
Unstick Yourself: Recoverable Byzantine Fault Tolerant Services

Tuan Tran
UC Santa Cruz

atran18@ucsc.edu

Faisal Nawab
UC Irvine

nawabf@uci.edu

Peter Alvaro
UC Santa Cruz

palvaro@ucsc.edu

Owen Arden
UC Santa Cruz

owen@soe.ucsc.edu

Abstract—Byzantine fault tolerant (BFT) state machine repli-
cation (SMR) protocols that can tolerate up to f failures in
a configuration of n = 3f + 1 replicas cannot make any
liveness guarantee once the number of faults surpasses f, even
if some of these faults are benign crash faults. We argue that
this weakness makes BFT protocols impractical in real-world
deployments where faults accumulate over time. In this paper,
we present a new reconfiguration mechanism, Phoenix, that
builds on the pre-existing fault detection and reconfiguration
mechanisms of BFT protocols to remove faulty replicas proac-
tively using a trusted (but limited) configuration manager.
We show that Phoenix can recover from fB Byzantine faults
and fC crash faults, where fC ≤ fB , if the system deploys
n = 3fB+fC+1 replicas. If a synchronous network connection
is guaranteed between replicas and the configuration manager
during reconfiguration, a synchronous variant of Phoenix needs
only n = 3fB+1 replicas to achieve the same recoverability. To
validate our approach, we implement Phoenix as an extension
of the BFT-SMaRT library.

1. Introduction

In recent years, blockchain technology has renewed in-
terest in classical BFT, with much research done in how
to adapt these protocols as the transaction ordering layer
for permissioned blockchain systems [2], [5], [35]. BFT
SMR, or simply BFT, protocols allow for implementations
of highly available services that can tolerate Byzantine faults
including bugs in the software or hardware, as well as
malicious attacks. A permissioned blockchain system that
employs a BFT protocol consists of a set of replicas, known
a priori, each containing a copy of the application state. The
replicas use Byzantine consensus to ensure enough correct
replicas have the same state to prevent inconsistency.

Protocols like PBFT [8] require a configuration of n =
3f + 1 replicas, up to f of which can fail simultaneously
without affecting the liveness or safety guarantees. Since
the inception of PBFT, we have seen an abundance of
research into these types of protocols, including directions
that explore optimizing the communication pattern [22],
[26] and resource requirements [20], and relaxing network
assumptions [24].

There are several limitations to systems implementing
these protocols. First, these systems achieve fault tolerance

by masking faults, and faulty behavior exhibited by one
replica to another are simply ignored. The limited use of
fault detection means that faulty replicas remain in the
system indefinitely. Second, most BFT protocols are con-
figured with a static set of replicas and do not explicitly
support the addition or removal of replicas [3], meaning
that even if faulty nodes are detected, no mechanism is
available to remove them. If left unchecked, this would
lead to an accumulation of faults that exceed the assumed
upper bound (f) the system is capable of tolerating. Finally,
if accumulated faults do eventually exceed f , Byzantine
replicas completely control the availability of the system
since there are now insufficient replicas to commit values or
elect a new leader. Worse, an opportunistic Byzantine node
can simply behave honestly until f faults have accumulated
and only reveal itself when it assured control of the system.

Figure 1 highlights this scenario for f = 1 (thus n = 4).
In this configuration, commiting a request or electing a new
leader requires a quorum of n − f = 3 replicas to reach
consensus. All replicas start at the same (orange) state, and
a client issues a request to the current leader, R0. R0, which
is Byzantine, excludes one of the replicas, R3, from the
consensus round that processes the request and commits the
request using only the remaining replicas. When all three
have executed the request, replica R1 crashes, but replies
from the two remaining replicas are sufficient to assure the
client the request was successful. Once R0 suspects that R1
has crashed, however, R0 can choose to halt the system by
not processing any additional requests. A new leader cannot
be elected because only two other replicas are functional.
R0 can block any quorum attempting to make progress, so
the system is stuck.

Typically, the fault allowance f in traditional BFT proto-
cols accounts for both crash and Byzantine replicas. In this
work, we differentiate between crash faults and arbitrary
Byzantine faults, and bound these faults by fC and fB ,
respectively. To avoid confusion we will refer to the fault
bounds of prior BFT protocols as fB instead of f since
Byzantine faults subsume crash faults in these protocols.
Furthermore, we distinguish commit quorums, quorums that
commit new entries to the log, from view change quorums,
quorums that elect a new leader. To recover the system,
we must first be able to remove faulty replicas and replace
them with new ones, then preserve the most recent state
from the correct replicas across reconfiguration. In order

978-8-3503-1019-1/23/$31.00 ©2023 IEEE

atran18@ucsc.edu
nawabf@uci.edu
palvaro@ucsc.edu
owen@soe.ucsc.edu

R1 R0

R2R3

C

1

R1 R0

R2R3

2

R1 R0

R2R3

R1 R0

R2R3

3 4

Figure 1: Client C issues a request to be executed, Byzantine
leader R0 excludes R3 from the consensus instance to
replicate the request, R1 crashes, and R0 stops sending
messages and halts the system.

to be practical for long term deployments, modern SMR
implementations include a reconfiguration mechanism that
can be invoked by an administrator to add or replace repli-
cas. However, these reconfiguration protocols require the
administrator to have prior knowledge of which replicas
in the current configuration are faulty, which is not always
possible.

Even if we assume a priori knowledge of faulty replicas,
reconfiguration still might not be possible. In order to safely
reconfigure a set of replicas without risking safety viola-
tions, the remaining replicas must reach consensus on when
(and thus in what state) the reconfiguration takes place. For
n = 3fB + 1, reaching consensus requires a quorum of
size n − fB , which ensures that at least fB + 1 members
of this quorum participated in the previous quorum. Since
this number exceeds fB , at least one correct node in the
reconfiguration quorum is fully up to date and no log entries
will be truncated. The log entries from a correct node
are authenticated by other nodes using commit certificates
containing n−fB digital signatures from previous quorums.
However, if there are fB+fC faulty nodes, fewer than n−fB
correct nodes remain, so reconfiguration will fail.

