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Propositional Theorem Proving: Advanced Lemma Strategies

and Multi-Agent Search

Fumiaki Okushi

Abstract

The Satisfiability Problem is to decide whether or not a boolean CNF formula has a satisfying truth

assignment. Its acceptance problem is NP-complete, suggesting that it is unlikely for a polynomial-

time algorithm to be found. However, because of its importance and applications in areas such as

circuit design, finite mathematics, and planning, many practical algorithms have been introduced.

Among such algorithms isModoc. Modoc extends propositional Model Elimination with a mech-

anism to prune away certain subrefutation attempts that cannot succeed. The pruning information

is encoded in a partial truth assignment called anautarky. As a descendent of Model Elimination,

Modoc also includes a mechanism to record successful subrefutations aslemmasand recall them as

necessary. The exact mechanism follows that of C-literals.

The results contained in this dissertation are presented in three parts. The first part

describes a formula-simplification scheme suitable for backward-chaining propositional theorem

provers, such as Modoc. The scheme preserves satisfiability, models, and theorem clauses.

The second part describes various enhancements made to (basic) Modoc. Thequasi-

persistent lemmastrategy improves upon the C-literal strategy and may retain lemmas longer. The

eager lemmastrategy derives certain lemmas early. In certain cases, articulation points in a graph

implicitly constructed during an eager-lemma derivation may derive additional lemmas.Lemma-

induced cutsandC-reduction-induced cutsallow a subrefutation attempt to be completed by a short

alternate proof.

The third part describesParallel Modoc. Parallel Modoc is a multi-agent search procedure

that uses (enhanced) Modoc as search agents. Agents communicate new autarkies and lemmas as

they are found. Combining autarkies may not be straightforward because two autarkies found by two

separate agents may have conflicting assignments. This part presents an algorithm that combines

two arbitrary autarkies to form another autarky that is no smaller than the first two autarkies.



Experimental results show that enhanced Modoc outperforms many model-search proce-

dures on formulas derived from applications. Parallel Modoc often achieves speedup greater than

the number of agents. Formulas that could not be solved in an hour by Modoc were often solved by

Parallel Modoc in the order of minutes, and in some cases, in seconds.
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Chapter 1

Introduction

The Satisfiability Problem is the problem of deciding whether or not a boolean formula in conjunc-

tive normal form has a truth assignment that makes the formula true. Its acceptance problem is

NP-complete [11, 19], suggesting that it is unlikely for a polynomial-time algorithm to be found.

However, because of its importance and applications in areas such as circuit design [29], finite math-

ematics [18, 49, 51, 50], and planning [27, 28, 15], many practical algorithms have been introduced.

Most of the algorithms found for the satisfiability problem can be classified into one of

two classes of procedures—the class ofmodel-searchprocedure and the class ofrefutation-search

procedures. A model-search procedure tries to show that the formula is satisfiable by finding a sat-

isfying truth assignment. If one is found, the procedure announces that the formula is satisfiable. If

the procedure is “complete”, meaning that the procedure is guaranteed to find a satisfying truth as-

signment for every satisfiable formula, the procedure may conclude that the formula is unsatisfiable

after it fails to find a satisfying truth assignment.

Many of the model-search procedures are descendents of the Davis-Putnam-Loveland-

Logemann (DPLL) algorithm [14, 13]. The DPLL algorithm consists of three rules—theunit-clause

rule, thepure-literal rule, and thesplitting rule. The unit-clause rule makes literals that occur in

clauses of length one true. The pure-literal rule makes literals whose complements do not appear

in the formula true. The splitting rule takes a variable and creates two formulas, one resulting from

making the variable true, and another resulting from making the variable false, and considers the
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two formulas for satisfiability.

A different approach to model search is to formulate the problem as an integer linear-

programming problem [5, 26, 23, 21]. This is accomplished by translating boolean constraints into

inequalities. Various techniques developed for integer linear programming can then be applied.

Several model-search procedures employ a non-systematic approach, often involving sto-

chastic choices [35, 39, 28]. These procedures are necessarily “incomplete”, meaning that there is

no guarantee that the procedure will find a satisfying truth assignment for every satisfiable formula.

On unsatisfiable formulas, these procedures can run for ever. Because of these potential problems,

these procedures are usually run with resource limits, such as CPU time and/or the number of

guesses. If the procedure fails to find a satisfying truth assignment within the given resource limits,

it abandons the search. In this case, no sure information is obtained. Despite their shortcomings,

stochastic model-search procedures have been successful in finding satisfying truth assignments

for satisfiable formulas that are much larger than what the current complete methods can generally

handle.

A refutation-search procedure, on the other hand, tries to show that the formula is un-

satisfiable by finding a refutation proof. A refutation proof shows that the formula is inconsistent,

i.e., it has no satisfying truth assignment. If a refutation proof is found, the procedure announces

that the formula is unsatisfiable. If the procedure is “complete”, meaning, in this case, that the pro-

cedure is guaranteed to find a refutation proof for every unsatisfiable formula, the procedure may

conclude that the formula is satisfiable after it fails to find a refutation proof. An example of a

refutation-search procedure is Model Elimination [32].

One class of algorithms that do not fall into either of the two classes of algorithms pre-

viously mentioned is thecounting method[24, 25, 42]. A counting method tries to obtain a bound

on the number of satisfying truth assignments. If a non-zero lower bound is obtained, the algorithm

concludes that the formula is satisfiable. If a zero upper bound is obtained, the algorithm concludes

that the formula is unsatisfiable.

Modoc [43] is a refutation-search procedure based on propositional Model Elimination.

It extends Model Elimination with a mechanism to prune away certain subrefutation attempts that
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cannot succeed. The pruning information is encoded in a partial truth assignment called anautarky

[36]. As a descendent of Model Elimination, Modoc also includes a mechanism to record successful

subrefutations aslemmasand recall them as necessary.

1.1 Summary of Results

The results contained in this dissertation are presented in three parts. The first part describesgoal-

sensitive simplification. Compared to traditional simplification, goal-sensitive simplification is de-

signed specifically for use with a backward-chaining propositional theorem prover, such as Modoc.

It preserves satisfiability, models, and the clauses that describe the negated conclusion of the the-

orem (which we will call thetheorem clauses) across simplification. The second part describes

various enhancements made to the basic design of Modoc. The enhancements include improving

upon the original lemma strategy employed in Modoc, other opportunities to derive lemmas, and

strategies to accelerate certain subrefutation attempts. The third part describesParallel Modoc.

Parallel Modoc is a multi-agent search procedure that uses (enhanced) Modoc as search agents.

Modoc agentscooperateby communicating lemmas and autarkies as they are found. When mul-

tiple Modoc agents search for refutations, it is possible for them to derive autarkies that have con-

flicting assignments. Because of this, combining autarkies found by different Modoc agents may

not be straightforward. This part presents properties found concerning multiple autarkies and an

algorithm to combine two arbitrary autarkies to form another autarky that is no smaller than the first

two autarkies.

1.2 Organization

The remainder of the dissertation is organized as follows. Chapters 2 and 3 cover background

material. More specifically, Chapter 2 reviews previous work related to Modoc and Chapter 3

reviews the idea of planning as satisfiability testing. Chapter 4 summarizes the results contained in

this dissertation. Chapters 5, 6, and 7 provide detailed discussion of the results. More specifically,

Chapter 5 describes goal-sensitive simplification, Chapter 6 describes various enhancements made
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to the basic design of Modoc, and Chapter 7 describes Parallel Modoc. Conclusions and future

research directions are summarized in Chapter 8.

Parts of the results were presented at the Workshop on Model-Based Automated Reason-

ing (in connection with IJCAI-97, August 23, 1997, Nagoya, Japan) [45], and at the Fifth Interna-

tional Symposium on Artificial Intelligence and Mathematics (January 4–6, 1998, Fort Lauderdale,

Florida) [46, 47, 37]. More specifically, parts of Chapter 5 were presented in [45] and in [47], parts

of Chapter 6 were presented in [46], and parts of Chapter 7 were presented in [37].

In the next section, we standardize the terminologies and the notations used throughout

the dissertation.

1.3 Terminologies and Notations

This section defines terminologies and notations used throughout the dissertation. The terminolo-

gies and notations follow standard use in the computing literature, with the possible exception of

the followings:

� Use of set notation to express clauses, formulas, and truth assignments. (See Notations 1.2

and 1.3.)

� Not requiring a satisfying truth assignment to be a total function. (See Definition 1.8.)

� Notation for strengthening. (See Definition 1.9.)

This dissertation is concerned with the algorithmic means to solve the Satisfiability Prob-

lem, which is defined below.

Definition 1.1 (satisfiability problem) The Satisfiability Problemis, given a boolean formula in

conjunctive normal form(CNF), decide whether or not the formula has asatisfying truth assignment.

2

Formally, the problem is stated as a decision problem, that is, to obtain either a “yes” or

a “no” answer. However, in practice, we are often interested in a satisfying truth assignment should

the formula turn out to be satisfiable. For example, for the planning formulas used in Sections 6.10
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and 7.5, each satisfying truth assignment encodes a successful plan. Thus, to obtain a successful

plan, one needs to obtain a satisfying truth assignment first.

We now elaborate on the elements composing the satisfiability problem. We begin with

the formula. It is assumed that some arbitrary set of (boolean) variables is defined.

Definition 1.2 (literal, clause, CNF formula) A literal is either a variable or its negation. Aclause

is a disjunction of literals. ACNF formulais a conjunction of clauses.2

In this dissertation, we are only concerned with CNF formulas. Thus, the mention of the

word “formula” in this dissertation will always imply aCNF formula. Further, we assume that a

formula satisfies the following two conditions:

1. All the clauses arenon-tautologous. That is, no clause contains complementary literals (Def-

inition 1.4).

2. All the clauses arenon-redundant. That is, no clause contains more than one copy of the same

literal.

A formula that does not meet these conditions can be transformed into a logically-equivalent (Defi-

nition 1.10) formula that satisfies these conditions using a linear-time and -space algorithm.

One class of formulas that will be used in testing the performance of Modoc and other

satisfiability testers is the class ofk-CNF formulas, which is defined below.

Definition 1.3 (k-CNF formula) A k-CNF formulais a CNF formula whose clauses contain ex-

actly k literals.2

Notation 1.1 (negation, complement)The symbol “:” will be used to denote negation of a vari-

able. It is also used to denote the complement of a literal. Double negation “::” is removed, as

usual.2

Notation 1.2 (clause, formula) Throughout this dissertation, formulas and clauses will be express-

ed using set notation; for clarity, clauses will use square brackets (“[” and “]”) instead of the usual

curly brackets (“f” and “g”). 2
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Example 1.1 This example illustrates the use of notations introduced in Notations 1.1 and 1.2.

Consider the following boolean formula in conjunctive normal form:

(a_b)^ (a_:b)^ (:a_c)^ (:a_:c)^ (:a_:b_d)^ (:a_b_:d):

In this dissertation, the above formula will be expressed using set notation, as

f[a;b]; [a;:b]; [:a;c]; [:a;:c]; [:a;:b;d]; [:a;b;:d]g:

2

As extreme cases,empty clausesandempty formulasare considered. An empty clause is

a clause that contains no literals. An empty formula is a formula that contains no clauses.

Certain clauses and literals are often of interest to a satisfiability testing algorithm. Ap-

propriate terminologies are introduced below to refer to such clauses and literals.

Definition 1.4 (unit clause, pure literal, complementary literals) A clause is called aunit clause

if it contains exactly one literal. A literalx is apure literal in formulaF if :x does not appear inF .

Literalsx and:x are calledcomplementary literals. 2

We now elaborate on the other element composing the satisfiability problem, that is, the

satisfying truth assignment.

Definition 1.5 (partial truth assignment) A partial truth assignmentis a partial function from the

set of variables to the boolean set. To elaborate, the word “partial” implies that a variable may or

may not have a boolean value associated to it.2

Notation 1.3 (partial truth assignment) Throughout this dissertation, a partial truth assignment

will be expressed using set notation, as the exact set of literals that are true under the partial truth

assignment.2

Example 1.2 Consider a partial truth assignmentν that is defined by

ν(x) =

8>>>><
>>>>:

true if x= a or x= c

false if x= b

undefined otherwise

:
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In this dissertation,ν will be expressed using set notation as

fa;:b;cg:

2

Definition 1.6 (satisfied clause, satisfied formula)A clause is said to besatisfiedby a partial truth

assignment ifat least oneof its literals is true under the partial truth assignment. A formula is said to

besatisfiedby a partial truth assignment ifall its clauses are satisfied by the partial truth assignment.

2

Definition 1.7 (satisfiable, unsatisfiable)A clause (formula) issatisfiableif there is a partial truth

assignment that satisfies the clause (formula). A clause (formula) isunsatisfiableif no partial truth

assignment can satisfy the clause (formula).2

By Definitions 1.6 and 1.7, the satisfiability of an empty clause and that of an empty

formula become obvious.

Corollary 1.1 An empty clause is unsatisfiable. An empty formula is satisfiable.2

Definition 1.8 (satisfying truth assignment) A satisfying truth assignmentis a partial truth as-

signment that satisfies the formula. That is, for each clause in the formula, there is at least one

literal that is true under the truth assignment.2

Note that by Definition 1.8, a satisfying truth assignment is not required to be a total func-

tion in this dissertation. This may appear to deviate from the traditional definition of a satisfying

truth assignment being a total function. However, this definition will not change the satisfiability

of any formula. In particular, if a formula has a satisfying truth assignment in the sense of Defini-

tion 1.8 above, that satisfying truth assignment can be augmented to be a total function (and still

satisfy the formula) by simply assigning arbitrary boolean values to the variables that are unas-

signed.

Because of Definition 1.8, there is no need to distinguish total truth assignments from

partial truth assignments in this dissertation. Thus, the mention of the words “truth assignment” in

this dissertation will always imply apartial truth assignment.
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One benefit of using set notation to express clauses, formulas, and truth assignments is

that testing whether a truth assignment satisfies a clause or a formula becomes a simple matter of

finding a common element. A clause is satisfied by a partial truth assignment if and only if there is

a common literal between the clause and the truth assignment. A formula is satisfied by a partial

truth assignment if and only if each clause has a literal in common with the truth assignment.

An operation used often in a satisfiability testing algorithm is that ofstrengthening. Intu-

itively, strengthening takes a formula and a partial truth assignment, and removes satisfied clauses

and false literals from the formula.

Definition 1.9 (strengthened clause, strengthened formula)Let A be a partial truth assignment,

C be a clause, andF be a formula. Then, thestrengthened clauseof C by A, denoted byCjA, is

defined by

CjA = fq2Cjq 62 Ag ;

and thestrengthened formulaof F by A, denoted byF jA, is defined by

F jA = fCjA jC2 F andC\A= /0g :

2

Note that the two formulas, before and after strengthening, do not necessarily share satis-

fiability. That is, it is possible forF jA to be unsatisfiable, yet forF to be satisfiable. (However, if

F jA is satisfiable, then so isF .)

Some authors use the term “simplification” to refer to the operation of strengthening.

However, in this dissertation, that term is reserved to refer to operations that make a formula

“smaller” while preserving satisfiability (and possibly other attributes). (See Section 5 for a dis-

cussion on simplification.)

In below, we introduce other terminologies that originate from logic. Because our concern

is with propositional satisfiability, the definitions below are specialized for the propositional domain.

Definition 1.10 (logically follows, logically equivalent) Let F1 andF2 be two formulas. Then,F2

is said tologically follow F1, denoted byF1 j= F2, if any satisfying truth assignment ofF1 is also
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a satisfying truth assignment ofF2. Also, F1 andF2 are said to belogically equivalent, denoted by

F1 � F2, if F1 j= F2 andF2 j= F1.2

Note that the above definition may be extended to include clauses, by viewing clauses as formulas

with a single clause.

Definition 1.11 (subsumed)Let C1 andC2 be two clauses. Then,C2 is said to besubsumedby C1

(or thatC1 subsumesC2) if C1 j=C2.2

In the propositional domain, and under our convention of using set notation to express

clauses, subsumption becomes equivalent to set containment. That is,C2 is subsumed byC1 if and

only if C2 containsC1.

The implication of subsumed clauses in the input formula is that these clauses may safely

be removed from the input formula as they provide no additional constraints.

Deduction is the act of inferring new information from known facts. One of the well-

known inference rules is theresolution[38], which we define below.

Definition 1.12 (resolution, resolvent) Let two clausesC1 andC2 be as follows:

C1 = [x;y1; : : : ;ym];

C2 = [:x;z1; : : : ;zn]:

That is, they have a common variable which occurs in the opposite polarity, more specifically, that

x occurs inC1 and:x occurs inC2. DefineC3 as follows:

C3 = [y1; : : : ;ym;z1; : : : ;zn]:

Then,C3 is called aresolventof C1 andC2, or that it was obtained byresolutionusingC1 andC2.2

The use of resolution is supported by the following lemma [38], which we quote without

proof.

Lemma 1.1 Resolution is a sound inference rule. That is, a resolvent logically follows the two

input clauses.2
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Chapter 2

Background: Related Works

This chapter and the next review the background material. The purpose of this chapter is to describe

the basic design of Modoc. Section 2.1 briefly describes Model Elimination, which provides the

foundation for Modoc, Section 2.2 describes autarky, which is used in Modoc to encode certain

pruning information, and finally, Section 2.3 describes Modoc.

2.1 Model Elimination

This section informally describesModel Elimination, a proof procedure introduced by Loveland

[32]. Model Elimination provides the foundation for Modoc, which will be described in Sec-

tion 2.3. Because the dissertation is concerned with propositional satisfiability, the description of

Model Elimination contained in this section is specialized for the propositional domain. A detailed

description of the procedure, including its correctness proofs, can be found elsewhere [32, 33].

The main idea of Model Elimination is to show that the set of clauses (i.e., a CNF for-

mula) is inconsistent by iteratively eliminating all possible models. (For our purpose, “model” is

another term for “satisfiable truth assignment”.) If and when all possible models are eliminated, the

procedure concludes that the formula is inconsistent, i.e., unsatisfiable. Since Model Elimination is

a “complete” procedure (page 2), if such an attempt fails, the procedure concludes that the formula

has a model, i.e., is satisfiable.

Currently, there are two ways to represent the current state of search in Model Elimination.
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One uses a linear sequence of literals called achain, and another uses a tree of literals called aclause

tree. Section 2.1.1 describes Model Elimination using chains, and Section 2.1.2 describes Model

Elimination using clause trees.

To avoid repeating subrefutation attempts that succeed, Model Elimination has a mech-

anism to record successful subrefutations aslemmasand recall them as necessary. The original

implementation of lemmas was to record them as clauses [32]; this is described in Section 2.1.1. A

different implementation calledC-literals embeds special literals in chains [40]; this is described in

Section 2.1.3.

