
Relational Groundness Analysis of Logic Programs

(Extended Abstract)

Kirack Sohn �

University of California, Santa Cruz
ksohn@cse.ucsc.edu

March 23, 1994

Abstract

One of the most attractive features of logic programs is that arguments may be used

bidirectionally, as input or output at run-time. However, the compiler must generate code

for various alternatives, hence considerable slowdown of execution. In this paper we provide

static analysis for groundness; that is, inference of whether the arguments are instantiated to

ground terms through run-time.

Though groundness analysis has been studied in numerous papers, we present yet another

method to resolve globally the problems due to aliased variables based on relational abstract

lattices.

Relational groundness analysis has been considered to be impractical since tables repre-

senting the relationship are usually very big, hence hardness to handle. In our formalism, the

relationships are represented in the form of simple computable boolean OR constraints.

Since in practice groundness constraints are almost always in simple computable forms, our

method is considered to run without combinatorial blowup. Our abstract domain is exempli�ed

with bottom-up abstract interpretation �nding success patterns of predicates.

1 Introduction

Logic programming has been successfully used as a tool for several areas including compiler writing,
expert system design, natural language processing, hardware design, and knowledge-base design.
One of the most attractive features of Prolog is bidirectional use of arguments for input, output,
or both; however, in practical programs most procedures do not make this sophisticated use of
arguments. Using mode information allows compilers to produce more speci�c code which results
in substantial speedup [Mel85]. With this regard, Warren introduced explicit mode declarations
to help the compiler produce better code [War77]. But mode declarations must be veri�ed since
wrong annotation may introduce subtle errors in program executions.

Another approach is to infer mode declarations automatically via abstract interpretation [Mel87,
BJCB87, MU87, DW88]. Abstract interpretation has been used as standard means for data
ow
analysis since it was placed on a solid semantic basis by Cousot and Cousot [CC77] (See [CC92]
for the theory and applications to logic programming).

�Work partially supported by NSF grants CCR-89-58590 and IRI-9102513

1

Early work done by Mellish [Mel81] produced erroneous results since aliasing e�ects resulting
from uni�cation was not considered, which was corrected later [Mel87].

Mannila and Ukkonen [MU87] used simple two-valued abstract domains fground; anyg, hence
free mode 1 cannot be inferred (ground; free; any are abstractions of ground terms, free variables,
all (ground or nonground) terms, respectively). In addition, their method could not handle the
problem with aliased variables accurately.

Bruynooghe et al. [BJCB87] suggested multi-passes algorithm (repeat previous call strategy)
to resolve aliasing problem, which are considered to be costly if the strategy is applied globally.

Debray and Warren [DW88] presented an algorithm to give a sound and e�cient treatment of
aliasing. However their method produces less precise mode information since they use conservative
local analysis in which all unsafe instantiations are replaced by any.

In this paper we study relational abstract domains which describe possible groundness relation-
ships among arguments. Like [MU87], we only analyze groundness, however, our method provides
great accuracy with respect to groundness. It is also noted that success of correctness proofs like
program termination relies on preciseness of groundness information [UVG88, Pl�u90, SVG91].

Let us consider a call p(A, f(A,B)) in which we have no instantiation information on A and B.
Hence the goal is abstracted as p(any; any) in the previous cited methods. But more careful look
at the call gives us the possible combinations of call patterns fp(0; 0); p(0; 1); p(1; 1)g where 0 and 1
are ground and nonground respectively to keep notations simple. That is, if the second argument
is ground, then the �rst has no other choice but ground. Suppose we have a clause p(U, f(a,b)).

With the call pattern p(any; any), the success pattern after the call to the clause is p(any; ground)
whereas with our call pattern, the success pattern is p(ground; ground). Preciseness of success
patterns a�ect the subsequent call patterns immediately. It should be mentioned that if we use a
table of possible groundness relationships among arguments as shown above, we will end up with
combinatorial blowup.

We now introduce simple boolean constraints to denote groundness relation. Roughly, a term
can be abstracted as a logical disjunction of variables occurring in the term. For example, p(a; a_b))
is the abstraction of the goal p(A, f(A,B)) where a and b are boolean variables corresponding to
A and B and _ is boolean OR.

