, 29(3):841{

862, 1982.

26

[6] N. Bidoit and C. Froidevaux. Negation by default and nonstrati�able logic programs. Technical Report

437, Laboratoire de Recherche en Informatique, Orsay, France, 1988.

[7] F. Bry. Logic programming as constructiveism: a formalization and its application to databases. In

Eighth ACM Symposium on Principles of Database Systems, pages 34{50, 1989.

[8] A. Chandra and D. Harel. Horn clause queries and generalizations. Journal of Logic Programming,

2(1):1{15, 1985.

[9] Ashok Chandra and David Harel. Structure and complexity of relational queries. JCSS, 25(1):99{128,

1982.

[10] P. Cholak. Post correspondence problem and Prolog programs. Technical report, Univ. of Wisc.,

Madison, 1988. (manuscript).

[11] K. L. Clark. Negation as failure. In Gallaire and Minker, editors, Logic and Databases, pages 293{322.

Plenum Press, New York, 1978.

[12] J. Doyle. A truth maintenance system. Arti�cial Intelligence, 12:231{272, 1979.

[13] Ph. M. Dung and K. Kanchanasut. A natural semantics for logic programs with negation. Technical

report, Asian Institute of Technology, Bankok 10501, Thailand, 1989. (manuscript).

[14] C. Elkan. A rational reconstruction of nonmonotonic truth maintenance systems. Arti�cial Intelligence,

43(2):219{234, 1990.

[15] M. Fitting. A Kripke-Kleene semantics for logic programs. Journal of Logic Programming, 2(4):295{312,

1985.

[16] M. Fitting and M. Ben-Jacob. Strati�ed and three-valued logic programming semantics. In Fifth Int'l

Conf. Symp. on Logic Programming, pages 1054{1069, Seattle, 1988.

[17] M. Gelfond. On strati�ed autoepistemic theories. In Proc. AAAI, 1987.

[18] M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In Fifth Int'l Conf.

Symp. on Logic Programming, pages 1070{1080, Seattle, 1988.

[19] Y. Gurevich and S. Shelah. Fixed-point extensions of �rst order logic. Annals of Pure and Applied

Logic, 32:265{280, 1986.

[20] N. Immerman. Relational queries computable in polynomial time. Information and Control, 68(1):86{

104, 1986.

[21] P. G. Kolaitis. The expressive power of strati�ed programs. Information and Computation, 1991. (to

appear; also available as UCSC-CRL-89-14 from UC Santa Cruz).

[22] P. G. Kolaitis and C. H. Papadimitriou. Why not negation by �xpoint? In ACM Symposium on

Principles of Database Systems, pages 231{239, 1988.

[23] R. A. Kowalski. Logic for Problem Solving. North-Holland, Amsterdam, 1979.

[24] K. Kunen. Negation in logic programming. Journal of Logic Programming, 4(4):289{308, 1987.

[25] K. Kunen. Some remarks on the completed database. Technical Report 775, Univ. of Wisconsin,

Madison, WI 53706, 1988. (Abstract appeared in 5th Int'l Conf. Symp. on Logic Programming, Seattle,

Aug. 1988).

27

[26] D. Leivant. Inductive de�nitions over �nite structures. Information and Computation, 89(2):95{108,

1990. Also available from author as CMU{CS{89{153.

[27] V. Lifschitz. On the declarative semantics of logic programs with negation. In J. Minker, editor,

Foundations of Deductive Databases and Logic Programming, pages 177{192. Morgan Kaufmann, Los

Altos, CA, 1988.

[28] Vladimir Lifschitz. Between circumscription and autoepistemic logic. In First International Conference

on Principles of Knowledge Representation and Reasoning, pages 235{244. Morgan Kaufmann, 1989.

[29] J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, New York, 2nd edition, 1987.

[30] J. W. Lloyd and R.W. Topor. Making Prolog more expressive. Journal of Logic Programming, 1(3):225{

240, 1984.

[31] A. Marek and M. Truszczynski. Autoepistemic logic. Technical report, University of Kentucky, 1988.

(manuscript).