2.1.1 Model Elimination on Chains

The original description of Model Elimination used a linear sequence of literals called achain to

represent the current state of search [32]. For the sake of illustration, we will assume a chain to

grow from left to right. The literals in a chain are classified into being eitherA-literals or B-literals,

and the chain is modified at the right end using three basic operations—extension, reduction, and

contraction. The given formula is inconsistent if and only if an empty chain can be derived using

the three operations, starting from a chain that is the literals of a clause in the formula in some order.

Not all chains are of interest to Model Elimination. The notion ofpreadmissibilityand

admissibilitydefines the chains that are of interest to the proof procedure. Any derived chain that is

not preadmissible is simply discarded.

Definition 2.1 (preadmissible, admissible)A chain is preadmissibleif the following conditions

are met [32]:

� A pair of complementary B-literals are separated by an A-literal.

� If a literal occurs twice, once as an A-literal and again as a B-literal, then the A-literal must

occur to the right of the B-literal.

� No two A-literals use the same variable.

A chain isadmissibleif it is preadmissible and the rightmost literal is a B-literal.2
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b a (1) Initial chain from clause[a;b].
b a c (2) Extension with clause[:a;c].
b a c :a (3) Extension with clause[:a;:c].
b a c (4) Reduction of:a with a.
b a (5) Contraction ofc.
b (6) Contraction ofa.
b a (7) Extension with clause[a;:b].
b a c (8) Extension with clause[:a;c].
b a c :a (9) Extension with clause[:a;:c].
b a c (10) Reduction of:a with a.
b a (11) Contraction ofc.
b (12) Contraction ofa.
2 (13) Contraction ofb.

Figure 2.1: An execution of Model Elimination on chains. The formula isf[a;b], [a;:b], [:a;c],
[:a;:c], [:a;:b;d], [:a;b;:d]g. An underline indicates that the literal is an A-literal; all other lit-
erals are B-literals. An empty chain is denoted by2; this indicates that the formula is unsatisfiable.

The extensionoperation is the operation that lengthens a chain. It takes an admissible

chain, whose rightmost literal isx, and a clause, that contains:x. The extension operation then

reclassifies thex in the chain into an A-literal (by definition of admissibility (Definition 2.1), this

literal was previously a B-literal), and attaches all the literals in the clause, except:x, to the right

end of the chain in some order.

There are two operations that shortens a chain—reduction and contraction. Thereduc-

tion operation takes an admissible chain that contains a pair of complementary literalsx, which is a

B-literal, and:x, which is an A-literal that occurs to the left of thex. The reduction operation then

modifies the chain by removing thex from the chain. Thecontractionoperation takes a preadmis-

sible chain and removes the rightmost A-literal. Note that by repeatedly executing the contraction

operation, a preadmissible chain will eventually become an admissible chain.

Example 2.1 This example illustrates the operations of Model Elimination on chains. In partic-

ular, it shows how Model Elimination may conclude that a given formula is inconsistent. Fig-

ure 2.1 shows the execution of Model Elimination on the formulaf[a;b], [a;:b], [:a;c], [:a;:c],

[:a;:b;d], [:a;b;:d]g. Each step is explained alongside the chains in the figure.2

Note that in Figure 2.1, steps (8) through (12) are exactly the same as steps (2) through (6).
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b a (1) Initial chain from clause[a;b].
b a c (2) Extension with clause[:a;c].
b a c :a (3) Extension with clause[:a;:c].
b a c (4) Reduction of:a with a.
b a (5) Contraction ofc. Derives a lemma clause[:a;:c], which

is already in the formula.
b (6) Contraction ofa. Derives a lemma clause[:a].
b a (7) Extension with clause[a;:b].
b a (8) Extension with lemma clause[:a].
b (12) Contraction ofa. Derives a lemma clause[:a], which is

already derived.
2 (13) Contraction ofb. Derives a lemma clause[:b].

Figure 2.2: An execution of Model Elimination with lemmas on chains. This shows how the addition
of lemmas may change the execution shown in Figure 2.1. Numbers indicate the corresponding
steps in Figure 2.1. Steps numbered initalics show the changes. In particular, the contraction
operation derives a lemma clause[:a] in step (6), and the lemma clause[:a] is used for extension
in step (8). This allows steps (9) through (11) to be skipped. An underline indicates that the literal
is an A-literal; all other literals are B-literals. An empty chain is denoted by2; this indicates that
the formula is unsatisfiable.

What had happened was that two exact same subrefutations were made for two occurrences of the

same literala. To avoid such duplication of efforts, Model Elimination has a mechanism to record

successful subrefutations aslemmasand recall them as necessary. In the preceding example, when

the A-literala was removed at step (6), meaning that literala was successfully refuted, the procedure

could have recorded this fact by adding a new clause[:a] to the set of clauses. This would have

allowed the proof to be completed in a fewer number of steps, as shown in Figure 2.2.

Example 2.2 This example illustrates the derivation and use of lemmas in Model Elimination. In

particular, it continues from Example 2.1 and shows how the execution shown in Figure 2.1 may

change with the addition of lemmas. The execution is shown in Figure 2.2. Each step is explained

alongside the chains, and further explanation is provided in the caption.2

A lemma is an implication that records what set of literals allows a literal to logically

follow (Definition 1.10). In Model Elimination, a lemma is derived when an A-literal is removed

by a contraction operation. The original lemma strategy of Model Elimination recorded lemmas

as clauses and added them to the input formula. A different mechanism to record lemmas, called

C-literals, will be described in Section 2.1.3.
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An early implementation by Loveland et al. showed that the use of lemmas was gener-

ally “detrimental” [17]. However, later studies by Loveland [3] and others [40, 46] showed that a

judicious use of lemmas is actually beneficial.

2.1.2 Model Elimination on Clause Trees

One disadvantage of the chain representation is that a chain can be extended only at the rightmost

literal. This is an overly strict restriction since the addition of literals from the extension clause

could be in any order. To eliminate this restriction, Minker and Zanon proposed the use of a tree

structure, calledclause trees, to represent the current state of search [34]. This allowed Model

Elimination to extend any B-literal in the derivation.

Using this representation, the given formula is inconsistent if and only if an empty clause

tree can be derived. A clause tree is a tree of literals whose root is labeled with a special symbolε.

Each node is classified into being either an A-literal or a B-literal. Initially, the tree consists only

of ε, which is classified as a B-literal.

The three Model Elimination operations function similarly, except now on clause trees.

The extension operation takes a clause tree, that contains a B-literalx, and a clause, that contains:x,

reclassifies thex into an A-literal, and attaches each literal in the clause, except:x, as child nodes

of x. The reduction operation takes a clause tree that contains a pair of complementary literalsx

and:x, wherex is a B-literal and:x is an A-literal that is also an ancestor ofx, and removes thex

from the clause tree. The contraction operation takes a clause tree and removes a leaf A-literal.

Example 2.3 This example illustrates the operations of Model Elimination on clause trees. In

particular, it shows how Model Elimination may conclude that a given formula is inconsistent.

Figure 2.3 shows the execution of Model Elimination on the formulaf[a;b], [a;:b], [:a;c], [:a;:c],

[:a;:b;d], [:a;b;:d]g. Each step is explained beneath the clause trees in the figure.2

Letz et al. independently presented a general framework for Model Elimination as a con-

nection tableau, which also resulted in the use of a tree structure [31].
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ε

a b

(a) Initial clause tree from

clause[a;b].

ε

a b

c

(b) Extension of a with

clause[:a;c].

ε

a b

c a

(c) Extension of b with

clause[a;:b].

ε

a b

c a

c

(d) Extension ofa (along the right branch) with

clause[:a;c].

ε

a b

c a

c

:a

(e) Extension ofc (along the right branch) with

clause[:a;:c].

ε

a

c

(f) Reduction of:a, followed by contractions of

c, a, andb, all along the right branch.

ε

a

c

:a

(g) Extension ofc with clause[:a;:c]. The refu-

tation proof can be completed by a reduction of
:a, followed by contractions ofc, a, andε.

Figure 2.3: An execution of Model Elimination on clause trees. The formula isf[a;b], [a;:b],
[:a;c], [:a;:c], [:a;:b;d], [:a;b;:d]g. Double-circle nodes indicate that the literal is an A-literal;
all other nodes are B-literals. An empty clause tree indicates that the formula is unsatisfiable.
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2.1.3 C-Literals as Lemmas

A number of problems had been reported about the original lemma strategy of recording lemmas

as clauses. Loveland et al. write about the lack of selection rules and the increase in the number of

eligible extension clauses that need to be tried [17]. Shostak writes that lemma clauses tend to be

highly redundant because they are often subsumed (Definition 1.11) by other lemma clauses and/or

clauses from the formula [40].

The C-literal strategy is a lemma strategy introduced by Shostak to solve these prob-

lems [40]. Instead of recording lemmas as clauses and adding them to the set of clauses from the

formula, the C-literal strategy embeds the consequent of the lemma in the appropriate location in

the chain. Because of this, the C-literal strategy does not increase the number of clauses, and in par-

ticular, it does not increase the number of possible extension clauses that need to be tried. Once in a

chain, C-literals can be used like A-literals in reduction operations. C-literals can also be removed

by contraction operations when they are the rightmost literal in the chain.

A C-literal is derived as the complement of the A-literal that was removed by a contrac-

tion operation. The location at which the C-literal is inserted is called theC-point. The C-point is

maintained for each A-literal during a proof derivation. Initially, it is at the left end of the chain.

Every time a reduction operation is applied to the chain, the C-points of all A-literals between the

A-literal and the B-literal that were involved in the reduction operation may have their C-points ad-

justed. To be exact, if the C-point was to the left of the A-literal involved in the reduction operation,

it is moved to the position immediately to the right of the A-literal.

Example 2.4 This example illustrates the derivation and use of C-literals in Model Elimination. In

particular, it continues from Example 2.2 and shows how the execution shown in Figure 2.2 may

change with the use of C-literals as the lemma strategy. The execution is shown in Figure 2.4. Each

step is explained alongside the chains, and further explanation is provided in the caption.2
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b a (1) Initial chain from clause[a;b].

b a c (2) Extension with clause[:a;c]. C-point of a is at the left
end of the chain.

b a c :a (3) Extension with clause[:a;:c]. C-point ofc is at the left
end of the chain.

b a c (4) Reduction of:a with a. C-point ofc moves to immedi-
ately aftera.

b a :c (5) Contraction ofc. Derives a C-literal:c and inserts it at
c’s C-point.

b a Contraction of:c.

:a b (6) Contraction ofa. Derives a C-literal:a and inserts it at
a’s C-point.

:a b a (7) Extension with clause[a;:b]. C-point of b is at the left
end of the chain.

:a b (12) Reduction ofa with :a. C-point ofb moves to immedi-
ately after:a.

:a :b (13) Contraction ofb. Derives a C-literal:b and inserts it at
b’s C-point.

:a Contraction of:b.

2 Contraction of:a.

Figure 2.4: An execution of Model Elimination on chains using C-literals as the lemma strategy.
This shows how the use of C-literals may change the execution shown in Figure 2.2. Arrows point
to the C-point for each A-literal; this is where the complement of the A-literal will be inserted as
a C-literal if it is contracted. Numbers indicate the corresponding steps in Figure 2.2. Steps (5)
onward illustrate the difference. In particular, the C-literal:a derived in step (6) is used in a
reduction operation in step (12), making a subrefutation attempt for literala to be unnecessary. An
underline indicates that the literal is an A-literal; a double underline indicates that the literal is a
C-literal; all other literals are B-literals. An empty chain is denoted by2; this indicates that the
formula is unsatisfiable.
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2.2 Autarky

This section describes a class of partial truth assignments called anautarky. Autarky was first

introduced by Monien and Speckenmeyer for use in their model-search procedure [36]. However,

it is also used in Modoc to identify certain subrefutation attempts that cannot succeed. The purpose

of this section is to introduce the concept of autarky, with some examples, and some terminologies.

Definition 2.2 (autarky) An autarkyA of a CNF formulaF is a partial truth assignment that par-

titions F into two subsets,autsat(F ;A) andautrem(F ;A), such that any clause inautsat(F ;A)

has aliteral in common withA (and hence is satisfied byA), and any clause inautrem(F ;A) has

no variable in common withA (and hence is not affected by the assignments made to the variables

in A).2

Intuitively, an autarkyA of a formulaF is a partial truth assignment that can “reduce” the

satisfiability problem of the set of clausesF to that of a subset ofF , namely,autrem(F ;A). Note

that the word “reduce” in the preceding sentence has the same meaning as its use in, say, complexity

theory. That is,F is satisfiableif and only if autrem(F ;A) is satisfiable. Thus, if a partial truth

assignment is an autarky, we can “commit” to this partial truth assignment and consider only the

formula resulting from strengthening (Definition 1.9) the original formula with this autarky.

Example 2.5 This example illustrates what is and what is not an autarky. It also illustrates its

consequences. Consider the following formulaF

f[a;:c;:e]; [:b;c]; [:a;b;d]; [:d;e]g

and two partial truth assignments

fa;cg;

fa;b;cg:

The first partial truth assignmentfa;cg is not an autarky ofF . This is because

autsat(F ;fa;cg) = f[a;:c;:e]; [:b;c]g;

autrem(F ;fa;cg) = f[:d;e]g
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is not a partition ofF . (The clause[:a;b;d] does not belong to either of the two subsets.)

The second partial truth assignmentfa;b;cg is an autarky ofF . This is because

autsat(F ;fa;b;cg) = f[a;:c;:e]; [:b;c]; [:a;b;d]g;

autrem(F ;fa;b;cg) = f[:d;e]g

is a partition ofF .

Using the autarkyfa;b;cg, the satisfiability problem ofF is reduced to that of

autrem(F ;fa;b;cg), namely,f[:d;e]g. Sincef[:d;e]g is satisfiable, so isF . A satisfying truth

assignment ofF can be constructed as the disjoint union of the autarkyfa;b;cg and a satisfying

truth assignment off[:d;e]g, sayf:dg, asfa;b;c;:dg. 2

A quick way to test whether a partial truth assignment is an autarky or not is to examine

the clauses that contain literals that are false under the partial truth assignment. If each of these

clauses also contains a literal that is true under the partial truth assignment, then the partial truth

assignment is an autarky. Otherwise, it is not an autarky.

As extreme cases, an empty truth assignment and a satisfying truth assignment are both

autarkies.

In general, a formula may have multiple autarkies. While some pairs of autarkies are

compatible, meaning that the two truth assignments do not disagree on the assignments they have

both made, some pairs of autarkies areconflicting, meaning that the two truth assignments disagree

on some of the assignments. These concepts are formally defined below.

Definition 2.3 (compatible autarkies, conflicting autarkies) Let A1 and A2 be two autarkies of

formula F . Then,A1 andA2 are calledcompatible autarkiesif no complementary literals can be

found inA1[A2. Otherwise,A1 andA2 are calledconflicting autarkies. 2

Since an autarky cannot contain complementary literals, ifA1 andA2 are conflicting au-

tarkies, then there is some literalx for which x is in A1 and:x is in A2.

Example 2.6 This example illustrates compatible and conflicting autarkies introduced in Defini-

tion 2.3. Continuing with Example 2.5,fa;d;eg andf:a;:b;:cg are additional autarkies ofF .
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While fa;b;cg andfa;d;eg are compatible autarkies,fa;b;cg andf:a;:b;:cg are conflicting au-

tarkies.2

2.3 Modoc

This section describes a satisfiability testing algorithm calledModoc. The purpose of this section is

to introduce sufficient material about Modoc for later reference without going into too much detail.

A detailed description of the procedure, including correctness proofs, can be found elsewhere [44].

Modoc is a satisfiability testing algorithm introduced by Van Gelder [44]. Unlike many

of the algorithms introduced for satisfiability testing, Modoc is a refutation-search procedure; that

is, instead of trying to show that the formula is satisfiable by finding a satisfying truth assignment,

it tries to show that the formula is unsatisfiable by finding a refutation proof. Modoc is based

on propositional Model Elimination, which it extends with a new pruning technique based on the

concept of autarky (Section 2.2). Although the concept of autarky was first introduced for use in

a model-search procedure [36], Van Gelder adapted it to be used in a refutation-search procedure

to prune away certain subrefutation attempts that cannot succeed. Van Gelder also showed that

autarkies can be constructed during failed subrefutation attempts.

One advantage of Modoc (and other backward-chaining search procedures) over model-

search procedures is that it is able to begoal sensitive[44]. Many real-world problems can be

viewed as theorem-proving problems. A formula derived from such a problem comprises of two

parts—theaxioms, which account for the majority of the clauses, and the negated conclusion of the

conjectured theorem, which we will call thetheorem clauses. The axioms are obviously consistent;

thus, to test whether the formula is inconsistent or not using a backward-chaining theorem prover,

it is sufficient to start refutation attempts only from the theorem clauses. Goal-sensitive search has

allowed Modoc to achieve search performance comparable to incomplete model-search procedures

(which are considered to be among the fastest methods to find satisfying truth assignments) on

various planning formulas [47].

As a refutation-search procedure, the aim of Modoc is to find a refutation proof demon-

strating that the formula is unsatisfiable. In Modoc, a refutation proof is embodied in arefutation
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tree, and its progress is represented by apropositional derivation tree(PDT). Modoc tries to con-

struct a refutation tree using the single basic operation calledPDT extension. These concepts are

formalized below.

We first define PDT. PDT is essentially the same as the clause trees (Section 2.1.2).

Definition 2.4 (propositional derivation tree) A propositional derivation tree(PDT) is a tree in

which two types of nodes—clause nodesand goal nodes—alternate by level. A clause node is

labeled with a clause in the formula, and a goal node is labeled with a literal in the formula.

A clause node labeled withC has exactly one goal node labeled withg as a parent if and

only if

� :g is in C (or g is>, described later), and

� no literal inC labels an ancestor goal node.

A clause node labeled withC has a goal node labeled withg as a child if and only if

� g is a literal inC, and

� :g does not label any ancestor goal node ofC.

2

Example 2.7 Figure 2.5 shows an example of a propositional derivation tree for the formulaf[a;b],

[a;:b;c], [:a;c], [:a;:c], [:b;:c]g.2

To avoid wordiness, we may simply write “clause nodeC” in place of “clause node labeled

with C” unless this may cause confusion. Similarly for goal nodes.

Definition 2.5 (refutation tree) A refutation treeis a PDT whose root is a goal node labeled with

a special symbol>, called theverum, and whose leaf nodes are all clause nodes. A subtree of a

refutation tree is called arefutation subtree. 2

Example 2.8 The propositional derivation tree shown in Figure 2.5 is also a refutation tree for the

formula.2
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a b

:a c

c

:a :c

A

a :b c

a

:a c

c

:a :c

A

c

:b :c

A

Figure 2.5: An example of a propositional derivation tree for the formulaf[a;b], [a;:b;c], [:a;c],
[:a;:c], [:b;:c]g. A indicates that the complement of the corresponding literal is an ancestor
goal node. This tree is also a refutation tree for the formula.