Main contribution of our study is to introduce novel concepts on boolean cones and develop
e�cient operations to accomplish e�ectively relational groundness analysis and to provide bottom-
up groundness analysis using boolean constraints.

In Section 2, we describe notations used through the paper and introduce groundness abstraction
of logic programs, and concepts, properties, and operations on boolean cones.

Section 3 describes some simpli�cation procedures to remove redundancy in groundness con-
straints.

Section 4 presents bottom-up groundness analysis mimicking immediate consequence operator.
Section 5 concludes the paper.
The framework similar to our relational bottom-up analysis has been investigated on real

arithmetic domain to derive constraints among argument sizes by Van Gelder [VG91].
Throughout the paper, we will use standard Edinburgh style syntax for logic programs [CM81].

1In their paper, nonground means possibly nonground, which means any

2

2 Basic Concepts

2.1 Abstraction

Now we describe abstraction of terms, atoms, and clauses. Logic programs can be abstracted
by groundness relationships among terms. Informally speaking, groundness abstraction of a term
carries the information that if all the variables in the term are ground, then the term is ground.
We choose the boolean value 0 to denote ground. So x_ y is the groundness abstraction of f(X,Y).
That is, if x (X) and y (Y) are 0 (ground), then x_ y (f(X,Y)) is 0 (ground). Let vars(t) denote a
set of variables in a term t. We shall use lowercase letters for the boolean variables corresponding
to logical variables.

For notational convenience, we shall use pi for a boolean variable representing groundness
abstraction of i-th argument of predicate p. Boolean terms are terms built from boolean variables
and connective boolean OR _. Note that we do not use NOT and AND in boolean terms. Boolean
equalities are built from boolean terms and boolean equality �. We often use vector notation to
denote a vector of boolean terms. For example, (a1; a2) _ (b1; b2) � (c1; c2) denotes: a1 _ b1 � c1
and a2 _ b2 � c2. Substitution [x1=e1; : : : ; xn=en] is de�ned in an usual way; that is, a boolean
variable xi is replaced by a boolean term ei. Using vector notation, it is denoted by [~x=~e].

De�nition 2.1: Let t be a logical term. Then �(t) is a groundness-abstracted term.

�(t) =

(
0 if vars(t) is empty
_x2vars(t)x otherwise

Let p be n-ary predicate. Then groundness-abstracted atom is as follows.

�(p(t1; t2; : : : ; tn)) = p(�(t1); �(t2); : : : ; �(tn))

Abstraction of clauses is obtained by applying abstraction to each atom occurring in the clauses.

Example 2.1: Let us consider the usual append procedure.

a([], U, U).

a([X|U], V, [X|W]) :- a(U, V, W).

Applying groundness abstraction to each clause transforms it to groundness-abstracted procedure.

a(0; u; u):
a(x _ u; v; x_ w) a(u; v; w):

Since terms are boolean expressions, uni�cation must be replaced by boolean constraint solving in
the execution of the groundness-abstracted procedure.

2.2 Relational Abstract Domains

We now introduce boolean cones and their constraint representation. We also examine some
operations like closure of union as least upper bound operation and equivalence of two boolean
cones, which are useful in �nding the �xpoint of a certain transformation concerning groundness
relation.

3

De�nition 2.2: Let a; b 2 Bn . C � Bn is a boolean cone if

1. 0 2 C

2. If a 2 C and b 2 C, then a _ b 2 C

Example 2.1: f(0; 0; 0); (1; 1; 0); (1; 0; 1); (1; 1; 1)g is a boolean cone whereas f(0; 0; 0); (1; 1; 0); (1; 0; 1)g
is not.

We use the word \boolean cones" since they have the properties similar to those of convex cones
in Rn. We now examine some useful properties of boolean cones.

Lemma 2.1: Intersection of two boolean cones C1 and C2 is a boolean cone C3.

Example 2.2: Let C1 = f(0; 0; 0); (0; 1; 1); (1; 0; 1); (1; 1; 1)g and C2 = f(0; 0; 0); (1; 1; 0); (1; 1; 1)g.
C1 and C2 are boolean cones. C1

T
C2 = f(0; 0; 0); (1; 1; 1)g is also a boolean cone.

