
Constraints among Argument Sizes in Logic Programs

(Extended Abstract)

Kirack Sohn
University of California, Santa Cruz

ksohn@cse.ucsc.edu
�

Abstract

In logic programs the argument sizes of derivable facts w.r.t.

an n-ary predicate are viewed as a set of points in R
n,

which are approximated by their convex hull. Interargument

constraint w.r.t. a predicate is essentially a set of constraints

that every derivable fact of the predicate satis�es. We for-

malize such constraints by a �xpoint of recursive transforma-

tion similar to immediate consequence operator. However,

the transformation does not necessarily converge �nitely.

Approximating polycones to their a�ne hulls provides useful

interargument constraints in many practical programs, guar-

anteeing �nite convergence. For a class of linear recursive

logic programs satisfying translativeness property, precise

interargument constraints can be obtained by an analysis

of structures of recursive transformations.

1 Introduction

Automated termination detection is an essential tool
for generating a suitable evaluation strategy in modern
deductive database systems, such as LDL and NAIL!.
A deductive database is divided into two components:
an extensional database (EDB), which consists of a set
of database facts, and an intensional database (IDB),
which consists of a set of rules de�ning how additional
relations are computed. IDBs may be evaluated either
top-down or bottom-up. Bottom-up evaluation is often
said to be more e�cient for logic programs with �nite
domains (Datalog); however, there is no corresponding
claim for general logic programs with function symbols.
Capture rules were introduced to decide which evalua-
tion strategy is e�ciently applicable to a logic program
provided with a goal [Ull85, MUVG86]. A capture rule
is a statement of the form: \if the rules satisfy such-
and-such conditions, then a good evaluation method is

�Work partially supported by NSF grants CCR-89-58590 and
IRI-9102513

such-and-such." A minimal requirement to apply top-
down evaluation strategy is to guarantee termination
for any query of interest.
Termination detection methods in the published

papers[UVG88, APP+89, BS89b, Pl�u90, SVG91] are
based on the relationship among argument sizes of
predicates, called \interargument constraint" (for short,
IC). This paper concerns how to infer such information
on predicates.

Example 1: Consider a recursive rule:

p(s(X)) :- p(X).

Suppose the rule is called with its argument bound. In
this case, termination can be shown since the argument
of a (recursive) goal is a subterm of that of the previous
goal and a subterm ordering over bound terms cannot
have an in�nitely decreasing sequence.
It is often the case that there are no direct relation-

ships among the argument sizes in a head and those in
a recursive subgoal. Consider another recursive rule:

p(X) :- a(X,Y), p(Y).

Since X is processed into Y somehow by the subgoal a, we
cannot establish a direct relationship between X and Y.
Given an ordering > which has no in�nitely decreasing
sequences, suppose we infer all the facts derived by the
predicate a satisfy a constraint a1 > a2 where a1 and
a2 denote the �rst and second argument of a, resp.
The constraint establishes the argument of a recursive
goal are getting smaller, proving termination. Such
a constraint as a1 > a2 is called an interargument
constraint and the ordering we use in this paper is
termsize (see De�nition 1).

We believe IC is also useful for showing safety of
queries in deductive databases [BS91], and for deciding
granularity of tasks in the parallel execution of logic
programs [DLH90] as well as for termination analysis.
Methods to derive IC have been studied recently

in terms of Datalog [BS89a, BS91] or logical rules
with function symbols [VG91]. In their methods IC is

formalized by a �xpoint of bottom-up inference operator
similar to \immediate consequence operator". In [BS91]
IC is represented in the form of a disjunctive union of
inequalities between two argument sizes. Sometimes
we fail to detect termination using this type of IC
(for example, see Example 3.1 in [SVG91]). Van
Gelder studied a method to derive IC in the form of
a single polyhedral convex set [VG91]. This type of
IC corresponds to relationship among many argument
sizes. Both methods often fail to �nitely converge. In
this paper, we extend Van Gelder's work by providing
two practical techniques to capture IC in �nite time.
Section 2 introduces basic concepts on size abstrac-

