Computational analysis of non-coding RNA

Andrew Uzilov
auzilov@ucsc.edu
BME110
Tue, Nov 16, 2010
Corrected/updated talk slides are here:

http://tinyurl.com/UzilovRna

redirects to:

http://users.soe.ucsc.edu/~auzilov/BME110/Fall2010/
Talk progress

• **Overview**
 • RNA structure
 – fundamentals
 – computational RNA folding (mfold)
 • Gene-specific computational models
 – Rfam database
 – tRNA (tRNAscan-SE)
 – C/D box snoRNA (snoscan)

• **Practical guide**
Why RNA?
An evolutionary perspective

The “RNA World” hypotheses: life arose as self-replicating non-coding RNA (ncRNA)

Figure is from cover of “The RNA World,” 3rd ed., Gesteland et al
Why RNA?
An evolutionary perspective

– Evidence for an RNA World: many core biological mechanisms are RNA-based
 – translation (rRNA, tRNA)
 – splicing (snRNA)
 – RNA processing (RNase P)
 – protein trafficking (SRP RNA)
 – and many, many more!

– RNA is very versatile
 – a passive carrier of information (mRNA)
 – an active component in biological processes (ncRNA)
 – sometimes both!
ncRNA can have many roles

- **Structural** – fold into complex 3-D structures, usually scaffolds for proteins
 - rRNA, snRNA, tRNA, etc.

- **Antisense** ("guides") – form specific base pairings to "target" RNAs
 - snRNA, snoRNA, microRNA, siRNA, piwiRNA, etc.
 - tRNA??

- **Catalytic** ("ribozymes") – catalyze biochemical reactions
 - rRNA, RNase P, group I & II introns, hammerhead, HDV, etc.
 - snRNA??

- **Regulatory** – regulate gene expression
 - microRNAs, siRNA, piwiRNA, many bacterial small RNAs
RNA chemistry overview

- Base, sugar, phosphate backbone
- 5’ and 3’ ends
- Less stable than DNA or protein

(Images from Wikipedia)
RNA fundamentals

- Sequence alphabet: A, C, G, U (T~U)
- Come in all sizes: 10s of bases to 1000s of bases
- RNA can form base pairs
 - canonical (“normal”)
 - A-U, G-C (Watson/Crick)
 - G-U (“wobble”)
 - non-canonical
 - U-U, G-A, etc.

(image credit: http://www.rosalindfranklin.edu/DNN/home/CMS/biochem/Faculty/Walters/ComputerApplications/RNA/tabid/1202/Default.aspx)
RNA can be modified or edited

- RNAs may undergo chemical modifications or base editing which may affect their
 - base pairing
 - 3-D structure
 - stability/turnover
 - function

- Some common modifications
 - methylation of 2’ oxygen of ribose (2’-O-methylation)
 - uridine -> pseudouridine (Ψ)
 - adenoside-to-inosine (A-to-I) editing
What patterns can we use in RNA bioinformatics?

• Base pairing
 – within the same RNA (intramolecular aka *cis*)
 – sense/anti-sense pairing between two RNAs (intermolecular aka *trans*)
 – conserved by evolution (sequence may diverge)

• Base frequency bias
 – Example: G-C base pairs are most stable, so ncRNA or other “structured” RNA
RNA + Proteins = Complexes

• ncRNAs usually do no act alone, but are complexed with proteins

• Sites of interaction with other RNAs or proteins exert selective pressure to conserve sequence or structure

• Sites of interaction make up conserved motifs one looks for to help identify RNA and/or determine function
Talk progress

• Overview

• RNA structure
 – fundamentals
 – computational RNA folding (mfold)

• Gene-specific computational models
 – Rfam database
 – tRNA (tRNAscan-SE)
 – C/D box snoRNA (snoscan)

• Practical guide
Levels of RNA structure

primary “structure”