Lemma 2.2: The projection of boolean cone in f0; 1gn onto f0; 1gm where m � n is also a boolean
cone.

We now introduce the concept similar to extreme rays of convex cones in Rn, which we call
generators. Generator sets serve as unique, minimal representation of boolean cones. Therefore
testing equivalence of two cones reduces to comparing two generator sets. Boolean sum of two
vectors is a vector of componentwise sums.

De�nition 2.3: Let C be a boolean cone C, and � 2 C. Then � is a generator of C if � 6= 0 and
cannot be the boolean sum of any other points in C. A generator set gen(C) of C is a set of all
generators in C.

Example 2.3: gen(f(0; 0; 0); (0; 1; 1); (1; 0; 1); (1; 1; 1)g= f(0; 1; 1); (1; 0; 1)g

Lemma 2.3: There exists a unique generator set gen(C) for any boolean cone C.
Let U be the set of all boolean cones in f0; 1gn. Equipped with the subset ordering �, U

forms a complete lattice with an empty set as the least element, f0; 1gn as the greatest element, set
intersection

T
as greatest lower bound operation, closure of union

F
as least upper bound operation

as de�ned below.

De�nition 2.4: The closure of union of n cones C1; C2; : : : ; Cn is the set of points which are the
boolean sum of any points in Ci's; it is denoted by

F
fC1; C2; : : : ; Cng.

Lemma 2.4: Let C1; C2; : : : ; Cn be boolean cones.
F
fC1; C2; : : : ; Cng is the set generated by the

union of the generator sets of C1; C2; : : : ; Cn.

Example 2.4: Let C1 = f(0; 0; 0); (0; 1; 0); (0; 1; 1)gC2 = f(0; 0; 0); (0; 1; 0); (1; 1; 0)g and C beF
fC1; C2g. Their generator sets are gen(C1) = f(0; 1; 0); (0; 1; 1)g, and gen(C2) = f(0; 1; 0); (1; 1; 0)g.

Their union is, gen(C) = f(0; 1; 0); (0; 1; 1); (1; 1; 0)g. Hence C = f(0; 0; 0); (0; 1; 0); (0; 1; 1); (1; 1; 0);
(1; 1; 1)g.

2.3 Groundness Constraints

The success of relational groundness analysis relies on whether we have e�ciently computable
form of relations. Groundness relationships among arguments with respect to a predicate can be
represented in the form of a set of boolean constraints.

4

De�nition 2.4: Let ~e = (e1; e2; : : : ; en) be boolean terms and c1; c2; : : : ; cm boolean equalities.
Let ~p = (p1; : : : ; pn) be a vector of boolean variables corresponding to groundness abstraction of
arguments of predicate p.

G = f~p � ~e; c1; c2; : : : ; cmg

is called a groundness constraint for a predicate p. If m = 0, it is called a simpli�ed groundness

constraint for p.

Theorem 2.5: A groundness constraint de�nes a boolean cone.
We now give a theorem on boolean union of two groundness constraints. It can be naturally
extended to n groundness constraints.

Theorem 2.6: Let G1; G2 be groundness constraints w.r.t. a predicate p as shown below.

G1 = f~t � ~e; c1; : : : ; cmg

and
G2 = ~t � ~f; d1; : : : ; dog

Then the groundness constraints corresponding to the closure of union of G1 and G2 is as follows:G
fG1; G2g = f~t = ~e _ ~f; c1; : : : ; cm; d1; : : : ; dog

3 Simpli�cations and Normal Forms

The most costly operation is to test equivalence of two groundness constraints, which must be
performed at each iteration of transformation concerning abstract interpretation. This operation
is tantamount to �nding generators of projection of cones, since generators are unique, minimal
representation of cones. In most cones associated with practical programs, generators can be
obtained by the following simpli�cation rules.

� x _ y _ � � � _ z � 0 is equivalent to x � y � : : : � z � 0.

� If x_y_� � �_z � w is a constraint and w does not appear on the left-hand side substitute the
left-hand side into every place where w appears. If w appears nowhere, delete the constraint.