tion and convex sets. In Section 3, we formalize \recur-
sive transformation" whose �xpoint is IC. In Section 4,
we introduce a technique called \a�ne widening". This
technique accelerates the convergence of the recursive
transformation up to �nitely many iterations, yet sup-
plying useful ICs. In Section 5, we introduce so-called
\translativeness property". For linear recursive logic
procedures satisfying translativeness property, we pro-
vide a technique to �nd precise IC (corresponding to lfp
of the transformation) without iterating the transfor-
mation. Whether a procedure satis�es translativeness
property can be tested by analyzing the relationship
between argument sizes of the head and those of the
recursive subgoal. Many practical programs relying
on \recursion on structures" satisfy the translativeness
property. IC which cannot be derived by other methods
can be found. Section 6 concludes the paper.

2 Basic Concepts

Logic programs can be abstracted by the sizes of terms.
Our method does not depend on any speci�c size
de�nition. In examples we shall use termsize, that has
been used for termination analysis in [VG91, SVG91].

De�nition 1: Termsize is de�ned as follows:

termsize(t) =

8>><
>>:

n+
Pn

i=1 termsize(ti)
if t = f(t1; :::; tn)

t if t is a variable
0 if t is a constant

It is informally the number of edges in the tree
representation of a ground term. For terms containing
logical variables, a real variable x constrained to
nonnegativity is associated with each logical variable X.
For instance, the structural term size of f(a,g(X),X) is
and 4 + 2x.

A rule is abstracted by replacing terms by their
termsizes. We shall call the resulting rules and programs
abstract rules and abstract programs, resp.

Example 2: Consider usual append procedure.

a([],T,T).

a([X|U],V,[X|W]) :- a(U,V,W).

Replacing terms by their termsizes reduces to the
following CLP(R)-like procedure.

a(0; t; t) t � 0:

a(2 + x+ u; v; 2 + x+w) (x; u; v; w) � ~0; a(u; v; w):

The i-th argument size of predicate p is denoted by pi
and ~p denotes a vector (p1; : : : ; pn) for n-ary predicate
p; for example, a1 = 0; a2 = t; a3 = t or ~a = (0; t; t) for
the base case rule of Example 2.
A polyhedral convex set in Rn is the intersection

of �nitely many closed half-spaces. A polycone is a
polyhedral convex set in the nonnegative orthant of Rn.
IC with respect to an n-ary predicate p is captured
in the form of a polycone in Rn. A polycone in Rn

is usually represented by an a�ne image of another
polycone in Rm; that is,

f~p j 9~x:[(~p = ~a +A~x) ^C(~x)]g (1)

where ~p is the vector of variables representing argument
sizes, ~x is the vector of parameters, ~a is a vector
constant, A is a matrix, and C(~x) is a set of constraints
in parameter space, including nonnegativity constraints
for parameters. Eq. 1 is called the parametric represen-

tation of a polycone. An empty polycone is denoted by
;.
The parametric representation of a polycone can be

generated by a tuple of a set of points and a set of rays
called a generator. The polycone is a vector sum of
a convex hull of points X1; : : : ; Xn and a cone of rays
Y1; : : : ; Ym; that is,

8>>>>>>>>>>>><
>>>>>>>>>>>>:

~p

������������������

9~�:

2
6666666666664

0
BBBBBBBB@

~p = �1X1

...
+ �nXn

+ �n+1Y1
...

+ �n+mYm

1
CCCCCCCCA

^ (
Pn

i=1 �i = 1)
^ (�i � 0; i = 1; : : : ; n+m)

3
7777777777775

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

: (2)

We shall say that a polycone in Eq. 2 is generated by
points X1; : : : ; Xn and rays Y1; : : : ; Ym. A unique mini-
mal generator called a frame is obtained by eliminating
nonextreme points and rays from the generator. Equiva-
lence of two polycones can be tested by comparing their
frames. A generator and a frame of a polycone � are
denoted by gen(�) and frame(�), resp. For example,
let � be a polycone corresponding to Eq. 2, gen(�) is
(fX1; : : : ; Xng, fY1; : : : ; Ymg).