Note that if all the literals in a clause node are complements of some ancestor goal nodes,

then this clause node has no child goal nodes.

The connection between refutation trees and the satisfiability of formulas are given by the

following theorem [34, 31, 44, 43].

Theorem 2.1 If a refutation tree can be constructed for a formula, then the formula is unsatisfiable.

If no refutation tree can be constructed for a formula, then the formula is satisfiable.2

Modoc tries to construct a refutation tree in a depth-first fashion starting from a tree with

only the verum> using its only operation,PDT extension.

Definition 2.6 (PDT extension)The PDT extensionoperation extends a goal node with a clause

that satisfies the following two conditions:

1. The clause contains the complement of the goal node.

2. The clause does not contain any ancestor goal nodes.
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(The only exception to this rule is that the operation may extend the verum> with any clause.)

Further, it adds goal nodes beneath the new clause node. There is one goal node for each literal that

satisfies the following two conditions:

1. The literal is in the new clause node.

2. The literal is not the complement of some ancestor goal node.

We say that goal node creation wassuppressedfor a literal in a clause node if the complement of

the literal labels a non-parent ancestor goal node (i.e., an ancestor goal node that is not the parent of

the clause node).2

Definition 2.7 (top clause) The clause used to extend the verum> is called thetop clause. 2

For the sake of efficiency, it is not necessary for Modoc to actually construct every part of

a refutation tree, or to attempt construction using every possible choice. That is, if the outcome of

subtree construction can be foreseen, Modoc may move on to other parts of the tree whose outcome

is unknown. There are two types of situations when this could happen. One is when it can be

foreseen that a refutation subtree can be constructed beneath a goal node. Another is when it can be

foreseen thatno refutation subtree can be constructed beneath a clause node. The former involves

the use oflemmas, and the latter involves the use ofautarkies.

When a goal node is successfully refuted, Modoc records this fact as a lemma. The

mechanism used in Modoc is essentially that of C-literals (Section 2.1.3) adapted for PDT. The

presence of a C-literal indicates that the complement of the C-literal can be refuted in the subtree

below its attachment point. Therefore, there is no need to attempt refutation of a goal node labeled

with the complement of the C-literal in this subtree.

A feature that is new in Modoc is that ofautarky pruning, which is based on the following

theorems by Van Gelder [44, 43].

Theorem 2.2 A failed refutation of a goal node derives an autarky.2

Theorem 2.3 If a clause is satisfied by an autarky, then the use of that clause in a PDT extension

operation cannot lead Modoc to a successful subrefutation.2
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Modoc uses these theorems to derive and use autarkies to eliminate from the set of possible exten-

sion clauses certain clauses that cannot lead Modoc to a successful subrefutation.

The incorporation of lemmas and autarky pruning causes the actual PDT extension oper-

ation used in an implementation of Modoc to be modified as follows.

1. The clause used to extend the goal node is further requirednot to be satisfied by the current

autarky.

2. A literal used to create a new goal node is further requirednot to be the complement of some

C-literal attached to some ancestor goal node.

Example 2.9 This example illustrates the PDT extension operation of Modoc. In particular, it

shows how Modoc may conclude that a given formula is inconsistent. Figure 2.6 shows an execution

of Modoc on the formulaf[a;b], [a;:b], [:a;c], [:a;:c], [:a;:b;d], [:a;b;:d]g. Of particular

interests are suppression of goal node creation in Figures 2.6(c) and 2.6(g), autarky derivation in

Figures 2.6(c) and 2.6(d), autarky pruning in Figure 2.6(f), C-literal derivation in Figures 2.6(h)

and 2.6(i), and use of a C-literal in Figure 2.6(i).2
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>

a b

a b

(a) Clause[a;b] is chosen as the top clause. Two goal nodesa andb are immediately created.

>

a b

a b

:a :b d

:b d

(b) All four clauses containing:a are eligible to extend goal nodea. Here, Modoc extends goal nodea

with clause[:a;:b;d]. This creates two new goal nodes:b andd.

Figure 2.6: An execution of Modoc. The formula isf[a;b], [a;:b], [:a;c], [:a;:c], [:a;:b;d],
[:a;b;:d]g. Clause nodes are shown in rectangles and goal nodes are shown in circles. Thick
circles indicate where the search is. The example continues to page 28.
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>

a b

a b

:a :b d

:b d

:a b :d

A

:d

(c) Only clause[:a;b;:d] is eligible to extend goal node:b. (Clause[a;b] is ineligible because it

contains an ancestor goal nodea.) Thus, Modoc extends goal node:b with clause[:a;b;:d]. This
creates a new goal node:d. Note that the creation of goal node:a was suppressed. This is because its
complementa is a non-parent ancestor goal node. Modoc now tries to extend goal node:d. However,
no clause is eligible to extend it. (Clause[:a;:b;d] is ineligible because it contains an ancestor goal
node:b.) This implies that the refutation attempt for goal node:d has failed. This causes Modoc to
derive an autarkyf:dg.

>

a b

a b

:a :b d

:bf:dg d

(d) Modoc now backtracks to goal node:b with autarkyf:dg. The autarky isconditionalin the sense

that it is an autarky for the formula resulting from strengthening the original formula with the partial
truth assignment implicit by the set of ancestor goal nodes—in this case,fa;:bg. Modoc now tries to
extend goal node:b with some other eligible clause. However, no other clause is eligible to extend it.
This implies that the refutation attempt for goal node:b has failed. This causes Modoc to derive an
autarkyf:b;:dg, constructed as the union of:b (the current goal node) and the current autarkyf:dg.
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>

a b

af:b;:dg b

(e) Modoc now backtracks to goal nodea with autarkyf:b;:dg. Again, the autarky is a conditional

autarky that is conditioned on the set of ancestor goal nodesfag. Modoc now tries to extend goal nodea
with some other eligible clause.

>

a b

af:b;:dg b

:a c

c

(f) There are two clauses eligible to extend goal nodea. (Clause[:a;b;:d] is not eligible as it is satisfied

by the autarkyf:b;:dg.) Here, Modoc extends goal nodea with clause[:a;c]. This creates a new goal
nodec.

>

a b

af:b;:dg b

:a c

c

:a :c

A

(g) Only clause[:a;:c] is eligible to extend goal nodec. Thus, Modoc extends goal nodec with

clause[:a;:c]. The creation of goal node:a was suppressed because its complementa is a non-parent
ancestor goal node. This completes the refutation along this branch.
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>:a

a b

af:b;:dg:c b

:a c

c

:a :c

A

(h) The successful subrefutation of goal nodec causes a C-literal:c to be derived and attached to goal

nodea. It also causes a C-literal:a to be derived and attached to the verum>. Search must now
continue to refute goal nodeb.

>:a:b

a b

af:b;:dg:c b

:a c

c

:a :c

A

a :b

L

(i) There are two clauses eligible to extend goal nodeb. Here, Modoc extends goal nodeb with clause

[a;:b]. The creation of goal nodea is suppressed because its complement:a is a C-literal attached to an
ancestor. This completes the refutation along this branch (because no new goal nodes are created), and
also the refutation for this formula, as all leaf nodes are now clause nodes. This causes a C-literal:b to
be derived and attached to the verum>.
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Chapter 3

Background: Planning as Satisfiability

Testing

This chapter reviews how planning problems can be formulated using logic, and in particular, as

propositional satisfiability problems. It also demonstrates that a planning formula comprises of two

parts—the axioms and the negated conclusion of the conjectured theorem, as briefly mentioned in

Section 2.3. Backward-chaining theorem provers, such as Modoc, may exploit this structure and

perform goal-sensitive search (Section 2.3). Section 3.1 describes how a planning problem may be

formulated as a propositional satisfiability problem, in particular, as a CNF formula. Section 3.2

describes how the additional view of theorem proving may give additional clues on where to start

a search when a backward-chaining theorem prover is used to determine the satisfiability of the

formula.

Note that although the discussion in this chapter deals with planning problems, the same

techniques could be applied on many other types of problems.

3.1 Planning as Propositional Satisfiability

This section describes how planning problems can be formulated as propositional satisfiability prob-

lems. The formulation is such that a formula is satisfiable if and only if the original planning prob-

lem has a successful plan. A successful plan can be obtained by interpreting the assignments made
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by a satisfying truth assignment to propositions that represent actions.

To the author’s best knowledge, Kautz and Selman were the first to actually test the idea

of formulating planning problems as propositional satisfiability problems [27]. The idea has further

been refined by Kautz and Selman [28] and by Ernst et al. [15] The intuitive idea is to express all

the requirements for a successful plan as boolean constraints, in particular, as boolean clauses. A

truth assignment that satisfies these clauses is hence a successful plan.

More specifically, the requirements will comprise of several components. The largest

component is the domain constraints, which are requirements that are independent of individual

problem instances but are common to all planning problems of the same type. For instance, in

a block-world planning problem, rules on how and when a block can be moved from one place

to another would be one of the domain constraints. Domain constraints are also calledaxioms.

Given the domain constraints, individual problem instances are characterized by their initial and

final conditions. The initial condition expresses the requirements for the initial state, and the final

condition expresses the requirements for the final state.

Kautz and Selman identified a sufficient set of axioms that is necessary to formulate a

planning problem [27, 28]. These are listed below:

� Actions imply both their preconditions and effects.

� Exactly one action occurs at each time step.

� The initial state is completely specified.

� If an action does not change a relation, then the relation holds in the next time step.

A number of software tools, such as Satplan [28] and Medic [15], are available to generate

planning formulas from planning problems. Satplan takes hand-coded axioms, while Medic takes

axioms described as STRIPS-style operators [16].
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3.2 Additional Theorem-Proving View

This section describes the additional theorem-proving view that could be brought into the planning

formulas described in Section 3.1. This view may provide backward-chaining theorem provers,

such as Modoc, additional clues on where to focus their search effort.

A common technique used to prove that a given formula

Σ) φ

is a theorem, whereΣ is a conjoined set of expressions that is commonly consistent andφ is another

expression, is to show that

Σ^:φ

is inconsistent. When a backward-chaining theorem prover is used,:φ is used as the top clause.

The planning formulas described in Section 3.1 have the form

axiomŝ init^final

where “axioms”, “init”, and “final” are each a set of clauses that express the axioms, the initial

condition, and the final condition, respectively. Obviously, the “axioms” are consistent, and so is

the union of the “axioms” and “init”. Therefore, the formula could be viewed as a formula prepared

for the sake of proving, by refutation, that the following formula is a theorem:

axiomŝ init ):final:

That is, given the axioms and the initial condition, it logically follows that the final condition can

never be attained.

When a backward-chaining theorem prover is used to determine the satisfiability of a

planning formula, the theorem-proving view provides the clue that the clauses that express the final

condition are a suitable and a sufficient set of clauses that should be tried as the top clause.
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Chapter 4

Summary of Results

This chapter summarizes the results contained in the remainder of this dissertation. These include a

formula-simplification scheme suitable for propositional backward-chaining theorem provers, vari-

ous enhancements made to the basic design of Modoc, and a multi-agent search procedure that uses

Modoc as search agents.

4.1 Goal-Sensitive Simplification

This section summarizes the results contained in Chapter 5 ongoal-sensitive simplification. Goal-

sensitive simplification is a formula-simplification scheme suitable for propositional backward-

chaining theorem provers, such as Modoc.

Simplifying a formula prior to running a satisfiability tester has become standard practice

as it generally allows the search to complete in less time. However, traditional simplification proce-

dures are geared toward use with model-search procedures. Because of this, certain simplification

procedures cannot guarantee anything beyond the preservation of satisfiability.

Backward-chaining theorem provers generally require the simplified formula to retain not

only satisfiability, but also other attributes such as models and theorem clauses. The chapter reviews

some of the common simplification procedures (Section 5.1) and then describes a simplification

scheme (Section 5.2) that achieves the preservation of all three attributes—satisfiability, models,

and theorem clauses.
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4.2 Enhancements to Modoc

This section summarizes the results contained in Chapter 6 on various enhancements made to the

basic design of Modoc, which was described in Section 2.3.

Thequasi-persistent lemmastrategy (Section 6.2) potentially improves upon the C-literal

strategy (Section 2.1.3). A problem with the C-literal strategy is that if a subrefutation attempt fails,

all lemmas derived during that attempt are discarded. The quasi-persistent lemma strategy derives

the exact same lemmas, but the lemmas need not be discarded unless the lemmas are attached to goal

nodes that are being abandoned. The benefit is that the lemmas may be retained longer. However,

it requires the attachment points to be computedafter the lemmas are derived (as opposed to them

being computedduring proof derivation by moving the C-points. See Section 2.1.3 for details.)

Theeager lemmastrategy (Section 6.3) allows certain lemmas to be derived without suc-

cessful subrefutation attempts (which is the normal way to derive lemmas). Under certain circum-

stances, the graphs implicitly constructed during eager-lemma derivations can be used to derive

additional lemmas (Section 6.4). The articulation points in the graphs correspond to nodes that can

be turned into lemmas.

Cutsallow a current subrefutation attempt to be abandoned and to be replaced by a short

alternate proof. Two cuts are introduced—lemma-induced cuts(Section 6.5) andC-reduction-

induced cuts(Section 6.6). Cuts can be invoked when certain conditions are met.

Several experimental features are also described (Sections 6.7 to 6.9).

Experimental results (Section 6.10) show that many of the features improve the search

speed and allow Modoc to outperform many model-search procedures on planning formulas. How-

ever, the growth rate of Modoc search time on random formulas is currently worse than the growth

rate of the satisfiability testers it outperforms on application-derived formulas.

4.3 Parallel Modoc

This section summarizes the results contained in Chapter 7 onParallel Modoc. Parallel Modoc is a

multi-agent search procedure that uses enhanced Modoc (Chapter 6) as search agents. Each agent
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uses a different theorem clause as its top clause and attempts to find a refutation. During the search

for refutation, autarkies and lemmas found by one agent are communicated to other agents. The

agent receiving the autarkies and lemmas may use them as if they had been derived by the agent

itself. As a result, the search iscooperative, as opposed to being independent. It is hoped that by

doing so, search for a refutation would be expedited.

When multiple searches are made at the same time, it is possible for multiple Modoc

agents to derive conflicting autarkies (Definition 2.3). Section 7.2 proves some properties con-

cerning multiple autarkies and presents two algorithms—the first algorithm allows two arbitrary

autarkies to be combined to form an autarky that is at least as large as the two given autarkies,

and the second algorithm is an optimization of the first algorithm and allows only the new autarky

literals to be communicated to accomplish the same task.

One problem with the current design of Parallel Modoc is that the maximum number of

agents that could be utilized is tied to the number of theorem clauses. Section 7.4 describes two

methods to increase the number of clauses suitable as the top clause, in hopes of increasing the

degree of parallel search and subsequently the amount of cooperation.

Experimental results (Section 7.5) show that the speedup of Parallel Modoc over Modoc

is very often greater than the number of agents. Formulas that could not be solved in an hour by

Modoc were often solved by Parallel Modoc in the order of minutes, and in some cases, in seconds,

with only 2 to 6 agents. Experiments also show that increasing the number of possible top clauses,

and hence agents, allows faster search in many instances.
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Chapter 5

Goal-Sensitive Simplification

This chapter describesgoal-sensitive simplification. Goal-sensitive simplification is a formula-

simplification scheme specifically designed for use with a backward-chaining theorem prover, such

as Modoc. It preserves certain attributes of the formula that traditional simplifiers may not preserve

across simplification. Section 5.1 reviews many of the common simplification procedures and de-

scribes the problems associated with some of them for use prior to a backward-chaining theorem

prover. Section 5.2 describes a solution.

5.1 Simplifier and Satisfiability Testing

This section reviews many of the common simplification procedures used in satisfiability testing

and describes the problems associated with some of them for use with a backward-chaining theorem

prover. A solution to the problem is described in Section 5.2.

It has become common practice to simplify the formula before running a satisfiability

tester on it. A simplified formula is generally smaller, most often allowing the satisfiability tester to

determine its satisfiability in less time. A simplifier takes a formula and applies various quick and

easy simplification procedures that preserve satisfiability. Examples of simplification procedures

are summarized in Table 5.1.

Any formula resulting from any combination of the simplification procedures listed in Ta-

ble 5.1 will still be an acceptable input formula to a backward-chaining theorem prover. However,
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unit implication Remove all clauses that contain a literal in a unit clause,
and remove all occurrences of the complement of that lit-
eral.

pure-literal elimination Remove all clauses that contain a pure literal (Defini-
tion 1.4).

equivalent-literal
substitution

Replace all occurrences of literals that are logically equiv-
alent (Definition 1.10) with a single literal. This is com-
monly achieved by reasoning on the binary clauses, in par-
ticular, by considering all binary clauses as implications,
constructing a graph of literals with arcs representing im-
plications, and running a strongly connected components
algorithm; then, each strongly connected component is a
set of logically-equivalent literals.

subsumption Remove all clauses that are subsumed (Definition 1.11) by
some other clause in the formula.

Table 5.1: Common simplification procedures used in satisfiability testing.

when a backward-chaining theorem prover is used, it is strongly recommended that certain attributes

be retained in the simplified formula. First, all theorem clauses should be preserved across simplifi-

cation. This allows goal-sensitive search to be performed. Should a simplification procedure elimi-

nate the theorem clauses, the prover is left with a formula with no place to focus its search effort on.

Second, the simplified formula should be logically equivalent (Definition 1.10) to the original for-

mula. (However, this isnotan absolute requirement.) Among the simplification procedures listed in

Table 5.1, pure-literal elimination is not guaranteed to produce a logically-equivalent formula, and

unit implication may eliminate theorem clauses, as they tend to be unit clauses in practice.

5.2 Simplifier for Backward-Chaining Theorem Provers

Section 5.1 described some of the problems associated with the use of common simplification pro-

cedures prior to running a backward-chaining theorem prover. This section describes a solution.

To overcome the problems described in Section 5.1, the author, in collaboration with

Allen Van Gelder, devised a simplification scheme that will guarantee all three requirements—

preservation of satisfiability, models, and theorem clauses. The scheme is calledgoal-sensitive

simplification [47]. (To emphasize the difference, traditional simplification will be called goal-



37

formula

theorem clauses

rename

axioms+ initial condition

simplify
renaming information

goal-sensitively simplified formula

Figure 5.1: Steps involved in goal-sensitive simplification. Details are given in Section 5.2.

insensitive simplification.)

