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Propositional Theorem Proving: Advanced Lemma Strategies

and Multi-Agent Search

Fumiaki Okushi
Abstract

The Satisfiability Problem is to decide whether or not a boolean CNF formula has a satisfying truth
assignment. Its acceptance problem is NP-complete, suggesting that it is unlikely for a polynomial-
time algorithm to be found. However, because of its importance and applications in areas such as
circuit design, finite mathematics, and planning, many practical algorithms have been introduced.
Among such algorithms iModoc Modoc extends propositional Model Elimination with a mech-
anism to prune away certain subrefutation attempts that cannot succeed. The pruning information
is encoded in a partial truth assignment callechatarky As a descendent of Model Elimination,
Modoc also includes a mechanism to record successful subrefutati®@mrasasand recall them as
necessary. The exact mechanism follows that of C-literals.

The results contained in this dissertation are presented in three parts. The first part
describes a formula-simplification scheme suitable for backward-chaining propositional theorem
provers, such as Modoc. The scheme preserves satisfiability, models, and theorem clauses.

The second part describes various enhancements made to (basic) ModoquaEhe
persistent lemmatrategy improves upon the C-literal strategy and may retain lemmas longer. The
eager lemmatrategy derives certain lemmas early. In certain cases, articulation points in a graph
implicitly constructed during an eager-lemma derivation may derive additional lemiessma-
induced cutandC-reduction-induced cu@llow a subrefutation attempt to be completed by a short
alternate proof.

The third part describeRarallel Modoc Parallel Modoc is a multi-agent search procedure
that uses (enhanced) Modoc as search agents. Agents communicate new autarkies and lemmas as
they are found. Combining autarkies may not be straightforward because two autarkies found by two
separate agents may have conflicting assignments. This part presents an algorithm that combines

two arbitrary autarkies to form another autarky that is no smaller than the first two autarkies.



Experimental results show that enhanced Modoc outperforms many model-search proce-
dures on formulas derived from applications. Parallel Modoc often achieves speedup greater than
the number of agents. Formulas that could not be solved in an hour by Modoc were often solved by

Parallel Modoc in the order of minutes, and in some cases, in seconds.
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Chapter 1

Introduction

The Satisfiability Problem is the problem of deciding whether or not a boolean formula in conjunc-
tive normal form has a truth assignment that makes the formula true. Its acceptance problem is
NP-complete [11, 19], suggesting that it is unlikely for a polynomial-time algorithm to be found.
However, because of its importance and applications in areas such as circuit design [29], finite math-
ematics [18, 49, 51, 50], and planning [27, 28, 15], many practical algorithms have been introduced.

Most of the algorithms found for the satisfiability problem can be classified into one of
two classes of procedures—the classmufdel-searctprocedure and the class @futation-search
procedures. A model-search procedure tries to show that the formula is satisfiable by finding a sat-
isfying truth assignment. If one is found, the procedure announces that the formula is satisfiable. If
the procedure is “complete”, meaning that the procedure is guaranteed to find a satisfying truth as-
signment for every satisfiable formula, the procedure may conclude that the formula is unsatisfiable
after it fails to find a satisfying truth assignment.

Many of the model-search procedures are descendents of the Davis-Putnam-Loveland-
Logemann (DPLL) algorithm [14, 13]. The DPLL algorithm consists of three rules-ttiteclause
rule, the pure-literal rule and thesplitting rule The unit-clause rule makes literals that occur in
clauses of length one true. The pure-literal rule makes literals whose complements do not appear
in the formula true. The splitting rule takes a variable and creates two formulas, one resulting from

making the variable true, and another resulting from making the variable false, and considers the



two formulas for satisfiability.

A different approach to model search is to formulate the problem as an integer linear-
programming problem [5, 26, 23, 21]. This is accomplished by translating boolean constraints into
inequalities. Various techniques developed for integer linear programming can then be applied.

Several model-search procedures employ a non-systematic approach, often involving sto-
chastic choices [35, 39, 28]. These procedures are necessarily “incomplete”, meaning that there is
no guarantee that the procedure will find a satisfying truth assignment for every satisfiable formula.
On unsatisfiable formulas, these procedures can run for ever. Because of these potential problems,
these procedures are usually run with resource limits, such as CPU time and/or the number of
guesses. If the procedure fails to find a satisfying truth assignment within the given resource limits,
it abandons the search. In this case, no sure information is obtained. Despite their shortcomings,
stochastic model-search procedures have been successful in finding satisfying truth assignments
for satisfiable formulas that are much larger than what the current complete methods can generally
handle.

A refutation-search procedure, on the other hand, tries to show that the formula is un-
satisfiable by finding a refutation proof. A refutation proof shows that the formula is inconsistent,
i.e., it has no satisfying truth assignment. If a refutation proof is found, the procedure announces
that the formula is unsatisfiable. If the procedure is “complete”, meaning, in this case, that the pro-
cedure is guaranteed to find a refutation proof for every unsatisfiable formula, the procedure may
conclude that the formula is satisfiable after it fails to find a refutation proof. An example of a
refutation-search procedure is Model Elimination [32].

One class of algorithms that do not fall into either of the two classes of algorithms pre-
viously mentioned is theounting method24, 25, 42]. A counting method tries to obtain a bound
on the number of satisfying truth assignments. If a non-zero lower bound is obtained, the algorithm
concludes that the formula is satisfiable. If a zero upper bound is obtained, the algorithm concludes
that the formula is unsatisfiable.

Modoc[43] is a refutation-search procedure based on propositional Model Elimination.

It extends Model Elimination with a mechanism to prune away certain subrefutation attempts that



cannot succeed. The pruning information is encoded in a partial truth assignment callgtery
[36]. As a descendent of Model Elimination, Modoc also includes a mechanism to record successful

subrefutations aemmasand recall them as necessary.

1.1 Summary of Results

The results contained in this dissertation are presented in three parts. The first part dgsatibes
sensitive simplificationCompared to traditional simplification, goal-sensitive simplification is de-
signed specifically for use with a backward-chaining propositional theorem prover, such as Modoc.
It preserves satisfiability, models, and the clauses that describe the negated conclusion of the the-
orem (which we will call thetheorem clausgsacross simplification. The second part describes
various enhancements made to the basic design of Modoc. The enhancements include improving
upon the original lemma strategy employed in Modoc, other opportunities to derive lemmas, and
strategies to accelerate certain subrefutation attempts. The third part defarbésl Modoc

Parallel Modoc is a multi-agent search procedure that uses (enhanced) Modoc as search agents.
Modoc agentxooperateby communicating lemmas and autarkies as they are found. When mul-
tiple Modoc agents search for refutations, it is possible for them to derive autarkies that have con-
flicting assignments. Because of this, combining autarkies found by different Modoc agents may
not be straightforward. This part presents properties found concerning multiple autarkies and an
algorithm to combine two arbitrary autarkies to form another autarky that is no smaller than the first

two autarkies.

1.2 Organization

The remainder of the dissertation is organized as follows. Chapters 2 and 3 cover background
material. More specifically, Chapter 2 reviews previous work related to Modoc and Chapter 3

reviews the idea of planning as satisfiability testing. Chapter 4 summarizes the results contained in
this dissertation. Chapters 5, 6, and 7 provide detailed discussion of the results. More specifically,

Chapter 5 describes goal-sensitive simplification, Chapter 6 describes various enhancements made



to the basic design of Modoc, and Chapter 7 describes Parallel Modoc. Conclusions and future
research directions are summarized in Chapter 8.

Parts of the results were presented at the Workshop on Model-Based Automated Reason-
ing (in connection with IJCAI-97, August 23, 1997, Nagoya, Japan) [45], and at the Fifth Interna-
tional Symposium on Atrtificial Intelligence and Mathematics (January 4-6, 1998, Fort Lauderdale,
Florida) [46, 47, 37]. More specifically, parts of Chapter 5 were presented in [45] and in [47], parts
of Chapter 6 were presented in [46], and parts of Chapter 7 were presented in [37].

In the next section, we standardize the terminologies and the notations used throughout

the dissertation.

1.3 Terminologies and Notations

This section defines terminologies and notations used throughout the dissertation. The terminolo-
gies and notations follow standard use in the computing literature, with the possible exception of

the followings:

e Use of set notation to express clauses, formulas, and truth assignments. (See Notations 1.2

and 1.3.)
¢ Not requiring a satisfying truth assignment to be a total function. (See Definition 1.8.)
¢ Notation for strengthening. (See Definition 1.9.)

This dissertation is concerned with the algorithmic means to solve the Satisfiability Prob-

lem, which is defined below.

Definition 1.1 (satisfiability problem) The Satisfiability Problemis, given a boolean formula in
conjunctive normal fornfCNF), decide whether or not the formula hasa#isfying truth assignment

O

Formally, the problem is stated as a decision problem, that is, to obtain either a “yes” or
a “no” answer. However, in practice, we are often interested in a satisfying truth assignment should

the formula turn out to be satisfiable. For example, for the planning formulas used in Sections 6.10



and 7.5, each satisfying truth assignment encodes a successful plan. Thus, to obtain a successful
plan, one needs to obtain a satisfying truth assignment first.
We now elaborate on the elements composing the satisfiability problem. We begin with

the formula. It is assumed that some arbitrary set of (boolean) variables is defined.

Definition 1.2 (literal, clause, CNF formula) A literal is either a variable or its negation.cfause

is a disjunction of literals. ACNF formulais a conjunction of clause$.

In this dissertation, we are only concerned with CNF formulas. Thus, the mention of the
word “formula” in this dissertation will always imply &NF formula. Further, we assume that a

formula satisfies the following two conditions:

1. All the clauses araon-tautologousThat is, no clause contains complementary literals (Def-

inition 1.4).

2. Allthe clauses areon-redundantThat is, no clause contains more than one copy of the same

literal.

A formula that does not meet these conditions can be transformed into a logically-equivalent (Defi-
nition 1.10) formula that satisfies these conditions using a linear-time and -space algorithm.
One class of formulas that will be used in testing the performance of Modoc and other

satisfiability testers is the classlofCNF formulas, which is defined below.

Definition 1.3 (k-CNF formula) A k-CNF formulais a CNF formula whose clauses contain ex-

actlyk literals. O

Notation 1.1 (negation, complement)The symbol “=” will be used to denote negation of a vari-
able. It is also used to denote the complement of a literal. Double negaiiehi$ removed, as

usual.(]

Notation 1.2 (clause, formula) Throughout this dissertation, formulas and clauses will be express-
ed using set notation; for clarity, clauses will use square brackets (“[” and “]") instead of the usual

curly brackets ({” and “}”). O



Example 1.1 This example illustrates the use of notations introduced in Notations 1.1 and 1.2.

Consider the following boolean formula in conjunctive normal form:
(avb)A(av-b)A(-avc)A(—-aVv-—c)A(—-aV-bvd)A(-aVvbV-d).
In this dissertation, the above formula will be expressed using set notation, as

{[a, b], [a, —|b], [—|a, C], [—|a, —|C], [—|a, —|b, d], [—|a, b, —|d]} .

As extreme casegmpty clauseandempty formulasre considered. An empty clause is
a clause that contains no literals. An empty formula is a formula that contains no clauses.
Certain clauses and literals are often of interest to a satisfiability testing algorithm. Ap-

propriate terminologies are introduced below to refer to such clauses and literals.

Definition 1.4 (unit clause, pure literal, complementary literals) A clause is called anit clause
if it contains exactly one literal. A literalis apure literalin formulaF if —x does not appear iR .

Literalsx and—x are calledccomplementary literals[]

We now elaborate on the other element composing the satisfiability problem, that is, the

satisfying truth assignment.

Definition 1.5 (partial truth assignment) A partial truth assignmenis a partial function from the
set of variables to the boolean set. To elaborate, the word “partial” implies that a variable may or

may not have a boolean value associated tDlit.

Notation 1.3 (partial truth assignment) Throughout this dissertation, a partial truth assignment
will be expressed using set notation, as the exact set of literals that are true under the partial truth

assignment[]

Example 1.2 Consider a partial truth assignmenthat is defined by

true if x=aorx=c
V(X) = ¢ false if x=b

undefined otherwise



In this dissertationy will be expressed using set notation as
{a,—b,c}.
O

Definition 1.6 (satisfied clause, satisfied formula)A clause is said to bsatisfiedby a partial truth
assignment ifit least oneof its literals is true under the partial truth assignment. A formula is said to
besatisfiedby a partial truth assignmentafl its clauses are satisfied by the partial truth assignment.

a

Definition 1.7 (satisfiable, unsatisfiable)A clause (formula) isatisfiableif there is a partial truth
assignment that satisfies the clause (formula). A clause (formulmsetisfiablaf no partial truth

assignment can satisfy the clause (formuld).

By Definitions 1.6 and 1.7, the satisfiability of an empty clause and that of an empty

formula become obvious.
Corollary 1.1 An empty clause is unsatisfiable. An empty formula is satisfigble.

Definition 1.8 (satisfying truth assignment) A satisfying truth assignmens a partial truth as-
signment that satisfies the formula. That is, for each clause in the formula, there is at least one

literal that is true under the truth assignment.

Note that by Definition 1.8, a satisfying truth assignment is not required to be a total func-
tion in this dissertation. This may appear to deviate from the traditional definition of a satisfying
truth assignment being a total function. However, this definition will not change the satisfiability
of any formula. In particular, if a formula has a satisfying truth assignment in the sense of Defini-
tion 1.8 above, that satisfying truth assignment can be augmented to be a total function (and still
satisfy the formula) by simply assigning arbitrary boolean values to the variables that are unas-
signed.

Because of Definition 1.8, there is no need to distinguish total truth assignments from
partial truth assignments in this dissertation. Thus, the mention of the words “truth assignment” in

this dissertation will always imply partial truth assignment.



One benefit of using set notation to express clauses, formulas, and truth assignments is
that testing whether a truth assignment satisfies a clause or a formula becomes a simple matter of
finding a common element. A clause is satisfied by a partial truth assignment if and only if there is
a common literal between the clause and the truth assignment. A formula is satisfied by a partial
truth assignment if and only if each clause has a literal in common with the truth assignment.

An operation used often in a satisfiability testing algorithm is that@hgthening Intu-
itively, strengthening takes a formula and a partial truth assignment, and removes satisfied clauses

and false literals from the formula.

Definition 1.9 (strengthened clause, strengthened formula).et A be a partial truth assignment,
C be a clause, anB be a formula. Then, thstrengthened clausef C by A, denoted byC|a, is
defined by

Cla={aeClagA},

and thestrengthened formulaf F by A, denoted by |, is defined by

Fla={C|a|CeF andCNA=0}.

Note that the two formulas, before and after strengthening, do not necessarily share satis-
fiability. That is, it is possible foF |4 to be unsatisfiable, yet fdf to be satisfiable. (However, if
F |ais satisfiable, then so [s .)

Some authors use the term “simplification” to refer to the operation of strengthening.
However, in this dissertation, that term is reserved to refer to operations that make a formula
“smaller” while preserving satisfiability (and possibly other attributes). (See Section 5 for a dis-
cussion on simplification.)

In below, we introduce other terminologies that originate from logic. Because our concern

is with propositional satisfiability, the definitions below are specialized for the propositional domain.

Definition 1.10 (logically follows, logically equivalent) Let F, andF; be two formulas. Therf»

is said tologically follow F1, denoted byF; |= F, if any satisfying truth assignment &4 is also



a satisfying truth assignment bf. Also, F, andF; are said to béogically equivalentdenoted by
Fl = Fz, if Fl ): F2 ansz ): Fl. O

Note that the above definition may be extended to include clauses, by viewing clauses as formulas

with a single clause.

Definition 1.11 (subsumed)Let C; andC; be two clauses. Thef; is said to besubsumedby C;
(or thatC; subsume€) if C; =Co. O

In the propositional domain, and under our convention of using set notation to express
clauses, subsumption becomes equivalent to set containment. TBatisubsumed b, if and
only if C, containsC;.

The implication of subsumed clauses in the input formula is that these clauses may safely
be removed from the input formula as they provide no additional constraints.

Deduction is the act of inferring new information from known facts. One of the well-

known inference rules is ttresolution[38], which we define below.
Definition 1.12 (resolution, resolvent) Let two clause£; andC, be as follows:

Cl = [XaYL---,ym];

CZ = [_'Xazla"'azn]‘

That is, they have a common variable which occurs in the opposite polarity, more specifically, that

X occurs inC; and—x occurs inC,. DefineCs as follows:
C = [Yi,--,YmZ,---,2Zn).
Then,Cz is called aesolventof C; andCy, or that it was obtained byesolutionusingC, andC,. [

The use of resolution is supported by the following lemma [38], which we quote without

proof.

Lemma 1.1 Resolution is a sound inference rule. That is, a resolvent logically follows the two

input clauses[]
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Chapter 2

Background: Related Works

This chapter and the next review the background material. The purpose of this chapter is to describe
the basic design of Modoc. Section 2.1 briefly describes Model Elimination, which provides the
foundation for Modoc, Section 2.2 describes autarky, which is used in Modoc to encode certain

pruning information, and finally, Section 2.3 describes Modoc.

2.1 Model Elimination

This section informally describedodel Elimination a proof procedure introduced by Loveland
[32]. Model Elimination provides the foundation for Modoc, which will be described in Sec-
tion 2.3. Because the dissertation is concerned with propositional satisfiability, the description of
Model Elimination contained in this section is specialized for the propositional domain. A detailed
description of the procedure, including its correctness proofs, can be found elsewhere [32, 33].