The convex union �1 t�2 of two polycones �1 and
�2 is de�ned as the closure of the set of points that
are convex combinations of any two points of union of
two polycones. t is commutative and associative. A
convex union of n polycones �1; : : : ;�n is denoted by
tf�1; : : : ;�ng. The generator of tf�1; : : : ;�ng is a
tuple of the union of sets of points and the union of sets
of rays in the generators of �i's.
The a�ne hull a�(�) of a polycone � is the smallest

subspace containing �. If

gen(�) = (fX1; : : : ; Xng; fY1; : : : ; Ymg);

then

a�(�) =

8>>>>>>>>>><
>>>>>>>>>>:

~p

����������������

9~�:

2
66666666664

0
BBBBBBBB@

~p = �1X1

...
+ �nXn

+ �n+1Y1
...

+ �n+mYm

1
CCCCCCCCA

^ (
Pn

i=1 �i = 1)

3
77777777775

9>>>>>>>>>>=
>>>>>>>>>>;

:

(3)

See [Sch86, Roc70] for details on polyhedral convex sets.
A predicate dependency graph is a digraph with nodes

of predicates and arcs from p to q where p is a head
predicate of a certain rule and q is its subgoal predicate.
Intuitively, q supports the derivation, or solution, of
p. We identify strongly connected components (SCC)
of this digraph, and a directed acyclic graph (DAG)
whose nodes are SCCs. In the actual derivation of ICs,
we analyze one SCC at a time rather than the whole
program. The analysis of an SCC is supported by ICs
from its lower SCCs.

3 Recursive Transformations

Suppose there are k predicates p1; : : : ; pk in a program
P , and let a(pi) denote the arity of pi. Let �p1 ; : : : ;�pk

be polycones in Ra(p1); : : : ; Ra(pk) resp., and � =
(�p1 ; : : : ;�pk). Let Upi be the set of all convex sets in

the positive orthant of Ra(pi) and U = Up1�� � ��Upk . U
forms a complete lattice equipped with componentwise
subset ordering v. We now introduce a transformation
corresponding to one logical rule.

De�nition 2: (natural transformation) Suppose the i-
th non-base abstract rule whose head predicate is p is
in the form of:

p(~e) ~� � ~0; q(~f); : : : r(~g): (4)

where ~� is a vector of variables appearing in the
rule. ~e = (e1; : : : ; ea(p)), ~f = (f1; : : : ; fa(q)), : : :,
~g = (g1; : : : ; ga(r)) are vectors of linear arithmetic

terms. The natural transformation 	<p;i> : U ! Up
corresponding to the i-th rule of predicate p is de�ned
by:

	<p;i>(�) =

8>>>>><
>>>>>:
~p

�����������
9~�:

2
666664

(~p = ~e)

^ (~� � ~0)

^ (~f 2 �q)
...

^ (~g 2 �r)

3
777775

9>>>>>=
>>>>>;
: (5)

For i-th base abstract rule in the form of:

p(~e) ~� � ~0: (6)

we have the following base polycone:

B<p;i> = f~p j 9~�:[(~p = ~e) ^ (~� � ~0)]g: (7)

Example 3: Continuing with Example 2, suppose we
have a parametric representation of a polycone:

� = f~a j 9t:[(~a = (0; t; t))^ (t � 0)]g:

Then

	<a;1>(�) =

8>>>>>>>><
>>>>>>>>:

~a

��������������

9xuvwt:

2
666666664

((x; u; v; w; t)� ~0)
^ (a1 = 2 + x+ u)
^ (a2 = v)
^ (a3 = 2 + x+ w)
^ (u = 0)
^ (v = t)
^ (w = t)

3
777777775

9>>>>>>>>=
>>>>>>>>;

:

For the base rule, we have a polycone: B<a;1> =
f~a j 9t:[(~a = (0; t; t))^ (t � 0)]g.

We extend this formalism to the whole program P in a
natural way.

De�nition 3: (recursive transformation) A recursive

transformation TP : U ! U associated with a program
P is a direct product of Tp1 ; : : : ; Tpk . Tpi is de�ned
by a convex union of l base polycones and m natural
transformations associated with the rules whose head
predicate is pi.