Figure 5.1 outlines the steps involved in goal-sensitive simplification. For the purpose of

illustration, we assume that the input formula is a planning formula (Section 3.1). (Note, however,

that the scheme could be applied to any formula whose original problem could be viewed as a

theorem-proving problem.) The clauses in the input formula are partitioned into two sets—one that

consists of the theorem clauses, and another that consists of the clauses that describe the axioms and

the initial condition. Then, we run a regular simplifier to the second set (the axioms and the initial

condition), with the following requirements:

1. Pure-literal elimination is not to be used.

2. Any renaming of the variables that occurred during simplification is to be recorded.

Simplification procedures such as equivalent-literal substitution may rename literals. If such proce-

dures are used, we need to make sure that the literals in the first set (the theorem clauses), which

was not subjected to the simplifier, are renamed in the same way. The goal-sensitively simplified

formula is obtained as the union of the first set (renaming done, if applicable) and the simplified

second set.

Note that a goal-sensitively simplified formula can be considered as being in an inter-



38

mediate form to becoming a goal-insensitively simplified formula. In particular, applying goal-

insensitive simplification to a goal-sensitively simplified formula produces the same formula as the

formula produced by applying goal-insensitive simplification directly to the original formula. This

means that the formula that is goal-sensitively simplified is generally slightly larger than the formula

that is goal-insensitively simplified.
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Chapter 6

Enhancements to Modoc

This chapter describes various enhancements made to the basic design of Modoc (Section 2.3).

Before describing the enhancements, Section 6.1 discusses some of the design decisions made in

implementing Modoc, as they relate to the enhancements. Section 6.2 describes the quasi-persistent

lemma strategy, which potentially improves upon the C-literal strategy (Section 2.1.3). Section 6.3

describes the eager lemma strategy, which allows certain lemmas to be derived without successful

subrefutation attempts. Section 6.4 describes how articulation points in certain graphs implicitly

constructed during eager-lemma derivations can derive additional lemmas. Section 6.5 describes

lemma-induced cuts and Section 6.6 describes C-reduction-induced cuts. These cuts allow a sub-

refutation attempt in progress to be completed by a short alternate proof. Section 6.7 describes how

refutation can be propagated during cuts. Section 6.8 describes how pure literals found in the for-

mula can be exploited in Modoc. Section 6.9 describes a lookahead strategy. Section 6.10 reports

experimental results obtained from the enhanced version of Modoc.

Most of the work contained in this chapter was performed in collaboration with Allen Van

Gelder.

6.1 Implementation of Modoc

This section discusses some of the design decisions made in implementing Modoc. We refer to the

implementation asmodoc (note the change in typeface). The discussion will be limited to those that
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have some relevance to the various enhancements described later in this chapter.

A key decision made at the beginning of the implementation was to dopre-reduction.

That is, whenever a goal node is added to the current set of ancestor goal nodes, or a C-literal is

attached to a goal node, the length of the clauses in the formula are modified to reflect the actual

number of literals that need to be refuted. To elaborate, whenever a goal nodex is added to the

current set of ancestor goal nodes, all the clauses that contain:x will have their length decreased by

one. (Recall from Section 1.3 that we assumed each clause to be non-duplicating.) Also, whenever

a C-literaly is attached to the PDT, all the clauses that contain:y will have their length decreased

by one. Pre-reduction allows certain enhancements to be implemented efficiently, namely,eager-

lemmaderivations (Section 6.3) andC-reduction-induced cuts(Section 6.6).

6.2 Quasi-Persistent Lemmas

This section describes thequasi-persistent lemmastrategy. The quasi-persistent lemma strategy po-

tentially improves upon the C-literal strategy. The C-literal strategy avoids the problems associated

with the original lemma strategy of Model Elimination of recording the lemmas as clauses. (See

Section 2.1.3 for details.) However, it has a problem that if a subrefutation attempt fails, all the

lemmas derived during that subrefutation attempt are discarded. Obviously, this is a needlessly con-

servative policy to maintain lemmas because the lemmas are nonetheless sound logical implications.

Van Gelder proposed a more “persistent” variant of the C-literal strategy called thequasi-

persistent lemmastrategy [44]. The quasi-persistent lemma strategy derives the exact same lemmas

as does the C-literal strategy. However, unlike the C-literal strategy, a lemma is discardedonly if it

is attached to a goal node that is being “abandoned” (because the search has moved on to another

part of the refutation tree). Potentially, this means that quasi-persistent lemmas may be retained

longer than C-literals. A downside of it is that, unlike C-literals, determining the attachment point

of a lemma must be postponed untilafter the lemma is derived (as opposed to it being computed

during the derivation by moving the C-point; see Section 2.1.3 for details). The attachment point

is determined as the lowestproperancestor goal node that the subrefutation that derived the lemma

either directly or indirectly used in a reduction operation. To be able to do this, the exact antecedent
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:c :d e

:c :d e

:b c :e

:b:d :e

a b d

a d

:a d e

d e

b c :d

A A

(a) Goal noded is refuted and this derives a lemma literal:d. The refutation is directly dependent on

ancestor goal nodes:b and:c, as marked byA . Since neither is the parent goal node (in this case,d),
the lemma is attached to the lower of the two, namely,:b. Dependencies are shown by dashed arrows.

Figure 6.1: Determining the attachment points of quasi-persistent lemmas. The example continues
to page 43.

ancestor goal nodes (which we will call thedependencies) must be recorded for each lemma. This

means that more bookkeeping must be done. Another downside of it is that it is incompatible with

a heuristic calledstrong regularityfound by Letz et al. [31, 46]

Example 6.1 This example illustrates how dependencies and attachment points are determined for

quasi-persistent lemmas. Figures 6.1(a) and 6.1(b) show two simple cases. Details are given in the

captions.2

When a goal node is refuted because all its (non-empty set of) sub-goal nodes are refuted,

in order to determine the attachment point of the new lemma literal, we would normally have to
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:c :d e

:c :d e

:b c :e

:b:d :e

a b d

a:e d

:a d e

d e

b c :d

A A

:a d :e

A L

(b) Goal nodee is refuted and this derives a lemma literal:e. The refutation is directly dependent

on ancestor goal nodea (indicated byA ) and on lemma literal:d (indicated byL ). Since lemma
literal :d is dependent on ancestor goal nodes:b and:c (indicated by the dashed arrows), the new
lemma is dependent ona, :b, and:c. Since none of them is the parent goal node (in this case,e), the
new lemma literal:e is attached to the lowest of the three, namely, goal nodea. Dashed arrows show
the dependencies of lemma literal:e.
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:c :d e

:b c :e

:b:d:a :e
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a:e d

:a d e
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(c) An equivalent PDT that could be considered to determine the dependencies and the attachment point

of lemma literal:a. This shows that the new lemma literal:a is dependent on lemma literals:d and:e,
which are dependent on ancestor goal nodes:b and:c, anda,:b, and:c, respectively. The new lemma
is attached to the lowestproperancestor goal node, namely:b.
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find all the ancestor goal nodes that were used either directly or indirectly in reduction operations

during the refutation of the goal node. However, in practice, this need not be done. The fact that

the goal node is refuted means that all its sub-goal nodes were successfully refuted and that their

complements are now attached as lemma literals. Thus, to determine the attachment point of the new

lemma literal, we need not consider the actual PDT that derived the new lemma literal but could

instead consider an equivalent PDT in which the creation of the sub-goal nodes are suppressed

because of the lemma literals.

Example 6.2 This example continues from Example 6.1. Note that Figure 6.1(b) also shows that

goal nodea has been refuted and that a lemma literal:a can be derived. To determine the attach-

ment point of the lemma literal:a, we would normally have to examine the PDT in Figure 6.1(b).

However, in practice, we could instead consider an equivalent PDT in Figure 6.1(c). Details are

given in the caption.2

6.3 Eager Lemmas

This section describes theeager lemmastrategy. The eager lemma strategy allows certain lemmas

to be derived without successful subrefutation attempts (which is the normal way to derive lem-

mas). The mechanism is closely related to unit propagation, which is often used in model-search

procedures.

As described in Section 6.1, when a goal node is added to the current set of ancestor

goal nodes, pre-reduction is performed using this goal node. The eager lemma strategy attaches the

literals in unit clauses (to be exact, clauses that have just been shortened by pre-reduction to length

one) as lemmas to the current goal node. The new lemmas could then be used to perform further

pre-reductions, which may in turn derive more unit clauses and hence lemmas. The derivation of

lemmas may continue until no new unit clauses are derived.

Example 6.3 This example illustrates the derivation of eager lemmas. Figure 6.2(a) shows how

eager lemmas are derived after adding goal nodee to the current set of ancestor goal nodes.2
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(a) A derivation of eager lemmas. Eager lemmas are shown in double squares. Solid arrows indicate

depth-local pre-reductions, and dashed arrows indicate depth-non-local pre-reductions. The addition
of goal nodee to the current set of ancestor goal nodes starts a chain of pre-reductions, eventually
causing clause[:b;k;:h] to be pre-reduced to an empty clause.

e f

:m

i

a

:g :d h

a

b

:k :k

(b) Eager dependency graph of the eager lemma derivation for the depth of goal nodee. Solid arrows

indicate depth-local dependencies, and dashed arrows indicate depth-non-local dependencies.

Figure 6.2: An eager-lemma derivation. Figure (a) shows an eager lemma derivation, and Figure (b)
shows the corresponding eager dependency graph for the depth of goal nodee.
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:a e c
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:e f : f

f : f

:e m f

A L

(a) Justification of eager lemmaf

a:m

:a e c

ef c

:e i :i

i :i

: f :a i

L A

(b) Justification of eager lemmai

Figure 6.3: Justification of eager lemmas. The refutation subtrees above show that eager lemmasf
andi in Figure 6.2(a) can be derived as quasi-persistent lemmas as results of successful subrefutation
attempts. In both cases, the lemmas are attached to goal nodee, which is where they were attached
as eager lemmas. The refutations use tautologous clauses that are not part of the given formula.
However, their introduction obviously preserves satisfiability. Dashed arrows point to where the
lemma literals will be attached.

To demonstrate that eager lemmas are indeed lemmas, Example 6.4 shows that eager

lemmas could be derived as quasi-persistent lemmas that are attached to the same goal nodes had

we not used the eager lemma strategy.

Example 6.4 This example illustrates that it is possible to derive eager lemmas as quasi-persistent

lemmas that will be attached to the same goal nodes. Figure 6.3 shows successful subrefutation

attempts that will derive the first two eager lemmasf and i in Figure 6.2(a) as quasi-persistent

lemmas. The refutations use a tautologous clause. Details are given in the caption.2

6.4 Eager Dependency and Articulation Points

This section describes how certain nodes in graphs implicitly constructed during eager-lemma

derivations may derive additional lemmas. The graph is called aneager dependency graph, and
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if an empty clause was derived during an eager-lemma derivation, the articulation points in the

graph can be complemented and attached as lemmas.

Example 6.5 This example continues from Example 6.3. Figure 6.2(b) shows the corresponding

eager dependency graph for the depth of goal nodee.2

To demonstrate that articulation points can be made into lemmas, Example 6.6 shows that

the complements of articulation points in the eager dependency graph could be derived as quasi-

persistent lemmas attached to the same goal nodes had we not used the eager lemma strategy.

Example 6.6 This example illustrates that the complements of articulation points in eager depen-

dency graphs are indeed lemmas. Figure 6.4 shows a subrefutation attempt continuing from goal

nodeeusing the exact same clauses that derived the eager lemmas in Figure 6.2(a). Dashed arrows

indicate where the lemmas would be attached. Note that the only lemmas that would survive after

refuting goal nodeeare lemma literals that are attached to goal nodes higher than goal nodee. The

complements of such lemma literals exactly correspond to articulation points in the eager depen-

dency graph of Figure 6.2(b).2

The standard biconnectivity algorithm found in algorithms textbooks (such as [2, 1, 4])

is sufficient for our purpose. However, because eager dependency graphs have certain structures, a

simpler algorithm was designed and used inmodoc.

By looking at the goal node that started unit propagation and the clause that was pre-

reduced to an empty clause as the two end points, an eager dependency graph can be viewed as a

lattice. Because of this, any “walk” along the arcs of the eager dependency graph from the empty

clause will eventually arrive at the goal nodewithout any backtracking. Obviously, any articulation

point will be on this path. Let us call this path themain path. To determine the articulation points,

all there is left to do is to see if there are anybypassesthat will allow nodes on the main path to be

skipped (such nodes cannot be articulation points).

The algorithm used inmodoc is based on depth-first search and has two modes. The

purpose of the first mode is to find the main path. This can be found by simply following any

successor among the set of successor nodes at each visited node. Once the main path is found, the
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Figure 6.4: Corresponding subrefutation tree for the eager-lemma derivation shown in Figure 6.2(a).
All goal nodes frome to b can be turned into quasi-persistent lemmas. Dashed arrows indicate
where the lemma literals will be attached. Since the search is actually at goal nodeeand it will next
try to refute goal nodec, the only lemmas that will make sense to record are those that attach to
nodes above goal nodee. These are:h, d, : f , and:e, which are exactly the complements of the
articulation points in the eager dependency graph shown in Figure 6.2(b).
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algorithm starts to execute in the second mode while continuing the depth-first search on the lattice.

The purpose of the second mode is to find all bypasses that could be used to skip nodes along

the main path. For each bypass found, any node along the main path that is properly between the

beginning and the end of the bypass are excluded from the set of candidates for articulation points.

The algorithm continues until all possibilities are examined.

Example 6.7 This example illustrates the articulation-points algorithm on a sample graph. Fig-

ure 6.5 shows the execution of the algorithm. We assume that the successors are ordered from top

to bottom for each node. Details are given in the captions.2

As presented, the algorithm is not guaranteed to run in time linear in the number of edges.

This is because when a bypass is found, the algorithm must “walk” along the main path between

the beginning and the end of the bypass, whose length is only bound by the number of nodes in the

graph. In particular, there is no means to avoid eliminating a node that is already eliminated. Thus,

as presented, the algorithm may take quadratic time to run.

Example 6.8 This example continues from Example 6.7. When the bypassi ! h! d is found in

Figure 6.5(e), the algorithm, as currently presented, has no means to not re-eliminate nodef . 2

However, the algorithm can be fixed and turned into a linear-time algorithm as follows.

Instead of eliminating nodes as bypasses are found, the revised algorithm will collect sufficient in-

formation during depth-first search so that a post-search stage can eliminate non-articulation points

in one sweep across the graph (actually, one sweep across the main path).

During the search for the main path, we number (only) the nodes along the main path as

they are visited. Every node maintains an additional attribute calledmaxreachable, which is the

largest node number among the nodes along the main path that could be reached from this node by

a bypass alone. After the search is done, beginning with the node from which the depth-first search

started,maxreachableindicates the next articulation point along the main path.

Example 6.9 This example illustrates the revised articulation-points algorithm. Figure 6.6 shows

the execution of the algorithm on the same graph used in Figure 6.5. Details are given in the

captions.2
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(a) The sample graph.
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(b) The main path (indicated by the thick lines)

is found. Candidates for articulation points are
indicated by thick circles.
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(c) A bypass (indicated by the thick dashed

lines) is found. This eliminates nodeb.
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(d) Another bypass (indicated by thick dashed

lines) is found. This eliminates nodef .
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(e) Yet another bypass (indicated by the thick

dashed lines) is found. This eliminates nodee.
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e f
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h
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(f) The articulation points are obtained as the

remaining thick circles.

Figure 6.5: Execution of the articulation-points algorithm on a sample graph. In this sample graph,
nodea corresponds to the current goal node, and nodei corresponds to the empty clause. Details of
the algorithm are given in Section 6.4.
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(e) Sincemaxreachableof node i is 4, which

refers to noded, nodeseand f are eliminated.
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(f) Sincemaxreachableof noded is 6, which

refers to nodea, nodeb is eliminated. The re-
maining thick circles indicate the articulation
points.

Figure 6.6: Execution of the revised articulation-points algorithm on the sample graph shown in
Figure 6.5(a). Thick lines indicate the main path, thick dashed lines indicate bypasses, and thick
circles indicate the candidate nodes for articulation points. Details of the algorithm are given in
Section 6.4.
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6.5 Lemma-Induced Cuts

This section and the next describecuts. Cuts are search optimization operations that allow a sub-

refutation attempt to be abandoned and to be replaced by a short alternate proof. A cut may be

invoked when certain conditions are met. This section describeslemma-induced cuts, which may

be invoked when complementary lemma literals are attached to goal nodes along the same branch.

When complementary lemma literals are attached to goal nodes along the same branch,

the lower goal node can be refuted with a short alternate proof. The proof consists of extending the

lower goal node with a tautologous clause that exactly contains the complement of the goal node

and the two complementary lemma literals. Because of the complementary lemma literals, goal

node creation is suppressed for the new clause. Hence, the refutation for the lower goal node is

completed.

The tautologous clause used to extend the goal node is not in the formula. (Recall from

Section 1.3 that we assumed that the input formula contains no tautologous clauses.) However, its

introduction is harmless. This is because its introduction into the set of input clauses cannot change

the set of satisfying truth assignments of the formula; in particular, it cannot change the satisfiability

of the formula. The introduction of tautologous clauses is essentially a form of the cut rule due to

Letz et al. [31]

While the introduction of tautologous clauses is not necessary to conclude that the lower

goal node can be refuted, its introduction is useful to compute the dependencies of the new lemma

literal that is derived as a result of the lemma-induced cut. However, it is impractical to add them to

the set of input clauses. The current implementation of Modoc,modoc, temporarily introduces the

clause for the purpose of computing the dependencies and then discards it immediately. Because of

its ephemeral nature, the tautologous clause is called avirtual clause.

Example 6.10 This example illustrates the use of lemma-induced cut. Consider the situation shown

in Figure 6.7(a). Goal node:q has just been refuted and its complementq is attached as a quasi-

persistent lemma to goal noderc, which we assume, without loss of generality, is a descendent

of goal nodepc, to which a lemma literal:q is attached. The lemma-induced cut could then be
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pc:q

rcq

:q

(a) Goal node:q has successfully been refuted

and its complement is attached as a lemma lit-
eral to an ancestor goal noderc. This causes
complementary lemma literalsq and:q to be
attached along the same branch.

pc:q

rcq

:rc q :q

L L

(b) By extending goal noderc with a virtual

clause[:rc;q;:q], goal noderc is immediately
refuted.

Figure 6.7: An example of lemma-induced cut. Figure (a) shows a situation in which lemma-
induced cut may be invoked. The lemma-induced cut allows goal noderc to be refuted. Figure (b)
shows the refutation. Details are given in Example 6.10.

invoked to refute goal noderc by an alternate proof as follows. Extend subgoalrc with a virtual

clause[:rc;q;:q] (Figure 6.7(b)). No goal nodes are created beneath the extension clause because

the presence of lemma literalq suppresses the creation of goal node:q and the presence of lemma

literal :q suppresses the creation of goal nodeq. (These are indicated byL beneath the extension

clause.) Thus, goal noderc is refuted.2

6.6 C-Reduction-Induced Cuts

This section describesC-reduction-induced cuts. A C-reduction-induced cut may be invoked when

pre-reduction (Section 6.1) causes a clause to become empty. Like lemma-induced cuts (Sec-

tion 6.5), C-reduction-induced cuts allow a subrefutation attempt in progress to be abandoned and

replaced by a short alternate proof.