The main idea of Model Elimination is to show that the set of clauses (i.e., a CNF for-
mula) is inconsistent by iteratively eliminating all possible models. (For our purpose, “model” is
another term for “satisfiable truth assignment”.) If and when all possible models are eliminated, the
procedure concludes that the formula is inconsistent, i.e., unsatisfiable. Since Model Elimination is
a “complete” procedure (page 2), if such an attempt fails, the procedure concludes that the formula
has a model, i.e., is satisfiable.

Currently, there are two ways to represent the current state of search in Model Elimination.
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One uses a linear sequence of literals calleddaan and another uses a tree of literals calletbaise
tree Section 2.1.1 describes Model Elimination using chains, and Section 2.1.2 describes Model
Elimination using clause trees.

To avoid repeating subrefutation attempts that succeed, Model Elimination has a mech-
anism to record successful subrefutationdemsmasand recall them as necessary. The original
implementation of lemmas was to record them as clauses [32]; this is described in Section 2.1.1. A
different implementation calle@-literals embeds special literals in chains [40]; this is described in

Section 2.1.3.

2.1.1 Model Elimination on Chains

The original description of Model Elimination used a linear sequence of literals cattbdiato
represent the current state of search [32]. For the sake of illustration, we will assume a chain to
grow from left to right. The literals in a chain are classified into being eihlterals or B-literals,
and the chain is modified at the right end using three basic operatiextersion reduction and
contraction The given formula is inconsistent if and only if an empty chain can be derived using
the three operations, starting from a chain that is the literals of a clause in the formula in some order.
Not all chains are of interest to Model Elimination. The notionpegadmissibilityand
admissibilitydefines the chains that are of interest to the proof procedure. Any derived chain that is

not preadmissible is simply discarded.

Definition 2.1 (preadmissible, admissible)A chain is preadmissiblef the following conditions

are met [32]:
e A pair of complementary B-literals are separated by an A-literal.

e If a literal occurs twice, once as an A-literal and again as a B-literal, then the A-literal must

occur to the right of the B-literal.
e No two A-literals use the same variable.

A chain isadmissibléf it is preadmissible and the rightmost literal is a B-litergal.
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b a (1) Initial chain from clauséa, b|.
b a c (2) Extension with clausg-a,c].
b a c —a (3) Extension with clausg-a, —c|.
b a c (4) Reduction of-awith a.

b a (5) Contraction ot.

b (6) Contraction of.

b a (7) Extension with clausk, —b).
b a c (8) Extension with clausg-a,c].
b a ¢ —-a (9) Extension with clausg-a, —c|.
b a c¢ (10) Reduction of-a with a.

b a (11) Contraction ot.

b (12) Contraction of.

O (13) Contraction ob.

Figure 2.1: An execution of Model Elimination on chains. The formul[&b], [a,—b], [-a,c],
[-a,—c], [-a,—b,d], [-a,b,~d]}. An underline indicates that the literal is an A-literal; all other lit-
erals are B-literals. An empty chain is denoteddmthis indicates that the formula is unsatisfiable.

The extensionoperation is the operation that lengthens a chain. It takes an admissible
chain, whose rightmost literal i and a clause, that containx. The extension operation then
reclassifies the in the chain into an A-literal (by definition of admissibility (Definition 2.1), this
literal was previously a B-literal), and attaches all the literals in the clause, exgefu the right
end of the chain in some order.

There are two operations that shortens a chain—reduction and contractionmedtive
tion operation takes an admissible chain that contains a pair of complementary ltevaish is a
B-literal, and-x, which is an A-literal that occurs to the left of thhe The reduction operation then
modifies the chain by removing thefrom the chain. Theontractionoperation takes a preadmis-
sible chain and removes the rightmost A-literal. Note that by repeatedly executing the contraction

operation, a preadmissible chain will eventually become an admissible chain.

Example 2.1 This example illustrates the operations of Model Elimination on chains. In partic-
ular, it shows how Model Elimination may conclude that a given formula is inconsistent. Fig-
ure 2.1 shows the execution of Model Elimination on the form{i&b], [a,—b], [-a,c], [-a,—c],

[-a,—b,d], [-a,b,~d]}. Each step is explained alongside the chains in the figure.

Note that in Figure 2.1, steps (8) through (12) are exactly the same as steps (2) through (6).
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(1) Initial chain from clauséa, b].
(2) Extension with clausg-a,c].
-a (3) Extension with clausg-a, —c|.
(4) Reduction of-awith a.
(5) Contraction ofc. Derives a lemma claugea, —~c|, which
is already in the formula.

oo oTUTOT
o 1o 1o 1o o©
oo o

b (6) Contraction ofa. Derives a lemma clauge:a.

b a (7) Extension with clausg, —b.

b a (8) Extension with lemma clauge-a).

b (12) Contraction ofa. Derives a lemma clauge-a], which is

already derived.
(13) Contraction ofb. Derives a lemma claugeb].

a

Figure 2.2: An execution of Model Elimination with lemmas on chains. This shows how the addition
of lemmas may change the execution shown in Figure 2.1. Numbers indicate the corresponding
steps in Figure 2.1. Steps numberedtalics show the changes. In particular, the contraction
operation derives a lemma clauses] in step 6), and the lemma clauge-a] is used for extension

in step @). This allows steps (9) through (11) to be skipped. An underline indicates that the literal
is an A-literal; all other literals are B-literals. An empty chain is denoteddbyhis indicates that

the formula is unsatisfiable.

What had happened was that two exact same subrefutations were made for two occurrences of the
same literal. To avoid such duplication of efforts, Model Elimination has a mechanism to record
successful subrefutations Esnmasand recall them as necessary. In the preceding example, when
the A-literalawas removed at step (6), meaning that literalas successfully refuted, the procedure
could have recorded this fact by adding a new cldus® to the set of clauses. This would have

allowed the proof to be completed in a fewer number of steps, as shown in Figure 2.2.

Example 2.2 This example illustrates the derivation and use of lemmas in Model Elimination. In
particular, it continues from Example 2.1 and shows how the execution shown in Figure 2.1 may
change with the addition of lemmas. The execution is shown in Figure 2.2. Each step is explained

alongside the chains, and further explanation is provided in the cagtion.

A lemma is an implication that records what set of literals allows a literal to logically
follow (Definition 1.10). In Model Elimination, a lemma is derived when an A-literal is removed
by a contraction operation. The original lemma strategy of Model Elimination recorded lemmas
as clauses and added them to the input formula. A different mechanism to record lemmas, called

C-literals, will be described in Section 2.1.3.
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An early implementation by Loveland et al. showed that the use of lemmas was gener-
ally “detrimental” [17]. However, later studies by Loveland [3] and others [40, 46] showed that a

judicious use of lemmas is actually beneficial.

2.1.2 Model Elimination on Clause Trees

One disadvantage of the chain representation is that a chain can be extended only at the rightmost
literal. This is an overly strict restriction since the addition of literals from the extension clause
could be in any order. To eliminate this restriction, Minker and Zanon proposed the use of a tree
structure, callectlause treesto represent the current state of search [34]. This allowed Model
Elimination to extend any B-literal in the derivation.

Using this representation, the given formula is inconsistent if and only if an empty clause
tree can be derived. A clause tree is a tree of literals whose root is labeled with a special symbol
Each node is classified into being either an A-literal or a B-literal. Initially, the tree consists only
of €, which is classified as a B-literal.

The three Model Elimination operations function similarly, except now on clause trees.
The extension operation takes a clause tree, that contains a Bitaral a clause, that contains,
reclassifies the into an A-literal, and attaches each literal in the clause, exerpas child nodes
of x. The reduction operation takes a clause tree that contains a pair of complementaryXiterals
and-x, wherex is a B-literal and-x is an A-literal that is also an ancestorxgfand removes the

from the clause tree. The contraction operation takes a clause tree and removes a leaf A-literal.

Example 2.3 This example illustrates the operations of Model Elimination on clause trees. In
particular, it shows how Model Elimination may conclude that a given formula is inconsistent.
Figure 2.3 shows the execution of Model Elimination on the forr{gab), [a, -b], [-a,c], [-a, ~c],

[-a,—b,d], [~a,b,~d]}. Each step is explained beneath the clause trees in the figure.

Letz et al. independently presented a general framework for Model Elimination as a con-

nection tableau, which also resulted in the use of a tree structure [31].
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® ©, ®
@ O @ O
© © @

(a) Initial clause tree from (b) Extension ofa with (c) Extension ofb with
clausela, b). clauseg—a,c]. clausefa, —b].

(d) Extension ofa (along the right branch) with  (e) Extension ot (along the right branch) with
clause—a,c]. clause—a, —c].

© ©
©

(f) Reduction of—-a, followed by contractions of  (g) Extension of with clause—-a,—c|. The refu-

¢, a, andb, all along the right branch. tation proof can be completed by a reduction of
-3, followed by contractions o, a, ande.

Figure 2.3: An execution of Model Elimination on clause trees. The formufdaid), [a, b,
[-a,c], [~a,—c], [-a,—b,d], [-a,b,~d]}. Double-circle nodes indicate that the literal is an A-literal;
all other nodes are B-literals. An empty clause tree indicates that the formula is unsatisfiable.
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2.1.3 C-Literals as Lemmas

A number of problems had been reported about the original lemma strategy of recording lemmas
as clauses. Loveland et al. write about the lack of selection rules and the increase in the number of
eligible extension clauses that need to be tried [17]. Shostak writes that lemma clauses tend to be
highly redundant because they are often subsumed (Definition 1.11) by other lemma clauses and/or
clauses from the formula [40].

The C-literal strategy is a lemma strategy introduced by Shostak to solve these prob-
lems [40]. Instead of recording lemmas as clauses and adding them to the set of clauses from the
formula, the C-literal strategy embeds the consequent of the lemma in the appropriate location in
the chain. Because of this, the C-literal strategy does not increase the number of clauses, and in par-
ticular, it does not increase the number of possible extension clauses that need to be tried. Once in a
chain, C-literals can be used like A-literals in reduction operations. C-literals can also be removed
by contraction operations when they are the rightmost literal in the chain.

A C-literal is derived as the complement of the A-literal that was removed by a contrac-
tion operation. The location at which the C-literal is inserted is calledCHp®int The C-point is
maintained for each A-literal during a proof derivation. Initially, it is at the left end of the chain.
Every time a reduction operation is applied to the chain, the C-points of all A-literals between the
A-literal and the B-literal that were involved in the reduction operation may have their C-points ad-
justed. To be exact, if the C-point was to the left of the A-literal involved in the reduction operation,

it is moved to the position immediately to the right of the A-literal.

Example 2.4 This example illustrates the derivation and use of C-literals in Model Elimination. In
particular, it continues from Example 2.2 and shows how the execution shown in Figure 2.2 may
change with the use of C-literals as the lemma strategy. The execution is shown in Figure 2.4. Each

step is explained alongside the chains, and further explanation is provided in the caption.
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b a (1) Initial chain from clauséa, b).
Y
b ac (2) Extension with clausé-a,c|. C-point ofais at the left
end of the chain.
b a c —a (3) Extension with clausé-a, —c|. C-point ofc is at the left
end of the chain.
m — - - - . -
b ac (4) Reduction of-a with a. C-point ofc moves to immedi-
ately aftera.
m . - . . -
b a-c (5) Contraction ofc. Derives a C-literal=c and inserts it at
c's C-point.
N
b a Contraction ofc.
-ab (6) Contraction ofa. Derives a C-literal-a and inserts it at
a's C-point.
m - . . -
-ab a (7) Extension with clauséa, —b]. C-point ofb is at the left
end of the chain.
-a b (12) Reduction ofa with —a. C-point ofb moves to immedi-
ately after-a.
-azb (13) Contraction ob. Derives a C-literalob and inserts it at
b's C-point.
—-a Contraction of=b.
U Contraction of-a.

Figure 2.4:. An execution of Model Elimination on chains using C-literals as the lemma strategy.
This shows how the use of C-literals may change the execution shown in Figure 2.2. Arrows point
to the C-point for each A-literal; this is where the complement of the A-literal will be inserted as
a C-literal if it is contracted. Numbers indicate the corresponding steps in Figure 2.2. Steps (5)
onward illustrate the difference. In particular, the C-literal derived in step (6) is used in a
reduction operation in step (12), making a subrefutation attempt for lddmabe unnecessary. An
underline indicates that the literal is an A-literal; a double underline indicates that the literal is a
C-literal; all other literals are B-literals. An empty chain is denotedThythis indicates that the
formula is unsatisfiable.
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2.2 Autarky

This section describes a class of partial truth assignments calleditarky, Autarky was first
introduced by Monien and Speckenmeyer for use in their model-search procedure [36]. However,
it is also used in Modoc to identify certain subrefutation attempts that cannot succeed. The purpose

of this section is to introduce the concept of autarky, with some examples, and some terminologies.

Definition 2.2 (autarky) An autarkyA of a CNF formulaF is a partial truth assignment that par-
titions F into two subsetsautsaf{F ,A) andautren{F ,A), such that any clause autsat{F ,A)

has aliteral in common withA (and hence is satisfied ), and any clause iautren(F ,A) has

no variable in common withA (and hence is not affected by the assignments made to the variables

inA). O

Intuitively, an autarkyA of a formulaF is a partial truth assignment that can “reduce” the
satisfiability problem of the set of clausBsto that of a subset df , namely,autren(F ,A). Note
that the word “reduce” in the preceding sentence has the same meaning as its use in, say, complexity
theory. That isF is satisfiablaf and only if autrenfF ,A) is satisfiable. Thus, if a partial truth
assignment is an autarky, we can “commit” to this partial truth assignment and consider only the

formula resulting from strengthening (Definition 1.9) the original formula with this autarky.

Example 2.5 This example illustrates what is and what is not an autarky. It also illustrates its

conseqguences. Consider the following formhla
{[a’ -G, ﬁe]v [ﬁbv C]v [ﬁav b, d]v [ﬁd’ e]}

and two partial truth assignments
{ac},
{a,b,c}.
The first partial truth assignmefig, c} is not an autarky oF . This is because
autsa(F ,{a,c}) = {[a,~c,—€],[-b,c]},

autrem(F ,{a,c}) = {[~d,€}
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is not a partition of . (The clausé—a, b, d] does not belong to either of the two subsets.)

The second partial truth assignmémt b, c} is an autarky of . This is because

autsatF ,{a,b,c}) = {[a —c,—€,[-b,c],[-a b,d]},

autren(F ,{a,b,c}) = {[—d,€}

is a partition ofF .

Using the autarky{a,b,c}, the satisfiability problem ofF is reduced to that of
autrem(F ,{a,b,c}), namely,{[-d,€}. Since{[~d, €]} is satisfiable, so if . A satisfying truth
assignment of can be constructed as the disjoint union of the autdeky, c} and a satisfying

truth assignment of[—d, €]}, say{—d}, as{a,b,c,~d}. O

A quick way to test whether a partial truth assignment is an autarky or not is to examine
the clauses that contain literals that are false under the partial truth assignment. If each of these
clauses also contains a literal that is true under the partial truth assignment, then the partial truth
assignment is an autarky. Otherwise, it is not an autarky.

As extreme cases, an empty truth assignment and a satisfying truth assignment are both
autarkies.

In general, a formula may have multiple autarkies. While some pairs of autarkies are
compatible meaning that the two truth assignments do not disagree on the assignments they have
both made, some pairs of autarkies epaflicting meaning that the two truth assignments disagree

on some of the assignments. These concepts are formally defined below.

Definition 2.3 (compatible autarkies, conflicting autarkies) Let A; and A, be two autarkies of
formulaF . Then,A; andA; are calledcompatible autarkie no complementary literals can be

found inA; U Az. OtherwiseA; andA; are calledconflicting autarkies [

Since an autarky cannot contain complementary literals; ind A, are conflicting au-

tarkies, then there is some litesafor which x is in A; and—Xxis in Ao.

Example 2.6 This example illustrates compatible and conflicting autarkies introduced in Defini-

tion 2.3. Continuing with Example 2.5a,d,e} and{—a, —~b,—c} are additional autarkies df .
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While {a,b,c} and{a,d, e} are compatible autarkie$a,b,c} and{-a,—b,—~c} are conflicting au-

tarkies.[d

2.3 Modoc

This section describes a satisfiability testing algorithm calledloc The purpose of this section is
to introduce sufficient material about Modoc for later reference without going into too much detail.
A detailed description of the procedure, including correctness proofs, can be found elsewhere [44].

Modoc is a satisfiability testing algorithm introduced by Van Gelder [44]. Unlike many
of the algorithms introduced for satisfiability testing, Modoc is a refutation-search procedure; that
is, instead of trying to show that the formula is satisfiable by finding a satisfying truth assignment,
it tries to show that the formula is unsatisfiable by finding a refutation proof. Modoc is based
on propositional Model Elimination, which it extends with a new pruning technique based on the
concept of autarky (Section 2.2). Although the concept of autarky was first introduced for use in
a model-search procedure [36], Van Gelder adapted it to be used in a refutation-search procedure
to prune away certain subrefutation attempts that cannot succeed. Van Gelder also showed that
autarkies can be constructed during failed subrefutation attempts.