TP (�) = (Tp1 (�); : : : ; Tpk(�))

Tpi(�) = t

�
B<pi;1>; : : : ; B<pi;l>;

	<pi;1>(�); : : : ;	<pi;m>(�)

�
(8)

To maintain a single polycone for each predicate p, we
take the convex union of polycones from all the rules
whose head predicate is p. Natural transformation and
recursive transformation are similar to those in [VG91],
but more general.

Theorem 1: A recursive transformation TP is mono-
tone.

Theorem 2: There exists the least �xpoint associated
with TP .

Our formalism is an instance of abstract interpretation,
hence correctness is guaranteed. A �xpoint can be
veri�ed by comparing the frames of polycones in � and
T (�) componentwise.

Example 4: Continuing with Example 2, we now
compute the least �xpoint of recursive transformation.
Since there is only one predicate a in a program, Let
B;	; T denote B<a;1>;	<a;1>; TP = Ta, resp. Note
that ; denotes an empty polycone. How to �nd extreme
points and rays can be found in [VG91].

1. (base polycone) B = f~a j 9t:[(t � 0)^(~a = (0; t; t))]g
and frame(B) = (f(0; 0; 0)g; f(0; 1;1)g)

2. (natural transformation) 	(;) = ;

3. (recursive transformation; convex union of B and ;)
frame(T (;)) = (f(0; 0; 0)g; f(0; 1; 1)g)

4. (verify a �xpoint) frame(;) 6= frame(T (;)),
so generate the parametric representation from the
frame of T (;)

5. (natural transformation) 	(T (;)) = f~a j 9xuvwt:
[((x; u; v; w; t)� ~0)^ (~a = (2+x+u; v; 2+ x+w))^
(u = 0)^ (v = t)^ (w = t)]g, and frame((T (;))) =
(f(0; 0; 0)g; f(0;1;1); (1;0;1)g)

6. (recursive transformation; convex union of B and
	(T (;)))
frame(T 2(;)) = (f(0; 0; 0)g; f(0;1;1); (1;0;1)g)

7. (verify a �xpoint) frame(T 1(;)) 6= frame(T 2(;)),
so generate the parametric representation from the
frame of T 2(;)

With one more recursive transformation, we reach the
least �xpoint. IC generated by the frame of lfp is
f~aj9uv:[((u; v) � ~0) ^ (~a = (u; v; u + v))]g. In append

procedure, its third argument size is equal to the sum
of its �rst and second.

4 A�ne Widening

Unfortunately, recursive transformations associated with
many practical programs often fail to converge �nitely.

Example 5: Consider an abstract procedure below:

p(t; t) t � 0:

p(u; 2 + v) (u; v) � ~0; p(u; v):

Since the second (recursive) rule increases the input
by (0,2) at every transformation, we reaches the least
�xpoint f(p1; p2) j 9uv:[(u � 0) ^ (v � 0) ^ (p1 = u) ^
(p2 = u + v)]g after in�nite recursive transformations.

Whether a recursive transformation converges �nitely
is believed to be undecidable1. In logic programs data
structures in input arguments are usually transferred to
output arguments even though they may be broken into
smaller ones, or combined into larger ones, or the values
of elements are processed. In terms of argument sizes,
the relationship among them may be approximated by
an a�ne subspace, which is represented by a set of
equalities, Requiring the least �xpoint is too much in
general; however, a post�xpoint 2 is also a correct upper
approximation to least �xpoint by Tarski's �xpoint
theorem: T (x) � x implies lfpT � x. The idea of
using widening has already been used in the abstract
interpretation of programs in procedural languages
[CH78].
We now describe what we call a�ne widening. To

simplify notations, let us omit subscripts concerning
predicate names and suppose there is only one predicate
in a program. Ai is an a�ne subspace w.r.t. the
predicate. If Ai is a post�xpoint of T , we are done with
a correct IC. Otherwise, we widen T (Ai) to its a�ne hull
Ai+1. Suppose Al is such a post�xpoint that it is found
for the �rst time in the computation of A0 = ;; A1; : : :.

Theorem 3: The sequence A0; A1; : : : ; Al is �nite.