As described in Section 6.1,modoc performs pre-reduction when either a goal node is

added to the current set of ancestor goal nodes, or when a lemma literal is attached to a goal node.

When the pre-reduction causes a clause to become empty, C-reduction-induced cut may be invoked.

C-reduction-induced cut allows the lowest goal node that caused the clause to become empty, either
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rk

r1

:r1:r2 � � � :rn| {z }
orA L

(a) Case when the lowest dependency is an an-

cestor (q1 = r1).

rk

q1r1

:q1 r1 :r1

L

r1

:r1:r2 � � � :rn| {z }
orA L

(b) Case when the lowest dependency is a

lemma (q1 6= r1).

Figure 6.8: Example of C-reduction-induced cut. Two cases are possible, each depending on what
the lowest dependency is. Details are given in Example 6.11.

directly or indirectly, to be refuted with a short alternate proof.

Example 6.11 This example illustrates the use of C-reduction-induced cuts. Consider the situation

where clauseC = [:r1; : : : ;:rn] pre-reduces to an empty clause because of a new lemma literalrk

(where 1� k � n). This means thatr1, . . . , rn are either ancestor goal nodes or lemma literals

attached to ancestor goal nodes. Without loss of generality, assume thatr1 is the lowest ancestor

goal node or lemma literal amongr1, . . . , rn, chosen to be an ancestor if possible. Letq1 be the

ancestor goal node at the depth ofr1. The C-reduction-induced cut could be invoked to refute goal

nodeq1 by an alternate proof as follows. Ifq1 = r1, meaning thatr1 is an ancestor goal node, the

extension ofq1 with clauseC refutes it immediately, as shown in Figure 6.8(a). Ifq1 6= r1, we first

extend goal nodeq1 with a virtual clause[:q1;:r1; r1]; the creation of goal node:r1 is suppressed

because of the lemma literalr1, and goal noder1 is immediately refuted by extension with clauseC.

This is shown in Figure 6.8(b).2
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6.7 Propagation of Refutation During Cuts

This section describes how additional lemmas may be derived when a cut is invoked. This is

achieved by “propagating” refutations.

As described in Sections 6.5 and 6.6, when a cut is invoked, all subrefutation attempts for

goal nodes below the goal node that the cut operation has just refuted are abandoned. However, a

careful examination of the situation shows that some of the subrefutation attempts may have just

succeeded and hence it may be possible to derive some additional lemmas.

Whenever a cut is invoked, a lemma was derived immediately before it. This means that

a goal node was successfully refuted. If this was the last goal node that needed to be refuted for its

parent goal node to be refuted, then it means that the parent goal node was refuted too. Since it is

possible for the attachment point of the complement of the parent goal node to be higher than the

goal node that is refuted by the cut, it may be possible to obtain additional lemmas by deriving all

possible lemmas along the current goal node to the goal node refuted by the cut.

Example 6.12 This example illustrates the conditions under which goal nodes along the path from

the current goal node to the goal node refuted by the cut could derive lemmas. Figure 6.9 shows a

portion of a PDT. Assume, for the sake of illustration, that the refutation attempts for goal nodes

are performed in left-to-right order. That is, all goal nodes to the left of the current branch have

successfully been refuted. Goal nodes along the current branch are labeled byp, q, r, s, andt.

Consider the following situation. Goal nodet has just been refuted and Modoc has just

derived a lemma literal:t. The pre-reduction using lemma literal:t invokes a cut and refutes goal

nodep.

Since goal nodet is refuted, so is goal nodes. However, goal noder is not refuted because

it still has one goal nodeu left to be refuted. Further, no goal nodes above goal noder and below

goal nodep are refuted.2
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Figure 6.9: Propagation of refutation during a cut. When the successful refutation of goal nodet
causes a cut to refute goal nodep, goal nodescan be turned into a lemma as well. Details are given
in Example 6.12.
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6.8 Pure Literals as Autarky

This section describes one way Modoc may exploit pure literals in the formula. The method is

related to the pure-literal rule of DPLL (Chapter 1).

Recall that the pure-literal rule of DPLL makes the pure literals true. The corresponding

operation in Modoc would be to add the pure literals to the current autarky as if refutation attempts

for them had just failed. Justification for this operation is given by the following lemma.

Lemma 6.1 Let x be a pure literal in formulaF . Then,fxg is an autarky ofF .2

Note that pure literals are already exploited to a certain degree inmodoc. When a goal

node has no eligible extension clauses, the literal in the goal node is added to the current set of

autarky literals. This is because it implies that the goal node was a pure-literal. The operation

described in this section is not a brand new operation but is rather a supplementary operation to

fully exploit pure literals.

6.9 One-Layer Lookahead

This section describes a lookahead operation that is currently being experimented withmodoc.

When the search reaches a clause node, there are several child goal nodes that need to be

refuted. Normally, Modoc will order the goal nodes in some order and attempt refutation of each

goal node, until a refutation attempt fails for a goal node. However, with one-layer lookahead, the

refutation of a clause node takes place in two phases. During the first phase,all the goal nodes are

attempted to see if they can be refuted usingonlypre-reduction and eager-lemma derivation (but no

PDT extension). Any successful refutation will result in a lemma being attached to a goal node no

lower than the parent of the clause node. The second phase attempts regular refutation from any

goal node that remains to be refuted.

Note that during the first phase, failure to refute only by pre-reduction and eager-lemma

derivation does not cause the goal node to be added to the current autarky. This is because the failure

does not mean that there is no refutation for the goal node but merely that it could not be refuted

using only pre-reduction and eager-lemma derivation.
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r

:r a b

a b

2

Figure 6.10: An example of how one-layer lookahead may help. Suppose that goal nodea cannot
be refuted (indicated by a wiggly arrow leading to a large “X”) and that goal nodeb can be refuted
by pre-reduction and eager-lemma derivation (indicated by a short arrow leading to “2”). Further,
suppose, for the sake of illustration, that Modoc attempts refutation in a left-to-right order. Normal
Modoc will first attempt refutation of goal nodea, and since it fails, it will then backtrack to goal
noder to try to extend the goal node with some other clause. In comparison, Modoc with one-layer
lookahead will first test all the goal nodes of whether they can be refuted using only pre-reduction
and eager-lemma derivation. In this example, it will find out that goal nodeb can be refuted by only
pre-reduction and eager-lemma derivation and will therefore attach lemma literal:b to some goal
node no lower than goal noder. Eventually, it will attempt refutation of goal nodea, which will fail,
and the search will backtrack to goal noder as before. However, the lemma literal:b is retained
and can be used in future refutation attempts.
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Example 6.13 This example illustrates a potential benefit arising from incorporating one-layer

lookahead in Modoc. Figure 6.10 shows a situation where Modoc has just extended goal noder

with clause[:r;a;b]. Details are given in the caption.2

6.10 Experimental Results

This section assesses the performance ofmodoc by comparing it with other satisfiability testers

(Section 6.10.1), and also by turning on, or off, each feature of enhanced Modoc (Section 6.10.2).

Results were obtained by experiments on two types of formulas—planning formulas and random

formulas.

The majority of the planning formulas were generated using Satplan [28] and Medic [15].

(The checker-interchange formulas used in Table 6.2 were generated using a purpose-built script.)

For each problem (and in the case of Medic, each encoding), two formulas with different deadlines

were generated. One formula had the deadline set to the optimal plan length, making it satisfiable,

and another formula had the deadline set to one less than the optimal plan length, making it un-

satisfiable. After the formulas were generated, they were subjected to goal-sensitive simplification

(Section 5.2).

Random formulas have no clause to focus on, and thus, they are not a good class of

formulas to demonstrate goal-sensitive search. However, they are easy to generate as many formulas

as necessary with the given characteristics. Because of this, it is suitable, nonetheless, for use in an

experimental study of Modoc’s (and other satisfiability testers’) growth rate of search times.

The random formulas used in this section are random 3-CNF formulas (Definition 1.3).

They are generated using a probability model in which each non-redundant non-tautologous clause

of length three is equally probable. The ratio of the number of clauses to the number of variables

is set to 4.27. Experimental results suggest that this ratio generates the hardest random 3-CNF

formulas [30, 35].

Other satisfiability testers used in the experiments are summarized below.

walksat A stochastic model-search procedure. More specifically, it is a greedy hill-climbing

search algorithm with probabilistic “back-off” and periodic restart [39]. The procedure is
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Figure 6.11: Comparison of search times betweenmodoc andwalksat. Formulas are planning
formulas generated by Medic and Satplan. All formulas are satisfiable. Times are CPU seconds on
an SGI with 150MHz R4400.walksat times are average of 5 runs.

incomplete and thus cannot confidently determine unsatisfiability. (See page 2 for a brief

discussion on incomplete model-search procedures.)

dpll An implementation of DPLL [14, 13].

C-A1 A complete model-search procedure based on DPLL. It incorporates heuristics to select split-

ting variables and a highly-optimized unit propagation [12].

2cl A complete model-search procedure based on DPLL. It incorporates heuristics to select split-

ting variables and a reasoning capability on short clauses [48].

Since the search times ofwalksat may change from run to run, five runs were made forwalksat

and the average search time is reported.

1The algorithm is described as the Tableau algorithm in [12]. However, to avoid confusion with the proof procedure
with the same name, it will be referred to asC-A in this dissertation.
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problem/ num num search time (seconds)
deadline of of walksat C-A 2cl modoc

vars literals

logistics.a/11 638 13,089 1 3026 1 1
logistics.c/13 897 21,412 2 ?? 90 3
bw large.c/14 2,222 78,146 146 14 12855 15439
bw large.d/18 4,714 205,559 1494 ?? ?? 58

(a) Search times on the satisfiable Satplan formulas.

problem/ num num search time (seconds)
deadline of of walksat C-A 2cl modoc

vars literals

logistics.a/10 541 10,598 — 16019 2 3
logistics.c/12 787 18,244 — ?? 11154 1132
bw large.c/13 1,935 66,547 — 47 2769 5389
bw large.d/17 4,275 184,180 — ?? ?? ??

(b) Search times on the unsatisfiable Satplan formulas.

Table 6.1: Search times of various satisfiability testers on the hard planning formulas generated by
Satplan. Number of variables and literals are after simplification. Times are CPU seconds on an
SGI with 150MHz R4400.walksat times are average of 5 runs. ‘—’ indicates that the run was not
attempted; this is becausewalksat cannot confidently determine unsatisfiability. ‘??’ indicates that
the run was terminated after 5 hours.

6.10.1 Comparison with Other Testers

Figure 6.11 comparesmodoc search times against the average of fivewalksat search times on

a large collection of planning formulas generated by Medic [15] and Satplan [28]. Formulas are

generated from problems such as Block-World Planning, Tower of Hanoi, Monkey and the Banana,

Flat Tire, and Fridge Fixing, and were also used by Ernst et al. [15] and by Kautz and Selman [28].

The deadlines were set to the optimal plan lengths, and thus, all the formulas are satisfiable. (No

unsatisfiable formulas were used becausewalksat cannot confidently determine unsatisfiability.)

To avoid clutter, formulas that were solved in 0.1 seconds by both programs are not plotted. Plots in

the lower-right triangle represent formulas for whichmodoc was faster thanwalksat on average.

Plots in the upper-left triangle represent formulas for whichmodoc was slower thanwalksat on

average. We observe thatmodoc was faster thanwalksat on the majority of the formulas.
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num dead- num num search time (seconds)
of line of of walksat C-A 2cl modoc

checkers vars literals

2 8 105 3,900 1.08 0.09 1.90 0.02
3 15 282 18,294 12564 22446 ?? 39
4 24 597 55,934 ?? ?? — 12883

(a) Search times on the satisfiable checker-interchange formulas.

num dead- num num search time (seconds)
of line of of walksat C-A 2cl modoc

checkers vars literals

2 7 90 3,238 — 0.16 2.00 0.12
3 14 261 16,794 — 9427 ?? 121
4 23 570 53,252 — ?? — ??

(b) Search times on the unsatisfiable checker-interchange formulas.

Table 6.2: Search times of various satisfiability testers on the checker-interchange formulas. Num-
ber of variables and literals are after simplification. Times are CPU seconds on an SGI with 150MHz
R4400. walksat times are average of 5 runs. ‘—’ indicates that the run was not attempted; for
walksat, this is because it cannot confidently determine unsatisfiability. ‘??’ indicates that the run
was terminated after 5 hours; forwalksat, it means that none of the 5 runs found a solution in
5 hours.

Table 6.1 comparesmodoc search times against search times ofwalksat (average of

five runs),C-A, and2cl on formulas generated by Satplan. The “logistics” formulas are derived

from transportation problems, and the “bwlarge” formulas are derived from block-world planning

problems. The same formulas were also used by Kautz and Selman [28]. With the exception of

bw large.c, we observe thatmodoc is superior to other satisfiability testers. The reason for the poor

performance of bwlarge.c will be discussed in Section 7.1.

Table 6.2 comparesmodoc search times against the search times ofwalksat (average of

five runs),C-A, and2cl on the checker-interchange formulas. The checker-interchange formulas

are planning formulas generated from a game based on the one-dimensional version of Chinese

Checkers. Figure 6.12 shows the aim of the checker-interchange problem for 4 checkers; it also

shows the possible first few moves. The problem is interesting in that it is believed to have only

one plan (by always starting with the black coin to break symmetry) regardless of the number of
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Initial State

Move 1

Move 2

Final State

Figure 6.12: Checker-interchange problem for 4 checkers. The aim is to exchange all the black
coins on the left with all the white coins on the right. A black coin can only move right and a white
coin can only move left. At each step, a coin may either move or jump a coin to occupy the empty
space.

checkers. Again,modoc was able to outperform other satisfiability testers on both the satisfiable

formulas and the unsatisfiable formulas.

Figure 6.13 shows a plot of the search times ofdpll, 2cl, andmodoc on four classes of

random formulas: rand050, rand071, rand100, and rand141. Each class consists of 200 formulas,

and the number refers to the number of variables. The number of clauses is set to be 4.27 times

the number of variables. That is, 214 clauses for rand050, 303 clauses for rand071, 427 clauses

for rand100, and 602 clauses for rand141. Experimental results show that this ratio generates the

hardest random 3-CNF formulas [30, 35]. Note that the vertical axis uses a log scale. Therefore,

the slope indicates the growth rate in the exponent. The plot shows that the growth rate ofmodoc is

approximately half-way betweendpll and2cl.

The original DPLL algorithm has been improved over the years by incorporating clever

schemes to choose the next splitting variable. One such scheme uses a scoring mechanism to denote

the desirability of a variable based on the clauses it appears in. A similar scheme was experimented

in modoc to choose the next goal node. The respective improvements are shown in Figure 6.14. The

amount of improvement in growth rate bymodoc is much smaller than that bydpll. We believe

that this is because, in Modoc, the choice of goal nodes is already limited to a small number, i.e., to

the literals in the clause nodes, whereas indpll, all unassigned variables are possible choices.
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Figure 6.13: Comparison of average search times of various satisfiability testers on random 3-CNF
formulas. The formulas are generated at the clauses-to-variables ratio of 4.27, which is believed
to generate the hardest random 3-CNF formulas [30, 35]. Search times were obtained on a Sun
SparcStation 4/110.
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Figure 6.14: Comparison of improvements in average search times by using a scoring scheme. The
same formulas used in Figure 6.13 were used.
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formula sample search time (seconds) speedup
class size without APA standardmodoc

ave. std.dev. ave. std.dev.

rand100 all 200 1.74 1.12 1.26 0.88 1.38
sat 109 0.97 0.94 0.70 0.67 1.39
unsat 91 2.65 0.85 1.92 0.60 1.38

rand141 all 200 34.43 27.83 21.63 17.46 1.59
sat 117 18.10 21.30 11.30 13.28 1.60
unsat 83 57.45 17.93 36.19 11.11 1.59

rand200 all 20 3398 2356 1722 1177 1.97

checker.3 sat 1 78.30 - 48.99 - 1.60
unsat 1 223.65 - 184.84 - 1.21

logistics.a sat 1 2.09 - 1.26 - 1.66
unsat 1 8.14 - 4.18 - 1.95

logistics.c sat 1 5.07 - 6.43 - 0.79
unsat 1 3404.30 - 1494.94 - 2.28

Table 6.3: Change in search time by articulation-points analysis (APA).

6.10.2 Improvements by Individual Features

This section reports on experimental results obtained to assess the performance improvement made

to Modoc by means of enhancements described in this chapter. The results were obtained by run-

ningmodoc with and without each feature on two sets of random formulas—rand100 and rand141.

Rand100 consists of 200 randomly generated 3-CNF formulas of 100 variables and 427 clauses.

Rand141 consists of 200 randomly generated 3-CNF formulas of 141 variables and 602 clauses.

When the speedup for rand141 was larger than that for rand100, a small collection of larger random

formulas, called rand200, was used to confirm whether or not this was a trend. Rand200 consists of

20 randomly generated 3-CNF formulas of 200 variables and 854 clauses. Further, to test whether

the general trend observed on the random formulas would follow on other classes of formulas, the

same experiment was repeated on three of the planning formulas used in Tables 6.1 and 6.2. Unless

specified otherwise, the following features were used by default—quasi-persistent lemmas, eager

lemmas, articulation-points analysis, lemma-induced cuts, C-reduction-induced cuts, and propaga-

tion of refutation during cuts. We call this configuration ofmodoc thestandardmodoc. Search times

were obtained on a Sun SparcStation 4/110.
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formula sample search time (seconds) speedup
class size without EL, APA standardmodoc

ave. std.dev. ave. std.dev.

rand100 all 200 15.04 10.64 1.26 0.88 11.94
sat 109 8.15 7.92 0.70 0.67 11.64
unsat 91 23.28 6.99 1.92 0.60 12.13

rand141 all 200 349.16 282.15 21.63 17.46 16.14
sat 117 178.99 212.99 11.30 13.28 15.84
unsat 83 589.03 171.64 36.19 11.11 16.28

rand200 all 20 38604 26469 1722 1177 22.42

checker.3 sat 1 1860.36 - 48.99 - 37.97
unsat 1 3151.34 - 184.84 - 17.05

logistics.a sat 1 44.17 - 1.26 - 35.06
unsat 1 53.53 - 4.18 - 12.81

logistics.c sat 1 98.60 - 6.43 - 15.33
unsat 1 25535.21 - 1494.94 - 17.08

Table 6.4: Change in search time by eager lemmas (EL) and articulation-points analysis (APA).