In this paper, we present Phoenix, a reconfiguration
protocol that complements BFT protocols, allowing them to
replace faulty replicas from the active replica set. Phoenix
uses built-in fault detection mechanisms of BFT protocols
to facilitate a voting scheme where replicas send votes
to a configuration manager indicating which replicas they
consider to be faulty. In order to tolerate an additional fC
crash faults over fB Byzantine faults (with fC ≤ fB),
Phoenix requires n = 3fB + fC + 1 total replicas, commit
quorums of size n− fB , and view change quorums of size
n − fB − fC . The configuration manager can then safely
reconfigure the system as long as n − fB − fC correct
replicas remain (enough for a view change quorum). Note
that tolerating the same number of faults in a traditional
BFT protocol would require n = 3(fB + fC) + 1 replicas
and quorum sizes of 2(fB + fC) + 1.

Under stronger network assumptions, we can reduce
the required number of replicas as well as the quorum
size. If synchronous communication during reconfiguration

is guaranteed between the replicas and the configuration
manager, our synchronous variant, Sync Phoenix, tolerates
fB Byzantine and fC crash faults (fC ≤ fB) with only
n = 3fB + 1 replicas.

Finally, we present an evaluation of two design choices
regarding the reply quorum size, or the number of replies a
client must wait for before considering a request committed.
Clients of protocols such as PBFT wait for a minimum
of fB + 1 replies to so that at least one correct node
has received n− fB commit certificates (which is required
before a replica responds to the client) so that the committed
request persists even in the event of a view change. In
Phoenix, we must guarantee that clients do not consider a
request committed until it is ensured to be preserved across
reconfigurations. We evaluate two alternative design choices
that meet this requirement. One design preserves the reply
quorum size of fB + 1, but requires replicas to digitally
sign their write messages and create certificates analagous to
commit certificates, but for the write phase (the second phase
of the commit protocol). These certificates allow requests to
be replayed in the event all correct nodes in a fB +1 reply
quorum crash after responding to the client. The other design
simply requires the client to wait for n− fB replies. Since
fC ≤ fB , this means that at least one correct replica will
survive across configurations. Our results show that under
reasonable latency assumptions, the benefits of the smaller
reply quorum are significantly outweighed by the overhead
of signing and verifying write messages.

2. Background and System Model

Fault Model. We consider a distributed system con-
sisting of a set of n > 3fB + fC replicas and a separate
set of client machines, all connected by an asynchronous
network. Both clients and replicas can exhibit Byzantine
faults, and at point in time, there can be at most fB =

⌊
n−1
3

⌋
Byzantine-faulty replicas and an additional fC ≤ fB crash-
faulty replicas.

The Configuration Manager. The configuration man-
ager (CM) is an entity that helps the system recover by
replacing faulty replicas, and it has connections with all the
replicas in the current replica set as well as an additional
set of spare replicas that are used as replacements. This
CM serves three purposes. First, it can be used to modify
the degree of replication by adding or removing replicas.
This is useful for when replicas need to be taken offline
for maintenance or added to increase fB . Second, it can
serve as an arbiter for faults in the system, taking in votes
from replicas against other replicas they think are faulty;
when there are enough votes against a replica, it can then
remove the replica. We will describe in a later section how
to leverage this functionality to serve as an imperfect fault
detector to remove faulty replicas. By ”imperfect”, we mean
that replicas can use the voting protocol to conclude that
another replica is faulty, but occasionally this conclusion
could be false if the network partitions the correct replicas
for prolonged periods of time. Lastly, in the synchronized
version of our protocol described in Section 6, the CM can

CM

R0 R1

R3R2

1

2

R0 R1

R3R2

R0 R1

R4R2

3 5

4

Figure 2: Reconfiguration in BFT-SMaRt. The configuration
manager issues a reconfiguration request to replace R3.

help the system recover recover even when there are only
fB + 1 correct replicas remaining. Messages that are sent
from the CM are signed, so replicas can trust these messages
if the signature is valid. The version of the CM that we built
for Phoenix is an extension of the CM in BFT-SMaRt (i.e.,
a trusted process). However, its functionalities are simply to
keep track of the active and backup replicas, verify signed
messages, and facilitate voting, all of which can be encoded
into a smart contract to make its execution trustless.

BFT typically consists of two subprotocols: a Byzantine
commit protocol for normal-case execution, and a view-
change protocol to replace the leader when requests fail to
move through the commit protocol. When a leader receives
requests from clients, it uses propose messages to order
these requests in a sequence, and broadcasts these messages
to replicas. All replicas, including the leader, send write
messages that acknowledge the validity of the propose to
each other. A replica waits for a quorum of n− f of these
write messages to commit locally; a local commit at a replica
ensures a total order of requests that it has seen. Replicas
then exchange accept messages. We call a quorum of n−f
of these accept messages a Commit Quorum (CQ), which
lets a replica know that the request has been committed at
enough correct replicas for it to execute and send a reply
message to the client. Clients wait to receive f +1 of these
reply messages for a request, which we call a Reply Quorum
(RQ), to be sure that at least one is from a correct replica
before it considers the request as finished and move on to
the next request.

3. Reconfiguring a Byzantine State Machine

The standard approach to reconfigure the current active
replica set is to place the configuration change inside a
request, and have it executed by the replicas [4]. Figure
2 shows the reconfiguration process in BFT-SMaRt. An
administrator node (CM), constructs the new configuration
and issues it as a client request (1) that will be included in a
propose message, after which it will go through a consensus
round (2). Once the replicas have executed this request, they
will reply to the CM (3), who will wait to receive fB + 1
replies. If a new replica was added, the CM will notify the

new replica with a message containing the new view (4). A
new replica joining will first initiate a state transfer request
from the other replicas (5) to catch up to the latest consensus
decision.