Proof : It is enough to show the dimension of Ai+1 is
greater than that of Ai for i = 0; : : : ; l � 1 since Ai's
are a�ne subspaces in Rn where n is the arity of a
predicate associated with the recursive transformation
T . Ai � T (Ai) since Ai is not a post�xpoint of T and
T (Ai) � Ai+1 since Ai+1 is an a�ne hull of T (Ai). So
Ai+1 is an a�ne subspace properly including Ai; that
is, the dimension of Ai+1 is greater than that of Ai.

Although a�ne widening sometimes widens to \no
constraints", it provides useful IC with many practical
programs.

Example 6: Let us consider append procedure with a
constraint that all list elements are integers.

a([],T,T).

a([X|U],V,[X|W]) :- integer(X), a(U,V,W).

The purpose of introducing the constraint integer(X)
is to set the termsize of X to zero. The abstracted version
of the above append procedure is as follows:

1Brodsky and Sagiv studied inference of disjunctionof inequal-
ities between two argument positions. With a transformation
similar to our recursive transformation, they proved the question
on convergence is undecidable[BS91]

2If x � T (x) (x � T (x)), then x is a post�xpoint (pre�xpoint)
of T .

a(0; t; t) t � 0:
a(2 + x+ u; v; 2 + x+ w)

(x; u; v; w) � ~0;
x = 0;
a(u; v; w):

Using recursive transformation without a�ne widening,
the transformation does not converge �nitely since it
expands the input convex set inch by inch at every
iteration. We now try with a�ne widening. A1 =
T (;) = f(a1; a2; a3) j a1 = 0; a2 = a3g is an a�ne
subspace, which is one-dimensional. frame(T (A1)) =
(f(0; 0; 0); (2; 0; 2)g; f(0; 1;1)g), so its a�ne hull is A2 =
f(a1; a2; a3) j a3 = a1 + a2g, which is two-dimensional.
With one more iteration, we �nd that A2 is a post-
�xpoint of T (fortunately, a �xpoint). Van Gelder's
method does not �nitely converge [VG91]. Ullman
and Van Gelder's [UVG88] and Brodsky and Sagiv's
methods [BS91] cannot represent a relationship among
three argument positions. However, it is noted that
a�ne widening cannot infer relationship in the form of
inequality.

5 Translativeness Property

Let ~p be a vector of argument sizes in a head and ~p0

a vector of argument sizes in a recursive subgoal. All
nonrecursive subgoals are replaced by their ICs. Then
an abstract rule can be viewed as a polycone in R2n, so
the polycone can be re-generated by its extreme points
and rays.

Example 7: Consider the naive reverse procedure.

r([],[]).

r([X|U],W) :- r(U,V), a(V,[X],W).

Applying termsize abstraction to the procedure, we have
an abstract procedure:

r(0; 0):

r(2 + x+ u;w) (u; v; w) � ~0; r(u; v); a(v; 2 + x;w):

The analysis for a supplies an IC: a1 + a2 = a3.
Replacing a(v; 2 + x;w) by v + (2 + x) = w reduces
to the following abstract procedure.

r(0; 0):

r(2 + x+ u;w) (u; v; w) � ~0; r(u; v); v + 2 + x = w:

Let ~r and ~r0 denote the argument sizes of head and
recursive subgoal, resp. So we have the following

parametric representation for r1; r2; r1
0; r2

0.

r1 = 2 + x+ u;

r2 = w;

r1
0 = u;

r2
0 = v;

v + 2 + x = w;

x � 0;
u � 0;
v � 0;
w � 0

The parametric representation generated by the ex-
treme points and rays is:

r1 = 2 +x +u
r2 = 2 +x +v
r1

0 = 0 +u
r2

0 = 0 +v
x � 0
u � 0
v � 0

A natural transformation 	 associated with a linear
recursive rule is viewed as a polycone in R2n when
all nonrecursive subgoals are replaced by their ICs.
Suppose the parametric representation generated by
extreme points and rays of the polycone in R2n is in
the form of :

	 =

8>>>><
>>>>:
(~p; ~p0)

����������
9~�~�~�:

2
66664

(Eq. 10)
^ (

P
�i = 1)

^ (~� � ~0)

^ (~� � ~0)