Table 6.3 shows the change in search time ofmodoc with and without articulation-points

analysis. It shows a moderate speedup, which appears to increase with the size of the formula.

Table 6.4 shows the change in search time ofmodoc with and without the eager lemma

strategy and articulation-points analysis. (Note that articulation-points analysis makes no sense

without eager lemmas. See Section 6.4 for details.) It shows a significant speedup, which appears

to increase with the size of the formula. The speedup due to the addition of eager lemma strategy

and articulation-points analysis was the largest among the features tested.

Table 6.5 shows the change in search time ofmodocwith and without lemma-induced cuts.

With the exception of the unsatisfiable version of logistics.c, virtually no speedup was observed.

Table 6.6 shows the change in the number of extensions and of goal nodes from the same runs.

Again, virtually no change in numbers were observed.

Table 6.7 shows the change in search time ofmodocwith and without C-reduction-induced

cuts. It shows a small speedup, which appears to increase with the size of the formula.

Table 6.8 shows the change in search time ofmodoc with and without propagating refu-

tation during cuts. Very small speedup was observed on rand100 but virtually none on rand141.

Table 6.9 shows the change in the number of extensions and of goal nodes from the same runs.
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formula sample search time (seconds) speedup
class size without LIC standardmodoc

ave. std.dev. ave. std.dev.

rand100 all 200 1.26 0.88 1.26 0.88 1.00
sat 109 0.71 0.68 0.70 0.67 1.01
unsat 91 1.93 0.60 1.92 0.60 1.01

rand141 all 200 21.71 17.53 21.63 17.46 1.00
sat 117 11.35 13.33 11.30 13.28 1.00
unsat 83 36.32 11.19 36.19 11.11 1.00

checker.3 sat 1 49.18 - 48.99 - 1.00
unsat 1 186.74 - 184.84 - 1.01

logistics.a sat 1 1.27 - 1.26 - 1.01
unsat 1 3.80 - 4.18 - 0.91

logistics.c sat 1 6.47 - 6.43 - 1.01
unsat 1 2943.52 - 1494.94 - 1.97

Table 6.5: Change in search time by lemma-induced cuts (LIC).

formula sample ave. num. of extensions ave. num. of goal nodes
class size without standard ratio of without standard ratio of

LIC modoc change LIC modoc change

rand100 all 200 3,615 3,600 1.00 6,214 6,180 1.01
sat 109 2,108 2,099 1.00 3,522 3,501 1.01
unsat 91 5,419 5,398 1.00 9,437 9,389 1.01

rand141 all 200 48,504 48,233 1.01 83,926 83,330 1.01
sat 117 25,661 25,522 1.01 43,961 43,657 1.01
unsat 83 80,705 80,248 1.01 140,263 139,255 1.01

Table 6.6: Change in the number of extensions and goal nodes by lemma-induced cuts (LIC). This
table confirms that the change in search times reported in Table 6.5 for random formulas is consistent
with other statistics.
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formula sample search time (seconds) speedup
class size without RIC standardmodoc

ave. std.dev. ave. std.dev.

rand100 all 200 1.53 1.08 1.26 0.88 1.21
sat 109 0.86 0.83 0.70 0.67 1.23
unsat 91 2.32 0.74 1.92 0.60 1.21

rand141 all 200 27.37 22.11 21.63 17.46 1.27
sat 117 14.44 16.94 11.30 13.28 1.28
unsat 83 45.60 14.34 36.19 11.11 1.26

rand200 all 20 2284 1573 1722 1177 1.33

checker.3 sat 1 74.53 - 48.99 - 1.52
unsat 1 269.49 - 184.84 - 1.46

logistics.a sat 1 1.26 - 1.26 - 1.00
unsat 1 6.46 - 4.18 - 1.55

logistics.c sat 1 7.20 - 6.43 - 1.12
unsat 1 3658.82 - 1494.94 - 2.45

Table 6.7: Change in search time by C-reduction-induced cuts (RIC).

Virtually no change in numbers were observed.

Table 6.10 shows the change in search time ofmodoc with and without pure-literal pro-

cessing. With pure-literal processing, search took more time. Table 6.11 shows the change in the

number of extensions and of goal nodes from the same runs. A negligible amount of decrease in

numbers were observed. We conclude that the overhead to keep track of the number of occurrences

of literals (which is necessary to implement pure-literal processing) simply overwhelmed the small

benefit.

Table 6.12 shows the change in search time ofmodoc with and without one-layer looka-

head. It shows a very small speedup, which appears to increase with the size of the formula. How-

ever, with the exception of the unsatisfiable version of logistics.a, the same trend was not observed

on the planning formulas.
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formula sample search time (seconds) speedup
class size without PoR standardmodoc

ave. std.dev. ave. std.dev.

rand100 all 200 1.28 0.90 1.26 0.88 1.02
sat 109 0.72 0.69 0.70 0.67 1.03
unsat 91 1.95 0.61 1.92 0.60 1.02

rand141 all 200 21.61 17.44 21.63 17.46 1.00
sat 117 11.29 13.26 11.30 13.28 1.00
unsat 83 36.17 11.09 36.19 11.11 1.00

checker.3 sat 1 47.79 - 48.99 - 0.98
unsat 1 180.85 - 184.84 - 0.98

logistics.a sat 1 1.35 - 1.26 - 1.07
unsat 1 4.45 - 4.18 - 1.06

logistics.c sat 1 6.74 - 6.43 - 1.05
unsat 1 1604.00 - 1494.94 - 1.07

Table 6.8: Change in search time by propagation of refutation (PoR).

formula sample ave. num. of extensions ave. num. of goal nodes
class size without standard ratio of without standard ratio of

PoR modoc change PoR modoc change

rand100 all 200 3,601 3,600 1.00 6,181 6,180 1.00
sat 109 2,099 2,099 1.00 3,502 3,501 1.00
unsat 91 5,399 5,398 1.00 9,390 9,389 1.00

rand141 all 200 48,240 48,233 1.00 83,346 83,330 1.00
sat 117 25,528 25,522 1.00 43,668 43,657 1.00
unsat 83 80,256 80,248 1.00 139,277 139,255 1.00

Table 6.9: Change in the number of extensions and goal nodes by propagation of refutation (PoR).
This table confirms that the change in search times reported in Table 6.8 for random formulas is
consistent with other statistics.
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formula sample search time (seconds) speedup
class size standardmodoc with PLP

ave. std.dev. ave. std.dev.

rand100 all 200 1.26 0.88 1.39 0.97 0.91
sat 109 0.70 0.67 0.78 0.74 0.90
unsat 91 1.92 0.60 2.12 0.66 0.91

rand141 all 200 21.63 17.46 23.45 18.93 0.92
sat 117 11.30 13.28 12.25 14.40 0.92
unsat 83 36.19 11.11 39.23 12.04 0.92

checker.3 sat 1 48.99 - 64.22 - 0.76
unsat 1 184.84 - 244.87 - 0.75

logistics.a sat 1 1.26 - 1.40 - 0.90
unsat 1 4.18 - 5.37 - 0.78

logistics.c sat 1 6.43 - 21.56 - 0.30
unsat 1 1494.94 - 2006.90 - 0.74

Table 6.10: Change in search time by pure-literals processing (PLP).

formula sample ave. num. of extensions ave. num. of goal nodes
class size standard with ratio of standard with ratio of

modoc PLP change modoc PLP change

rand100 all 200 3,600 3,559 1.01 6,180 6,171 1.00
sat 109 2,099 2,052 1.02 3,501 3,487 1.00
unsat 91 5,398 5,365 1.01 9,389 9,386 1.00

rand141 all 200 48,233 47,965 1.01 83,330 83,308 1.00
sat 117 25,522 25,322 1.01 43,657 43,626 1.00
unsat 83 80,248 79,883 1.00 139,255 139,246 1.00

Table 6.11: Change in the number of extensions and goal nodes by pure-literal processing (PLP).
This table shows that the cost of extra bookkeeping to implement PLP overwhelmed the slight
reduction in the number of extensions and goal nodes.
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formula sample search time (seconds) speedup
class size standardmodoc with LA

ave. std.dev. ave. std.dev.

rand100 all 200 1.26 0.88 1.22 0.85 1.03
sat 109 0.70 0.67 0.68 0.65 1.03
unsat 91 1.92 0.60 1.87 0.58 1.03

rand141 all 200 21.63 17.46 19.99 16.09 1.08
sat 117 11.30 13.28 10.47 12.27 1.08
unsat 83 36.19 11.11 33.41 10.19 1.08

rand200 all 20 1722 1177 1520 1033 1.13

checker.3 sat 1 48.99 - 85.64 - 0.57
unsat 1 184.84 - 232.38 - 0.80

logistics.a sat 1 1.26 - 1.87 - 0.67
unsat 1 4.18 - 2.63 - 1.59

logistics.c sat 1 6.43 - 7.87 - 0.82
unsat 1 1494.94 - 2222.25 - 0.67

Table 6.12: Change in search time by one-layer lookahead (LA).
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Figure 6.15: Comparison ofmodoc speedup on the random formulas by various features. Abbrevi-
ations are explained in Table 6.13.

6.11 Summary

Figure 6.15 summarizes the speedups observed bymodoc on the random formulas reported in Sec-

tion 6.10.2. Clearly, the most improvement was made by eager-lemma strategy and articulation-

points analysis. (Recall that articulation-points analysis makes no sense without eager lemmas.)

This was followed by articulation-points analysis. For these two, the speedup appears to increase

with the size of the formula. Figure 6.16 compares the speedup achievable by eager lemmas and

articulation-points analysis with other features, namely, lemma-induced cuts, C-reduction-induced

cuts, and propagation of refutation during cuts combined. It shows that the speedup achievable by

use of other features was negligible compared to the speedup achieved by eager-lemma strategy and

articulation-points analysis.
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abbrev. description
EL eager lemmas (Section 6.3)
APA articulation-points analysis (Section 6.4)
RIC C-reduction-induced cuts (Section 6.6)
PoR propagation of refutation (Section 6.7)
LIC lemma-induced cuts (Section 6.5)
PLP pure-literal processing (Section 6.8)
LA one-layer lookahead (Section 6.9)

Table 6.13: Abbreviations used in Figures 6.15 and 6.16.

EL+APA APA others standard
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Figure 6.16: Comparison ofmodoc speedup on two planning formulas. Abbreviations are explained
in Table 6.13. “others” means lemma-induced cuts, C-reduction-induced cuts, and propagation of
refutation during cuts combined.
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Chapter 7

Parallel Modoc

This chapter describesParallel Modoc. Parallel Modoc is a multi-agent search procedure that runs

(enhanced) Modoc as search agents. Each agent executes Modoc using a different theorem clause as

the top clause. If an agent finds a new lemma or a new autarky, it communicates the new lemma or

the new autarky to other agents. It is expected that by doing so, other agents may be able to benefit

from the lemma and the autarky that it did not derive on its own.

As a parallel satisfiability tester, Parallel Modoc differs from many of the other parallel

satisfiability testers reported in the literature. In previous parallel satisfiability testers [41, 49, 6],

each process would work independently; communication is used merely to balance the work load.

The main use of multiple processing units in these algorithms is to merely increase throughput,

i.e., to examine more search nodes in a unit time. However, in Parallel Modoc, there is an equal

emphasis oncooperationamong the multiple processing units (i.e., the agents).

The idea of cooperative search has been tested by others [10, 9, 22]. There, hints that

maylead to a solution are communicated. That is, there is no guarantee that a hint will be globally

applicable. However, Parallel Modoc is different in this regard. It only communicates information

that is globally applicable.

Parallel Modoc isnot a parallelization of the Modoc algorithm but a parallel execution

scheme to run multiple cooperating agents, each running the Modoc algorithm.

This chapter consists of several sections. Section 7.1 is independent from the rest of the
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theorem search
clause num time

3 911
7 4
8 24

11 745

Table 7.1: Search times ofmodoc on a block-world planning formula (bwlarge.c for deadline 14)
using different theorem clauses as the top clause. Times are CPU seconds on an SGI 150MHz
R4400. The formula has 15 theorem clauses. Theorem clauses not listed exceeded the one-hour
time limit.

chapter and discusses the author’s experience with Modoc, which led to the development of Parallel

Modoc. An initial difficulty in putting together Parallel Modoc was the possibility of conflicting

autarkies (Definition 2.3). Section 7.2 describes a number of properties regarding multiple autarkies,

and describes two algorithms, one to combine two arbitrary autarkies, and another, an optimization

of the first algorithm. Section 7.3 describes some aspects of the implementation of Parallel Modoc

(which we denote bypmodoc), particularly about the mechanism used to communicate autarkies and

lemmas. Because the number of theorem clauses is dictated by the formula, this effectively limits

the degree of parallel search. Section 7.4 describes two ways to increase the number of clauses that

are suitable for use as the top clause. Section 7.5 reports experimental results.

7.1 Motivation

This section discusses the author’s experience with Modoc that led to the design and development

of Parallel Modoc. In particular, it discusses the extreme skewness of the distribution of Modoc

search times observed using different theorem clauses as the top clause.

Goal-sensitive search (see Section 2.3) has generally been a success for Modoc. However,

there remains a problem of which theorem clause to try as the first top clause when there are multiple

theorem clauses. It is quite likely that many of the theorem clauses would lead Modoc to determine

the satisfiability of the formula. However, the author’s experience using Modoc suggests that the

search times are extremely skewed depending on which theorem clause was chosen as the top clause.

An implication of this is that starting from a “bad” top clause could make the formula appear to be
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fmla num goal nodes
num ave std.dev. min max max/min

1 2,694 2,549 175 9,729 55.6
2 10,804 2,553 4,813 16,042 3.4
3 4,787 3,103 737 12,118 16.5
4 8,547 1,719 5,599 13,099 2.4
5 3,227 2,376 104 8,410 80.9
6 3,166 2,740 140 10,966 78.4
7 4,680 4,069 71 17,880 251.9
8 4,766 2,860 888 10,640 12.0
9 9,919 2,079 4,669 14,531 3.2

10 1,707 1,588 186 6,144 33.1

Table 7.2: Number of goal nodes examined bymodoc on random formulas using different clauses
as the top clause. Formulas contain 100 variables and 427 clauses. For each formula, 1/10th of the
clauses were sampled and used as the top clause. (A separate study shows an extremely high linear
correlation (> 0:99) between search time and the number of goal nodes examined for this class of
formulas.)

too difficult to solve in practice.

Table 7.1 shows howmodoc search times vary on one planning formula. It shows that

while modoc was not able to determine the satisfiability of the formula in one hour using many of

the theorem clauses as the top clause, it was able to do so in an amazing four seconds using the

seventh theorem clause. This means that there is at least a factor of 900 between the longest and the

shortest search times for this formula. (A separate study shows that runningmodoc using the first

theorem clause as the top clause took 15439 seconds. This means that the factor is at least 3800.)

By default,modoc uses the first theorem clause as the top clause.

The skewness of search times does not appear to be a behavior specific to structured

formulas. Random formulas, considered to have no structure, exhibit such behaviors, albeit in a

smaller magnitude, as well. Tables 7.2 and 7.3 show the distribution of the number of goal nodes

examined bymodoc using different clauses as the top clause on random formulas. Because all

clauses are equally eligible as the top clause in random formulas, only one tenth of the clauses were

sampled and used as the top clause. Further, because some of the runs were reported to have run in

0.00 seconds, we report the number of goal nodes examined instead. A separate study shows that

the search time and the number of goal nodes examined have an extremely high linear correlation
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fmla num goal nodes
num ave std.dev. min max max/min

1 26,319 46,394 120 240,244 2002.1
2 115,692 21,737 76,361 161,692 2.2
3 46,131 35,628 214 125,072 584.5
4 132,626 24,926 79,797 177,924 2.3
5 11,762 16,161 139 63,928 460.0
6 47,057 42,747 1,059 173,864 164.2
7 85,690 19,480 48,488 138,229 2.9
8 46,321 52,336 306 184,504 603.0
9 64,340 50,052 4,993 250,536 50.2

10 43,404 37,167 1,095 149,284 136.4

Table 7.3: Number of goal nodes examined bymodoc on random formulas using different clauses
as the top clause. Formulas contain 141 variables and 602 clauses. For each formula, 1/10th of the
clauses were sampled and used as the top clause. (A separate study shows an extremely high linear
correlation (> 0:99) between search time and the number of goal nodes examined for this class of
formulas.)

(> 0:99). The tables show that the factor between the most and the least number of goal nodes

examined ranged from 2.4 to 251.9 on the ten formulas with 100 variables and 427 clauses, and

from 2.2 to 2002.1 on the ten formulas with 141 variables and 602 clauses. It appears that the range

of factors widens with the increase in the size of the formula.

Because of the extreme skewness of Modoc search times depending on the choice of the

top clause, which could make a formula appear to be too difficult to solve in practice, for Modoc

to be a practical solver, it is important that Modoc be able to choose a “good” top clause and not a

“bad” top clause. At this time, we have no means to correctly distinguish good top clauses from bad

top clauses, and it is doubtful that we would some day be able to correctly do so without actually

solving the formula. Not knowing which ones are “good” and which ones are “bad”, one obvious

solution to this would be to simply run as many Modoc processes as there are theorem clauses,

giving each process a different theorem clause. This was the beginning of Parallel Modoc. However,

as a research project, the author was interested in knowing whether it is possible to improve the

performance beyond a simple parallel execution.
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7.2 Multiple Autarkies

This section first describes properties found regarding multiple autarkies and then describes two

algorithms. The first algorithm combines two arbitrary autarkies to form another autarky that is

no smaller than the two original autarkies, and the second algorithm is an optimization of the first

algorithm which allows only the difference from the last autarky found to be transmitted.

In general, dealing with multiple autarkies is not straightforward. This is because a for-

mula may have conflicting autarkies (Definition 2.3). Although a single Modoc cannot derive con-

flicting autarkies by itself, when multiple agents are executing Modoc and making multiple searches

at the same time, it is possible for the multi-agent search procedure to derive conflicting autarkies.

Without a means to combine them, it would require each agent to store multiple autarkies sepa-

rately, which may quickly become a bookkeeping nightmare. Theorem 7.1 shows that there is a

simple way to combine any two autarkies to form a new autarky that satisfies exactly the same set

of clauses satisfied by either of the two given autarkies.

Before we present the theorem, and hence the algorithm, we introduce a new operator

over the set of partial truth assignments.

Definition 7.1 Let A1 andA2 be partial truth assignments. Then, we defineA1x A2 as

A1x A2 = A1[ (A2� Ā1)

whereĀ1 = f:xjx2 A1g. We will say thatA1 is givenpreferenceoverA2 in resolving conflicting

assignments.2

Example 7.1 This example illustrates the use of the operator introduced in Definition 7.1.