3.1. Unsafe Reconfiguration

By having replicas reach consensus on the CM’s re-
configuration request, we ensure that eventually all correct
replicas will transition to the new view. However, we can
run into situations where safety is violated if the CM is not
careful when replacing replicas. Consider the example in
Figure 2, but the replica that is being replaced is R2 instead
of R3. That is, R2 is participating in a consensus decision
that leads to the removal of itself from the active replica set.
This situation might seem strange, but it could be that R2
is the only one partitioned away from the CM, so the CM
sees it as faulty. Suppose that R0 is Byzantine and it is the
leader. R0 could truncate its log to match that of R3, and R4
would then possess the old (orange) state at the end of the
state transfer protocol if it receives state from only R0 and
R3. Then, R0 could propose a different value for the most
recent consensus instance and, together with R3 and R4,
they would be make up a sufficiently large quorum to decide
on that value. In order to avoid this situation and remove R2
safely, we must prevent reconfigurations in which a correct
replica participates in a decision that leads to its removal,
or allow slow replica R3 to catch up before removing R2.

4. Phoenix

Notice that when the CM constructs a new view to
replace a replica, it needs to know which replica to remove
(i.e., which replica is faulty) before sending the reconfig-
uration request. Knowing which replicas to remove is very
difficult in a system with Byzantine faults, because a Byzan-
tine replica can behave correctly to the CM but misbehaves
when interacting with other replicas. One example of this
type of Byzantine behavior are mute replicas [14], where a
mute process simply stops sending consensus messages to
one or more processes but could still respond to heartbeat
messages. To detect such failures, a CM must be able to
gather information about suspected faulty behavior from the
replicas themselves.

Our goal in building Phoenix is to build a bridge between
subjective fault detection and dynamic reconfiguration, both
of which already exists individually in state-of-the-art BFT
systems like BFT-SMaRt. By themselves, these mechanisms
are limited in their ability to remove subjectively faulty
replcas since no replica can provide irrefutable proof against
a faulty replica. In many cases, meaningful reconfigura-
tion choices cannot be made without witnessing replica-to-
replica communication. However, if replicas can use their
local fault detection mechanism to inform a configuration
manager of other replicas they suspect of being faulty, the
configuration manager can then rely on such information to
make informed reconfiguration decisions.

4.1. Voting: Subjective Fault Detection

Using Phoenix, we would like to remove replicas that
consistently exhibit subjectively faulty behavior. We define
a subjective fault to be one that cannot be proven to a
third party; examples of these include delayed or missing
consensus messages and messages with an invalid MAC.
Over time, a replica that experiences faulty behavior from
another replica might suspect it to be faulty, after which it
will ask the CM to remove the suspected replica. To do this,
a replica will construct a message ⟨VOTE, v, n, j⟩σi

, where v
indicates the current view number, n is the sequence number
of the last finished consensus instance, and j is the replica
that is being voted against. After constructing the message,
a replica signs it and then sends the signed message to the
CM as well as the other replicas.

A replica k that receives a vote message from another
replica will first validate the message before checking to
see whether the replica being voted against j has received
fB + 1 votes. If replica k receives fB + 1 vote messages
against replica j, k will prepare its own vote message against
j, and send it to the other replicas and the CM. This step
ensures that if fB+1 replicas have committed to voting out
j, then all correct replicas will eventually commit to voting
out j. View changes rely on a similar approach to allow
all correct replicas to send their own view change messages
once they believe that a correct replica has committed to a
view change (after receiving fB +1 view-change messages)
[8], [22]. When the CM receives a vote message, it will also
perform the same verification on the message and tally the
vote against j. The CM will wait to receive n − fB − fC
votes against j, then construct a new configuration with this
replica replaced with a backup and send it to the replicas in
a client request.

To handle the case of unsafe reconfiguration in Section
3.1, a correct replica will not send a vote against itself. That
is, a replica j will not send a vote message, even if it has
received fB +1 votes against itself. There are two possible
scenarios depending on whether the Byzantine replica votes
against j. If the Byzantine replica participates in the vote,
then eventually the CM will receive enough votes to remove
j. However, a slow replica that receives vote messages with
a higher sequence number than the one it knows about will
first request a state transfer before sending its own vote.
Thereby, any slow replicas will be caught up before the CM
has enough votes, and removing j will be safe. If, on the
other hand, the Byzantine replica does not send its vote and
stop sending protocol messages altogether, then the CM will
not receive enough votes with j’s nonparticipation, causing
j to remain in the replica set and the system will be stuck
until the partition that caused j to look faulty heals.

4.2. Reaching Agreement in Reconfiguration

The difficulty in reconfiguration is to make sure enough
correct replicas commit to the new configuration. If we
do not consider the existence of additional fC crashed
replicas (i.e., fC = 0), reconfiguration requests from the CM

would eventually finish even if the Byzantine replicas do not
participate, since the remaining replicas form a sufficiently
large CQ. Now we must consider the case of fC > 0
and how these additional crashes affect the decision of the
reconfiguration request. If we were to set CQ at n−fB−fC
(2fB +1), it is easy to see that safety can be violated. Two
CQs can intersect at only a Byzantine leader, which can
equivocate, causing two groups of correct replicas to decide
on different values for a single log entry. If, instead, we have
CQ be n− fB (2fB + fC + 1), then the Byzantine replicas
can withhold messages when there are crashed replicas, and
the reconfiguration request can never be completed. Thus,
since we cannot achieve both safety and liveness, replicas
have to be able to reconfigure through a different path other
than the commit path. This separate path is the view change
protocol.