^ (~� � ~0)

3
77775

9>>>>=
>>>>;
: (9)

�
~p
~p0

�
=

�
A

0

�
~� +

�
B

0

�
~� +

�
P1
P2

�
~� (10)

where P1 and P2 are permutations. Substituting � =
P�1
2

~p0 in Eq. 10 boils down to:

	 =

8>><
>>:
~p

��������
9~�~�:

2
664

(~p = A~� +B~� + P ~p0)
^ (

P
�i = 1)

^ (~� � ~0)

^ (~� � ~0)

3
775

9>>=
>>;

(11)

where P is P1P
�1
2 .

De�nition 4: (translativeness) If a natural transforma-
tion 	 can be reduced to Eq. 11, 	 is P -translative.
Let �0 denote a polycone represented by:

�0 =

8>><
>>:
~p

��������
9~�~�:

2
664

(~p = A~� +B~�)
^ (

P
�i = 1)

^ (~� � ~0)

^ (~� � ~0)

3
775

9>>=
>>;
: (12)

	(�) is indeed a vector sum + of �0 and P�:

	(�) = �0 + P�

Now we introduce some useful properties on polycones.

Lemma 1: The following equalities on polycones hold.

1. A(�1 +�2) = A�1 + A�2

2. A(�1 t�2) = A�1 tA�2

3. �1 + (�2 t�3) = (�1 +�2) t (�1 +�3)

Suppose we have k base polycones and l P -translative
natural transformations. Then we can simplify the
recursive transformation T as follows:

T (�)
= B1 t � � � tBk t (�1 + P�) t � � � t (�l + P�)
= (B1 t � � � tBk) t ((�1 t � � � t�l) + P�)
= �B t (�R + P�)

where �B = B1 t � � � tBk and �R = �1 t � � � t�l .
We now describe how P -translative natural transfor-

mation can be unfolded to I-translative transformation
using unfolding, where I is an identity matrix.

De�nition 5: (Unfolding) Suppose T is P -translative
transformation. T 2(�) is obtained by applying T to
T (�).

T (T (�))
= �B t (�R + P (�B t (�R + P�)))
= �B0 t (�R0 + P 2�)

where �B0 = �Bt(�R+P�B) and �R0 = �R+P�R.

Applying at most n unfoldings where n is the arity
of the associated predicate, we can get I-translative
transformation since P is a permutation matrix.

Theorem 4: Let T be a translative transformation in
the form of:

T (�) = �B t (�R +�)

and the generators of �B and �R are:

gen(�B) = (fu1; : : : ; ukg; fv1; : : : ; vlg)
gen(�R) = (fx1; : : : ; xng; fy1; : : : ; ymg)

then
gen(lfpT) =

(fu1; : : : ; ukg; fv1; : : : ; vl; x1; : : : ; xn; y1; : : : ; ymg)

In practice, linearly recursive logic programs relying
on \recursion on structures" technique usually satisfy
translativeness property. Hence their tight interargu-
ment constraints can be found without any iterations.

Example 8: The following procedure is intended to
divide its �rst argument into its second and third
argument. In order to assure balanced division of the
\input" list, the last two arguments are interchanged
upon recursion.

d([],[],[]).

d([X|U],[X|V],W) :- integer(X), d(U,W,V).

Applying termsize abstraction to the procedure, we
have:

d(0; 0; 0):

d(2 + u; 2 + v; w) (u; v; w) � ~0; d(u;w; v):

Clearly, frame(�B) = (f0; 0; 0g; fg). From the second
rule, we get a P -translative transformation:

	(�) = �R + P�

where
�R = f(2; 2; 0)g

P =

2
4 1 0 0

0 0 1
0 1 0

3
5

Applying an unfolding boils down to I-translative
transformation:

T 2(�) = �B0 t (�R0 +�)

where

frame(�B0) = (f(0; 0; 0); (2; 2;0)g;fg)

and
frame(�R0) = (f(4; 2; 2)g; fg):

By Theorem 4,

lfpT =

8>>>>>>>><
>>>>>>>>:

~d

��������������

9�1�2�3:

2
666666664

(d1 = 2�2 + 4�3)
^ (d2 = 2�2 + 2�3)
^ (d3 = 2�3)
^ (�1 + �2 = 1)
^ (�1 � 0)
^ (�2 � 0)
^ (�3 � 0)

3
777777775

9>>>>>>>>=
>>>>>>>>;

:

It implies that the �rst argument size is the sum
of the second and the third, and the �rst argument
size is strictly greater than the second or the third if
the �rst is greater than or equal to 4 (at least two
list elements), which is important information when
handling termination proofs. It is noted that Van
Gelder's recursive transformation does not converge

with this example and his heuristic does not work
[VG91]. Sagiv and Brodsky's method can infer only
inequalities between two argument positions [BS91].
Recursive transformation with a�ne widening described
in the previous section gives an IC: f(d1; d2; d3) j d1 =
d2 + d3g, which is less precise than the above.

6 Conclusion

We formalized a method of deriving constraints among
argument sizes in the form of polyhedral convex set.
We provided an a�ne widening operation to guaran-
tee �nite convergence of recursive transformation, yet
providing useful interargument constraints.
We de�ned a class of linear recursive logic programs

in terms of translativeness property. For such a class,
tight interargument constraints are automatically given
via the analysis of the structure of transformations.
In practice, most of linear recursive logic programs
relying on \recursion on structure" technique satisfy
translativeness property.
Our method is fully amenable to automation. We

implemented the method in Prolog.

References

[APP+89] F. Afrati, C. Papadimitriou, G. Papageor-
giou, A. R. Roussou, Y. Sagiv, and J. D.
Ullman. On the convergence of query eval-
uation. Journal of Computer and System

Sciences, 38(2):341{359, 1989.

[BS89a] A. Brodsky and Y. Sagiv. Inference of
monotonicity constraints in Datalog pro-
grams. In Eighth ACM Symposium on Prin-

ciples of Database Systems, pages 190{199,
1989.

[BS89b] A. Brodsky and Y. Sagiv. On termination
of Datalog programs. In First Interna-

tional Conference on Deductive and Object-

Oriented Databases, pages 95{112, Kyoto,
Japan, 1989.

[BS91] A. Brodsky and Y. Sagiv. Inference of
inequality constraints in logic programs. In
Tenth ACM Symposium on Principles of

Database Systems, 1991.

[CH78] P. Cousot and N. Halbwachs. Automatic
discovery of linear restraints among vari-
ables of a program. In Conference Record

of the 5th ACM Symposium on Principles

of Programming Languages, pages 84{96,
1978.

[DLH90] S. K. Debray, N.-W. Lin, and
M. Hermenegildo. Task granularity analysis

in logic programs. In SIGPLAN'90 Confer-

ence on Programming Language Design and

Implementation, 1990.

[MUVG86] K. Morris, J. D. Ullman,
and A. Van Gelder. Design overview of the
Nail! system. In Third Int'l Conf. on Logic

Programming, pages 554{568, 1986.

[Pl�u90] L. Pl�umer. Termination Proofs for Logic

Programs, volume 446 of Lecture Notes

in Arti�cial Intelligence. Springer-Verlag,
1990.

[Roc70] R. T. Rockafellar. Convex Analysis. Prince-
ton University Press, Princeton, NJ, 1970.

[Sch86] A. Schrijver. Theory of Linear and Integer

Programming. Wiley, New York, 1986.

[SVG91] K. Sohn and A. Van Gelder. Termination
detection in logic programs using argument
sizes. In Tenth ACM Symposium on Prin-

ciples of Database Systems, 1991.

[Ull85] J. D. Ullman. Implementation of logical
query languages for databases. ACM Trans-

actions on Database Systems, 10(3):289{
321, 1985.

[UVG88] J. D. Ullman and A. Van Gelder. E�cient
tests for top-down termination of logical
rules. Journal of the ACM, 35(2):345{373,
1988.

[VG91] A. Van Gelder. Deriving constraints among
argument sizes in logic programs. Annals of
Mathematics and Arti�cial Intelligence, 3,
1991. Extended abstract appears in Ninth
ACM Symposium on Principles of Database
Systems, 1990.