One advantage of Modoc (and other backward-chaining search procedures) over model-
search procedures is that it is able todmal sensitivg44]. Many real-world problems can be
viewed as theorem-proving problems. A formula derived from such a problem comprises of two
parts—theaxioms which account for the majority of the clauses, and the negated conclusion of the
conjectured theorem, which we will call thieeorem clausesThe axioms are obviously consistent;
thus, to test whether the formula is inconsistent or not using a backward-chaining theorem prover,
it is sufficient to start refutation attempts only from the theorem clauses. Goal-sensitive search has
allowed Modoc to achieve search performance comparable to incomplete model-search procedures
(which are considered to be among the fastest methods to find satisfying truth assignments) on
various planning formulas [47].

As a refutation-search procedure, the aim of Modoc is to find a refutation proof demon-

strating that the formula is unsatisfiable. In Modoc, a refutation proof is embodiedeftation
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tree, and its progress is represented bgrapositional derivation treéPDT). Modoc tries to con-
struct a refutation tree using the single basic operation c@l@d extension These concepts are
formalized below.

We first define PDT. PDT is essentially the same as the clause trees (Section 2.1.2).

Definition 2.4 (propositional derivation tree) A propositional derivation tre€PDT) is a tree in
which two types of nodes-elause nodesnd goal nodes—-alternate by level. A clause node is
labeled with a clause in the formula, and a goal node is labeled with a literal in the formula.

A clause node labeled with has exactly one goal node labeled withs a parent if and

only if

—gisinC (orgis T, described later), and

no literal inC labels an ancestor goal node.

A clause node labeled with has a goal node labeled wighas a child if and only if

gis a literal inC, and

—g does not label any ancestor goal nod€of

O

Example 2.7 Figure 2.5 shows an example of a propositional derivation tree for the foffal,

[a,—b,c], [-a,c], [-a,—c], [-b,~C]}. O

To avoid wordiness, we may simply write “clause n@jén place of “clause node labeled

with C” unless this may cause confusion. Similarly for goal nodes.

Definition 2.5 (refutation tree) A refutation treeis a PDT whose root is a goal node labeled with
a special symbol, called theverum and whose leaf nodes are all clause nodes. A subtree of a

refutation tree is called mfutation subtree[]

Example 2.8 The propositional derivation tree shown in Figure 2.5 is also a refutation tree for the

formula. O
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Q.
a b

|a -b c|
|—|a ﬂc| |—|a c| |—|b ﬁc|

Figure 2.5: An example of a propositional derivation tree for the forni(dab], [a, —b,c], [-a,c],
[-a,—c], [-b,—c]}. indicates that the complement of the corresponding literal is an ancestor
goal node. This tree is also a refutation tree for the formula.

Note that if all the literals in a clause node are complements of some ancestor goal nodes,
then this clause node has no child goal nodes.
The connection between refutation trees and the satisfiability of formulas are given by the

following theorem [34, 31, 44, 43].

Theorem 2.1 If a refutation tree can be constructed for a formula, then the formula is unsatisfiable.

If no refutation tree can be constructed for a formula, then the formula is satisfiable.

Modoc tries to construct a refutation tree in a depth-first fashion starting from a tree with

only the verumT using its only operatiorPDT extension

Definition 2.6 (PDT extension) The PDT extensioroperation extends a goal node with a clause

that satisfies the following two conditions:
1. The clause contains the complement of the goal node.

2. The clause does not contain any ancestor goal nodes.
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(The only exception to this rule is that the operation may extend the varumith any clause.)
Further, it adds goal nodes beneath the new clause node. There is one goal node for each literal that

satisfies the following two conditions:
1. The literal is in the new clause node.
2. The literal is not the complement of some ancestor goal node.

We say that goal node creation wagppressedor a literal in a clause node if the complement of
the literal labels a non-parent ancestor goal node (i.e., an ancestor goal node that is not the parent of

the clause nodel]

Definition 2.7 (top clause) The clause used to extend the vertinms called thetop clause [J

For the sake of efficiency, it is not necessary for Modoc to actually construct every part of
a refutation tree, or to attempt construction using every possible choice. That is, if the outcome of
subtree construction can be foreseen, Modoc may move on to other parts of the tree whose outcome
is unknown. There are two types of situations when this could happen. One is when it can be
foreseen that a refutation subtree can be constructed beneath a goal node. Another is when it can be
foreseen thano refutation subtree can be constructed beneath a clause node. The former involves
the use ofemmasand the latter involves the use aditarkies

When a goal node is successfully refuted, Modoc records this fact as a lemma. The
mechanism used in Modoc is essentially that of C-literals (Section 2.1.3) adapted for PDT. The
presence of a C-literal indicates that the complement of the C-literal can be refuted in the subtree
below its attachment point. Therefore, there is no need to attempt refutation of a goal node labeled
with the complement of the C-literal in this subtree.

A feature that is new in Modoc is that afitarky pruning which is based on the following

theorems by Van Gelder [44, 43].

Theorem 2.2 A failed refutation of a goal node derives an autarky.

Theorem 2.3 If a clause is satisfied by an autarky, then the use of that clause in a PDT extension

operation cannot lead Modoc to a successful subrefutafion.



24

Modoc uses these theorems to derive and use autarkies to eliminate from the set of possible exten-
sion clauses certain clauses that cannot lead Modoc to a successful subrefutation.
The incorporation of lemmas and autarky pruning causes the actual PDT extension oper-

ation used in an implementation of Modoc to be modified as follows.

1. The clause used to extend the goal node is further requnotid be satisfied by the current

autarky.

2. Aliteral used to create a new goal node is further requicdo be the complement of some

C-literal attached to some ancestor goal node.

Example 2.9 This example illustrates the PDT extension operation of Modoc. In particular, it
shows how Modoc may conclude that a given formula is inconsistent. Figure 2.6 shows an execution
of Modoc on the formul&[a,b], [a,—b], [-a,c], [-a,~c], [~a,—b,d], [-a,b,~d]}. Of particular
interests are suppression of goal node creation in Figures 2.6(c) and 2.6(g), autarky derivation in
Figures 2.6(c) and 2.6(d), autarky pruning in Figure 2.6(f), C-literal derivation in Figures 2.6(h)
and 2.6(i), and use of a C-literal in Figure 2.6(i).
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(a) Clausda,b] is chosen as the top clause. Two goal ncaleadb are immediately created.

@
2 b
OBNO
@ ©

(b) All four clauses containinga are eligible to extend goal no@de Here, Modoc extends goal node
with clause[—-a, —b,d]. This creates two new goal nodeb andd.

Figure 2.6: An execution of Modoc. The formula{iga, b], [a,—b], [-a,c], [-a,~c], [-a,—b,d],
[-a,b,—~d]}. Clause nodes are shown in rectangles and goal nodes are shown in circles. Thick
circles indicate where the search is. The example continues to page 28.
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(c) Only clause[-a,b,—d] is eligible to extend goal nodeb. (Clause[a,b] is ineligible because it

contains an ancestor goal nod@ Thus, Modoc extends goal nodé with clause[—a, b, —d]. This
creates a new goal nodel. Note that the creation of goal noda was suppressed. This is because its
complement is a non-parent ancestor goal node. Modoc now tries to extend goaHtbddowever,

no clause is eligible to extend it. (Claukea, —b,d] is ineligible because it contains an ancestor goal
node—b.) This implies that the refutation attempt for goal neelt has failed. This causes Modoc to
derive an autarky—d}.

@
[a b
OBNO
@ (@

(d) Modoc now backtracks to goal noeé with autarky{—d}. The autarky ixonditionalin the sense

that it is an autarky for the formula resulting from strengthening the original formula with the partial
truth assignment implicit by the set of ancestor goal nodes—in this ¢aseb}. Modoc now tries to
extend goal nodeb with some other eligible clause. However, no other clause is eligible to extend it.
This implies that the refutation attempt for goal nodle has failed. This causes Modoc to derive an
autarky{—b,~d}, constructed as the union eb (the current goal node) and the current autgrky}.
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@
[a o]
{-b,-d} (2) (b)

(e) Modoc now backtracks to goal nodevith autarky{—b,—~d}. Again, the autarky is a conditional

autarky that is conditioned on the set of ancestor goal nfalesModoc now tries to extend goal node
with some other eligible clause.

@
2 b
(co-di-(a)  (0)
A c

(f) There are two clauses eligible to extend goal nadglausq—a, b, —d] is not eligible as it is satisfied

by the autarky{—b, —d}.) Here, Modoc extends goal nodevith clausg—a, c|. This creates a new goal
nodec.

(9) Only clause[—a,—c] is eligible to extend goal node Thus, Modoc extends goal nodewith

clause[—a, —c]. The creation of goal nodea was suppressed because its compleraési non-parent
ancestor goal node. This completes the refutation along this branch.
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(h) The successful subrefutation of goal nedmuses a C-literahc to be derived and attached to goal

nodea. It also causes a C-literala to be derived and attached to the verdm Search must now
continue to refute goal node

(i) There are two clauses eligible to extend goal nbdelere, Modoc extends goal notlevith clause

[a,—b]. The creation of goal nodeis suppressed because its complemexit a C-literal attached to an
ancestor. This completes the refutation along this branch (because no new goal nodes are created), and
also the refutation for this formula, as all leaf nodes are now clause nodes. This causes a Ghliteral

be derived and attached to the veriim
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Chapter 3

Background: Planning as Satisfiability

Testing

This chapter reviews how planning problems can be formulated using logic, and in particular, as
propositional satisfiability problems. It also demonstrates that a planning formula comprises of two
parts—the axioms and the negated conclusion of the conjectured theorem, as briefly mentioned in
Section 2.3. Backward-chaining theorem provers, such as Modoc, may exploit this structure and
perform goal-sensitive search (Section 2.3). Section 3.1 describes how a planning problem may be
formulated as a propositional satisfiability problem, in particular, as a CNF formula. Section 3.2
describes how the additional view of theorem proving may give additional clues on where to start
a search when a backward-chaining theorem prover is used to determine the satisfiability of the
formula.

Note that although the discussion in this chapter deals with planning problems, the same

techniques could be applied on many other types of problems.

3.1 Planning as Propositional Satisfiability

This section describes how planning problems can be formulated as propositional satisfiability prob-
lems. The formulation is such that a formula is satisfiable if and only if the original planning prob-

lem has a successful plan. A successful plan can be obtained by interpreting the assignments made
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by a satisfying truth assignment to propositions that represent actions.

To the author’s best knowledge, Kautz and Selman were the first to actually test the idea
of formulating planning problems as propositional satisfiability problems [27]. The idea has further
been refined by Kautz and Selman [28] and by Ernst et al. [15] The intuitive idea is to express all
the requirements for a successful plan as boolean constraints, in particular, as boolean clauses. A
truth assignment that satisfies these clauses is hence a successful plan.

More specifically, the requirements will comprise of several components. The largest
component is the domain constraints, which are requirements that are independent of individual
problem instances but are common to all planning problems of the same type. For instance, in
a block-world planning problem, rules on how and when a block can be moved from one place
to another would be one of the domain constraints. Domain constraints are alsoacadets
Given the domain constraints, individual problem instances are characterized by their initial and
final conditions. The initial condition expresses the requirements for the initial state, and the final
condition expresses the requirements for the final state.

Kautz and Selman identified a sufficient set of axioms that is necessary to formulate a

planning problem [27, 28]. These are listed below:

Actions imply both their preconditions and effects.

Exactly one action occurs at each time step.

The initial state is completely specified.

If an action does not change a relation, then the relation holds in the next time step.

A number of software tools, such as Satplan [28] and Medic [15], are available to generate
planning formulas from planning problems. Satplan takes hand-coded axioms, while Medic takes

axioms described as STRIPS-style operators [16].
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3.2 Additional Theorem-Proving View

This section describes the additional theorem-proving view that could be brought into the planning
formulas described in Section 3.1. This view may provide backward-chaining theorem provers,
such as Modoc, additional clues on where to focus their search effort.

A common technigue used to prove that a given formula
=0

is a theorem, wherE is a conjoined set of expressions that is commonly consistenp ananother
expression, is to show that

SA-Q

is inconsistent. When a backward-chaining theorem prover is uggid,used as the top clause.

The planning formulas described in Section 3.1 have the form
axiomsA init A final

where “axioms”, “init”, and “final” are each a set of clauses that express the axioms, the initial
condition, and the final condition, respectively. Obviously, the “axioms” are consistent, and so is
the union of the “axioms” and “init”. Therefore, the formula could be viewed as a formula prepared

for the sake of proving, by refutation, that the following formula is a theorem:
axiomsA init = —final.

That is, given the axioms and the initial condition, it logically follows that the final condition can
never be attained.

When a backward-chaining theorem prover is used to determine the satisfiability of a
planning formula, the theorem-proving view provides the clue that the clauses that express the final

condition are a suitable and a sufficient set of clauses that should be tried as the top clause.
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Chapter 4

Summary of Results

This chapter summarizes the results contained in the remainder of this dissertation. These include a
formula-simplification scheme suitable for propositional backward-chaining theorem provers, vari-
ous enhancements made to the basic design of Modoc, and a multi-agent search procedure that uses

Modoc as search agents.

4.1 Goal-Sensitive Simplification

This section summarizes the results contained in Chapterdoaksensitive simplificationGoal-
sensitive simplification is a formula-simplification scheme suitable for propositional backward-
chaining theorem provers, such as Modoc.

Simplifying a formula prior to running a satisfiability tester has become standard practice
as it generally allows the search to complete in less time. However, traditional simplification proce-
dures are geared toward use with model-search procedures. Because of this, certain simplification
procedures cannot guarantee anything beyond the preservation of satisfiability.

Backward-chaining theorem provers generally require the simplified formula to retain not
only satisfiability, but also other attributes such as models and theorem clauses. The chapter reviews
some of the common simplification procedures (Section 5.1) and then describes a simplification
scheme (Section 5.2) that achieves the preservation of all three attributes—satisfiability, models,

and theorem clauses.
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4.2 Enhancements to Modoc

This section summarizes the results contained in Chapter 6 on various enhancements made to the
basic design of Modoc, which was described in Section 2.3.

Thequasi-persistent lemnerategy (Section 6.2) potentially improves upon the C-literal
strategy (Section 2.1.3). A problem with the C-literal strategy is that if a subrefutation attempt fails,
all lemmas derived during that attempt are discarded. The quasi-persistent lemma strategy derives
the exact same lemmas, but the lemmas need not be discarded unless the lemmas are attached to goal
nodes that are being abandoned. The benefit is that the lemmas may be retained longer. However,
it requires the attachment points to be compuaétdr the lemmas are derived (as opposed to them
being computediuring proof derivation by moving the C-points. See Section 2.1.3 for details.)

Theeager lemmatrategy (Section 6.3) allows certain lemmas to be derived without suc-
cessful subrefutation attempts (which is the normal way to derive lemmas). Under certain circum-
stances, the graphs implicitly constructed during eager-lemma derivations can be used to derive
additional lemmas (Section 6.4). The articulation points in the graphs correspond to nodes that can
be turned into lemmas.

Cutsallow a current subrefutation attempt to be abandoned and to be replaced by a short
alternate proof. Two cuts are introducetemma-induced cutéSection 6.5) andC-reduction-
induced cutgSection 6.6). Cuts can be invoked when certain conditions are met.

Several experimental features are also described (Sections 6.7 to 6.9).

Experimental results (Section 6.10) show that many of the features improve the search
speed and allow Modoc to outperform many model-search procedures on planning formulas. How-
ever, the growth rate of Modoc search time on random formulas is currently worse than the growth

rate of the satisfiability testers it outperforms on application-derived formulas.

4.3 Parallel Modoc

This section summarizes the results contained in ChapterParailel Modoc Parallel Modoc is a

multi-agent search procedure that uses enhanced Modoc (Chapter 6) as search agents. Each agent
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uses a different theorem clause as its top clause and attempts to find a refutation. During the search
for refutation, autarkies and lemmas found by one agent are communicated to other agents. The
agent receiving the autarkies and lemmas may use them as if they had been derived by the agent
itself. As a result, the search ¢®@operative as opposed to being independent. It is hoped that by
doing so, search for a refutation would be expedited.

When multiple searches are made at the same time, it is possible for multiple Modoc
agents to derive conflicting autarkies (Definition 2.3). Section 7.2 proves some properties con-
cerning multiple autarkies and presents two algorithms—the first algorithm allows two arbitrary
autarkies to be combined to form an autarky that is at least as large as the two given autarkies,
and the second algorithm is an optimization of the first algorithm and allows only the new autarky
literals to be communicated to accomplish the same task.

One problem with the current design of Parallel Modoc is that the maximum number of
agents that could be utilized is tied to the number of theorem clauses. Section 7.4 describes two
methods to increase the number of clauses suitable as the top clause, in hopes of increasing the
degree of parallel search and subsequently the amount of cooperation.

Experimental results (Section 7.5) show that the speedup of Parallel Modoc over Modoc
is very often greater than the number of agents. Formulas that could not be solved in an hour by
Modoc were often solved by Parallel Modoc in the order of minutes, and in some cases, in seconds,
with only 2 to 6 agents. Experiments also show that increasing the number of possible top clauses,

and hence agents, allows faster search in many instances.
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Chapter 5

Goal-Sensitive Simplification

This chapter describegoal-sensitive simplification Goal-sensitive simplification is a formula-

simplification scheme specifically designed for use with a backward-chaining theorem prover, such
as Modoc. It preserves certain attributes of the formula that traditional simplifiers may not preserve
across simplification. Section 5.1 reviews many of the common simplification procedures and de-
scribes the problems associated with some of them for use prior to a backward-chaining theorem

prover. Section 5.2 describes a solution.