Enzyme: GGAUGUACUACCAGCUGAUGAGUCCCCAAAUAGGACGAAACG
Substrate: GGCGUCCUGGUAUCCAAUCC

secondary structure

Figure modified from Martick and Scott (2006).
Levels of RNA structure

secondary structure

tertiary contacts

Figure modified from Martick and Scott (2006).
Levels of RNA structure

Figure modified from Martick and Scott (2006).
SRP RNA Orthologs: Same Function, Similar Structure, < 70% sequence identity

Secondary structure of human SRP RNA

Halobacterium halobium SRP RNA (SRPDB, March 10, 2000)
Baker’s Yeast (S. cerevisiae)
Large Subunit rRNA secondary structure
Key points

• Analysis of RNA secondary structure (the set of base pairs) alone can tell you a lot!

• Most computational RNA tools model secondary structure and primary sequence

• Many computational tools exist to predict the secondary structure (to fold RNA) in a general way
Features of RNA secondary structure

- a. hairpin loop / stem loop
- b. internal loop
- c. bulge loop
- d. multibranch loop
- e. stem / helix
- f. pseudoknot
Features of RNA secondary structure

- a. hairpin loop / stem loop
- b. internal loop
- c. bulge loop
- d. multibranch loop
- e. stem / helix
- f. pseudoknot

Not modeled by most folding algorithms!
Talk progress

• Overview

• RNA structure
 – fundamentals
 – computational RNA folding (mfold)

• Gene-specific computational models
 – Rfam database
 – tRNA (tRNAscan-SE)
 – C/D box snoRNA (snoscan)

• Practical guide
Many algorithms find optimal fold by free energy minimization

Base pair stacking is stabilizing, confers an “energy bonus”

\[\Delta G^\circ = -RT \ln K_{eq} \]

\[\Delta G = -3.26 + (-1.6) + 5.4 + (-0.8) + (-3.42) = -3.7 \text{ kcal/mol} \]
Computational RNA Folding

• Most popular is mfold by Michael Zuker
 – http://mfold.rna.albany.edu
 – under software, click “mfold,” then click “RNA Folding Form”

• Computes several structures
 – Optimal (MFE) structure
 – Suboptimal structures
RNA folding caveats

• mfold often will *not* give you the true structure, it is just a reasonable approximation

• If you have candidate homologs from multiple species, use mfold to see if secondary structure is being preserved (compensatory mutations maintaining structure)
 - However, for two species, better tools exist to do this (covered in next lecture, Tue Nov 23)
How to use mfold

• Paste in RNA sequence (can be in DNA letters)
• Use defaults, except, set “structure annotation” to p-num
• Look at energy dot-plot
 – Black dots are in optimal structure
 – Colored dots in sub-optimal structures
• Look at top structures (within 10% of optimal)
 – Are there many?
 – Which features are consistent between structures?
 • These are the most dependable aspects of structure
• Use “compare selected foldings” to see differences between different folds
LIVE mfold DEMO

U1a snRNA (164 nt):

AUACUUACCUGGCAGGGGAGAUACCAUGAUACACGAAGGUGGUUUUUC
AGGGCGAGGCUUAUCCAUUGCACUCUCGGAUGUGCUUGACCCCUUCGGAU
UCCCCAAUGCGGGAAACUCGACUGCAUAAUUUGUGGUAGUGGGGGAC
UGCGUUGCUGCUCUCUCCCUG
Talk progress

• Overview
• RNA structure
 – fundamentals
 – computational RNA folding (mfold)
• Gene-specific computational models
 – Rfam database
 – tRNA (tRNAscanscan-SE)
 – C/D box snoRNA (snothem)
• Practical guide
The Rfam database

• A comprehensive database of ncRNA structures, alignments, and annotations
 http://rfam.sanger.ac.uk/
 (U.S. mirror exists, but I recommend the U.K. site)

• Every ncRNA has a covariance model describing its secondary structure

• Just like in Pfam (protein sister site), you can paste in your sequence and look for matches to RNA gene models
Dot/bracket secondary structure notation

Base pairs are matching parentheses

AAGCGAUUUUAUCCGCUU

. . ((((. . . .)) .)) . .