In PBFT, the view change protocol is used to rotate lead-
ers, preventing a Byzantine leader from halting the system
indefinitely. It also serves another purpose in that it allows
correct replicas to converge on the latest consensus instance
before entering the new view. This is done by having replicas
exchange their logs and verify them individually before they
transition to a new view. Phoenix utilizes the view change
path to have replicas synchronize their logs and perform
reconfiguration.

To initiate a reconfiguration, the CM sends a reconfig
message to the replicas, causing them to issue a stop mes-
sage and halting processing of further requests. A replica
receiving at least 2fB + 1 stop messages will then send
a stop-data message to the leader of the next view, and
include within this message the signed request from the CM
containing the new configuration. The new leader will wait
for 2fB + 1 valid stop-data messages before issuing a sync
message to the replicas with the information from the stop-
data messages. We call the set of 2fB+1 of these stop-data
messages a View change Quorum (VQ). Each replica will
verify the sync message, and check for the request from the
CM. If the sync message contains the CM’s request, replicas
will process the configuration change before replying to
the CM. Replicas will preserve this sync message so that
they can provide it to any replicas that were not part of
the reconfiguration change. Because of the smaller view
change quorum, it is possible that a view change succeeds
with just the slow and Byzantine replicas. However, without
the up-to-date correct replicas, there won’t be a sufficiently
large enough quorum to commit new requests and the slow
replicas will eventually be caught up once they receive a
state transfer from the up-to-date replicas.

5. Tolerating fB and fC with n = 3fB + 1

Asynchronous BFT protocols cannot tolerate more than⌊
n−1
3

⌋
simultaneous faults out of n = 3fB + 1 replicas

[24]. Phoenix as described in Section 4 would fail since
fC > 0 crashed replicas allow the Byzantine replicas to
prevent any reconfiguration attempts by simply withholding
view change messages. Fault detection in Phoenix relies on
at least fB+1 vote messages to convince a correct replica to

also send their vote, so a CM could wait for only fB+1 vote
messages instead of n−fB−fC to initiate a reconfiguration.
However, replicas can’t just adopt the new configuration
without the view change since that step is necessary for
replicas to synchronize their states.

Without performing a view change or committing the
CM’s request, reconfiguration would be possible only if the
fB +1 vote messages that the CM receives contains at least
one message from a replica with the latest state and the
replicas going into the new configuration can synchronize
their state with this replica. But this smaller set of vote mes-
sages that the CM waits for could be from the slow replicas
and the Byzantine replicas who truncated their logs to match
that of the slow replicas. If the CM instead waits for 2fB+1
vote messages, it can be left waiting forever if the Byzantine
replicas do not send in their vote. For this reason, if there
are fB Byzantine faults and fC crash faults, reconfiguration
is safe with n = 3fB+1 replicas only under the assumption
that system has synchrony during reconfiguration, and that
the vote message from the correct replica with the latest
state makes it to the CM and subsequently all the correct
replicas in the new configuration.

5.1. Safety in reconfiguration

Phoenix must preserve the following properties.
Property 1. A reconfiguration cannot be triggered by the

faulty replicas only, and must be requested by at least
one correct replica.

Property 2. All correct replicas in the new configuration
must start with the same state, and this state reflects
the latest consensus decision from the previous config-
uration.

Property 3. Requests acknowledged by n−fB replicas must
be preserved across reconfigurations.

Reconfiguration, like view changes, is costly and results
in a temporary halt to the service as replicas stop processing
messages in order to reconfigure. Property 1 prevents Byzan-
tine replicas from being able to force the CM to initiate a
reconfiguration, even if they collude. This is done by having
the CM waits for at least n−fB −fC vote messages before
it replaces a replica.

Property 2 and a weaker variation of property 3 (fB +1
replies instead of n − fB replies) must be guaranteed by
a standard view change algorithm [16], therefore they also
must hold for reconfigurations. To guarantee Property 2, the
replica(s) with the latest state in the old configuration must
be able to relay this state to the CM. This is done by having
replicas send in their decision logs, with the longest log, one
that contains no gaps and a valid proof (n−fB signed accept
messages) for each decision, being the one selected by the
CM. The CM can then relay this state to all the replicas in
the new configuration, requiring that correct replicas install
this state so that they can all start at the same consensus
instance. Property 3 allows clients to have a consistent view
of the replica state. Clients must know when to consider
their request as successful in order to move on to subsequent

requests, and replies from correct replicas to the client must
be consistent across reconfigurations. Previous designs of
BFT allows a client to consider a request as successful
after fB + 1 replies from different replicas, but this is not
sufficient when there are fB and fC simultaneous faults.
These properties are maintined even if a non-faulty replica
is removed.

5.2. The Role and Cost of Digital Signatures

We have shown that in order to survive fB and fC > 0
faults, at least one correct replica with the latest state must
be able to relay their decision log to the CM. It is also
mentioned that this log must be valid in that each entry
in the log contains a proof that allows verifications by the
CM and other replicas. To allow consensus decisions to
be verified in a posterior view, we can have replicas sign
their consensus messages [33]. There is, however, a tradeoff
between which consensus message to sign and the number of
replies a client waits for before moving on. In BFT-SMaRt,
the accept messages are signed, which allows replicas to
build certificates that can be verified. With this approach of
signing messages in the last phase of consensus, clients have
to wait for n−fB replies before they can move on. PBFT-PK
(PBFT with signatures [6]) relies on signatures on the write
messages to prove consensus decisions in a view change.
If signatures are used on these consensus messages, clients
can wait for a smaller number of replies (n−2fB) between
requests. Although the reply quorum is smaller, there is at
least one correct replica that has gathered n − fB accept
messages before replying, meaning that at least n − fB
replicas got enough signed write messages for a certificate.
Based on our evaluation in section 7.1, adding signatures to
the write phase would have a bigger impact on performance
than waiting for more replies, so in Phoenix we followed
the latter approach.