5.1 Simplifier and Satisfiability Testing

This section reviews many of the common simplification procedures used in satisfiability testing
and describes the problems associated with some of them for use with a backward-chaining theorem
prover. A solution to the problem is described in Section 5.2.

It has become common practice to simplify the formula before running a satisfiability
tester on it. A simplified formula is generally smaller, most often allowing the satisfiability tester to
determine its satisfiability in less time. A simplifier takes a formula and applies various quick and
easy simplification procedures that preserve satisfiability. Examples of simplification procedures
are summarized in Table 5.1.

Any formula resulting from any combination of the simplification procedures listed in Ta-

ble 5.1 will still be an acceptable input formula to a backward-chaining theorem prover. However,
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unit implication Remove all clauses that contain a literal in a unit clause,
and remove all occurrences of the complement of that lit-
eral.

pure-literal elimination | Remove all clauses that contain a pure literal (Defjni-
tion 1.4).

equivalent-literal Replace all occurrences of literals that are logically equiv-

substitution alent (Definition 1.10) with a single literal. This is com-

monly achieved by reasoning on the binary clauses, in par-
ticular, by considering all binary clauses as implications,

constructing a graph of literals with arcs representing jm-

plications, and running a strongly connected components
algorithm; then, each strongly connected component|is a
set of logically-equivalent literals.
subsumption Remove all clauses that are subsumed (Definition 1.11) by
some other clause in the formula.

Table 5.1: Common simplification procedures used in satisfiability testing.

when a backward-chaining theorem prover is used, it is strongly recommended that certain attributes
be retained in the simplified formula. First, all theorem clauses should be preserved across simplifi-
cation. This allows goal-sensitive search to be performed. Should a simplification procedure elimi-
nate the theorem clauses, the prover is left with a formula with no place to focus its search effort on.
Second, the simplified formula should be logically equivalent (Definition 1.10) to the original for-
mula. (However, this isotan absolute requirement.) Among the simplification procedures listed in
Table 5.1, pure-literal elimination is not guaranteed to produce a logically-equivalent formula, and

unit implication may eliminate theorem clauses, as they tend to be unit clauses in practice.

5.2 Simplifier for Backward-Chaining Theorem Provers

Section 5.1 described some of the problems associated with the use of common simplification pro-
cedures prior to running a backward-chaining theorem prover. This section describes a solution.
To overcome the problems described in Section 5.1, the author, in collaboration with
Allen Van Gelder, devised a simplification scheme that will guarantee all three requirements—
preservation of satisfiability, models, and theorem clauses. The scheme isgmlesknsitive

simplification[47]. (To emphasize the difference, traditional simplification will be called goal-
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formula

|

theorem clauses axioms+ initial conditiorD

renaming information
I rename j«———————————————— - simplify

[ |
1

(goal-sensitively simplified form@

Figure 5.1: Steps involved in goal-sensitive simplification. Details are given in Section 5.2.

insensitive simplification.)

Figure 5.1 outlines the steps involved in goal-sensitive simplification. For the purpose of
illustration, we assume that the input formula is a planning formula (Section 3.1). (Note, however,
that the scheme could be applied to any formula whose original problem could be viewed as a
theorem-proving problem.) The clauses in the input formula are partitioned into two sets—one that
consists of the theorem clauses, and another that consists of the clauses that describe the axioms and
the initial condition. Then, we run a regular simplifier to the second set (the axioms and the initial

condition), with the following requirements:
1. Pure-literal elimination is not to be used.
2. Any renaming of the variables that occurred during simplification is to be recorded.

Simplification procedures such as equivalent-literal substitution may rename literals. If such proce-
dures are used, we need to make sure that the literals in the first set (the theorem clauses), which
was not subjected to the simplifier, are renamed in the same way. The goal-sensitively simplified
formula is obtained as the union of the first set (renaming done, if applicable) and the simplified
second set.

Note that a goal-sensitively simplified formula can be considered as being in an inter-
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mediate form to becoming a goal-insensitively simplified formula. In particular, applying goal-
insensitive simplification to a goal-sensitively simplified formula produces the same formula as the
formula produced by applying goal-insensitive simplification directly to the original formula. This
means that the formula that is goal-sensitively simplified is generally slightly larger than the formula

that is goal-insensitively simplified.
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Chapter 6

Enhancements to Modoc

This chapter describes various enhancements made to the basic design of Modoc (Section 2.3).
Before describing the enhancements, Section 6.1 discusses some of the design decisions made in
implementing Modoc, as they relate to the enhancements. Section 6.2 describes the quasi-persistent
lemma strategy, which potentially improves upon the C-literal strategy (Section 2.1.3). Section 6.3
describes the eager lemma strategy, which allows certain lemmas to be derived without successful
subrefutation attempts. Section 6.4 describes how articulation points in certain graphs implicitly
constructed during eager-lemma derivations can derive additional lemmas. Section 6.5 describes
lemma-induced cuts and Section 6.6 describes C-reduction-induced cuts. These cuts allow a sub-
refutation attempt in progress to be completed by a short alternate proof. Section 6.7 describes how
refutation can be propagated during cuts. Section 6.8 describes how pure literals found in the for-
mula can be exploited in Modoc. Section 6.9 describes a lookahead strategy. Section 6.10 reports
experimental results obtained from the enhanced version of Modoc.

Most of the work contained in this chapter was performed in collaboration with Allen Van

Gelder.

6.1 Implementation of Modoc

This section discusses some of the design decisions made in implementing Modoc. We refer to the

implementation asodoc (note the change in typeface). The discussion will be limited to those that
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have some relevance to the various enhancements described later in this chapter.

A key decision made at the beginning of the implementation was tpregeduction
That is, whenever a goal node is added to the current set of ancestor goal nodes, or a C-literal is
attached to a goal node, the length of the clauses in the formula are modified to reflect the actual
number of literals that need to be refuted. To elaborate, whenever a goakrnedelded to the
current set of ancestor goal nodes, all the clauses that comtaitll have their length decreased by
one. (Recall from Section 1.3 that we assumed each clause to be non-duplicating.) Also, whenever
a C-literaly is attached to the PDT, all the clauses that contaitwill have their length decreased
by one. Pre-reduction allows certain enhancements to be implemented efficiently, resgely,

lemmaderivations (Section 6.3) ar@-reduction-induced cutSection 6.6).

6.2 Quasi-Persistent Lemmas

This section describes tlygiasi-persistent lemnsrategy. The quasi-persistent lemma strategy po-
tentially improves upon the C-literal strategy. The C-literal strategy avoids the problems associated
with the original lemma strategy of Model Elimination of recording the lemmas as clauses. (See
Section 2.1.3 for details.) However, it has a problem that if a subrefutation attempt fails, all the
lemmas derived during that subrefutation attempt are discarded. Obviously, this is a needlessly con-
servative policy to maintain lemmas because the lemmas are nonetheless sound logical implications.
Van Gelder proposed a more “persistent” variant of the C-literal strategy callegh#se
persistent lemmatrategy [44]. The quasi-persistent lemma strategy derives the exact same lemmas
as does the C-literal strategy. However, unlike the C-literal strategy, a lemma is disocabhgéfdit
is attached to a goal node that is being “abandoned” (because the search has moved on to another
part of the refutation tree). Potentially, this means that quasi-persistent lemmas may be retained
longer than C-literals. A downside of it is that, unlike C-literals, determining the attachment point
of a lemma must be postponed urafter the lemma is derived (as opposed to it being computed
during the derivation by moving the C-point; see Section 2.1.3 for details). The attachment point
is determined as the lowgstoper ancestor goal node that the subrefutation that derived the lemma

either directly or indirectly used in a reduction operation. To be able to do this, the exact antecedent
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(a) Goal nodel is refuted and this derives a lemma literad. The refutation is directly dependent on

ancestor goal nodesb and—c, as marked bjA]. Since neither is the parent goal node (in this cdje,
the lemma is attached to the lower of the two, namely, Dependencies are shown by dashed arrows.

Figure 6.1: Determining the attachment points of quasi-persistent lemmas. The example continues
to page 43.

ancestor goal nodes (which we will call tdependencigamust be recorded for each lemma. This
means that more bookkeeping must be done. Another downside of it is that it is incompatible with

a heuristic calledtrong regularityfound by Letz et al. [31, 46]

Example 6.1 This example illustrates how dependencies and attachment points are determined for
guasi-persistent lemmas. Figures 6.1(a) and 6.1(b) show two simple cases. Details are given in the

captions.[]

When a goal node is refuted because all its (non-empty set of) sub-goal nodes are refuted,

in order to determine the attachment point of the new lemma literal, we would normally have to
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|b cﬁd| |ﬁa d ﬁe|

(b) Goal nodee is refuted and this derives a lemma litergd. The refutation is directly dependent

on ancestor goal node (indicated by[A]) and on lemma literakd (indicated by[L]). Since lemma
literal —d is dependent on ancestor goal noddsand —c (indicated by the dashed arrows), the new
lemma is dependent an —b, and—c. Since none of them is the parent goal node (in this a@s¢he
new lemma literak-e is attached to the lowest of the three, namely, goal reodeashed arrows show
the dependencies of lemma literad.
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(c) An equivalent PDT that could be considered to determine the dependencies and the attachment point
of lemma literak-a. This shows that the new lemma literad is dependent on lemma literatsl and—e,

which are dependent on ancestor goal negleand—c, anda, —b, and—c, respectively. The new lemma

is attached to the lowegtoperancestor goal node, nametp.
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find all the ancestor goal nodes that were used either directly or indirectly in reduction operations
during the refutation of the goal node. However, in practice, this need not be done. The fact that
the goal node is refuted means that all its sub-goal nodes were successfully refuted and that their
complements are now attached as lemma literals. Thus, to determine the attachment point of the new
lemma literal, we need not consider the actual PDT that derived the new lemma literal but could
instead consider an equivalent PDT in which the creation of the sub-goal nodes are suppressed

because of the lemma literals.

Example 6.2 This example continues from Example 6.1. Note that Figure 6.1(b) also shows that
goal nodea has been refuted and that a lemma literalcan be derived. To determine the attach-
ment point of the lemma literaha, we would normally have to examine the PDT in Figure 6.1(b).
However, in practice, we could instead consider an equivalent PDT in Figure 6.1(c). Details are

given in the caption]

6.3 Eager Lemmas

This section describes tleager lemmatrategy. The eager lemma strategy allows certain lemmas
to be derived without successful subrefutation attempts (which is the normal way to derive lem-
mas). The mechanism is closely related to unit propagation, which is often used in model-search
procedures.

As described in Section 6.1, when a goal node is added to the current set of ancestor
goal nodes, pre-reduction is performed using this goal node. The eager lemma strategy attaches the
literals in unit clauses (to be exact, clauses that have just been shortened by pre-reduction to length
one) as lemmas to the current goal node. The new lemmas could then be used to perform further
pre-reductions, which may in turn derive more unit clauses and hence lemmas. The derivation of

lemmas may continue until no new unit clauses are derived.

Example 6.3 This example illustrates the derivation of eager lemmas. Figure 6.2(a) shows how

eager lemmas are derived after adding goal reethe current set of ancestor goal nodes.
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(a) A derivation of eager lemmas. Eager lemmas are shown in double squares. Solid arrows indicate
depth-local pre-reductions, and dashed arrows indicate depth-non-local pre-reductions. The addition
of goal nodee to the current set of ancestor goal nodes starts a chain of pre-reductions, eventually
causing clausg-b,k,—h] to be pre-reduced to an empty clause.

(b) Eager dependency graph of the eager lemma derivation for the depth of go&l Buliel arrows
indicate depth-local dependencies, and dashed arrows indicate depth-non-local dependencies.

Figure 6.2: An eager-lemma derivation. Figure (a) shows an eager lemma derivation, and Figure (b)
shows the corresponding eager dependency graph for the depth of go& node
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(a) Justification of eager lemnfa (b) Justification of eager lemma

Figure 6.3: Justification of eager lemmas. The refutation subtrees above show that eagerfiemmas
andi in Figure 6.2(a) can be derived as quasi-persistent lemmas as results of successful subrefutation
attempts. In both cases, the lemmas are attached to goaknathéch is where they were attached

as eager lemmas. The refutations use tautologous clauses that are not part of the given formula.
However, their introduction obviously preserves satisfiability. Dashed arrows point to where the
lemma literals will be attached.

To demonstrate that eager lemmas are indeed lemmas, Example 6.4 shows that eager
lemmas could be derived as quasi-persistent lemmas that are attached to the same goal nodes had

we not used the eager lemma strategy.

Example 6.4 This example illustrates that it is possible to derive eager lemmas as quasi-persistent
lemmas that will be attached to the same goal nodes. Figure 6.3 shows successful subrefutation
attempts that will derive the first two eager lemmiasindi in Figure 6.2(a) as quasi-persistent

lemmas. The refutations use a tautologous clause. Details are given in the cgption.

6.4 Eager Dependency and Articulation Points

This section describes how certain nodes in graphs implicitly constructed during eager-lemma

derivations may derive additional lemmas. The graph is calledager dependency grapand
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if an empty clause was derived during an eager-lemma derivation, the articulation points in the

graph can be complemented and attached as lemmas.

Example 6.5 This example continues from Example 6.3. Figure 6.2(b) shows the corresponding

eager dependency graph for the depth of goal ode

To demonstrate that articulation points can be made into lemmas, Example 6.6 shows that
the complements of articulation points in the eager dependency graph could be derived as quasi-

persistent lemmas attached to the same goal nodes had we not used the eager lemma strategy.

Example 6.6 This example illustrates that the complements of articulation points in eager depen-
dency graphs are indeed lemmas. Figure 6.4 shows a subrefutation attempt continuing from goal
nodee using the exact same clauses that derived the eager lemmas in Figure 6.2(a). Dashed arrows
indicate where the lemmas would be attached. Note that the only lemmas that would survive after
refuting goal node are lemma literals that are attached to goal nodes higher than goat.ntde
complements of such lemma literals exactly correspond to articulation points in the eager depen-

dency graph of Figure 6.2(b]

The standard biconnectivity algorithm found in algorithms textbooks (such as [2, 1, 4])
is sufficient for our purpose. However, because eager dependency graphs have certain structures, a
simpler algorithm was designed and usedddoc.

By looking at the goal node that started unit propagation and the clause that was pre-
reduced to an empty clause as the two end points, an eager dependency graph can be viewed as a
lattice. Because of this, any “walk” along the arcs of the eager dependency graph from the empty
clause will eventually arrive at the goal nod&hout any backtrackingObviously, any articulation
point will be on this path. Let us call this path thein path To determine the articulation points,
all there is left to do is to see if there are dmgpasseshat will allow nodes on the main path to be
skipped (such nodes cannot be articulation points).

The algorithm used imodoc is based on depth-first search and has two modes. The
purpose of the first mode is to find the main path. This can be found by simply following any

successor among the set of successor nodes at each visited node. Once the main path is found, the
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Figure 6.4: Corresponding subrefutation tree for the eager-lemma derivation shown in Figure 6.2(a).
All goal nodes frome to b can be turned into quasi-persistent lemmas. Dashed arrows indicate
where the lemma literals will be attached. Since the search is actually at goad andét will next

try to refute goal node, the only lemmas that will make sense to record are those that attach to
nodes above goal node These are-h, d, —f, and—e, which are exactly the complements of the
articulation points in the eager dependency graph shown in Figure 6.2(b).
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algorithm starts to execute in the second mode while continuing the depth-first search on the lattice.
The purpose of the second mode is to find all bypasses that could be used to skip nodes along
the main path. For each bypass found, any node along the main path that is properly between the
beginning and the end of the bypass are excluded from the set of candidates for articulation points.

The algorithm continues until all possibilities are examined.

Example 6.7 This example illustrates the articulation-points algorithm on a sample graph. Fig-
ure 6.5 shows the execution of the algorithm. We assume that the successors are ordered from top

to bottom for each node. Details are given in the captions.

As presented, the algorithm is not guaranteed to run in time linear in the number of edges.
This is because when a bypass is found, the algorithm must “walk” along the main path between
the beginning and the end of the bypass, whose length is only bound by the number of nodes in the
graph. In particular, there is no means to avoid eliminating a node that is already eliminated. Thus,

as presented, the algorithm may take quadratic time to run.

Example 6.8 This example continues from Example 6.7. When the bypasd — d is found in

Figure 6.5(e), the algorithm, as currently presented, has ho means to not re-eliminate nbde

However, the algorithm can be fixed and turned into a linear-time algorithm as follows.
Instead of eliminating nodes as bypasses are found, the revised algorithm will collect sufficient in-
formation during depth-first search so that a post-search stage can eliminate non-articulation points
in one sweep across the graph (actually, one sweep across the main path).

During the search for the main path, we number (only) the nodes along the main path as
they are visited. Every node maintains an additional attribute cafi@dreachablewhich is the
largest node number among the nodes along the main path that could be reached from this node by
a bypass alone. After the search is done, beginning with the node from which the depth-first search

started maxreachabléndicates the next articulation point along the main path.