[32] J. Minker, editor. Foundations of Deductive Databases and Logic Programming. Morgan Kaufmann,

Los Altos, CA, 1988.

[33] R. C. Moore. Semantical considerations on non-monotonic logic. Arti�cial Intelligence, 28:75{94, 1985.

[34] Y. N. Moschovakis. Elementary Induction on Abstract Structures. North-Holland, New York, 1974.

[35] H. Przymusinska and T. Przymusinski. Semantic issues in deductive databases and logic programs.

In R. Banerji, editor, Formal Approaches to Arti�cial Intelligence: A Sourcebook. North-Holland, New

York, 1990.

[36] H. Przymusinska and T. C. Przymusinski. Weakly perfect model semantics for logic programs. In Fifth

Int'l Conf. Symp. on Logic Programming, pages 1106{1120, Seattle, 1988.

[37] T. C. Przymusinski. On the declarative semantics of deductive databases and logic programs. In

J. Minker, editor, Foundations of Deductive Databases and Logic Programming, pages 193{216. Morgan

Kaufmann, Los Altos, CA, 1988.

[38] T. C. Przymusinski. Every logic program has a natural strati�cation and an iterated �xed point model.

In Eighth ACM Symposium on Principles of Database Systems, pages 11{21, 1989.

[39] R. Reiter. On closed world databases. In Gallaire and Minker, editors, Logic and Databases, pages

55{76. Plenum Press, New York, 1978.

[40] K. A. Ross. A procedural semantics for well-founded negation in logic programs. In Eighth ACM

Symposium on Principles of Database Systems, pages 22{33, 1989.

[41] K. A. Ross. Modular strati�cation and magic sets for Datalog programs with negation. In Ninth ACM

Symposium on Principles of Database Systems, pages 161{171, 1990.

[42] D. Sacc�a and C. Zaniolo. Partial models, stable models and non-determinism in logic programs with

negation. Technical report, MCC, Austin, TX, January 1990. (Extended abstract appeared in Ninth

ACM Symposium on Principles of Database Systems, 1990.).

[43] J. S. Schlipf. Inductive de�nability and semantics of logic programs. Technical report, Univ. of

Cincinnati, 1989. (manuscript).

[44] J. S. Schlipf. Formalizing a logic for logic programming. In International Symposium on Arti�cial

Intelligence and Mathematics, 1990.

28

[45] J. S. Schlipf. The expressive powers of the logic programming semantics. In Ninth ACM Symposium

on Principles of Database Systems, pages 196{204, 1990.

[46] J. C. Shepherdson. Negation as failure, II. Journal of Logic Programming, 2(3):185{202, 1985.

[47] J. C. Shepherdson. Negation in logic programming. In J. Minker, editor, Foundations of Deductive

Databases and Logic Programming, pages 19{88. Morgan Kaufmann, Los Altos, CA, 1988.

[48] M. H. Van Emden and R. A. Kowalski. The semantics of predicate logic as a programming language.

JACM, 23(4):733{742, 1976.

[49] A. Van Gelder. The alternating �xpoint of logic programs with negation. In Eighth ACM Symposium

on Principles of Database Systems, pages 1{10, 1989.

[50] A. Van Gelder. Negation as failure using tight derivations for general logic programs. Journal of

Logic Programming, 6(1):109{133, 1989. Preliminary versions appeared in Third IEEE Symp. on Logic

Programming (1986), and Foundations of Deductive Databases and Logic Programming, J. Minker, ed.,

Morgan Kaufmann, 1988.

[51] A. Van Gelder, K. A. Ross, and J. S. Schlipf. The well-founded semantics for general logic programs.

Journal of the ACM, 1991. (to appear). Available from �rst author as UCSC-CRL-89-38. Preliminary

abstract appeared in Seventh ACM Symposium on Principles of Database Systems, 1988.

[52] Moshe Vardi. The complexity of relational query languages. In 14th ACM Symposium on Theory of

Computing, pages 137{145, 1982.

[53] J.-H. You and L. Y. Yuan. Three-valued formalization of logic programming: Is it needed? In Ninth

ACM Symposium on Principles of Database Systems, pages 196{204, 1990.

29