Alternative base pair symbols:

<> {}

Alternative unpaired base symbols:

_ - : ,
Rfam caveats

• Structure models only contain conserved base pairs, which is a minimal set (your favorite species might have additional base pairs)

• Many structure models are based on computational predictions!
 – “published” versus “predicted”
U1a snRNA (164 nt):

AUACUUACCUGGCAGGGGAGAUACCAUGAUCACGAAGGUGGUUUUCCCAUGGGCGAGGCUUAUCCAUUGCACUCCGGAUGUGCUGACCCCCUCUGC
UCCCAAAUGCGGGAAACUCGACUGCAUAAUUUGUGGUAGUGGGGGAUCUGC
UGCGUUCGCUCUCUCCCCCG
Talk progress

• Overview
• RNA structure
 – fundamentals
 – computational RNA folding (mfold)
• Gene-specific computational models
 – Rfam database
 – tRNA (tRNAscan-SE)
 – C/D box snoRNA (snoscan)
• Practical guide
tRNAs: a well-studied ncRNA gene family

Transfer RNAs (tRNAs) – “decode” mRNA codons into cognate amino acids in protein translation

- Examples: tRNA-AGC(Ala), tRNA-ACC(Gly)…
 (62 kinds possible)

- Structured RNA and “antisense” interaction between tRNA anticodon and mRNA codon
tRNA “cloverleaf” secondary structure

3-D structure

Anticodon loop

D loop

5' - 3'

Acceptor

TψC loop

Variable loop
Useful tRNA databases

Genomic tRNA Database
http://lowelab.ucsc.edu/GtRNAdb/

Sprinzl tRNA Database
http://www.uni-bayreuth.de/departments/biochemie/sprinzl/trna/

Using Rfam for tRNA is not advised!
tRNAscan-SE

http://lowelab.ucsc.edu/tRNAscan-SE/

• Finds tRNAs in genome sequences using probabilistic models

• A gene-specific covariance model at the core

• Fast, accurate
LIVE tRNAscan-SE DEMO

A mystery tRNA:

GGGGGUGUAGCUCAGUGGUAGAGCGCGUGCUUCGCAUGUACGAGGCC
CGGGUUUCAAUCCCGGCGACCUCUCCA
Talk progress

• Overview
• RNA structure
 – fundamentals
 – computational RNA folding (mfold)
• **Gene-specific computational models**
 – Rfam database
 – tRNA (tRNAscan-SE)
 – C/D box snoRNA (snoscan)
• Practical guide
C/D box snoRNA

- Guide 2'-O-methylation of target RNA by bound proteins
- 1 or 2 guide regions base pair to target RNA(s) to specify where methylation occurs
- Only known to methylate rRNA and tRNA in Archaea, and rRNA and snRNA in Eukarya

Figure from Dennis & Omer (2005).
C/D box snoRNA canonical features

Very little secondary structure, but short “box” motifs and antisense “guide sequence” conserved
Cloned sRNAs from *S. acidocaldarius*