Example 6.9 This example illustrates the revised articulation-points algorithm. Figure 6.6 shows
the execution of the algorithm on the same graph used in Figure 6.5. Details are given in the

captions.[]
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(b) The main path (indicated by the thick lines)

is found. Candidates for articulation points are
indicated by thick circles.

(c) A bypass (indicated by the thick dashed (d) Another bypass (indicated by thick dashed
lines) is found. This eliminates nodke lines) is found. This eliminates node

(e) Yet another bypass (indicated by the thick (f) The articulation points are obtained as the
dashed lines) is found. This eliminates nade remaining thick circles.

Figure 6.5: Execution of the articulation-points algorithm on a sample graph. In this sample graph,

nodea corresponds to the current goal node, and nameresponds to the empty clause. Details of
the algorithm are given in Section 6.4.
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(a) Nodes along the main path are numbered (b) A bypass is found. Thenaxrechablefor

(shown above each node) as they are found. Thenodesc andd are set to 6.
maxreachablattribute of each node (shown be-
low each node) is initialized to its node number.

(c) Another bypass is found. Theaxrechable (d) Yet another bypass is found. The
for nodesg andi are set to 3. maxrechabldor nodesh andi are set to 4.

(e) Sincemaxreachableof nodei is 4, which (f) Since maxreachablef noded is 6, which

refers to nodel, nodese and f are eliminated. refers to nodey, nodeb is eliminated. The re-
maining thick circles indicate the articulation
points.

Figure 6.6: Execution of the revised articulation-points algorithm on the sample graph shown in

Figure 6.5(a). Thick lines indicate the main path, thick dashed lines indicate bypasses, and thick
circles indicate the candidate nodes for articulation points. Details of the algorithm are given in

Section 6.4.
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6.5 Lemma-Induced Cuts

This section and the next describets Cuts are search optimization operations that allow a sub-
refutation attempt to be abandoned and to be replaced by a short alternate proof. A cut may be
invoked when certain conditions are met. This section deschmema-induced cutsvhich may

be invoked when complementary lemma literals are attached to goal nodes along the same branch.

When complementary lemma literals are attached to goal nodes along the same branch,
the lower goal node can be refuted with a short alternate proof. The proof consists of extending the
lower goal node with a tautologous clause that exactly contains the complement of the goal node
and the two complementary lemma literals. Because of the complementary lemma literals, goal
node creation is suppressed for the new clause. Hence, the refutation for the lower goal node is
completed.

The tautologous clause used to extend the goal node is not in the formula. (Recall from
Section 1.3 that we assumed that the input formula contains no tautologous clauses.) However, its
introduction is harmless. This is because its introduction into the set of input clauses cannot change
the set of satisfying truth assignments of the formula; in particular, it cannot change the satisfiability
of the formula. The introduction of tautologous clauses is essentially a form of the cut rule due to
Letz et al. [31]

While the introduction of tautologous clauses is not necessary to conclude that the lower
goal node can be refuted, its introduction is useful to compute the dependencies of the new lemma
literal that is derived as a result of the lemma-induced cut. However, it is impractical to add them to
the set of input clauses. The current implementation of Moglogoc, temporarily introduces the
clause for the purpose of computing the dependencies and then discards it immediately. Because of

its ephemeral nature, the tautologous clause is calledual clause

Example 6.10 This example illustrates the use of lemma-induced cut. Consider the situation shown
in Figure 6.7(a). Goal nodeq has just been refuted and its complemegi attached as a quasi-
persistent lemma to goal nodeg, which we assume, without loss of generality, is a descendent

of goal nodep, to which a lemma literatq is attached. The lemma-induced cut could then be
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(a) Goal nodenq has successfully been refuted (b) By extending goal node. with a virtual

and its complement is attached as a lemma lit- clause[-r¢,q,—q], goal node is immediately
eral to an ancestor goal nodg This causes refuted.

complementary lemma literals and —q to be

attached along the same branch.

Figure 6.7: An example of lemma-induced cut. Figure (a) shows a situation in which lemma-
induced cut may be invoked. The lemma-induced cut allows goal noaebe refuted. Figure (b)
shows the refutation. Details are given in Example 6.10.

invoked to refute goal node. by an alternate proof as follows. Extend subgralith a virtual
clause[—rc,q,—q] (Figure 6.7(b)). No goal nodes are created beneath the extension clause because
the presence of lemma literglsuppresses the creation of goal nedgand the presence of lemma
literal ~q suppresses the creation of goal nod€These are indicated ] beneath the extension

clause.) Thus, goal nodg s refuted.]

6.6 C-Reduction-Induced Cuts

This section describes-reduction-induced cutsA C-reduction-induced cut may be invoked when
pre-reduction (Section 6.1) causes a clause to become empty. Like lemma-induced cuts (Sec-
tion 6.5), C-reduction-induced cuts allow a subrefutation attempt in progress to be abandoned and
replaced by a short alternate proof.

As described in Section 6.;odoc performs pre-reduction when either a goal node is
added to the current set of ancestor goal nodes, or when a lemma literal is attached to a goal node.
When the pre-reduction causes a clause to become empty, C-reduction-induced cut may be invoked.

C-reduction-induced cut allows the lowest goal node that caused the clause to become empty, either
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(a) Case when the lowest dependency is an an-(b) Case when the lowest dependency is a
cestor 1 =r1). lemma @1 # r1).

Figure 6.8: Example of C-reduction-induced cut. Two cases are possible, each depending on what
the lowest dependency is. Details are given in Example 6.11.

directly or indirectly, to be refuted with a short alternate proof.

Example 6.11 This example illustrates the use of C-reduction-induced cuts. Consider the situation
where claus€ = [-ry,...,—ry| pre-reduces to an empty clause because of a new lemma titeral
(where 1< k < n). This means thaty, ..., r, are either ancestor goal nodes or lemma literals
attached to ancestor goal nodes. Without loss of generality, assunmg thahe lowest ancestor
goal node or lemma literal among, ..., r,, chosen to be an ancestor if possible. gebe the
ancestor goal node at the depthrof The C-reduction-induced cut could be invoked to refute goal
nodeq; by an alternate proof as follows. df = r;, meaning that; is an ancestor goal node, the
extension ofy; with clauseC refutes it immediately, as shown in Figure 6.8(a)qil# r1, we first
extend goal node; with a virtual clausg—qs, —ri,r1]; the creation of goal noder; is suppressed
because of the lemma litenal, and goal node; is immediately refuted by extension with claude

This is shown in Figure 6.8(b]]
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6.7 Propagation of Refutation During Cuts

This section describes how additional lemmas may be derived when a cut is invoked. This is
achieved by “propagating” refutations.

As described in Sections 6.5 and 6.6, when a cut is invoked, all subrefutation attempts for
goal nodes below the goal node that the cut operation has just refuted are abandoned. However, a
careful examination of the situation shows that some of the subrefutation attempts may have just
succeeded and hence it may be possible to derive some additional lemmas.

Whenever a cut is invoked, a lemma was derived immediately before it. This means that
a goal node was successfully refuted. If this was the last goal node that needed to be refuted for its
parent goal node to be refuted, then it means that the parent goal node was refuted too. Since itis
possible for the attachment point of the complement of the parent goal node to be higher than the
goal node that is refuted by the cut, it may be possible to obtain additional lemmas by deriving all

possible lemmas along the current goal node to the goal node refuted by the cut.

Example 6.12 This example illustrates the conditions under which goal nhodes along the path from
the current goal node to the goal node refuted by the cut could derive lemmas. Figure 6.9 shows a
portion of a PDT. Assume, for the sake of illustration, that the refutation attempts for goal nodes
are performed in left-to-right order. That is, all goal nodes to the left of the current branch have
successfully been refuted. Goal nodes along the current branch are labglegl bys, andt.

Consider the following situation. Goal notldnas just been refuted and Modoc has just
derived a lemma literaht. The pre-reduction using lemma literal invokes a cut and refutes goal
nodep.

Since goal nodeis refuted, so is goal node However, goal nodeis not refuted because
it still has one goal noda left to be refuted. Further, no goal nodes above goal moated below

goal nodep are refuted.]
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Figure 6.9: Propagation of refutation during a cut. When the successful refutation of goal node
causes a cut to refute goal noplegoal nodes can be turned into a lemma as well. Details are given
in Example 6.12.
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6.8 Pure Literals as Autarky

This section describes one way Modoc may exploit pure literals in the formula. The method is
related to the pure-literal rule of DPLL (Chapter 1).

Recall that the pure-literal rule of DPLL makes the pure literals true. The corresponding
operation in Modoc would be to add the pure literals to the current autarky as if refutation attempts

for them had just failed. Justification for this operation is given by the following lemma.

Lemma 6.1 Let x be a pure literal in formul& . Then,{x} is an autarky of . [J

Note that pure literals are already exploited to a certain degreedac. When a goal
node has no eligible extension clauses, the literal in the goal node is added to the current set of
autarky literals. This is because it implies that the goal node was a pure-literal. The operation
described in this section is not a brand new operation but is rather a supplementary operation to

fully exploit pure literals.

6.9 One-Layer Lookahead

This section describes a lookahead operation that is currently being experimentedduvith

When the search reaches a clause node, there are several child goal nodes that need to be
refuted. Normally, Modoc will order the goal nodes in some order and attempt refutation of each
goal node, until a refutation attempt fails for a goal node. However, with one-layer lookahead, the
refutation of a clause node takes place in two phases. During the first pifiatbe, goal nodes are
attempted to see if they can be refuted usinty pre-reduction and eager-lemma derivation (but no
PDT extension). Any successful refutation will result in a lemma being attached to a goal node no
lower than the parent of the clause node. The second phase attempts regular refutation from any
goal node that remains to be refuted.

Note that during the first phase, failure to refute only by pre-reduction and eager-lemma
derivation does not cause the goal node to be added to the current autarky. This is because the failure
does not mean that there is no refutation for the goal node but merely that it could not be refuted

using only pre-reduction and eager-lemma derivation.
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Figure 6.10: An example of how one-layer lookahead may help. Suppose that goa caieot

be refuted (indicated by a wiggly arrow leading to a large “X”) and that goal hazien be refuted

by pre-reduction and eager-lemma derivation (indicated by a short arrow leading)td=urther,
suppose, for the sake of illustration, that Modoc attempts refutation in a left-to-right order. Normal
Modoc will first attempt refutation of goal nodg and since it fails, it will then backtrack to goal
noder to try to extend the goal node with some other clause. In comparison, Modoc with one-layer
lookahead will first test all the goal nodes of whether they can be refuted using only pre-reduction
and eager-lemma derivation. In this example, it will find out that goal hochn be refuted by only
pre-reduction and eager-lemma derivation and will therefore attach lemma titetal some goal

node no lower than goal node Eventually, it will attempt refutation of goal nodewhich will fail,

and the search will backtrack to goal nadas before. However, the lemma literab is retained

and can be used in future refutation attempts.
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Example 6.13 This example illustrates a potential benefit arising from incorporating one-layer
lookahead in Modoc. Figure 6.10 shows a situation where Modoc has just extended goal node

with clause[—r, a,b]. Details are given in the captiofil

6.10 Experimental Results

This section assesses the performanceaioc by comparing it with other satisfiability testers
(Section 6.10.1), and also by turning on, or off, each feature of enhanced Modoc (Section 6.10.2).
Results were obtained by experiments on two types of formulas—planning formulas and random
formulas.

The majority of the planning formulas were generated using Satplan [28] and Medic [15].
(The checker-interchange formulas used in Table 6.2 were generated using a purpose-built script.)
For each problem (and in the case of Medic, each encoding), two formulas with different deadlines
were generated. One formula had the deadline set to the optimal plan length, making it satisfiable,
and another formula had the deadline set to one less than the optimal plan length, making it un-
satisfiable. After the formulas were generated, they were subjected to goal-sensitive simplification
(Section 5.2).

Random formulas have no clause to focus on, and thus, they are not a good class of
formulas to demonstrate goal-sensitive search. However, they are easy to generate as many formulas
as necessary with the given characteristics. Because of this, it is suitable, nonetheless, for use in an
experimental study of Modoc’s (and other satisfiability testers’) growth rate of search times.

The random formulas used in this section are random 3-CNF formulas (Definition 1.3).
They are generated using a probability model in which each non-redundant non-tautologous clause
of length three is equally probable. The ratio of the number of clauses to the number of variables
is set to 4.27. Experimental results suggest that this ratio generates the hardest random 3-CNF
formulas [30, 35].

Other satisfiability testers used in the experiments are summarized below.

walksat A stochastic model-search procedure. More specifically, it is a greedy hill-climbing

search algorithm with probabilistic “back-off” and periodic restart [39]. The procedure is
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Search Times of Modoc vs. Walksat
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Figure 6.11: Comparison of search times betwmetioc andwalksat. Formulas are planning
formulas generated by Medic and Satplan. All formulas are satisfiable. Times are CPU seconds on
an SGI with 150MHz R4400salksat times are average of 5 runs.

incomplete and thus cannot confidently determine unsatisfiability. (See page 2 for a brief

discussion on incomplete model-search procedures.)
dpll Animplementation of DPLL [14, 13].

c-A1 A complete model-search procedure based on DPLL. It incorporates heuristics to select split-

ting variables and a highly-optimized unit propagation [12].

2c1l A complete model-search procedure based on DPLL. It incorporates heuristics to select split-

ting variables and a reasoning capability on short clauses [48].

Since the search times @&1ksat may change from run to run, five runs were madesfotrksat

and the average search time is reported.

IThe algorithm is described as the Tableau algorithm in [12]. However, to avoid confusion with the proof procedure
with the same name, it will be referred to@sA in this dissertation.
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problem/ num num search time (seconds)

deadline of of | walksat | C-A 2¢l | modoc
vars | literals

logistics.a/11| 638 | 13,089 1| 3026 1 1

logistics.c/13 | 897 | 21,412 2 ?? 90 3

bw_large.c/14| 2,222 | 78,146 146 14 | 12855| 15439

bw_large.d/18| 4,714 | 205,559 1494 ?? ?? 58

(a) Search times on the satisfiable Satplan formulas.

problem/ num num search time (seconds)

deadline of of | walksat C-A 2c¢1 | modoc
vars| literals

logistics.a/10 | 541 | 10,598 — | 16019 2 3

logistics.c/12 787 | 18,244 — ??1 11154 1132

bw_large.c/13| 1,935| 66,547 — 47| 2769| 5389

bw_large.d/17| 4,275| 184,180 — ?? ?? ??

(b) Search times on the unsatisfiable Satplan formulas.

Table 6.1: Search times of various satisfiability testers on the hard planning formulas generated by
Satplan. Number of variables and literals are after simplification. Times are CPU seconds on an
SGIl with 150MHz R4400walksat times are average of 5 runs. ‘—’ indicates that the run was not

attempted; this is becausalksat cannot confidently determine unsatisfiability. ‘??’ indicates that
the run was terminated after 5 hours.

6.10.1 Comparison with Other Testers

Figure 6.11 comparesodoc search times against the average of fiedksat search times on

a large collection of planning formulas generated by Medic [15] and Satplan [28]. Formulas are

generated from problems such as Block-World Planning, Tower of Hanoi, Monkey and the Banana,
Flat Tire, and Fridge Fixing, and were also used by Ernst et al. [15] and by Kautz and Selman [28].

The deadlines were set to the optimal plan lengths, and thus, all the formulas are satisfiable. (No
unsatisfiable formulas were used becawuiseksat cannot confidently determine unsatisfiability.)

To avoid clutter, formulas that were solved in 0.1 seconds by both programs are not plotted. Plots in
the lower-right triangle represent formulas for whisbdoc was faster thamalksat on average.

Plots in the upper-left triangle represent formulas for whicdoc was slower thamalksat on

average. We observe theddoc was faster thamalksat on the majority of the formulas.
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num | dead-| num num search time (seconds)
of line of of | walksat C-A | 2c1 | modoc
checkers vars | literals
2 8| 105| 3,900 1.08| 0.09]| 1.90 0.02
3 15| 282 18,294 12564 | 22446| ?? 39
4 24| 597 | 55,934 ?7? ??| — | 12883

(a) Search times on the satisfiable checker-interchange formulas.

num | dead-| num num search time (seconds)
of line of of | walksat | C-A | 2cl | modoc
checkers vars | literals
2 7 90| 3,238 — | 0.16| 2.00 0.12
3 14| 261| 16,794 — | 9427 ?? 121
4 23| 570 53,252 — 7?2 — ??

(b) Search times on the unsatisfiable checker-interchange formulas.

Table 6.2: Search times of various satisfiability testers on the checker-interchange formulas. Num-
ber of variables and literals are after simplification. Times are CPU seconds on an SGI with 150MHz
R4400. walksat times are average of 5 runs. ‘—' indicates that the run was not attempted; for
walksat, this is because it cannot confidently determine unsatisfiability. ‘??’ indicates that the run

was terminated after 5 hours; fealksat, it means that none of the 5 runs found a solution in
5 hours.

Table 6.1 comparesodoc search times against search timeswvafiksat (average of
five runs),C-A, and2c1 on formulas generated by Satplan. The “logistics” formulas are derived
from transportation problems, and the “barge” formulas are derived from block-world planning
problems. The same formulas were also used by Kautz and Selman [28]. With the exception of
bw_large.c, we observe thabdoc is superior to other satisfiability testers. The reason for the poor
performance of bwarge.c will be discussed in Section 7.1.