6. Sync Phoenix
We now present a version of Phoenix, called Sync

Phoenix, that allows a system to reconfigure the replica set
when there are up to fB Byzantine faults and fC crash
faults with just 3fB + 1 replicas. Sync Phoenix relies on
synchrony to provide a stronger recoverability guarantee
during reconfiguration, that is, a BFT system using Sync
Phoenix can recover if at least fB+1 correct replicas are still
alive. Technically, we don’t require that communication is
always synchronous, only during reconfiguration. Therefore,
Sync Phoenix can also be used in weaker synchrony models,
such as one where there is always a subset of synchronous
replicas [1], [24] or a model where this synchronous subset
can change with each round [9], provided the CM is part of
the synchronous subset.

6.1. Changes to Phoenix

Voting. The first change is to require that replicas also
include their decision log in their vote message when send-
ing it to the replicas and the CM. A replica’s decision log

n CQ VQ RQ Reconfiguration
BFT-SMaRt [4] 3fB + 1 n− fB n− fB fB + 1 n− fB

Phoenix 3fB + fC + 1 n− fB n− fB − fC n− fB n− fB − fC
Sync Phoenix 3fB + 1 n− fB n− fB n− fB fB + 1

TABLE 1: The differences in sizes of the Commit Quorum (CQ), View-change Quorum (VQ), Reply Quorum (RQ), and
Reconfiguration Quorum (RQ) for BFT-SMaRt, Phoenix, and Sync Phoenix.

contains all the decided consensus instances, each with a
proof [33]. The vote message from a replica will now be
⟨VOTE, v, Li, j⟩σi

, where Li is the latest decision log of
the replica i.

When the CM or a replica receives a vote message, it
checks that the decision log Li has no gaps and that each
decided value in the log has a valid proof. The checking
of the decision log for gaps and valid consensus proofs is a
standard check that is a part of the BFT-SMaRt view change
algorithm. Once the contents have been validated, the CM
will increment the vote count for the replica being voted
against in the message, then records the sequence number n
along with the proof. When the vote count against a replica
j surpasses fB+1 (i.e., at least one honest replica has voted
against j), the CM then finalizes the voting round.

Reconfiguration. To finalize a voting round, the CM sets
a timer and sends a ⟨VOTE-REQUEST⟩σCM

to all replicas,
requesting they send their vote. Upon receiving this mes-
sage, replicas will stop processing requests and broadcast
their vote. The request from the CM not only allows replicas
that have not voted to have their vote counted, but also
allows replicas that have voted to update their log. This
accounts for replicas that have voted but a reconfiguration
happens after it has processed further consensus instances;
however, a replica updating its vote will not have the vote
counted twice.

The CM waits until the timer has expired before pro-
cessing the vote messages. After processing all the vote
messages, the CM determines the longest log it has seen
where n is the highest sequence number seen and that there
is a valid proof for consensus instance n along with the cor-
responding view v. The CM then sends a ⟨RECONFIGURE,
v+1, S, Lk⟩σCM

to all the replicas in S. Here, Lk is the log
from replica k that was chosen as the longest valid log.
When a replica receives the reconfigure message from the
CM, it will adopt the log Lk, and sends an acknowledgement
to the CM to signal that it has successfully transitioned into
the new configuration. At this point, all the replicas in the
new configuration will initiate a view change to elect the
leader for view v + 1, after which the replicas can resume
processing requests.

6.2. Unsticking the System

Let us revisit the example shown in Figure 1. The leader
R0 stops sending messages after suspecting (correctly) that
R1 has crashed, and the only two replicas with the most
up-to-date state are the leader R0 and replica R2. If clients
issue subsequent requests, they will not be able to go
through the Byzantine commit protocol and get executed

by the replicas because the leader will not include them
in a propose message. Furthermore, the request timers and
the view change algorithm that would normally replace the
faulty leader would not succeed because R0 would withhold
the view change messages.

In this case, the correct replicas at the very least can
suspect that R0 is faulty, having caused the request timers
to expire and not sending its view change messages. Af-
ter some number of unsucessful view changes, the correct
replicas can send their votes to remove R0. When the CM
receives fB+1 votes from the correct replicas, it will finalize
the voting round to remove R0. Once the replicas adopt the
new configuration in the reconfigure message sent by the
CM, they will elect a leader for the new view, and resume
processing client requests.

6.3. Quorum Sizes

Table 1 shows the differences in the quorum sizes and
how they influence reconfiguration. BFT-SMaRt changes to
a new configuration by committing it as a request, therefore
reconfiguration requires a quorum the size of the commit
quorum, CQ. Committing configurations as requests means
that the clients can keep the reply quorum, RQ, at fB + 1,
and the system guarantees that finished requests will persist
across reconfigurations. A system using Phoenix requires a
higher number of replicas provisioned (n = 3fB + fC +1),
but it can tolerate fC crash faults in addition to fB Byzantine
faults. Since new configurations cannot be committed if
there are fB and fC faulty replicas, reconfiguration is done
through the view change with a VQ of n−fB−fC . Clients
must wait for n−fB replies, and maintaining CQ at n−fB
prevents a Byzantine replica from successfully overwriting
committed values. Sync Phoenix is able to tolerate fB and
fC faulty replicas whilst keeping n at 3fB + 1 by relying
on synchrony during reconfiguration to maintain safety.
Similar to BFT-SMaRt, CQ and VQ are kept at n − fB ,
and reconfiguration only requires fB + 1 in the worst case,
but clients must also wait for n− fB replies.

7. Evaluation

In this section, we present our evaluation of Sync
Phoenix, which consists of two sets of experiments. The
goal of the first experiment is to measure the performance
overhead of the two design choices against the baseline
off-the-shelf implementation of BFT-SMaRt. In the second
experiment, we look into the latency of reconfiguration to
see how fast a system is able to recover when there are crash
and Byzantine faults.