� If x appears on the same side as y in every occurrence, x can be deleted.

A simpli�ed groundness constraint corresponds to a set of points including generators, which reduces
to a generator set by removing redundancy. This is explained in Example 3.1.

5

Example 3.1: Let C = f~p � (x _ w; y _ w; x _ y _ w)g be a simpli�ed groundness constraint.
(x _ w; y _ w; x _ y _ w) � x � (1; 0; 1) _ y � (0; 1; 1) _ w � (1; 1; 1) where � can be viewed as
scalar multiplication and _ as componentwise boolean OR. Then (1; 0; 1); (0; 1; 1), and (1; 1; 1)
are candidates for generators, and (1; 1; 1) is redundant since (1; 1; 1) = (1; 0; 1) _ (0; 1; 1). So
gen(C) = f(0; 1; 1); (1; 0; 1)g. This example also explains how to generate groundness constraints
from generators.

Let us turn our attention to groundness constraints which cannot be simpli�ed by the above
simpli�cation rules. One way to �nd generators is to transform equalities with boolean terms to
ones with real arithmetic terms. That is,

x1 _ x2 _ : : : xn � y1 _ y2 _ : : : ym

can be transformed to

x1 + x2 + : : : xn � y1

x1 + x2 + : : : xn � y2

: : :

x1 + x2 + : : : xn � ym

y1 + y2 + : : :yn � x1

y1 + y2 + : : :yn � x2

: : :

y1 + y2 + : : :yn � xn

x1; x2; : : : ; xn; y1; y2; : : : ; ym 2 f0; 1g

It is easy to prove that both have the same set of solutions, and extreme rays of the linear arithmetic
systems are vectors of 0 or 1's after being normalized so that one of their positive components is 1.

Theorem 3.1: If x is a generator of a boolean cone represented by a groundness constraint,
then it is a normalized extreme ray of a convex cone represented by a linear arithmetic constraint
transformed from the groundness constraint.
As there are well-known methods to �nd extreme rays of convex cones (same as �nding extreme
points of convex polytopes) [VG91, Las90], we can �nd candidates for generators for the corre-
sponding boolean cones by removing redundancy.

4 Bottom-Up Groundness Analysis

In the preceding sections, we described the relational abstract domain and some useful operations
on the domain. We now give a bottom-up abstract interpretation to get success patterns in the
form of groundness constraints.

Abstract interpretation consists of abstract domain and abstract operations which mimics base
semantics faithfully. Hence bottom-up abstract interpretation mimics �xpoint semantics. Formal
framework of bottom-up abstract interpretation can be found in [CC92, MS88].

Now we de�ne a transformation mimicking immediate consequence operator.

6

De�nition 4.1: Suppose we have k predicates whose names are p; q; : : : ; r in an abstract program
and pi is i-th clause having the head predicate p and so forth. Let P;Q; : : : ; R be groundness
constraints associated with those predicates, and Up the set of all boolean cones determined by the
arity of the predicate p and so forth. Let U = (Up;Uq; : : : ;Ur). Let x be a vector of groundness
constraints (P;Q; : : :; R) 2 Up;Uq; : : : ;Ur). Recursive transformation T is a mapping from U to U
and Tp is a mapping from U to Up as given below.

T (x) = (Tp(x); Tq(x); : : : ; Tr(x))
Tp(x) =

F
fTp1(x); Tp2(x); : : : ; Tpm(x)g

...

Tpi(x) = f~p � ~a;Q[~q=~b]; : : : ; R[~r=~c]g

where there are m clauses having the head predicate p and the i-th abstract clause of the predicate
p is in the form of

p(~a) q(~b); : : : ; r(~c)

Theorem 4.1: There exists the least �xpoint of T and it can be reached in �nite number of
iterations.

Proof: By its de�nition, Tpi is clearly monotone, so T is monotone. The domain (Up;Uq; : : : ;Ur)
forms a �nite complete lattice, equipped with componentwise subset ordering.

In practice, it is more e�cient to process strongly connected components separately in predicate
dependency graphs, starting from leaves in a tree induced by SCCs.