Let two partial truth assignmentsA1 andA2 be as follows:

A1 = fu1; : : : ;um;w1; : : : ;wkg;

A2 = fv1; : : : ;vn;:w1; : : : ;:wkg:

That is, only the variables infw1; : : : ;wkg have different polarities inA1 andA2. (Note that some of

theuis may bevjs and vice versa.) Then,

A1x A2 = fu1; : : : ;um;v1; : : : ;vn;w1; : : : ;wkg;
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A2x A1 = fu1; : : : ;um;v1; : : : ;vn;:w1; : : : ;:wkg:

2

Note that, in general,(A1xA2) 6= (A2xA1). Also, whileA1� (A1xA2), it is generally

the case thatA2 6� (A1x A2).

Theorem 7.1 Let two autarkies of a CNF formulaF be as follows:

A1 = fu1; : : : ;um;w1; : : : ;wkg;

A2 = fv1; : : : ;vn;:w1; : : : ;:wkg:

That is, only the variables infw1; : : : ;wkg have different polarities inA1 andA2. (Note that some of

theuis may bevjs and vice versa.) Then, the following statements are true:

1. BothA1x A2 andA2x A1 are autarkies ofF .

2. BothA1xA2 andA2xA1 satisfy exactly the same set of clauses as the set of clauses satisfied

by eitherA1 or A2.

Proof: We only prove forA1x A2. The other case can be shown to be true by symmetry.

1. It is sufficient to show that any clause that contains:ui or:vi or:wi for somei also contains

a literal that is inA1x A2.

Let C be a clause that contains:wi for somei. SinceA1 is an autarky that containswi, A1

satisfiesC. This means that there is some literalx in A1 that is also inC. SinceA1x A2 is a

superset ofA1, x must also be inA1x A2. A similar argument can be made for a clause that

contains:ui for somei.

Let C be a clause that contains:vi for somei. SinceA2 is an autarky that containsvi , A2

satisfiesC. This means that there is some literalx in A2 that is also inC. There are two cases

to consider: (1)x is vj for some j, and (2)x is :wj for some j. In the first case, we are done

asvj is also inA1x A2. The second case reduces to a case in the previous paragraph.



80

2. It is sufficient to show that set containments hold both ways between the sets of clauses

satisfied by the autarkies.

Let C be a clause that is satisfied byA1x A2. This means that there is some literalx in C

that is also inA1x A2. There are three cases to consider: (1)x is ui for somei, (2) x is vi for

somei, and (3)x is wi for somei. In the first and third cases,x is also inA1, and thus,C is

satisfied byA1. In the second case,x is also inA2, and thus,C is satisfied byA2.

Let C be a clause that is satisfied byA1. This means that there is some literalx in C that is

also inA1. SinceA1x A2 is a superset ofA1, x must also be inA1x A2. Thus,C is satisfied

by A1x A2.

Let C be a clause that is satisfied byA2. This means that there is some literalx in C that is

also inA2. There are two cases to consider: (1)x is vi for somei, and (2)x is:wi for somei.

In the first case,x is also inA1x A2, and thus,C is satisfied byA1x A2. In the second case,

sinceA1x A2 is an autarky that containswi , C is satisfied byA1x A2.

2

The use of autarkies in Modoc is to eliminate certain clauses whose use in the PDT ex-

tension operation cannot lead the search to a successful subrefutation. In this respect, Theorem 7.1

has the following implication.

Corollary 7.1 For the purpose of autarky pruning, the algorithm described in Theorem 7.1 does not

lose any pruning information.2

As a practical concern, particularly in a distributed computing environment where com-

munication is made over a (relatively slow) computer network, transmitting new autarkies as they

are found may be costly, as they tend to be large in practice. Theorem 7.2 shows that it is sufficient

to transmit only the new autarky literals found since the last transmission.

Theorem 7.2 Let A1, A2, andA3 be autarkies for a formula such thatA2 � A3. Then,

1. (A1x A2)x A3 = (A1x A2)x (A3�A2),
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2. A3x (A2x A1) = (A3�A2)x (A2x A1).

Proof: We only prove 1. The same approach could be used to prove 2.

Let A1, A2, andA3 be as follows:

A1 = fu1; : : : ;um;w1; : : : ;wkg;

A2 = fv1; : : : ;vn0 ;:w1; : : : ;:wk0g;

A3 = fv1; : : : ;vn0 ; : : : ;vn;:w1; : : : ;:wk0 ; : : : ;:wkg:

That is, only the variables infw1; : : : ;wkg have different polarities inA1 andA3. (Note that some of

theuis may bevjs and vice versa.) Then,

(A1x A2)x A3 = (fu1; : : : ;um;w1; : : : ;wkgx fv1; : : : ;vn0 ;:w1; : : : ;:wk0g)

x fv1; : : : ;vn;:w1; : : : ;:wkg

= fu1; : : : ;um;v1; : : : ;vn0 ;w1; : : : ;wkgx fv1; : : : ;vn;:w1; : : : ;:wkg

= fu1; : : : ;um;v1; : : : ;vn;w1; : : : ;wkg;

(A1x A2)x (A3�A2) = (fu1; : : : ;um;w1; : : : ;wkgx fv1; : : : ;vn0 ;:w1; : : : ;:wk0g)

x (fv1; : : : ;vn;:w1; : : : ;:wkg�fv1; : : : ;vn0 ;:w1; : : : ;:wk0g)

= fu1; : : : ;um;v1; : : : ;vn0 ;w1; : : : ;wkg

x fvn0+1; : : : ;vn;:wk0+1; : : : ;:wkg

= fu1; : : : ;um;v1; : : : ;vn;w1; : : : ;wkg:

2

Remark 7.1 It should be noted that when only the difference is transmitted between two agents, as

described in Theorem 7.2, the same agent must always be given preference in resolving conflicting

assignments. A counter-example can be constructed if this is not followed. See Example 7.2.2

Example 7.2 This example illustrates that, between two agents, if the same agent is not given pref-

erence in resolving conflicting assignments, it is possible to end up with a partial truth assignment

that is not an autarky.



82

Let the formulaF bef[x], [y;v], [z], [u], [w], [t]g. Suppose there are two agentsα1 andα2,

and that while agentα1 finds autarkyA1 = fx;:y;u;v;wg, agentα2 finds autarkyA2 = fx;y;zg and

then later finds autarkyA3 = fx;y;z;u;:v; tg.

Now, consider the following sequence of autarky combining:

1. CombineA1 andA2, giving preference to agentα1 to resolve conflicting assignments. LetA12

denote the resulting partial truth assignment.

2. CombineA3�A2 andA12, giving preference to agentα2 to resolve conflicting assignments.

Let A312 denote the resulting partial truth assignment.

Then,

A12 = A1x A2

= fx;:y;u;v;wgx fx;y;zg

= fx;:y;z;u;v;wg;

A312 = (A3�A2)x A12

= (fx;y;z;u;:v; tg�fx;y;zg)

x fx;:y;z;u;v;wg

= fu;:v; tgx fx;:y;z;u;v;wg

= fx;:y;z;u;:v;w; tg:

The partial truth assignmentA312 is not an autarky because clause[y;v] contains a false literal but it

does not contain a true literal.2

7.3 Implementation

This section describes some aspects of the current implementation of Parallel Modoc. The imple-

mentation will hereinafter be referred to aspmodoc. Section 7.3.1 describes the “blackboard” that is

used by the Modoc agents to communicate lemmas and autarkies that are found during their search.
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blackboard

agent agent

agent agent

agent

write
info

info

read

Figure 7.1: A blackboard is used to communicate new autarkies and lemmas between agents in
pmodoc.

Section 7.3.2 discusses how the implementation deals withconditionalautarkies (Section 2.3). Sec-

tions 7.3.3 and 7.3.4 describe how lemmas and autarkies are communicated among the agents using

the blackboard, respectively

7.3.1 Blackboard

The current implementation uses a “blackboard” to communicate between different agents. As

shown in Figure 7.1, a blackboard is a shared resource to which agents may write new information

and from which agents may obtain new information. Inpmodoc, it is implemented as System V

shared memory segments. When a Modoc agent finds a new autarky or a new lemma, it writes the

new autarky or the new lemma to the blackboard. Other agents may, at their convenience, obtain

the new autarky or the new lemma from the blackboard and incorporate it into their collection of

autarkies and lemmas.

At this time, only the autarkies and lemmas that are attached to the verum> are communi-

cated. Such autarkies and lemmas are calledtop-levelautarkies andtop-levellemmas, respectively.

Top-level autarkies and lemmas have no “premise” under which they hold true (i.e., they arealways

true), thus allowing immediate use by other agents.

The blackboard is set up so that information written to the blackboard is never retracted



84

or revised. While this would not pose any problem for lemmas, it may for autarkies because of

conflicting autarkies. Inpmodoc, this is solved by giving the blackboard preference over all the

agents. This also satisfies the condition stipulated in Remark 7.1, which is necessary to use the

algorithm described in Theorem 7.2.

7.3.2 Dealing with Conditional Autarky

Section 7.2 discussed the possibility of conflicting autarkies in Parallel Modoc and presented a solu-

tion as Theorem 7.1. The theorem described an algorithm to combine twounconditionalautarkies.

However, in practice, when a new unconditional autarky is communicated to an agent, it is very

likely for the agent to be dealing with aconditionalautarky, that is, an “autarky” that is an autarky

for the formula resulting from strengthening the input formula with the current set of ancestor goal

nodes. Thus, it is further necessary to devise a mechanism to combine an unconditional autarky

with a possibly conditional autarky.

Two solutions are possible, each corresponding to which of the two autarkies gets pref-

erence. The current implementation of Parallel Modoc rejects the idea of giving preference to the

conditional autarky, which is the local autarky, for the following reason. LetAu denote the uncon-

ditional autarky that is being communicated to the agent, andAc denote the possibly conditional

autarky that is the current autarky being dealt with by the agent. Suppose there is a literalx wherex

is in Au and:x is in Ac. If we were to give preference toAc overAu, thenx would be discarded in

favor of:x. Let q denote the goal node to which the autarky literal:x is attached within the agent.

If the refutation of goal nodeq succeeds, then all autarky literals attached to this goal node and any

descendent goal nodes will be discarded. This would mean that the agent would lose:x from its

current autarky. By then, thex that the agent discarded in favor of:x is long gone. However, if

we were to give preference toAu overAc, then none of this could happen. Because of this,pmodoc

gives preference to the unconditional autarky over the possibly conditional autarky. This, however,

requires the Modoc agent to possibly revise its current autarky and hence partially back out from its

current search. Further details are given in Section 7.3.4.
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write
x

(a) A Modoc agent finds a new lemmax and writes it to the blackboard.

blackboard

x

agent agent

agent agent

agent

x

read

(b) A different Modoc agent incorporates the new lemmax into its collec-

tion of lemmas.

Figure 7.2: Communicating lemmas inpmodoc.
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7.3.3 Communicating Lemmas

Figure 7.2 shows how an agent may communicate a new top-level lemma to other agents inpmodoc.

Note that a top-level lemma consists only of a single literal (as it has no “premise”). When an agent

derives a new top-level lemmax, it writesx to the blackboard (Figure 7.2(a)). Other agents, at their

convenience, will incorporatex into their collection of top-level lemmas (Figure 7.2(b)). The new

lemma could then be used as if it had been derived locally by the agent. Further, if the agent is

currently attempting a refutation of a goal node labeled with:x, the search could be backed up to

the parent clause node of the goal node, as the goal node is now obviously refutable.

7.3.4 Communicating Autarkies

Figure 7.3 shows how an agent may communicate a new top-level autarky to other agents inpmodoc.

When an agent finds a new top-level autarky, it combines it with the autarky already in the black-

board (Figure 7.3(a)). Because it is possible for the two autarkies to be conflicting autarkies (Def-

inition 2.3), the algorithm described in Theorem 7.1 is used to combine the new autarky with the

autarky already in the blackboard. The preference is given to the autarky already in the blackboard.

To avoid transmitting the whole autarky every time a new autarky is found, the algorithm described

in Theorem 7.2 is used. Since the autarky already in the blackboard is given preference in resolving

conflicting assignments, the condition stipulated in Remark 7.1 is also satisfied.

Other Modoc agents, at their convenience, will incorporate the new autarky literals by

possibly revising their current autarky (Figure 7.3(b)). The enlarged autarky could then be used as

if it had been derived locally by the agent. Further, if the agent is currently attempting a refutation

that has performed an extension with a clause now satisfied by the enlarged autarky, the refutation

attempt can be backed up to the parent of the highest such clause, as this subrefutation cannot

succeed.
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(a) A Modoc agent finds a new autarky. It writes to the blackboard the new

autarky literals that do not conflict with the autarky in the blackboard. The
agent must revise its autarky if there is a conflict.

blackboard

∆A

agent agent

agent agent

agent

read

∆A

revise

(b) A different Modoc agent incorporates the new autarky literals by pos-

sibly revising its autarky.

Figure 7.3: Communicating autarkies inpmodoc.
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7.4 Increasing the Number of Goal Clauses

A problem with the current design of Parallel Modoc is that the number of theorem clauses in

the formula limits the maximum number of Modoc agents Parallel Modoc can utilize. This is

unfortunate because it would mean that the degree of parallel search will be dictated by the formula.

This section introduces the notion ofgoal clausesas the clauses that are suitable for use

as a top clause. So far, the set of goal clauses and the set of theorem clauses have been identical.

The idea that will be presented in this section is to construct a set of goal clauses whose number will

likely be greater than the number of theorem clauses, to allow a higher degree of parallel search.

To investigate the potential improvement by increasing the number of goal clauses, two

simple methods were considered. Both methods use resolution (Definition 1.12). The first method,

called clause exhaustion(CE), generates all possible resolvents involving the theorem clauses,

deletes the theorem clauses, and adds the resolvents as the goal clauses. The second method, called

variable exhaustion(VE), generates all possible resolvents over the variables used in the theorem

clauses, deletes all the clauses that were used in resolution, adds the resolvents, and makes the re-

solvents that were derived from a theorem clause the goal clauses. Example 7.3 illustrates the two

methods.

Example 7.3 This example illustrates how clause exhaustion and variable exhaustion may allow

construction of a set of goal clauses whose number is likely to be greater than the number of theorem

clauses. Consider the formula

f[a;b]; [a;:c;: f ]; [:a;b;c]; [:a;:c;:e]; [b;d]; [:b;c]; [:b;d]; [e; f ]g;

where the only theorem clause is[a;b] (shown above with an underline).

The clause-exhaustion method will first derive all the resolvents involving the theorem

clause[a;b]. They are

[a;c]; [a;d]; [b;c]; [b;:c;:e]:

The new formula would then be obtained by removing the theorem clause[a;b] from the formula

and adding the resolvents as the goal clauses, as

f[a;c]; [a;d]; [a;:c;: f ]; [:a;b;c]; [:a;:c;:e]; [b;c]; [b;:c;:e]; [b;d]; [:b;c]; [:b;d]; [e; f ]g:
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The variable-exhaustion method will first derive all the resolvents over the variables that

appear in the theorem clause, in this case,a andb. They are

[a;c]; [a;d]; [:a;c]; [:a;c;d]; [b;c]; [b;c;:c;: f ]; [b;:c;:e]; [c;d]; [:c;:e;: f ]; [d]:

Of the above clauses, the four underlined clauses were derived from the theorem clause. The new

formula is then obtained by removing all the clauses that contain eithera or b from the formula, and

adding the resolvents.

f[a;c]; [a;d]; [:a;c]; [:a;c;d]; [b;c]; [b;c;:c;: f ]; [b;:c;:e]; [c;d]; [:c;:e;: f ]; [d]; [e; f ]g

The resolvents that were derived from the theorem clause are used as the goal clauses (shown un-

derlined above).2

Initial experiments suggest that many of the resolvents are either tautologous (page 5) or

subsumed (Definition 1.11) by other clauses in the formula. Thus, before running Parallel Modoc,

formulas generated by both methods were subjected to the removal of tautologous clauses and

limited subsumption.

7.5 Experimental Results

This section compares the performance ofpmodoc against other satisfiability testers. Results were

obtained by experiments on various planning formulas, circuit-diagnosis formulas, pigeon-hole for-

mulas, and random formulas. The origin of the planning formulas was described in Section 6.10.

Other satisfiability testers used in the experiments arewalksat, 2cl, andmodoc. Both walksat

and2cl were briefly described in Section 6.10.

In summary, the results show thatpmodoc is able to improvemodoc via simultaneous

execution of multiple searches, sometimes aided by cooperation among the Modoc agents. How-

ever, for simple formulas, the overhead of parallel execution tends to dominate the search cost.

Improvement due to communicating autarkies and lemmas varies from formula to formula.

All experiments in this section were performed on an SGI with four 150MHz R4400

processors. Each Modoc agent was executed as a separate Unix process.
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In reporting search times forpmodoc, depending on the purpose, either the total elapsed

time and/or the elapsed time per agent were computed and reported. The former allows us to com-

parepmodoc to other satisfiability testers with regards to its use of computing resource. The latter

allows us to estimate the potential ofpmodoc on a parallel computer with as many CPUs as there

are goal clauses.

7.5.1 Improvements by Parallel Search and Communicating Information

Planning Formulas

Table 7.4 shows the search times on hard planning formulas generated by Medic. (Medic may

generate formulas in a number of different encodings. The encoding has been included in the tables

to help identify the formula. This dissertation does not discuss encoding issues; explanation of these

encodings may be found elsewhere [15].) The problems were selected based on an earlier study in

which the corresponding satisfiable formulas causedmodoc to time out after 600 seconds. (Because

of this selection criteria, the search times ofmodoc in this table are not a fair representation of its

capabilities.)

In many cases, the speedup bypmodoc was far greater than the number of agents. For-

mulas that could not be solved in one hour using other satisfiability testers were often solved in the

order of minutes, and in some cases, in seconds. This shows thatpmodoc benefits greatly from the

parallel searches and not simply from the increase in the number of processors.

Communicating autarkies did not help, in the sense that when an autarky was found, it was

actually a satisfying truth assignment, and thus, no further search was necessary. Communication

of lemmas occurred on all the formulas, but no correlation appears to exist between the number

of lemmas communicated (not shown) and the amount of improvement in search time. Actually,

this was expected. A derivation of a lemma only implies apotential to save time, not a guarantee.