Figure 3: Throughput and latency for 0/0 and 1K/1K oper-
ations.

7.1. Large Quorum vs. Write Signatures

In this first experiment, we provisioned a cluster of
four replica machines and 2 clusters of four client ma-
chines on Chameleon [13]. Each machine contains two
Intel Xeon Gold 6242 ”Cascade Lake R” processors (16
cores @ 2.8GHz, 32 threads, 192GB RAM), all running
Ubuntu18.04. A total of 2400 ”closed-loop” client processes
are launched across the eight client machines, all continu-
ously issuing requests.

Figure 3 shows the throughput and latency of the three
protocols (baseline, large reply quorum, write signatures).
For each of these protocols, we evaluated their performance
using two benchmarks. In the first benchmark, clients send
requests of size 0 (empty), and replicas will also send back
empty replies. Similarly, in the second benchmark, clients
will send 1kB-sized requests and replicas will send 1kB-
sized replies. We call these benchmarks the 0/0 benchmark
(introduced by Casto et al. [8] to measure the maximum pos-
sible throughput) and the 1K/1K benchmark, respectively.

For the 0/0 benchmark, increasing the quorum size for
the replies causes clients to wait longer between requests,
which increases the end-to-end latency and slightly decreas-
ing the throughput. As the payload and reply size increase to
1K, we see that the performance drops drastically due to the
overhead of message transmission. This overhead is also the
reason why the performance of the large quorum and small
quorum are similar with the large payload, since the time
to transmit the message is greater than the time it takes for
clients to wait for the extra reply. For both benchmarks,
adding signatures to the write phase greatly impacts the
performance with respect to the other experiments. The
reason is that in BFT-SMaRt, signatures in the commit are
done speculatively; that is, when a replica receives a write,
it spawns a separate thread to create and sign the accept
before it even receives a quorum of the write message. This
parallelism cannot be applied to the write message itself, as
the replica has to wait to receive the propose before creating
and signing the write message.

7.2. Reconfiguration

For the second experiment, we provisioned a cluster of
four replicas and a total of 200 client processes distributed
across four client machines. Here we reduced the number
of client machines and client processes, because we are
interested in reconfiguration latency but want the system
saturated enough to visualize the drop in throughput. We
configure the replicas so that each replica will vote to
remove another replica if it has experienced faulty behavior
from the other replica more than once. Figure 4 shows a
timeline of the execution of the system with respect to its
throughput.

In the time period T1, the replicas start up, establishes
connections with each other. Once done, the replicas are
then able to accept connections from the clients, and begin
processing their requests. After 25 seconds, the Byzantine
leader briefly halts, causing request timers on the other
replicas to expire and the system to go into a view change.
Time period T2 shows the total time between the leader
halting and operations resuming after a successful election,
with 2 seconds of the time for the request timer to expire
and another 2 seconds for the replicas to perform the view
change. Because the Byzantine replica has caused the view
change to occur, all the correct replicas will give this replica
a mark.

During time period T3, the Byzantine replica behaves
correctly again, then the system goes through a period
of 30 seconds of normal operations, after which the new
leader crashes. When the leader crashes, the communication
channels that it has with the other replicas will be severed,
and all will repeatedly try to reestablish the connection with
the leader. The request timers will again expire after 2 sec-
onds, causing another view change. However, the Byzantine
replica now does not send any further messages, because
it suspects that the old leader has crashed after failing to
reestablish the communication channel multiple times. This
leads to an insufficient number of view-change messages
and an unsuccessful view change in T4. Normally, this is the
point where BFT-SMaRt without Phoenix would stop and
perform these unsuccessful view changes, one after another.

Since the correct replicas only received view-change
messages from each other, they each mark the other two
(Byzantine and crash) replicas and, with the Byzantine
replica having two marks total, the correct replicas votes
against the Byzantine replica. In T5, the CM receives the
votes from the correct replicas, initiate a reconfiguration
round, and subsequently removes the Byzantine replica.
Finally, after a reconfiguration to replace the Byzantine
replica, the new configuration has enough correct replicas
to resume processing requests in time T6.

8. Related Work

Fault Detection. A failure detector can either be decou-
pled from the underlying distributed protocol to exist as an
oracle that can be consulted, or coupled to allow protocol-
specific actions to influence fault detection. Chandra et al.

normal operation

leader halts,
view change

normal operation

leader crashes,
unsuccessful view change

reconfiguration normal operation

T1 T2 T3 T4 T5 T6

Figure 4: A system with n = 4 replicas going into reconfiguration after experiencing fB and fC faults.

[10] introduced the concept of such oracles, but even the
weakest failure detector cannot work in a fully asynchronous
network due to FLP [15]. However, the assumption of partial
synchrony can circumvent this result and allow such oracles
to exist [11]. Malkhi and Reiter [25] defined a failure
detector ♢S that can detect quiet processes that do not
participate in a protocol. Subsequent work by Doudou et
al. [14] introduces a failure detector of the same class that
can detect mute processes, the equivalent of quiet processes.

In BFT, failures detectors are typically coupled with
the underlying consensus protocol. Haeberlen et al. [17]
envisioned a fault detector that would allow replicas to
determine if message omissions by a replica are malicious.
Their approach requires replicas to frequently publish a
signed digest of their log and to sign all messages it sends as
well as to acknowledge all messages it receives. In addition
to being inefficient, this approach to fault detection can be
abused by malicious replicas that constantly issue challenges
that requires other replicas to respond. Replicas in Aardvark
[12] can detect subjective faults other than omissions, such
as message flooding and invalid messages, and use these
detections to blacklist faulty replicas. Regardless of whether
fault detection is coupled or decoupled from the underlying
consensus protocol, Phoenix can leverage the fault detector
to make better reconfiguration choices.