Example 4.2: Continuing with Example 4.1,

T 1 = T (;) = f~a � (0; u; u)g

T 2 = T (T 1) =
G
fT 1; f~a � (x _ u; v; x_ w; u � 0; v � u0; w � u0gg

= f~a � (x; v; x_ vg

Interested readers are invited to verify T 3 = T 2, which is the least �xpoint of T . Note that we only
use simpli�cation rules to reduce to simpli�ed groundness constraints. The resulting �xpoint shows
that in the success pattern of append procedure, if the �rst and second argument are ground, then
the third is ground, and vice versa.

5 Conclusion

We presented a novel relational groundness analysis in this paper. To compute groundness relations
e�ectively, we used boolean constraints capturing boolean cones. Including freeness analysis and
developing e�cient test of cone equivalence will be future research directions.

Acknowledgements

We thank A. Van Gelder for helpful discussions.

7

References

[BJCB87] M. Bruynooghe, G. Janssens, A. Callebaut, and Demoen B. Abstract interpretation:
Towards the global optimisation of Prolog programs. In Proceedings of the 1987

International Symposium on Logic Programming, IEEE Press, 1987.

[CC77] P. Cousot and R. Cousot. Abstract interpretation: A uni�ed lattice model for static
analysis of programs by construction or approximation of �xpoints. In Conference Record
of the 4th ACM Symposium on Principles of Programming Languages, 1977.

[CC92] P. Cousot and R. Cousot. Abstract interpretation and application to logic programs.
Journal of Logic Programming, 13:103{179, 1992.

[CM81] W. F. Clocksin and C. S. Mellish. Programming in Prolog. Springer-Verlag, New York,
1981.

[DW88] S. K. Debray and D. S. Warren. Automatic mode inference for logic programs. Journal
of Logic Programming, 5(3):207{229, 1988.

[Las90] J.-L. Lassez. Parametric queries, linear constraints and variable elimination. In
Proceedings of DISCO 90, Springer Verlag Lecture Notes in Computer Science, 1990.

[Mel81] C. S. Mellish. The automatic generation of mode declaration for logic programs. Tech-
nical Report DAI Research Paper 163, Department of Arti�cial Intelligence, University
of Edinburgh, Scotland, 1981.

[Mel85] C. S. Mellish. Some global optimizations for a prolog compiler. Journal of Logic

Programming, 2(1):43{66, 1985.

[Mel87] C. S. Mellish. Abstract interpretation of Prolog programs. In S. Abramsky and
C. Hankin, editors, Abstract Interpretation of Declarative Languages, pages 181{198.
Ellis Horword, Chichester, U.K., 1987.

[MS88] K. Marriott and H. Sondergaard. Bottom-up abstract interpretation of logic programs.
In S. K. Debray and M. Hermenegildo, editors, Logic Programming: Proceedings of the

Fifth International Conference, pages 733{748, Cambridge, Massachusetts, 1988. MIT
Press.

[MU87] H. Mannila and E. Ukkonen. Flow analysis of Prolog programs. In Proceedings of the

1987 International Symposium on Logic Programming. IEEE Press, 1987.

[Pl�u90] L. Pl�umer. Termination proofs for logic programs based on predicate inequalities. In
Proc. 7th Int'l Conf. on Logic Programming, pages 634{648, Jerusalem, 1990.

[SVG91] K. Sohn and A. Van Gelder. Termination detection in logic programs using argument
sizes. In Tenth ACM Symposium on Principles of Database Systems, 1991.

[UVG88] J. D. Ullman and A. Van Gelder. E�cient tests for top-down termination of logical
rules. Journal of the ACM, 35(2):345{373, 1988.

8

[VG91] A. Van Gelder. Deriving constraints among argument sizes in logic programs. Annals

of Mathematics and Arti�cial Intelligence, 3, 1991. Extended abstract appears in Ninth
ACM Symposium on Principles of Database Systems, 1990.

[War77] D. H. D. Warren. Implementing prolog - compiling predicate logic programs. Technical
Report DAI Research Paper 39 and 40, Department of Arti�cial Intelligence, University
of Edinburgh, Scotland, 1977.

9