Unless a goal node labeled with the complement of the lemma literal is created, the lemma is of no

value at all. In fact, a small overhead to derive and record the lemma must be incurred at the time

of derivation, making lemma strategies costly if the lemmas are never (or rarely) used. For each

problem, the unsatisfiable formula generally had more lemmas communicated than the satisfiable
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problem/ #TC en- num num search time (seconds)
deadline cod- of of walksat 2cl modoc pmodoc

ing vars literals no comm comm

big-bw1/11 6 ccse 980 77,629 ? ? ? ? ?
ecse 798 14,090 5 28 951 16 10 16 10

fridge2/13 2 cbse 180 10,485 ? ? ? 25 25 24 24
ccse 346 10,370 ? ? ? 78 78 78 78
crse 310 9,880 774 ? ? 582 582 581 581

hanoi3/7 3 cbse 158 25,468 ? 244 618 98 98 70 70
monkey2/9 2 cbse 250 37,696 ? 18 ? ? ?

cfst 331 14,465 ? 686 974 909 909 387 387
crse 601 48,757 ? ? ? ? ?

tire2/14 6 ccse 677 41,343 ? ? 3375 164 110 83 55
cfst 623 34,944 ? ? ? ? ?
crse 628 40,002 ? ? ? ? 1281 854
efst 512 19,309 1917 478 ? 3 2 3 2

(a) Search times on the satisfiable hard planning formulas generated by Medic.

problem/ #TC en- num num search time (seconds)
deadline cod- of of walksat 2cl modoc pmodoc

ing vars literals no comm comm

big-bw1/10 6 ccse 888 69,851 — ? ? ? ?
ecse 707 12,375 — 231 222 223 149 115 76

fridge2/12 2 cbse 166 9,616 — ? ? 216 216 108 108
ccse 318 9,492 — ? ? 2113 2113 1869 1869
crse 285 9,043 — ? ? 1528 1528 444 444

hanoi3/6 3 cbse 135 21,388 — 104 79 45 45 26 26
monkey2/8 2 cbse 222 33,194 — 2365 ? ? 1701 1701

cfst 291 12,532 — 364 301 302 302 61 61
crse 529 42,641 — ? 1626 462 462 178 178

tire2/13 6 ccse 625 38,014 — ? ? ? ?
cfst 577 32,177 — ? ? ? ?
crse 580 36,783 — ? ? ? ?
efst 467 17,385 — 192 1900 1902 1268 1968 1312

(b) Search times on the unsatisfiable hard planning formulas generated by Medic.

Table 7.4: Search times of various satisfiability testers on the hard planning formulas generated
by Medic. Number of variables and literals are after simplification. Times are elapsed seconds;
for pmodoc, both the measured elapsed seconds (first column) and the computed elapsed seconds
per agent (second column) are shown. They were obtained on an SGI with four 150MHz R4400s.
walksat times are average of 5 runs. ‘—’ indicates that the run was not attempted; this is because
walksat cannot confidently determine unsatisfiability. ‘?’ indicates that the run was terminated
after 1 hour; forwalksat, it means that none of the 5 runs found a solution in 1 hour; forpmodoc,
it means that none of the agents found a solution in 1 hour. (#TC = number of theorem clauses)
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problem/ #TC num num search time (seconds)
deadline of of walksat 2cl modoc pmodoc

vars literals no comm comm

logistics.a/11 8 638 13,089 1 1 1 9 4 3 2
logistics.c/13 7 897 21,412 2 90 3 39 22 5 3
bw large.c/14 15 2,222 78,146 146 12855 15439 25 7 17 5
bw large.d/18 19 4,714 205,559 1494 ?? 58 239 50 101 21

(a) Search times on the satisfiable Satplan formulas

problem/ #TC num num search time (seconds)
deadline of of walksat 2cl modoc pmodoc

vars literals no comm comm

logistics.a/10 8 541 10,598 — 2 3 10 5 5 2
logistics.c/12 7 787 18,244 — 11154 1132 2401 1372 1195 685
bw large.c/13 15 1,935 66,547 — 2769 5389 2695 719 2010 536
bw large.d/17 19 4,275 184,180 — ?? ?? ?? ??

(b) Search times on the unsatisfiable Satplan formulas.

Table 7.5: Search times of various satisfiability testers on the hard planning formulas generated
by Satplan. Number of variables and literals are after simplification. Times are elapsed seconds;
for pmodoc, both the measured elapsed seconds (first column) and the computed elapsed seconds
per agent (second column) are shown. They were obtained on an SGI with four 150MHz R4400s.
walksat times are average of 5 runs. ‘—’ indicates that the run was not attempted; this is because
walksat cannot confidently determine unsatisfiability. ‘??’ indicates that the run was terminated
after 5 hours; forpmodoc, it means that none of the agents found a solution in 5 hours. (#TC =
number of theorem clauses)

formula.

On four satisfiable formulas (fridge2 in cbse, ccse, and crse encodings, and tire2 in efst

encoding), the two Modoc derivations that led to determining that the formula was satisfiable, one

communicating autarkies and lemmas and another not communicating at all, were the same. This

means that the lemmas that were communicated did not help at all to shorten the search for these

formulas.

Table 7.5 shows the search times on hard planning formulas generated by Satplan. The

cause of exceptional improvement bypmodoc overmodoc on the satisfiable bwlarge.c formula was

that modoc started with a “bad” top clause. A separate study (Figure 7.1) shows that hadmodoc

started with the seventh goal clause, it could have solved the formula in 4 seconds. Although this
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num dead- num of num num search time (seconds)
of line theorem of of walksat 2cl modoc pmodoc

checkers clauses vars literals no comm comm

2 8 4 105 3,900 1.08 1.90 0.02 0.08 0.08 0.13 0.13
3 15 6 282 18,294 12564 ?? 39 2 2 3 2
4 24 8 597 55,934 ?? — 12883 1626 813 1606 803

(a) Search times on the satisfiable checker-interchange formulas.

num dead- num of num num search time (seconds)
of line theorem of of walksat 2cl modoc pmodoc

checkers clauses vars literals no comm comm

2 7 4 90 3,238 — 2.00 0.12 0.30 0.30 0.48 0.48
3 14 6 261 16,794 — ?? 121 199 132 186 124
4 23 8 570 53,252 — — ?? ?? ??

(b) Search times on the unsatisfiable checker-interchange formulas.

Table 7.6: Search times of various satisfiability testers on the checker-interchange formulas. Num-
ber of variables and literals are after simplification. Times are elapsed seconds; forpmodoc, both
the measured elapsed seconds (first column) and the computed elapsed seconds per agent (second
column) are shown. They were obtained on an SGI with four 150MHz R4400s.walksat times are
average of 5 runs. ‘—’ indicates that the run was not attempted; forwalksat, this is because it can-
not confidently determine unsatisfiability. ‘??’ indicates that the run was terminated after 5 hours;
for walksat, it means that none of the 5 runs found a solution in 5 hours; forpmodoc, it means that
none of the agents found a solution in 5 hours.

formula may be an exceptional case, this is exactly the kind of situation Parallel Modoc attempts to

“rescue” by means of parallel searches. For a formula like this, even runningpmodoc on a single-

processor system can easily outperformmodoc.

Table 7.6 shows the search times on the checker-interchange formulas (see Section 6.10.1).

Improvements bypmodoc were observed on the satisfiable formulas. On the unsatisfiable checker-

interchange formula for 3 checkers, the search time ofpmodoc was more than the search time of

modoc. This was reflected in the number of PDT extension operations performed by the Modoc

agent that proved that the formula was unsatisfiable; whilemodoc found a refutation in 698,469

PDT extensions, the Modoc agent that found a refutation inpmodoc took 720,413 PDT extensions

without communication and 722,043 PDT extensions with communication.
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Figure 7.4: Search times ofmodoc andpmodoc on the pigeon-hole formulas. Times are elapsed
seconds per agent and were obtained on an SGI with four 150MHz R4400s. All formulas are
unsatisfiable by construction of the problem.

Pigeon-Hole Formulas

The pigeon-hole problem forn pigeons asks the question of whether or not it is possible to place

n pigeons inton� 1 boxes that contain only a single pigeon in each one of them. The problem

is obviously impossible and hence the corresponding formula is unsatisfiable. The pigeon-hole

formulas were used to show that certain class of formulas cannot have refutation proofs that are

polynomially bound [20].

Unlike planning problems, pigeon-hole problems have no clear partition of the formula

into axioms and the theorem. Rather, they are a collection of constraints that need to be satisfied. We

call such problemsglobal optimization problems. Because of this, it is not suited for goal-sensitive

search.

Figure 7.4 shows the search times ofmodoc andpmodoc on the pigeon-hole formulas.

It shows thatpmodoc on ann processor computer would be able to find a solution faster than

modoc, and that the growth rate ofpmodoc is slower with 8 agents than with 4 agents. Figure 7.5

shows the efficiency of search bypmodoc as the ratio of total time consumed bypmodoc over the
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time consumed bymodoc on the same formula. While the search efficiency ofpmodoc was low

(meaning that it consumed more time thanmodoc) on smaller formulas, it improved with the size

of the formula. For 11 pigeons, the search efficiency ofpmodoc with 8 agents was above 100%,

meaning that it consumed less time thanmodoc to find a solution.

Random Formulas

Figure 7.6 shows the average search times ofmodoc andpmodoc on rand141, a collection of 200

3-CNF random formulas with 141 variables and 602 clauses. Figure 7.7 shows the speedup on the

same collection of random formulas. A greater speedup is observed for the satisfiable formulas.

7.5.2 Improvements by Increasing the Number of Goal Clauses

The effect of a larger number of goal clauses than the number of theorem clauses constructed using

the two methods described in Section 7.4 was examined on two classes of formulas—the circuit-

diagnosis formulas and the planning formulas. In summary, the methods allowed the formulas to be

solved in a shorter time in many cases, but there were a few cases where the formula became too
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difficult to be solved within the alloted time.

Circuit-Diagnosis Formulas

Circuit-diagnosis formulas are formulas generated by adiagnosis test pattern generation(DTPG)

program [7, 8]. Such a formula has the property that it is satisfiable if and only if the outputs of

two differently faulty circuits differ for some common input. For our tests, we have used formulas

generated from the C6288 circuit in the ISCAS85 benchmark. C6288 is a 16-bit multiplier with

2406 gates. Faults simulated are “single stuck-at” faults.

Unfortunately, we were not given sufficient information to determine the theorem clauses.

Therefore, an educated guess was made to pick a single clause as the theorem clause for each

formula. While this was sufficient for Modoc, for Parallel Modoc, we wish to have more than one

theorem clause so that multiple search attempts could be made at the same time.

Table 7.7 shows the search times ofwalksat, 2cl, modoc, andpmodoc on the circuit-

diagnosis formulas. Results were mixed. While there were formulas for whichpmodoc did ex-

tremely well (e.g., formulas 1, 12, and 14), there were formulas for whichpmodoc did much worse

(e.g., formula 3).

Planning Formulas

Table 7.8 compares search times ofpmodoc on some of the formulas listed in Table 7.4. Improve-

ments of varying degree were observed on most of the formulas.

Degradation of performance was observed on fridge2 with cbse encoding when using

clause exhaustion for both the satisfiable and the unsatisfiable formulas. (This was also observed on

a few formulas using variable exhaustion in Table 7.7.) What was solvable in a few minutes now

could not be solved in one hour.

It is worth mentioning that there is no guarantee that the searches performed using the

original formula will be among the searches performed using the formula with a larger number of

goal clauses. This is despite that runningpmodoc on the formula with a larger number of goal

clauses created by either clause exhaustion or variable exhaustion is essentially running Modoc
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fmla num num #GC search time (seconds)
num of of walksat 2cl modoc pmodoc

vars literals CE VE CE VE

1 3,230 24,151 6 8 ? ? ? 6 4 7 4
2 3,238 24,677 6 8 ? ? 39 8 6 99 50
3 3,432 26,063 6 8 ? ? 953 1356 904 ?
4 3,119 23,239 6 8 ? 408 98 31 21 62 31
5 4,357 34,639 6 9 ? 29 ? ? ?
6 4,355 34,616 6 9 ? 551 ? ? ?
7 3,011 22,178 6 9 ? ? 183 52 35 2623 1166
8 3,011 22,180 6 9 ? ? 146 17 11 30 13
9 3,011 22,180 6 9 ? ? 76 8 5 10 4

10 3,003 22,103 9 15 ? ? 268 38 17 53 14
11 3,433 26,035 6 8 ? ? 29 53 35 ?
12 2,897 21,110 8 14 ? ? 2348 9 5 19 5
13 2,897 21,110 8 14 ? 1256 131 12 6 354 101
14 2,897 21,110 8 14 ? 1269 2425 7 4 14 4
15 3,971 31,117 6 8 ? 62 ? ? ?
16 3,058 22,640 6 8 ? ? ? ? ?
17 3,008 22,228 6 8 ? 97 36 58 39 76 38
18 2,779 22,180 8 14 ? 76 92 16 8 908 259

Table 7.7: Search times of various satisfiability testers on the circuit-diagnosis formula set. All
formulas are known to be satisfiable. Forpmodoc, multiple goal clauses were created using clause
exhaustion (CE) and variable exhaustion (VE), described in Section 7.4. Number of variables and
literals are after simplification. Times are elapsed seconds; forpmodoc, both the measured elapsed
seconds (first column) and the computed elapsed seconds per agent (second column) are shown.
They were obtained on an SGI with four 150MHz R4400s. ‘?’ indicates that the run was terminated
after 1 hour; forpmodoc, it means that none of the agents found a solution in 1 hour. (#GC = number
of goal clauses)
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problem/ en- orig CE VE
deadline cod- #GC search #GC search #GC search

ing seconds seconds seconds

big-bw1/11 ecse 6 16 10 18 36 8 18 32 7
fridge2/13 cbse 2 24 24 18 ? 18 30 7

ccse 2 78 78 24 259 43 24 267 45
crse 2 581 581 24 1356 226 24 1334 222

hanoi3/7 cbse 3 70 70 45 582 52 45 445 40
monkey2/9 cbse 2 ? 15 ? 15 ?

cfst 2 387 387 14 1057 302 14 1065 304
tire2/14 efst 6 3 2 23 4 1 23 4 1

(a) Search times on the satisfiable formulas.

problem/ en- orig CE VE
deadline cod- #GC search #GC search #GC search

ing seconds seconds seconds

big-bw1/10 ecse 6 115 76 18 215 48 18 222 49
fridge2/12 cbse 2 108 108 18 ? 18 434 96

ccse 2 1869 1869 24 10603 1767 24 10588 1765
crse 2 444 444 24 1633 272 24 4190 698

hanoi3/6 cbse 3 26 26 45 221 20 45 192 17
monkey2/8 cbse 2 1701 1701 15 5942 1854 15 5928 1581

cfst 2 61 61 14 156 45 14 135 39
tire2/13 efst 6 1968 1312 23 921 160 23 881 153

(b) Search times on the unsatisfiable formulas.

Table 7.8: Effect of clause exhaustion (CE) and variable exhaustion (VE), described in Section 7.4,
on pmodoc search times. The formulas were derived from the formulas reported in Table 7.4.
Times are measured elapsed seconds (first column) and computed elapsed seconds per agent (second
column); they were obtained on an SGI with four 150MHz R4400s. (#GC = number of goal clauses)
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for each clause node that is one level-down from the top clauses with the original formula. This

is because of the following reason. In deciding the order in which to extend the goal nodes, the

Modoc search procedure inpmodoc tests whether they are lemmas or not; that is, goal nodes that

are lemmas are deferred in favor of goal nodes that are not. Thus, with a different set of lemmas,

it is possible for a search to be steered away from the search in the previous run, even if the search

started from the same top clause.

7.6 Summary

Figure 7.8 compares the search times ofpmodoc againstmodoc on the planning formulas reported

in Section 7.5. (Only formulas for which bothmodoc andpmodoc found a solution in 1 hour are

shown.) Plots in the lower-right triangle represent formulas for whichpmodoc was able to find a

solution faster thanmodoc. In almost all cases,pmodoc was faster thanmodoc. Further, there were

many cases (not shown in Figure 7.8; see Table 7.4) wheremodoc was not able to find a solution in

1 hour yetpmodoc was able to find a solution in the order of minutes, and in some cases, seconds.
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As designed, Parallel Modoc cannot utilize any more agents than the number of theo-

rem clauses. Variable exhaustion (VE) is one of the two methods that was explored to break this

constraint. Figure 7.9 shows the effect of the variable-exhaustion method on the search times of

pmodoc. Plots in the lower-right triangle represent formulas for which the method allowedpmodoc

to find a solution faster. While the method was able to increase the degree of parallel search and

allowedpmodoc to find a solution in less time in most cases, there were few cases where it causes

pmodoc to take more time.
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Chapter 8

Conclusions

This dissertation examined the problem of determining satisfiability in a parallel cooperative com-

puting environment. Parallel Modoc (Chapter 7) executes multiple Modoc agents and provides

a mechanism to allow the agents to communicate information discovered about the formula. The

Modoc algorithm (Section 2.3) is a refutation-search procedure based on propositional Model Elim-

ination, extended to prune away certain branches that will not lead to a successful subrefutation.

Modoc allows goal-sensitive search, an ability to focus its search on clauses that would determine

the satisfiability of the formula. Experience shows that the search time varies widely depending

on the clause chosen to focus the search on. Modoc, as a sequential search procedure, must make

a choice among the several possible choices. At this time, it is possible for Modoc to choose the

“wrong” clause, causing it to not being able to find a solution within a reasonable amount of time.

However, as a multi-search procedure, Parallel Modoc is able to exploit this variation in search time,

and because of this, it is often able to find a solution much faster than Modoc. It is not uncommon

for Parallel Modoc to achieve speedup greater than the number of agents. Parallel Modoc has al-

lowed many formulas that were too hard to be solved in practice to be solved within a reasonable

amount of time.

Several future research directions are possible for both Modoc and Parallel Modoc. Little

work has been done to study the effect of various ordering heuristics in the current implementation

of Modoc. We have just started experimenting with scoring techniques to order goal nodes, similar
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to the techniques used in some DPLL-type algorithms to order splitting variables. The study should

definitely be expanded to order eligible extension clauses, where there are relatively more choices.

For Parallel Modoc, the degree of parallel search and the amount of cooperation should be

increased. With regards to increasing the degree of parallel search, some preliminary results have

been obtained from methods based on resolution to construct (hopefully) a lager number of goal

clauses than the number of theorem clauses. Certainly, this direction is promising, but at the same

time, other methods to introduce parallelization at various places should be examined. With regards

to increasing the amount of cooperation, expanding the types of information that is communicated

among the agents could be considered. As an example, communicating lemmas that are not top-level

lemmas but only have few dependencies might be a good candidate.

Another direction would be to extend Parallel Modoc to a non-homogeneous multi-agent

search procedure. While Modoc agents (or some satisfiability testing agent) may have to do most of

the work, other types of agents may be able to provide vital information using different algorithms.

An example would be to have an agent that reasons exclusively on binary clauses and communicates

any new finding to the Modoc agents.

Today, with the proliferation of personal computers, many of them connected to computer

networks, it is common to have several fast computers with idle cycles available at a single site.

As the need for faster satisfiability testers grows, with the abundance of computing resource, a

satisfiability tester in the form of a parallel cooperative search may allow a breakthrough in the size

of formulas that may be solved in practice.
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