Fault Recovery. Prior works on recovering faulty repli-
cas in replicated systems fall into one of three categories:
reconfiguration, proactive recovery, and reactive recovery.
For CFT systems, protocols like Vertical Paxos [23] and Raft
[27] reconfigure by having a special reconfiguration request
committed by a quorum of the old active replica set as well
as a quorum of the new active replica set. A faulty replica
can also be recovered reactively by means of rebooting once
it is detected [18], and there has been research looking into
reducing the recovery time to increase availability [28] or by
integrating diagnosis with recovery to support application-
specific recovery actions [19]. All of these protocols work
as long as there are only benign faults in the system, and
would not work in the presence of Byzantine faults.

To reconfigure a replica set to remove a replica that
could be Byzantine faulty, BFT-SMaRt [4] relies on a special
process that sends a reconfiguration request to either add or
remove a replica, which only needs to be committed by a
quorum of the old active replica set. IA-CCF [32] allow a
consortium of members in a permissioned ledger system to
vote on referendums that updates the current configuration.
When there are enough votes, the new configuration can be
carried out as part of a transaction that must be committed
and executed. Earlier systems such as Rampart [30] and
SecureRing [21] provide group membership protocols that
can be used to reconfigure the replica set, but subsequent
work have shown that these protocols are not ideal for the
Byzantine fault model [7].

Various works have looked into proactively recovering
replicas that could be Byzantine faulty [7], [29]. A process
can rely on a timer at each replica to initiate a recovery
process which, in addition to rebooting, includes the replica
discarding all the old keys used for encrypting communica-
tion that it had with the other replicas as well as the clients.
Byzantine faulty replica can also be recovered reactively
with the help of a failure detector oracle [34] .

Phoenix takes the approach of reactive reconfiguration
to recover replicas because there are situations where faulty
replicas cannot recover by a reboot [31], and also because
it reduces downtime of the system. Proactive and reactive
recovery requires rebooting of replicas and possibly re-
establishing keys with clients and replicas, which can be
expensive during runtime. However, this approach to recov-
ery can complement reconfiguration. For example, a CM can
decide to reintroduce removed replicas back into the system
if they are still alive and have gone through a reboot and
rekeying process.

9. Conclusion

BFT protocols typically come with fault detection mech-
anisms that allows replicas to detect faults, and a reconfig-
uration mechanism that allows an administrator to replace

replicas. Phoenix integrates these two mechanisms to allow
replicas to inform the administrator about suspected faults
in order for the administrator to make better replacement
choices. We also present Sync Phoenix, a version that works
in the synchronous network model, allowing a system to
recover when there are fB Byzantine faults in addition to
fC < fB crash faults with a deployment of 3fB+1 replicas.

References

[1] ABRAHAM, I., MALKHI, D., NAYAK, K., REN, L., AND YIN, M.
Sync hotstuff: Simple and practical synchronous state machine repli-
cation. In 2020 IEEE Symposium on Security and Privacy (SP)
(2020), IEEE, pp. 106–118.

[2] ANDROULAKI, E., BARGER, A., BORTNIKOV, V., CACHIN, C.,
CHRISTIDIS, K., DE CARO, A., ENYEART, D., FERRIS, C.,
LAVENTMAN, G., MANEVICH, Y., ET AL. Hyperledger fabric: a
distributed operating system for permissioned blockchains. In Pro-
ceedings of the thirteenth EuroSys conference (2018), pp. 1–15.

[3] BESSANI, A., ALCHIERI, E., SOUSA, J., OLIVEIRA, A., AND PE-
DONE, F. From byzantine replication to blockchain: Consensus is
only the beginning. In 2020 50th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN) (2020),
IEEE, pp. 424–436.

[4] BESSANI, A., SOUSA, J., AND ALCHIERI, E. E. State machine
replication for the masses with bft-smart. In 2014 44th Annual
IEEE/IFIP International Conference on Dependable Systems and
Networks (2014), IEEE, pp. 355–362.

[5] BUCHMAN, E. Tendermint: Byzantine fault tolerance in the age of
blockchains. PhD thesis, University of Guelph, 2016.

[6] CASTRO, M. thesis-mcasto, 2020 (accessed October 25, 2020).

[7] CASTRO, M., AND LISKOV, B. Proactive recovery in a byzantine-
fault-tolerant system. In Proceedings of the 4th conference on
Symposium on Operating System Design & Implementation-Volume
4 (2000).

[8] CASTRO, M., LISKOV, B., ET AL. Practical byzantine fault tolerance.
In OSDI (1999), vol. 99, pp. 173–186.

[9] CHAN, T. H., PASS, R., AND SHI, E. Pili: An extremely simple
synchronous blockchain. Cryptology ePrint Archive (2018).

[10] CHANDRA, T. D., HADZILACOS, V., AND TOUEG, S. The weakest
failure detector for solving consensus. Journal of the ACM (JACM)
43, 4 (1996), 685–722.

[11] CHANDRA, T. D., AND TOUEG, S. Unreliable failure detectors for
reliable distributed systems. Journal of the ACM (JACM) 43, 2 (1996),
225–267.

[12] CLEMENT, A., WONG, E. L., ALVISI, L., DAHLIN, M., AND
MARCHETTI, M. Making byzantine fault tolerant systems tolerate
byzantine faults. In NSDI (2009), vol. 9, pp. 153–168.

[13] CLOUD, C. A configurable experimental environment for large-scale
edge to cloud research, 2021 (accessed September 2, 2021).

[14] DOUDOU, A., GARBINATO, B., GUERRAOUI, R., AND SCHIPER,
A. Muteness failure detectors: Specification and implementation.
In European Dependable Computing Conference (1999), Springer,
pp. 71–87.

[15] FISCHER, M. J., LYNCH, N. A., AND PATERSON, M. S. Impossibil-
ity of distributed consensus with one faulty process. Journal of the
ACM (JACM) 32, 2 (1985), 374–382.