Table 6.2 comparesodoc search times against the search timesaifksat (average of
five runs),C-A, and2cl on the checker-interchange formulas. The checker-interchange formulas
are planning formulas generated from a game based on the one-dimensional version of Chinese
Checkers. Figure 6.12 shows the aim of the checker-interchange problem for 4 checkers; it also
shows the possible first few moves. The problem is interesting in that it is believed to have only

one plan (by always starting with the black coin to break symmetry) regardless of the number of
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Figure 6.12: Checker-interchange problem for 4 checkers. The aim is to exchange all the black
coins on the left with all the white coins on the right. A black coin can only move right and a white
coin can only move left. At each step, a coin may either move or jump a coin to occupy the empty
space.

checkers. Againmodoc was able to outperform other satisfiability testers on both the satisfiable
formulas and the unsatisfiable formulas.

Figure 6.13 shows a plot of the search timedpf1, 2c1, andmodoc on four classes of
random formulas: rand050, rand071, rand100, and rand141. Each class consists of 200 formulas,
and the number refers to the number of variables. The number of clauses is set to be 4.27 times
the number of variables. That is, 214 clauses for rand050, 303 clauses for rand071, 427 clauses
for rand100, and 602 clauses for rand141. Experimental results show that this ratio generates the
hardest random 3-CNF formulas [30, 35]. Note that the vertical axis uses a log scale. Therefore,
the slope indicates the growth rate in the exponent. The plot shows that the growthnade ofs
approximately half-way betweetpll and2cl.

The original DPLL algorithm has been improved over the years by incorporating clever
schemes to choose the next splitting variable. One such scheme uses a scoring mechanism to denote
the desirability of a variable based on the clauses it appears in. A similar scheme was experimented
in modoc to choose the next goal node. The respective improvements are shown in Figure 6.14. The
amount of improvement in growth rate bydoc is much smaller than that bjpl1l. We believe
that this is because, in Modoc, the choice of goal nodes is already limited to a small number, i.e., to

the literals in the clause nodes, whereadpnl, all unassigned variables are possible choices.
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Comparison of Search Times on Random Formulas
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Figure 6.13: Comparison of average search times of various satisfiability testers on random 3-CNF
formulas. The formulas are generated at the clauses-to-variables ratio of 4.27, which is believed
to generate the hardest random 3-CNF formulas [30, 35]. Search times were obtained on a Sun
SparcStation 4/110.
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Figure 6.14: Comparison of improvements in average search times by using a scoring scheme. The
same formulas used in Figure 6.13 were used.
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formula sample search time (seconds) speedup)
class size without APA standardnodoc
ave. std.dev. ave. std.dev

rand100 all 200 1.74 1.12 1.26 0.88 1.38

sat 109 0.97 0.94 0.70 0.67 1.39

unsat 91 2.65 0.85 1.92 0.60 1.38

rand141 all 200 34.43 27.83] 21.63 17.46 1.59

sat 117 18.10 21.30, 11.30 13.28 1.60

unsat 83 57.45 1793 36.19 11.11 1.59

rand200 all 20 3398 2356 1722 1177 1.97

checker.3 sat 1 78.30 - 48.99 - 1.60

unsat 1| 223.65 -| 184.84 - 1.21

logistics.a sat 1 2.09 - 1.26 - 1.66

unsat 1 8.14 - 4.18 - 1.95

logistics.c  sat 1 5.07 - 6.43 - 0.79

unsat 1| 3404.30 -| 1494.94 - 2.28

Table 6.3: Change in search time by articulation-points analysis (APA).

6.10.2 Improvements by Individual Features

This section reports on experimental results obtained to assess the performance improvement made
to Modoc by means of enhancements described in this chapter. The results were obtained by run-
ning modoc with and without each feature on two sets of random formulas—rand100 and rand141.
Rand100 consists of 200 randomly generated 3-CNF formulas of 100 variables and 427 clauses.
Rand141 consists of 200 randomly generated 3-CNF formulas of 141 variables and 602 clauses.
When the speedup for rand141 was larger than that for rand100, a small collection of larger random
formulas, called rand200, was used to confirm whether or not this was a trend. Rand200 consists of
20 randomly generated 3-CNF formulas of 200 variables and 854 clauses. Further, to test whether
the general trend observed on the random formulas would follow on other classes of formulas, the
same experiment was repeated on three of the planning formulas used in Tables 6.1 and 6.2. Unless
specified otherwise, the following features were used by default—quasi-persistent lemmas, eager
lemmas, articulation-points analysis, lemma-induced cuts, C-reduction-induced cuts, and propaga-
tion of refutation during cuts. We call this configurationmefdoc the standardmodoc. Search times

were obtained on a Sun SparcStation 4/110.
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formula sample search time (seconds) speedup)
class size | without EL, APA standardnodoc
ave. std.dev ave. std.dev.

rand100 all 200 15.04 10.64 1.26 0.88| 11.94

sat 109 8.15 7.92 0.70 0.67| 11.64

unsat 91 23.28 6.99 1.92 0.60 12.13

rand141 all 200 349.16 282.15 21.63 17.46| 16.14

sat 117 178.99 21299 11.30 13.28 15.84

unsat 83 589.03 171.64 36.19 11.11] 16.28

rand200 all 20 38604 26469 1722 1177 22.42

checker.3 sat 1| 1860.36 -l 48.99 - 37.97

unsat 1| 3151.34 -| 184.84 - 17.05

logistics.a sat 1 44.17 - 1.26 - 35.06

unsat 1 53.53 - 4.18 - 12.81

logistics.c  sat 1 98.60 - 6.43 - 15.33

unsat 1| 25535.21 -| 1494.94 -l 17.08

Table 6.4: Change in search time by eager lemmas (EL) and articulation-points analysis (APA).

Table 6.3 shows the change in search timaafoc with and without articulation-points
analysis. It shows a moderate speedup, which appears to increase with the size of the formula.

Table 6.4 shows the change in search timaafoc with and without the eager lemma
strategy and articulation-points analysis. (Note that articulation-points analysis makes no sense
without eager lemmas. See Section 6.4 for details.) It shows a significant speedup, which appears
to increase with the size of the formula. The speedup due to the addition of eager lemma strategy
and articulation-points analysis was the largest among the features tested.

Table 6.5 shows the change in search timeaafoc with and without lemma-induced cuts.
With the exception of the unsatisfiable version of logistics.c, virtually no speedup was observed.
Table 6.6 shows the change in the number of extensions and of goal nodes from the same runs.
Again, virtually no change in numbers were observed.

Table 6.7 shows the change in search timeadfoc with and without C-reduction-induced
cuts. It shows a small speedup, which appears to increase with the size of the formula.

Table 6.8 shows the change in search timaafoc with and without propagating refu-
tation during cuts. Very small speedup was observed on rand100 but virtually none on rand141.

Table 6.9 shows the change in the number of extensions and of goal nodes from the same runs.
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formula sample search time (seconds) speedup)
class size without LIC standardnodoc
ave. std.dev. ave. std.dev

rand100 all 200 1.26 0.88 1.26 0.88 1.00

sat 109 0.71 0.68 0.70 0.67 1.01

unsat 91 1.93 0.60 1.92 0.60 1.01

rand141 all 200 21.71 1753 21.63 17.46 1.00

sat 117 11.35 13.33 11.30 13.28 1.00

unsat 83 36.32 1119 36.19 11.11 1.00

checker.3 sat 1 49.18 - 48.99 - 1.00

unsat 1| 186.74 -| 184.84 - 1.01

logistics.a sat 1 1.27 - 1.26 - 1.01

unsat 1 3.80 - 418 - 0.91

logistics.c  sat 1 6.47 - 6.43 - 1.01

unsat 1| 2943.52 -| 1494.94 - 1.97

Table 6.5: Change in search time by lemma-induced cuts (LIC).

formula sample| ave. num. of extensions ave. num. of goal nodes
class size | without | standard| ratio of | without | standard| ratio of
LIC modoc | change LIC modoc | change

rand100 all 200| 3,615 3,600 1.00 6,214 6,180 1.01
sat 109| 2,108 2,099 1.00 3,522 3,501 1.01

unsat 91 5,419 5,398 1.00 9,437 9,389 1.01

rand141 all 200 | 48,504| 48,233 1.01| 83,926| 83,330 1.01
sat 117 | 25,661| 25,522 1.01| 43,961| 43,657 1.01

unsat 83| 80,705| 80,248 1.01| 140,263| 139,255 1.01

Table 6.6: Change in the number of extensions and goal nodes by lemma-induced cuts (LIC). This
table confirms that the change in search times reported in Table 6.5 for random formulas is consistent
with other statistics.
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formula sample search time (seconds) speedup)
class size without RIC standardnodoc
ave. std.dev. ave. std.dev

rand100 all 200 1.53 1.08 1.26 0.88 1.21

sat 109 0.86 0.83 0.70 0.67 1.23

unsat 91 2.32 0.74 1.92 0.60 1.21

rand141 all 200 27.37 22.11) 21.63 17.46 1.27

sat 117 14.44 16.94/ 11.30 13.28 1.28

unsat 83 45.60 14.34) 36.19 11.11 1.26

rand200 all 20 2284 1573 1722 1177 1.33

checker.3 sat 1 74.53 - 48.99 - 1.52

unsat 1| 269.49 -| 184.84 - 1.46

logistics.a sat 1 1.26 - 1.26 - 1.00

unsat 1 6.46 - 4.18 - 1.55

logistics.c  sat 1 7.20 - 6.43 - 1.12

unsat 1| 3658.82 -| 1494.94 - 2.45

Table 6.7: Change in search time by C-reduction-induced cuts (RIC).

Virtually no change in numbers were observed.

Table 6.10 shows the change in search timeafoc with and without pure-literal pro-
cessing. With pure-literal processing, search took more time. Table 6.11 shows the change in the
number of extensions and of goal nodes from the same runs. A negligible amount of decrease in
numbers were observed. We conclude that the overhead to keep track of the number of occurrences

of literals (which is necessary to implement pure-literal processing) simply overwhelmed the small

benefit.

Table 6.12 shows the change in search timadafoc with and without one-layer looka-
head. It shows a very small speedup, which appears to increase with the size of the formula. How-

ever, with the exception of the unsatisfiable version of logistics.a, the same trend was not observed

on the planning formulas.
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formula sample search time (seconds) speedup)
class size without PoR standardnodoc
ave. std.dev. ave. std.dev

rand100 all 200 1.28 0.90 1.26 0.88 1.02

sat 109 0.72 0.69 0.70 0.67 1.03

unsat 91 1.95 0.61 1.92 0.60 1.02

rand141 all 200 21.61 17.44) 21.63 17.46 1.00

sat 117 11.29 13.26| 11.30 13.28 1.00

unsat 83 36.17 11.09 36.19 11.11 1.00

checker.3 sat 1 47.79 - 48.99 - 0.98

unsat 1| 180.85 -1 184.84 - 0.98

logistics.a sat 1 1.35 - 1.26 - 1.07

unsat 1 4.45 - 4.18 - 1.06

logistics.c  sat 1 6.74 - 6.43 - 1.05

unsat 1| 1604.00 -| 1494.94 - 1.07

Table 6.8: Change in search time by propagation of refutation (PoR).

formula sample| ave. num. of extensions ave. num. of goal nodes
class size | without | standard| ratio of | without | standard| ratio of
PoR| modoc | change PoR| modoc | change

rand100 all 200| 3,601 3,600 1.00 6,181 6,180 1.00
sat 109 | 2,099 2,099 1.00 3,502 3,501 1.00

unsat 91 5,399 5,398 1.00 9,390 9,389 1.00

rand141 all 200 | 48,240| 48,233 1.00| 83,346| 83,330 1.00
sat 117 | 25,528| 25,522 1.00| 43,668| 43,657 1.00

unsat 83| 80,256| 80,248 1.00 | 139,277| 139,255 1.00

Table 6.9: Change in the number of extensions and goal nodes by propagation of refutation (PoR).
This table confirms that the change in search times reported in Table 6.8 for random formulas is
consistent with other statistics.



70

formula sample search time (seconds) speedup)
class size| standardnodoc with PLP
ave. std.dev. ave. std.dev
rand100 all 200 1.26 0.88 1.39 0.97 0.91
sat 109 0.70 0.67 0.78 0.74 0.90
unsat 91 1.92 0.60 2.12 0.66 0.91
rand141 all 200 21.63 17.46| 23.45 18.93 0.92
sat 117 11.30 13.28) 12.25 14.40 0.92
unsat 83 36.19 11.11] 39.23 12.04 0.92
checker.3 sat 1 48.99 - 64.22 - 0.76
unsat 1| 184.84 -| 244.87 - 0.75
logistics.a sat 1 1.26 - 1.40 - 0.90
unsat 1 418 - 5.37 - 0.78
logistics.c  sat 1 6.43 - 21.56 - 0.30
unsat 1| 1494.94 -| 2006.90 - 0.74

Table 6.10: Change in search time by pure-literals processing (PLP).

formula sample| ave. num. of extensions ave. num. of goal nodes
class size | standard| with | ratio of | standard with | ratio of
modoc PLP | change| modoc PLP | change

rand100 all 200 3,600| 3,559 1.01 6,180 6,171 1.00
sat 109 2,099| 2,052 1.02 3,501 3,487 1.00

unsat 91 5,398| 5,365 1.01 9,389 9,386 1.00

rand141 all 200 | 48,233| 47,965 1.01| 83,330 83,308 1.00
sat 117 | 25,522 25,322 1.01| 43,657| 43,626 1.00

unsat 83| 80,248| 79,883 1.00 | 139,255| 139,246 1.00

Table 6.11: Change in the number of extensions and goal nodes by pure-literal processing (PLP).
This table shows that the cost of extra bookkeeping to implement PLP overwhelmed the slight
reduction in the number of extensions and goal nodes.
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formula sample search time (seconds) speedup
class size| standardnodoc with LA
ave. std.dev. ave. std.dev
rand100 all 200 1.26 0.88 1.22 0.85 1.03
sat 109 0.70 0.67 0.68 0.65 1.03
unsat 91 1.92 0.60 1.87 0.58 1.03
rand141 all 200 21.63 17.46| 19.99 16.09 1.08
sat 117 11.30 13.28 10.47 12.27 1.08
unsat 83 36.19 11.11 3341 10.19 1.08
rand200 all 20 1722 1177 1520 1033 1.13
checker.3 sat 1 48.99 - 85.64 - 0.57
unsat 1| 184.84 -| 232.38 - 0.80
logistics.a  sat 1 1.26 - 1.87 - 0.67
unsat 1 4.18 - 2.63 - 1.59
logistics.c  sat 1 6.43 - 7.87 - 0.82
unsat 1| 1494.94 -| 2222.25 - 0.67

Table 6.12: Change in search time by one-layer lookahead (LA).
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Figure 6.15: Comparison afodoc speedup on the random formulas by various features. Abbrevi-
ations are explained in Table 6.13.

6.11 Summary

Figure 6.15 summarizes the speedups observegtyc on the random formulas reported in Sec-

tion 6.10.2. Clearly, the most improvement was made by eager-lemma strategy and articulation-
points analysis. (Recall that articulation-points analysis makes no sense without eager lemmas.)
This was followed by articulation-points analysis. For these two, the speedup appears to increase
with the size of the formula. Figure 6.16 compares the speedup achievable by eager lemmas and
articulation-points analysis with other features, namely, lemma-induced cuts, C-reduction-induced
cuts, and propagation of refutation during cuts combined. It shows that the speedup achievable by
use of other features was negligible compared to the speedup achieved by eager-lemma strategy and

articulation-points analysis.
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abbrev.| description

EL eager lemmas (Section 6.3)
APA articulation-points analysis (Section 6.4)
RIC C-reduction-induced cuts (Section 6.6
PoR propagation of refutation (Section 6.7)

LIC lemma-induced cuts (Section 6.5)
PLP pure-literal processing (Section 6.8)
LA one-layer lookahead (Section 6.9)

Table 6.13: Abbreviations used in Figures 6.15 and 6.16.

120+
100+
monkey2/8
a monkey2/9
S 80t
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40
20
1k [ Y //

EL+APA APA others standard

Figure 6.16: Comparison abdoc speedup on two planning formulas. Abbreviations are explained
in Table 6.13. “others” means lemma-induced cuts, C-reduction-induced cuts, and propagation of
refutation during cuts combined.
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Chapter 7

Parallel Modoc

This chapter describd2arallel Modoc Parallel Modoc is a multi-agent search procedure that runs
(enhanced) Modoc as search agents. Each agent executes Modoc using a different theorem clause as
the top clause. If an agent finds a new lemma or a new autarky, it communicates the new lemma or
the new autarky to other agents. It is expected that by doing so, other agents may be able to benefit
from the lemma and the autarky that it did not derive on its own.

As a parallel satisfiability tester, Parallel Modoc differs from many of the other parallel
satisfiability testers reported in the literature. In previous parallel satisfiability testers [41, 49, 6],
each process would work independently; communication is used merely to balance the work load.
The main use of multiple processing units in these algorithms is to merely increase throughput,
i.e., to examine more search nodes in a unit time. However, in Parallel Modoc, there is an equal
emphasis orooperationamong the multiple processing units (i.e., the agents).

The idea of cooperative search has been tested by others [10, 9, 22]. There, hints that
maylead to a solution are communicated. That is, there is no guarantee that a hint will be globally
applicable. However, Parallel Modoc is different in this regard. It only communicates information
that is globally applicable.