<table>
<thead>
<tr>
<th>sRNA</th>
<th>C box</th>
<th>Dp box</th>
<th>Cp box</th>
<th>D box</th>
</tr>
</thead>
<tbody>
<tr>
<td>sR1</td>
<td>F GAG</td>
<td>UUGAUUGA</td>
<td>- - GAGUUUAA</td>
<td>GCGA - - - - -</td>
</tr>
<tr>
<td>sR2</td>
<td>F GA</td>
<td>GUGAUGA</td>
<td>- - GACGAGCGCUA</td>
<td>CAGA - - GAGA</td>
</tr>
<tr>
<td>sR3</td>
<td>F AGG</td>
<td>AUGACGA</td>
<td>- - GACCCCAAUA</td>
<td>UUGA - - - -</td>
</tr>
<tr>
<td>sR4</td>
<td>N G</td>
<td>UUGAUGA</td>
<td>- - GCACAUUUUU</td>
<td>CUGA - - UUUA</td>
</tr>
<tr>
<td>sR5</td>
<td>FN GAA</td>
<td>AUGAUGA</td>
<td>- - AUGGUCACGGAA</td>
<td>CGGA - - CCU</td>
</tr>
<tr>
<td>sR6</td>
<td>F GG</td>
<td>AUGAUGA</td>
<td>- - - - CCAAAUAGA</td>
<td>CUGA - - AAG</td>
</tr>
<tr>
<td>sR7</td>
<td>F G</td>
<td>AUGAUGA</td>
<td>- - CAAAGACGC</td>
<td>UGGA - - - -</td>
</tr>
<tr>
<td>sR8</td>
<td>N G</td>
<td>AUGAUGA</td>
<td>- - AGCCCGCAUCAA</td>
<td>CAGA - - UAA</td>
</tr>
<tr>
<td>sR9</td>
<td>F AAAUA</td>
<td>AUGAUGA</td>
<td>- - CUAACCAUAU</td>
<td>CUGA - - CCA</td>
</tr>
<tr>
<td>sR10</td>
<td>F GA</td>
<td>AUGAUGU</td>
<td>- - GGAUCCGGAU</td>
<td>CUGA - - GA</td>
</tr>
<tr>
<td>sR11</td>
<td>F GAAU</td>
<td>GUGAUGA</td>
<td>- - UGGGUCGCAUGUA</td>
<td>CUGA - - UUAG</td>
</tr>
<tr>
<td>sR12</td>
<td>F GA</td>
<td>AUGAAGA</td>
<td>- - ACGCAACUUUAU</td>
<td>CUGA - - GGU</td>
</tr>
<tr>
<td>sR13</td>
<td>N AGG</td>
<td>AUGAUGU</td>
<td>- - ACUUCACCUCA</td>
<td>CUGA - - AAG</td>
</tr>
<tr>
<td>sR14</td>
<td>FN GCU</td>
<td>GUGAAGA</td>
<td>- - CGCUAGACUUAGA</td>
<td>CUGA - - CUC</td>
</tr>
<tr>
<td>sR15</td>
<td>F A</td>
<td>GUGAUGA</td>
<td>- - GGAACCAACGAGAG</td>
<td>CUAG - - U</td>
</tr>
<tr>
<td>sR16</td>
<td>N GA</td>
<td>AUGAAGA</td>
<td>- - CGUUCCACCGGA</td>
<td>GCGA - - - -</td>
</tr>
<tr>
<td>sR17</td>
<td>F AGAA</td>
<td>AUGAAGA</td>
<td>- - CUAUAACCCGG</td>
<td>CUGA GAUA</td>
</tr>
<tr>
<td>sR18</td>
<td>N AA</td>
<td>GUGAUGA</td>
<td>- - CAGAACCACGC</td>
<td>UUGA - - AAG</td>
</tr>
<tr>
<td>Sao</td>
<td>sR1</td>
<td>ACAG</td>
<td>A - - AUUCGCAUAGU</td>
<td>ACGA - - - -</td>
</tr>
</tbody>
</table>

Consensus

- **9.14 nt guide**: AUGAUGA
- **9.5 nt**: CUGA
- **12.22 nt guide**: AUGAUGA
- **2.18 nt**: CUGA
Useful C/D box snoRNA databases

snoRNABase (human only)
http://www-snorna.biotoul.fr/

yeast snoRNA database
http://www.bio.umass.edu/biochem/rna-sequence/Yeast_snoRNA_Database/snoRNA_DataBase.html
sinoscan: a program to screen for C/D box snoRNA

- Search for box D in query sequence
- Search for box C 35-200 bp upstream
- Search for rRNA complementarities (>8 bp in length)
- Choose box D' if rRNA match **not** next to box D
- Identify predicted rRNA methylation site
- Score prediction against snoRNA probabilistic model
snoscan probabilistic model

[Diagram with various boxes and arrows indicating molecular interactions]
LIVE snoscan DEMO

A mystery C/D box snoRNA:

CUUCAGUGAUGACACGAGACGAGUCAGAAAGGUCACGUCCUGC
UCUUGGUCCUUGUCAGUGCCCAUGUUCUGUGGUGCUGUGCAGAG
UUCCUUUGGCGAGAAGUGUCCUAUUUAUUGAUUCGAUUUAGAGGCA
UUUGUCUGAGAAGG
Talk progress

• Overview
• RNA structure
 – fundamentals
 – computational RNA folding (mfold)
• Gene-specific computational models
 – Rfam database
 – tRNA (tRNAscan-SE)
 – C/D box snoRNA (snoscan)
• Practical guide
Finding ncRNA genes

• ncRNAs are not detected effectively by “general” gene finders (unlike proteins)

• BLAST and other similarity-based search methods often miss ncRNAs – secondary structure conserved, not primary; incorrect boundaries

• Therefore, we need specialized gene finders for accurate detection for each RNA gene family – Rfam, tRNAscan-SE, snoscan, etc.
Let’s say you found a mysterious new conserved sequence – what next?

• Try the obvious first: BLAST at NCBI

• Hmm, you get a strong match against other genomes

• Other close hits to related species, but no good annotation
BlastN v. BlastX

• Perhaps your sequence is a protein, studied in another species, but BlastN is not sensitive enough

• Try BlastX
 – protein comparison is better at picking up more distantly related, conserved protein coding genes
Is it a protein?

- No *convincing* BlastX hits either! You are beginning to suspect this might not be a protein.

- So, translate your protein, look for long open reading frames.

- One reasonably long open reading frame, but still no evidence it is a real protein.

- Perhaps a ncRNA?
Rule out the easiest first

- Let’s assume we know it’s an RNA gene now
- Which one?!

- Start with RFAM, which has the largest, most diverse collection of RNA gene models

- Will not detect all types of ncRNA (i.e. snoRNAs), or novel types of ncRNAs
Check Current ncRNA Databases

- Some have search options

New databases and resources always coming out – check links at IMB Jena (next slide) and annual database issue of *Nucleic Acids Research*
Some ncRNA databases

- SRP RNA Database:
 http://bio.lundberg.gu.se/dbs/SRPDB/SRPDB.html
- RNAse P Database:
 http://jwbrown.mbio.ncsu.edu/RNaseP/
- tmRNA Database (mirror, original is down):
 http://www.ag.auburn.edu/mirror/tmRDB/tmRDB.html

Other RNA Lists of Links

- RNA World @ IMB Jena (software & databases)
 http://www.imb-jena.de/RNA.html
- NAR Databases Index (annual update)
- NAR Web Server List
RNA tracks in genome browsers

• In UCSC genome browsers, look for:
 “RNA Genes”
 “sno/miRNA genes”
 “transfer RNAs”
 “Genbank RNAs”
 “RFAM RNAs”

Or anything listed at “ncRNA”…
Check structure for clues

- mfold server

- Is there one good optimal structure, or many within 10% of “optimum”?

- If you have candidate homologs from multiple species, use mfold to see if secondary structure is being preserved (compensatory mutations maintaining structure)
Comparative analysis of mfold-predicted structures
(Tam, Gene 274:157-67, 2001)
A Practical Guide: So you think you’ve found a novel RNA?

1. Try BLAST first to look for very similar hits (any long ORFs?)
2. Try battery of existing ncRNA search tools to verify RNA is in a novel class
3. Attempt to determine secondary structure with mfold; are any portions particularly “well-determined”?
4. Collect candidate orthologs from closely related species
5. Create a “training set” of sequences to model (verified/studied experimentally), align structurally if possible using known biological features
6. Model primary/secondary structure with a covariance model (aka SCFG), search other genomes for hits
7. Collaborate with an experimental lab to determine null function / cell localization / interactions with other proteins
How do people find new ncRNAs?

Traditional biochemistry (immunoprecipitation to interacting proteins)

Often difficult to find ncRNAs on genetic screens.

Mining expression databases (EST sequencing, microarray data)

Comparative genomics combined with other information (promoters, terminators, common secondary structure)

Direct sequencing of RNA fragments (RNA-Seq) !!