[16] GUPTA, S., HELLINGS, J., AND SADOGHI, M. Fault-tolerant dis-
tributed transactions on blockchain. Synthesis Lectures on Data
Management 16, 1 (2021), 1–268.

[17] HAEBERLEN, A., KOUZNETSOV, P., AND DRUSCHEL, P. The case
for byzantine fault detection. In HotDep (2006).

[18] HUANG, Y., AND KINTALA, C. Software implemented fault toler-
ance: Technologies and experience. In FTCS (1993), vol. 23, IEEE
Computer Society Press, pp. 2–9.

[19] JOSHI, K. R., HILTUNEN, M. A., SANDERS, W. H., AND
SCHLICHTING, R. D. Automatic model-driven recovery in distributed
systems. In 24th IEEE Symposium on Reliable Distributed Systems
(SRDS’05) (2005), IEEE, pp. 25–36.

[20] KAPITZA, R., BEHL, J., CACHIN, C., DISTLER, T., KUHNLE, S.,
MOHAMMADI, S. V., SCHRÖDER-PREIKSCHAT, W., AND STENGEL,
K. Cheapbft: Resource-efficient byzantine fault tolerance. In Pro-
ceedings of the 7th ACM european conference on Computer Systems
(2012), pp. 295–308.

[21] KIHLSTROM, K. P., MOSER, L. E., AND MELLIAR-SMITH, P. M.
The securering protocols for securing group communication. In
Proceedings of the Thirty-First Hawaii International Conference on
System Sciences (1998), vol. 3, IEEE, pp. 317–326.

[22] KOTLA, R., ALVISI, L., DAHLIN, M., CLEMENT, A., AND WONG,
E. Zyzzyva: speculative byzantine fault tolerance. In Proceedings of
twenty-first ACM SIGOPS symposium on Operating systems princi-
ples (2007), pp. 45–58.

[23] LAMPORT, L., MALKHI, D., AND ZHOU, L. Vertical paxos and
primary-backup replication. In Proceedings of the 28th ACM sympo-
sium on Principles of distributed computing (2009), pp. 312–313.

[24] LIU, S., VIOTTI, P., CACHIN, C., QUÉMA, V., AND VUKOLIĆ,
M. {XFT}: Practical fault tolerance beyond crashes. In 12th
{USENIX} Symposium on Operating Systems Design and Implemen-
tation ({OSDI} 16) (2016), pp. 485–500.

[25] MALKHI, D., AND REITER, M. Unreliable intrusion detection in
distributed computations. In Proceedings 10th Computer Security
Foundations Workshop (1997), IEEE, pp. 116–124.

[26] NAWAB, F., AND SADOGHI, M. Blockplane: A global-scale byzan-
tizing middleware. In 2019 IEEE 35th International Conference on
Data Engineering (ICDE) (2019), IEEE, pp. 124–135.

[27] ONGARO, D., AND OUSTERHOUT, J. In search of an understandable
consensus algorithm. In 2014 {USENIX} Annual Technical Confer-
ence ({USENIX}{ATC} 14) (2014), pp. 305–319.

[28] PATTERSON, D., BROWN, A., BROADWELL, P., CANDEA, G.,
CHEN, M., CUTLER, J., ENRIQUEZ, P., FOX, A., KICIMAN, E.,
MERZBACHER, M., ET AL. Recovery-oriented computing (roc): Mo-
tivation, definition, techniques, and case studies. Tech. rep., Technical
Report UCB//CSD-02-1175, UC Berkeley Computer Science, 2002.

[29] REISER, H. P., AND KAPITZA, R. Hypervisor-based efficient proac-
tive recovery. In 2007 26th IEEE International Symposium on
Reliable Distributed Systems (SRDS 2007) (2007), IEEE, pp. 83–92.

[30] REITER, M. K. The rampart toolkit for building high-integrity
services. In Theory and practice in distributed systems. Springer,
1995, pp. 99–110.

[31] RODRIGUES, R., AND LISKOV, B. Byzantine fault tolerance in long-
lived systems.

[32] SHAMIS, A., PIETZUCH, P., CANAKCI, B., CASTRO, M., FOUR-
NET, C., ASHTON, E., CHAMAYOU, A., CLEBSCH, S., DELIGNAT-
LAVAUD, A., KERNER, M., ET AL. {IA-CCF}: Individual account-
ability for permissioned ledgers. In 19th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 22) (2022),
pp. 467–491.

[33] SOUSA, J., AND BESSANI, A. From byzantine consensus to bft state
machine replication: A latency-optimal transformation. In 2012 Ninth
European Dependable Computing Conference (2012), IEEE, pp. 37–
48.

[34] SOUSA, P., BESSANI, A. N., CORREIA, M., NEVES, N. F., AND
VERISSIMO, P. Highly available intrusion-tolerant services with
proactive-reactive recovery. IEEE Transactions on Parallel and
Distributed Systems 21, 4 (2009), 452–465.

[35] YIN, M., MALKHI, D., REITER, M. K., GUETA, G. G., AND ABRA-
HAM, I. Hotstuff: Bft consensus with linearity and responsiveness.
In Proceedings of the 2019 ACM Symposium on Principles of Dis-
tributed Computing (2019), pp. 347–356.

	Introduction
	Background and System Model
	Reconfiguring a Byzantine State Machine
	Unsafe Reconfiguration

	Phoenix
	Voting: Subjective Fault Detection
	Reaching Agreement in Reconfiguration

	Tolerating fB and fC with n = 3fB + 1
	Safety in reconfiguration
	The Role and Cost of Digital Signatures

	Sync Phoenix
	Changes to Phoenix
	Unsticking the System
	Quorum Sizes

	Evaluation
	Large Quorum vs. Write Signatures
	Reconfiguration

	Related Work
	Conclusion
	References