Parallel Modoc isnot a parallelization of the Modoc algorithm but a parallel execution
scheme to run multiple cooperating agents, each running the Modoc algorithm.

This chapter consists of several sections. Section 7.1 is independent from the rest of the
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theorem| search
clause num time

3 911
7 4
8 24
11 745

Table 7.1: Search times abdoc on a block-world planning formula (hwarge.c for deadline 14)

using different theorem clauses as the top clause. Times are CPU seconds on an SGI 150MHz
R4400. The formula has 15 theorem clauses. Theorem clauses not listed exceeded the one-hour
time limit.

chapter and discusses the author’s experience with Modoc, which led to the development of Parallel
Modoc. An initial difficulty in putting together Parallel Modoc was the possibility of conflicting
autarkies (Definition 2.3). Section 7.2 describes a number of properties regarding multiple autarkies,
and describes two algorithms, one to combine two arbitrary autarkies, and another, an optimization
of the first algorithm. Section 7.3 describes some aspects of the implementation of Parallel Modoc
(which we denote bpmodoc), particularly about the mechanism used to communicate autarkies and
lemmas. Because the number of theorem clauses is dictated by the formula, this effectively limits
the degree of parallel search. Section 7.4 describes two ways to increase the number of clauses that

are suitable for use as the top clause. Section 7.5 reports experimental results.

7.1 Motivation

This section discusses the author’s experience with Modoc that led to the design and development
of Parallel Modoc. In patrticular, it discusses the extreme skewness of the distribution of Modoc
search times observed using different theorem clauses as the top clause.

Goal-sensitive search (see Section 2.3) has generally been a success for Modoc. However,
there remains a problem of which theorem clause to try as the first top clause when there are multiple
theorem clauses. It is quite likely that many of the theorem clauses would lead Modoc to determine
the satisfiability of the formula. However, the author's experience using Modoc suggests that the
search times are extremely skewed depending on which theorem clause was chosen as the top clause.

An implication of this is that starting from a “bad” top clause could make the formula appear to be
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fmla num goal nodes

num ave| std.dev.] min|[ max| max/min
1| 2,694 2,549 175| 9,729 55.6
21 10,804 2,553| 4,813| 16,042 34
3| 4,787 3,103 737 12,118 16.5
4| 8,547 1,719| 5,599 | 13,099 2.4
5| 3,227 2,376 104 | 8,410 80.9
6| 3,166 2,740 140 | 10,966 78.4
71 4,680 4,069 711 17,880 251.9
8| 4,766 2,860| 888 10,640 12.0
9] 9,919 2,079| 4,669 | 14,531 3.2
10| 1,707 1,588 186 | 6,144 33.1

Table 7.2: Number of goal nodes examinednadoc on random formulas using different clauses

as the top clause. Formulas contain 100 variables and 427 clauses. For each formula, 1/10th of the
clauses were sampled and used as the top clause. (A separate study shows an extremely high linear
correlation & 0.99) between search time and the number of goal nodes examined for this class of
formulas.)

too difficult to solve in practice.

Table 7.1 shows howodoc search times vary on one planning formula. It shows that
while modoc was not able to determine the satisfiability of the formula in one hour using many of
the theorem clauses as the top clause, it was able to do so in an amazing four seconds using the
seventh theorem clause. This means that there is at least a factor of 900 between the longest and the
shortest search times for this formula. (A separate study shows that rumsdieg using the first
theorem clause as the top clause took 15439 seconds. This means that the factor is at least 3800.)
By default,modoc uses the first theorem clause as the top clause.

The skewness of search times does not appear to be a behavior specific to structured
formulas. Random formulas, considered to have no structure, exhibit such behaviors, albeit in a
smaller magnitude, as well. Tables 7.2 and 7.3 show the distribution of the number of goal nodes
examined bymodoc using different clauses as the top clause on random formulas. Because all
clauses are equally eligible as the top clause in random formulas, only one tenth of the clauses were
sampled and used as the top clause. Further, because some of the runs were reported to have run in
0.00 seconds, we report the number of goal nodes examined instead. A separate study shows that

the search time and the number of goal nodes examined have an extremely high linear correlation
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fmla num goal nodes

num ave| std.dev.] min | max | max/min
1| 26,319| 46,394 120 | 240,244 2002.1
2| 115,692| 21,737| 76,361 | 161,692 2.2
3| 46,131| 35,628 214 | 125,072 584.5
4| 132,626| 24,926\ 79,797| 177,924 2.3
5| 11,762| 16,161 139 | 63,928 460.0
6| 47,057 42,747 1,059| 173,864 164.2
7| 85,690 19,480| 48,488| 138,229 2.9
8| 46,321| 52,336 306 | 184,504 603.0
9| 64,340| 50,052| 4,993| 250,536 50.2
10| 43,404| 37,167 1,095| 149,284 136.4

Table 7.3: Number of goal hodes examinednadoc on random formulas using different clauses

as the top clause. Formulas contain 141 variables and 602 clauses. For each formula, 1/10th of the
clauses were sampled and used as the top clause. (A separate study shows an extremely high linear
correlation & 0.99) between search time and the number of goal nodes examined for this class of
formulas.)

(> 0.99). The tables show that the factor between the most and the least number of goal nodes
examined ranged from 2.4 to 251.9 on the ten formulas with 100 variables and 427 clauses, and
from 2.2 to 2002.1 on the ten formulas with 141 variables and 602 clauses. It appears that the range
of factors widens with the increase in the size of the formula.

Because of the extreme skewness of Modoc search times depending on the choice of the
top clause, which could make a formula appear to be too difficult to solve in practice, for Modoc
to be a practical solver, it is important that Modoc be able to choose a “good” top clause and not a
“bad” top clause. At this time, we have no means to correctly distinguish good top clauses from bad
top clauses, and it is doubtful that we would some day be able to correctly do so without actually
solving the formula. Not knowing which ones are “good” and which ones are “bad”, one obvious
solution to this would be to simply run as many Modoc processes as there are theorem clauses,
giving each process a different theorem clause. This was the beginning of Parallel Modoc. However,
as a research project, the author was interested in knowing whether it is possible to improve the

performance beyond a simple parallel execution.
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7.2 Multiple Autarkies

This section first describes properties found regarding multiple autarkies and then describes two
algorithms. The first algorithm combines two arbitrary autarkies to form another autarky that is
no smaller than the two original autarkies, and the second algorithm is an optimization of the first
algorithm which allows only the difference from the last autarky found to be transmitted.

In general, dealing with multiple autarkies is not straightforward. This is because a for-
mula may have conflicting autarkies (Definition 2.3). Although a single Modoc cannot derive con-
flicting autarkies by itself, when multiple agents are executing Modoc and making multiple searches
at the same time, it is possible for the multi-agent search procedure to derive conflicting autarkies.
Without a means to combine them, it would require each agent to store multiple autarkies sepa-
rately, which may quickly become a bookkeeping nightmare. Theorem 7.1 shows that there is a
simple way to combine any two autarkies to form a new autarky that satisfies exactly the same set
of clauses satisfied by either of the two given autarkies.

Before we present the theorem, and hence the algorithm, we introduce a new operator

over the set of partial truth assignments.

Definition 7.1 Let A; andA; be patrtial truth assignments. Then, we defae~ A, as
Al Ay =AU (Az—A_l)

whereA; = {—x|x € Ar}. We will say thatA; is givenpreferenceoverA; in resolving conflicting

assignments]

Example 7.1 This example illustrates the use of the operator introduced in Definition 7.1.

Let two partial truth assignmengs andA, be as follows:

At = {ug,...,Un,Wa,...,Wi};

A = {Vl,.. .y Vn, W1, .. .,—|Wk}.

That is, only the variables ifwy, ..., wy} have different polarities id; andA;. (Note that some of

theu;s may bev;s and vice versa.) Then,

ALnA = {ula'"7um7V17"'7Vn7W17"'7Wk}7
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Ap AL = {U]_,...,Um,Vl,...,Vn,—|W1,...,—|Wk}.

Note that, in genera(A1 ~ Ap) # (Ax N Ag). Also, whileA; C (A~ Ap), itis generally
the case thab, Z (A1 ~ Ap).

Theorem 7.1 Let two autarkies of a CNF formulla be as follows:

At = {ug,...,Un,Wa,...,Wi};

A = {Vl,.. .y Vn, W1, .. .,—|Wk}.

That is, only the variables ifws,...,wy} have different polarities id; andA;. (Note that some of

theu;s may bevjs and vice versa.) Then, the following statements are true:
1. BothA; ~ Ay andA, ~ A are autarkies ofF .

2. BothA; ~ Az andA, A satisfy exactly the same set of clauses as the set of clauses satisfied

by eitherA; or As.
Proof: We only prove forA; .~ Ax. The other case can be shown to be true by symmetry.

1. Itis sufficient to show that any clause that contatisor —v; or —w; for somei also contains

a literal that is inA;  Ao.

Let C be a clause that containrsy; for somei. SinceA; is an autarky that containg;, A;
satisfiesC. This means that there is some litexah A; that is also irC. SinceA; n Acis a
superset o1, x must also be i ~ Ay, A similar argument can be made for a clause that

contains—u; for somei.

Let C be a clause that contairs/; for somei. SinceA; is an autarky that containg, A,
satisfie€C. This means that there is some litexah A, that is also irC. There are two cases
to consider: (1xis v; for somej, and (2)x is —~w; for somej. In the first case, we are done

asv;j is also inA; ~ A,. The second case reduces to a case in the previous paragraph.
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2. It is sufficient to show that set containments hold both ways between the sets of clauses

satisfied by the autarkies.

Let C be a clause that is satisfied By .~ A,. This means that there is some litexaih C
that is also iPA; .~ Ax. There are three cases to consider:xig u; for somei, (2) x is v; for
somei, and (3)x is w; for somei. In the first and third caseg,is also inA;, and thusC is

satisfied byA;. In the second casg,is also inAy, and thus(C is satisfied byA,.

Let C be a clause that is satisfied By. This means that there is some literah C that is
also inA;. SinceA; ~ Ay is a superset 0f;, x must also be i\ ~ Ay. Thus,C is satisfied

by Al 2 A2.

Let C be a clause that is satisfied By. This means that there is some literah C that is
also inA,. There are two cases to consider: Xi3 v; for somei, and (2)x is —w; for somei.
In the first casex is also inA; v Ay, and thus(C is satisfied byd; « A;. In the second case,

sinceA; A is an autarky that containg, C is satisfied byd; ~ As.

The use of autarkies in Modoc is to eliminate certain clauses whose use in the PDT ex-
tension operation cannot lead the search to a successful subrefutation. In this respect, Theorem 7.1

has the following implication.

Corollary 7.1 For the purpose of autarky pruning, the algorithm described in Theorem 7.1 does not

lose any pruning informatiori]

As a practical concern, particularly in a distributed computing environment where com-
munication is made over a (relatively slow) computer network, transmitting new autarkies as they
are found may be costly, as they tend to be large in practice. Theorem 7.2 shows that it is sufficient

to transmit only the new autarky literals found since the last transmission.

Theorem 7.2 Let A;, Ay, andA3 be autarkies for a formula such that C As. Then,

1. (Al N Az) f\A3 = (Al f\Az) N (A3—A2),
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2. A3 (A Ap) = (As—Ag) (A Ay).

Proof: We only prove 1. The same approach could be used to prove 2.

Let A7, Ao, andAgz be as follows:

At = {ug,...,Un,Wa,...,W};
A = {Vl,...,Vn/,—|W1,...,ﬂWkr};
Az = {V]_,...,Vn/,...,Vn,—|W1,...,—|Wkr,...,—|Wk}.

That is, only the variables ifws,...,wg} have different polarities id; andAs. (Note that some of

theu;s may bev;s and vice versa.) Then,

(Al f\Az) ANA3 = ({Ul,.. -y Um, W1, ... ,Wk} W {Vl,. wey Vi, Wy, . ..,ﬂWkr})
2 {V]_,. .y Vn, W1, . ..,—|Wk}
= {ula'"7um7V17"'7Vn’7W17"'7Wk} A {Vla"'avna_'wla"'a_'wk}

= {U,...,Un, V1., Vn, Wi, ..., Wk},

(AL AA) A (As—A2) = ({u,.. UmyWa, .o, Wi Ve, oo Vi, mWY, . — Wi )
A (Ve Vi =W Wi — { Ve Vi, W, L W )
= {Up,...,Un, V1, oy Viy, Wi, ..., Wi}
AV 1,y Vi Wit 1, - - - Wi}

= {ula"'7um7V17'"7Vn7W17"'7Wk}'

O

Remark 7.1 It should be noted that when only the difference is transmitted between two agents, as
described in Theorem 7.2, the same agent must always be given preference in resolving conflicting

assignments. A counter-example can be constructed if this is not followed. See Example 7.2.

Example 7.2 This example illustrates that, between two agents, if the same agent is not given pref-
erence in resolving conflicting assignments, it is possible to end up with a partial truth assignment

that is not an autarky.
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Let the formulaF be{[X], [y, V], [Z, [u], [W], [t]}. Suppose there are two ageatsanday,
and that while agerd finds autarkyA; = {x, -y, u,v,w}, agenta; finds autarkyA; = {x,y,z} and
then later finds autarkgs = {x,y,z,u,-V,t}.

Now, consider the following sequence of autarky combining:

1. CombineA; andA,, giving preference to agent to resolve conflicting assignments. LAb

denote the resulting partial truth assignment.

2. CombineAsz — Ay and Ay, giving preference to agent, to resolve conflicting assignments.

Let Az1» denote the resulting partial truth assignment.

Then,

Ao = AAn A
= {x-yuvwh{xyz
= {X Y,z u,v,w},
Asiz = (As—Az) nAp
= {xyzu-vt}—{xyz})
AR ATRVA
= {u,-vt} ~{X-y,zu,v,w}

= {Xa Y, Z U, _|V,V\/,t}.

The partial truth assignmeng; 2 is not an autarky because clauge/] contains a false literal but it

does not contain a true literdl]

7.3 Implementation

This section describes some aspects of the current implementation of Parallel Modoc. The imple-
mentation will hereinafter be referred tomsodoc. Section 7.3.1 describes the “blackboard” that is

used by the Modoc agents to communicate lemmas and autarkies that are found during their search.
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blackboard
read
/ ]
write

info

Figure 7.1: A blackboard is used to communicate new autarkies and lemmas between agents in
pmodoc.

Section 7.3.2 discusses how the implementation dealsowitditionalautarkies (Section 2.3). Sec-
tions 7.3.3 and 7.3.4 describe how lemmas and autarkies are communicated among the agents using

the blackboard, respectively

7.3.1 Blackboard

The current implementation uses a “blackboard” to communicate between different agents. As
shown in Figure 7.1, a blackboard is a shared resource to which agents may write new information
and from which agents may obtain new information. phivdoc, it is implemented as System V
shared memory segments. When a Modoc agent finds a new autarky or a new lemma, it writes the
new autarky or the new lemma to the blackboard. Other agents may, at their convenience, obtain
the new autarky or the new lemma from the blackboard and incorporate it into their collection of
autarkies and lemmas.

At this time, only the autarkies and lemmas that are attached to the veamacommuni-
cated. Such autarkies and lemmas are catipelevelautarkies andop-levellemmas, respectively.
Top-level autarkies and lemmas have no “premise” under which they hold true (i.e., treways
true), thus allowing immediate use by other agents.

The blackboard is set up so that information written to the blackboard is never retracted
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or revised. While this would not pose any problem for lemmas, it may for autarkies because of
conflicting autarkies. Irpmodoc, this is solved by giving the blackboard preference over all the
agents. This also satisfies the condition stipulated in Remark 7.1, which is necessary to use the

algorithm described in Theorem 7.2.

7.3.2 Dealing with Conditional Autarky

Section 7.2 discussed the possibility of conflicting autarkies in Parallel Modoc and presented a solu-
tion as Theorem 7.1. The theorem described an algorithm to combinertganditionalautarkies.
However, in practice, when a new unconditional autarky is communicated to an agent, it is very
likely for the agent to be dealing with@nditionalautarky, that is, an “autarky” that is an autarky

for the formula resulting from strengthening the input formula with the current set of ancestor goal
nodes. Thus, it is further necessary to devise a mechanism to combine an unconditional autarky
with a possibly conditional autarky.

Two solutions are possible, each corresponding to which of the two autarkies gets pref-
erence. The current implementation of Parallel Modoc rejects the idea of giving preference to the
conditional autarky, which is the local autarky, for the following reason.Agaedenote the uncon-
ditional autarky that is being communicated to the agent, &ndenote the possibly conditional
autarky that is the current autarky being dealt with by the agent. Suppose there is & itheakx
is in Ay, and—xis in A.. If we were to give preference #. overA,, thenx would be discarded in
favor of —x. Let g denote the goal node to which the autarky literalis attached within the agent.

If the refutation of goal nodg succeeds, then all autarky literals attached to this goal node and any
descendent goal nodes will be discarded. This would mean that the agent woul&k lfseen its
current autarky. By then, thethat the agent discarded in favor ok is long gone. However, if

we were to give preference g, overA., then none of this could happen. Because of thisdoc

gives preference to the unconditional autarky over the possibly conditional autarky. This, however,
requires the Modoc agent to possibly revise its current autarky and hence partially back out from its

current search. Further details are given in Section 7.3.4.
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blackboard

write

(a) A Modoc agent finds a new lemmand writes it to the blackboard.

blackboard

read

X Y

(b) A different Modoc agent incorporates the new lemiiato its collec-
tion of lemmas.

Figure 7.2: Communicating lemmaspmodoc.
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7.3.3 Communicating Lemmas

Figure 7.2 shows how an agent may communicate a new top-level lemma to other agentiit

Note that a top-level lemma consists only of a single literal (as it has no “premise”). When an agent
derives a new top-level lemmait writes x to the blackboard (Figure 7.2(a)). Other agents, at their
convenience, will incorporate into their collection of top-level lemmas (Figure 7.2(b)). The new
lemma could then be used as if it had been derived locally by the agent. Further, if the agent is
currently attempting a refutation of a goal node labeled withthe search could be backed up to

the parent clause node of the goal node, as the goal node is now obviously refutable.

7.3.4 Communicating Autarkies

Figure 7.3 shows how an agent may communicate a new top-level autarky to other agentoit

When an agent finds a new top-level autarky, it combines it with the autarky already in the black-

board (Figure 7.3(a)). Because it is possible for the two autarkies to be conflicting autarkies (Def-
inition 2.3), the algorithm described in Theorem 7.1 is used to combine the new autarky with the

autarky already in the blackboard. The preference is given to the autarky already in the blackboard.
To avoid transmitting the whole autarky every time a new autarky is found, the algorithm described

in Theorem 7.2 is used. Since the autarky already in the blackboard is given preference in resolving
conflicting assignments, the condition stipulated in Remark 7.1 is also satisfied.

Other Modoc agents, at their convenience, will incorporate the new autarky literals by
possibly revising their current autarky (Figure 7.3(b)). The enlarged autarky could then be used as
if it had been derived locally by the agent. Further, if the agent is currently attempting a refutation
that has performed an extension with a clause now satisfied by the enlarged autarky, the refutation
attempt can be backed up to the parent of the highest such clause, as this subrefutation cannot

succeed.
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blackboard

write

(a) A Modoc agent finds a new autarky. It writes to the blackboard the new

autarky literals that do not conflict with the autarky in the blackboard. The
agent must revise its autarky if there is a conflict.

blackboard

read

AA -
AA

«©)

revise

(b) A different Modoc agent incorporates the new autarky literals by pos-
sibly revising its autarky.

Figure 7.3: Communicating autarkiespmodoc.
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7.4 Increasing the Number of Goal Clauses

A problem with the current design of Parallel Modoc is that the number of theorem clauses in
the formula limits the maximum number of Modoc agents Parallel Modoc can utilize. This is
unfortunate because it would mean that the degree of parallel search will be dictated by the formula.

This section introduces the notion gbal clausesas the clauses that are suitable for use
as a top clause. So far, the set of goal clauses and the set of theorem clauses have been identical.
The idea that will be presented in this section is to construct a set of goal clauses whose number will
likely be greater than the number of theorem clauses, to allow a higher degree of parallel search.

To investigate the potential improvement by increasing the number of goal clauses, two
simple methods were considered. Both methods use resolution (Definition 1.12). The first method,
called clause exhaustioifCE), generates all possible resolvents involving the theorem clauses,
deletes the theorem clauses, and adds the resolvents as the goal clauses. The second method, called
variable exhaustiorfVE), generates all possible resolvents over the variables used in the theorem
clauses, deletes all the clauses that were used in resolution, adds the resolvents, and makes the re-
solvents that were derived from a theorem clause the goal clauses. Example 7.3 illustrates the two

methods.

Example 7.3 This example illustrates how clause exhaustion and variable exhaustion may allow
construction of a set of goal clauses whose number is likely to be greater than the number of theorem

clauses. Consider the formula

{[a’ b]’ [a,—|C,—|f], [_'a’ b’ C]’ [_'a’ -G, ﬁe]v [b’ d]’ [ﬁbv C]’ [_'b’ d]v [ea f]}a

where the only theorem clause[#&b] (shown above with an underline).
The clause-exhaustion method will first derive all the resolvents involving the theorem
clausela, b]. They are
[a,cl,[a,d],[b,c],[b,—C,—€].
The new formula would then be obtained by removing the theorem clausefrom the formula

and adding the resolvents as the goal clauses, as

{[a,c],[a,d],[a,—c,—f],[-ab,c],[~a —~c,—€],[b,c],[b,—c,—€,[b,d],[-b,c]|,[-b,d],[e f]}.
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The variable-exhaustion method will first derive all the resolvents over the variables that

appear in the theorem clause, in this casandb. They are

[,

O,

,[a,d],[—-a,c],[-a,c,d],[b,c,[b,c,—c,~f],[b,—c,—e€],[c,d],[-c,—e ~f],[d].

Of the above clauses, the four underlined clauses were derived from the theorem clause. The new
formula is then obtained by removing all the clauses that contain eithiedo from the formula, and

adding the resolvents.

{la,c],[a,d],[a,c],[~a,c,d],[b,c],[b,c,—-c,—~f],[b,~c,—~€,[c,d],[-c,—e —f],[d],[e f]}

The resolvents that were derived from the theorem clause are used as the goal clauses (shown un-

derlined above)[

Initial experiments suggest that many of the resolvents are either tautologous (page 5) or
subsumed (Definition 1.11) by other clauses in the formula. Thus, before running Parallel Modoc,
formulas generated by both methods were subjected to the removal of tautologous clauses and

limited subsumption.

7.5 Experimental Results

This section compares the performanceeédoc against other satisfiability testers. Results were
obtained by experiments on various planning formulas, circuit-diagnosis formulas, pigeon-hole for-
mulas, and random formulas. The origin of the planning formulas was described in Section 6.10.
Other satisfiability testers used in the experimentswafkksat, 2c1l, andmodoc. Bothwalksat
and2c1 were briefly described in Section 6.10.

In summary, the results show thatodoc is able to improvemodoc via simultaneous
execution of multiple searches, sometimes aided by cooperation among the Modoc agents. How-
ever, for simple formulas, the overhead of parallel execution tends to dominate the search cost.
Improvement due to communicating autarkies and lemmas varies from formula to formula.

All experiments in this section were performed on an SGI with four 150MHz R4400

processors. Each Modoc agent was executed as a separate Unix process.
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In reporting search times fgmodoc, depending on the purpose, either the total elapsed
time and/or the elapsed time per agent were computed and reported. The former allows us to com-
parepmodoc to other satisfiability testers with regards to its use of computing resource. The latter
allows us to estimate the potential wiodoc on a parallel computer with as many CPUs as there

are goal clauses.

7.5.1 Improvements by Parallel Search and Communicating Information
Planning Formulas

Table 7.4 shows the search times on hard planning formulas generated by Medic. (Medic may
generate formulas in a number of different encodings. The encoding has been included in the tables
to help identify the formula. This dissertation does not discuss encoding issues; explanation of these
encodings may be found elsewhere [15].) The problems were selected based on an earlier study in
which the corresponding satisfiable formulas causgtbc to time out after 600 seconds. (Because

of this selection criteria, the search timesmofioc in this table are not a fair representation of its
capabilities.)

In many cases, the speedup fayodoc was far greater than the number of agents. For-
mulas that could not be solved in one hour using other satisfiability testers were often solved in the
order of minutes, and in some cases, in seconds. This showsridddc benefits greatly from the
parallel searches and not simply from the increase in the number of processors.

Communicating autarkies did not help, in the sense that when an autarky was found, it was
actually a satisfying truth assignment, and thus, no further search was necessary. Communication
of lemmas occurred on all the formulas, but no correlation appears to exist between the number
of lemmas communicated (nhot shown) and the amount of improvement in search time. Actually,
this was expected. A derivation of a lemma only impligsoéentialto save time, not a guarantee.
Unless a goal node labeled with the complement of the lemma literal is created, the lemma is of no
value at all. In fact, a small overhead to derive and record the lemma must be incurred at the time
of derivation, making lemma strategies costly if the lemmas are never (or rarely) used. For each

problem, the unsatisfiable formula generally had more lemmas communicated than the satisfiable
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problem/ | #TC| en- | num| num search time (seconds)
deadline cod-| of of | walksat | 2c1 | modoc pmodoc
ing | vars| literals no comm| comm
big-bw1/11 6| ccse| 980 77,629 ? ? ? 2 ?
ecse| 798| 14,090 5| 28 951| 16 10| 16 10
fridge2/13 2 | cbse| 180 10,485 ? ? ?| 25 25| 24 24
ccse| 346/ 10,370 ? ? ?| 78 78 78 78
crse| 310| 9,880 774 ? ?|582 582 581 581
hanoi3/7 3| cbse| 158| 25,468 ?1244| 618 98 98| 70 70
monkey2/9 2 | cbse| 250 37,696 ?| 18 ? ? ?
cfst | 331| 14,465 ?| 686 974909 909| 387 387
crse| 601 48,757 ? ? ? ? ?
tire2/14 6| ccse| 677| 41,343 ? ?| 3375|164 110, 83 55
cfst | 623| 34,944 ? ? ? 2 ?
crse| 628/ 40,002 ? ? ? ? 1281 854
efst | 512| 19,309 1917| 478 ? 3 2 3 2

(a) Search times on the satisfiable hard planning formulas generated by Medic.

problem/ | #TC/| en- | num| num search time (seconds)
deadline cod-| of of | walksat | 2cl | modoc pmodoc
ing | vars| literals nocomm | comm
big-bw1/10 6 | ccse| 888 69,851 — ? ? ? ?
ecse| 707 12,375 — | 231| 222| 223 149| 115 76
fridge2/12 2 | cbse| 166| 9,616 — ? ?| 216 216/ 108 108
ccse| 318| 9,492 — ? ?12113 2113/ 1869 1869
crse| 285| 9,043 — ? ?11528 1528 444 444
hanoi3/6 3| cbse| 135]| 21,388 — | 104 79| 45 45| 26 26
monkey2/8 2 | cbse| 222 33,194 — | 2365 ? ? 1701 1701
cfst | 291| 12,532 — | 364| 301| 302 302 61 61
crse| 529|42,641 — ?| 1626| 462 462| 178 178
tire2/13 6 | ccse| 625| 38,014 — ? ? ? ?
cfst | 577| 32,177 — ? ? ? ?
crse| 580 36,783 — ? ? ? ?
efst | 467 | 17,385 — | 192| 1900|1902 1268 1968 1312

(b) Search times on the unsatisfiable hard planning formulas generated by Medic.

Table 7.4: Search times of various satisfiability testers on the hard planning formulas generated
by Medic. Number of variables and literals are after simplification. Times are elapsed seconds;
for pmodoc, both the measured elapsed seconds (first column) and the computed elapsed seconds
per agent (second column) are shown. They were obtained on an SGI with four 150MHz R4400s.
walksat times are average of 5 runs. ‘—' indicates that the run was not attempted; this is because
walksat cannot confidently determine unsatisfiability. ‘?" indicates that the run was terminated
after 1 hour; forwalksat, it means that none of the 5 runs found a solution in 1 hourpf@doc,

it means that none of the agents found a solution in 1 hour. (#TC = number of theorem clauses)
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problem/ #TC| num num search time (seconds)

deadline of of | walksat 2¢l | modoc pmodoc
vars| literals nocomm| comm

logistics.a/11 8| 638| 13,089 1 1 1 9 4| 3 2

logistics.c/13 7| 897| 21,412 2 90 3| 39 22| 5 3

bw_large.c/14| 15| 2,222| 78,146 146| 12855| 15439| 25 7| 17 5

bw_large.d/18| 19| 4,714| 205,559 1494 ?? 581239 50/101 21

(a) Search times on the satisfiable Satplan formulas

problem/ #TC| num num search time (seconds)
deadline of of | walksat 2cl | modoc pmodoc

vars| literals nocomm | comm
logistics.a/10 8| 541| 10,598 — 2 3 10 5 5 2
logistics.c/12 7| 787| 18,244 — | 11154 1132|2401 1372 1195 685
bw_large.c/13| 15| 1,935| 66,547 — | 2769| 5389|2695 719 2010 536
bw_large.d/17| 19| 4,275| 184,180 — ?7? ?7? ?7? ?7?

(b) Search times on the unsatisfiable Satplan formulas.

Table 7.5: Search times of various satisfiability testers on the hard planning formulas generated
by Satplan. Number of variables and literals are after simplification. Times are elapsed seconds;
for pmodoc, both the measured elapsed seconds (first column) and the computed elapsed seconds
per agent (second column) are shown. They were obtained on an SGI with four 150MHz R4400s.
walksat times are average of 5 runs. ‘—' indicates that the run was not attempted; this is because
walksat cannot confidently determine unsatisfiability. *??’ indicates that the run was terminated

after 5 hours; fopmodoc, it means that none of the agents found a solution in 5 hours. (#TC =
number of theorem clauses)

formula.

On four satisfiable formulas (fridge2 in cbse, ccse, and crse encodings, and tire2 in efst
encoding), the two Modoc derivations that led to determining that the formula was satisfiable, one
communicating autarkies and lemmas and another not communicating at all, were the same. This
means that the lemmas that were communicated did not help at all to shorten the search for these
formulas.

Table 7.5 shows the search times on hard planning formulas generated by Satplan. The
cause of exceptional improvement fxyodoc overmodoc on the satisfiable bvarge.c formula was
thatmodoc started with a “bad” top clause. A separate study (Figure 7.1) shows thatddad

started with the seventh goal clause, it could have solved the formula in 4 seconds. Although this
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num | dead-| num of| num| num search time (seconds)
of | line | theorem  of of | walksat | 2c1 | modoc pmodoc
checkers clauses vars| literals no comm | comm
2 8 4| 105| 3,900 1.08/1.90| 0.02| 0.08 0.08 0.13 0.13
3 15 6| 282| 18,294, 12564 7?7 39 2 2 3 2
4 24 8| 597 | 55,934 ??| — | 12883| 1626 813| 1606 803

(a) Search times on the satisfiable checker-interchange formulas.

num | dead-| numof| num| num search time (seconds)
of | line | theorem| of of | walksat | 2c1 | modoc pmodoc
checkers clauses vars| literals no comm| comm
2 7 4| 90| 3,238 —12.00| 0.12/0.30 0.30/0.48 0.48
3 14 6| 261| 16,794 — | ?? 121} 199 132| 186 124
4 23 8| 570| 53,252 — — ?? ?? ??

(b) Search times on the unsatisfiable checker-interchange formulas.

Table 7.6: Search times of various satisfiability testers on the checker-interchange formulas. Num-
ber of variables and literals are after simplification. Times are elapsed secongapéorc, both

the measured elapsed seconds (first column) and the computed elapsed seconds per agent (second
column) are shown. They were obtained on an SGI with four 150MHz R44@Q%sat times are

average of 5 runs. ‘—' indicates that the run was not attemptedidfoksat, this is because it can-

not confidently determine unsatisfiability. “??’ indicates that the run was terminated after 5 hours;

for walksat, it means that none of the 5 runs found a solution in 5 hourgyidodoc, it means that
none of the agents found a solution in 5 hours.

formula may be an exceptional case, this is exactly the kind of situation Parallel Modoc attempts to
“rescue” by means of parallel searches. For a formula like this, even ruptiiitpc on a single-
processor system can easily outperfatedoc.

Table 7.6 shows the search times on the checker-interchange formulas (see Section 6.10.1).
Improvements bymodoc were observed on the satisfiable formulas. On the unsatisfiable checker-
interchange formula for 3 checkers, the search timpmoidoc was more than the search time of
modoc. This was reflected in the number of PDT extension operations performed by the Modoc
agent that proved that the formula was unsatisfiable; wiwl#oc found a refutation in 698,469
PDT extensions, the Modoc agent that found a refutatigsmisdoc took 720,413 PDT extensions

without communication and 722,043 PDT extensions with communication.
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Comparison of Search Times on Pigeon-Hole Formulas
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Figure 7.4: Search times afbbdoc andpmodoc on the pigeon-hole formulas. Times are elapsed
seconds per agent and were obtained on an SGI with four 150MHz R4400s. All formulas are
unsatisfiable by construction of the problem.

Pigeon-Hole Formulas

The pigeon-hole problem far pigeons asks the question of whether or not it is possible to place

n pigeons inton — 1 boxes that contain only a single pigeon in each one of them. The problem
is obviously impossible and hence the corresponding formula is unsatisfiable. The pigeon-hole
formulas were used to show that certain class of formulas cannot have refutation proofs that are
polynomially bound [20].

Unlike planning problems, pigeon-hole problems have no clear partition of the formula
into axioms and the theorem. Rather, they are a collection of constraints that need to be satisfied. We
call such problemglobal optimization problems$Because of this, it is not suited for goal-sensitive
search.

Figure 7.4 shows the search timesmidoc and pmodoc on the pigeon-hole formulas.

It shows thatpmodoc on ann processor computer would be able to find a solution faster than
modoc, and that the growth rate @iodoc is slower with 8 agents than with 4 agents. Figure 7.5

shows the efficiency of search Ipyiodoc as the ratio of total time consumed pyiodoc over the
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Efficiency of PModoc Search on Pigeon-Hole Formulas
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Figure 7.5: Efficiency ofpmodoc search on the pigeon-hole formulas, as measured by

total pmodoc ime .. <\ ere obtained on an SGI with four 150MHz R4400s.
modoc time

time consumed byodoc on the same formula. While the search efficiencyp@bdoc was