Direct measurement of doping density and barrier lowering effect with bias in quantum wells

Y. Xu, A. Shakouri, A. Yariv, T. Krabach and S. Degewski

Indexing terms: Semiconductor doping, Semiconductor quantum wells, Infrared detectors

An experimental method for determining the doping density in thin-sheet semiconductor material such as quantum wells (QWs) is demonstrated in GaAs/AlGaAs multiquantum-well infrared photodetectors. The results agree very well with the conventional Hall measurement method. Barrier lowering effect with bias in QWs is determined experimentally.

Doping in quantum wells is a major parameter in determining their performance in various device configurations. There are several standard ways [1] of measuring doping density for bulk semiconductor material. However, direct experimental measurement of doping density in thin sheet like quantum wells has not been presented to date. In this Letter we demonstrate an experimental method for determination of doping density in quantum wells. The experimental results are compared with results from the conventional Hall measurement method.

The doping density calculation for quantum wells is straightforward. The two-dimensional (2-D) carrier density can be expressed as

\[N_{2D} = \int \rho_{2D} f(E) dE \]

where \(\rho_{2D} \) is the 2-D density of states and \(f(E) \) is the Fermi-Dirac distribution. If the quantum well is narrow enough such that there is only a bound state inside the well, then eqn. 1 assumes the simple form

\[N_{2D} = \frac{m^*k_B T}{\hbar^2} \log(1 + e^{(E_f - E)/k_B T}) \]

where \(m^* \) is the carrier effective mass, \(k_B \) is the Boltzmann constant, \(T \) is temperature, \(E_f \) is the Fermi energy level and \(E \) is the carrier ground state energy in the well.

The doping density can be determined according to eqn. 2 if the Fermi energy is determined. This can be achieved in quantum-well infrared photodetectors (QPWIP) by measuring the dark-current temperature dependence and the detector cutoff wavelength. As an example of this method, a stack of 40 GaAs/AlGaAs multiquantum wells (MQWs) is grown by molecular beam epitaxy (MBE) on (100) semi-insulating GaAs substrate. The structure consists of, from the substrate to the surface, a 0.6 μm n' GaAs bottom contact layer, 40 periods of 5.3 nm GaAs well layers sandwiched by 44nm Al_xGa_{1-x}As barrier layers, and a 0.3 μm n GaAs top contact layer. The centre 4.7 μm in each well is uniformly doped with Si. Following the MBE growth, circular mesas of 200μm diameter were defined by wet chemical etching. Au/Ag deposited on the top and bottom n' GaAs layers, lift off and alloying techniques were used to make ohmic contact. Owing to the well known interval-band transition selection rule, a 45° mirror was polished on the edge of the sample to couple incident infra-red radiation.

Fig. 1 Normalized photoresponse of detector under \(V_{bias} = -1 \) V at \(T = 10 \) K

Bias polarity is defined as bottom contact is ground.

These devices have a peak in the photoresponse spectrum at 1200 cm\(^{-1}\) as shown in Fig. 1. The long wavelength cutoff frequency (frequency at half-peak strength) is 1118 cm\(^{-1}\) (i.e. \(E_c = E_F = 1118 \) cm\(^{-1}\)). Fig. 2 shows the dark current as a function of voltage at different temperatures.

Fig. 2 Measured dark I/V characteristics of detector at different temperatures

![Image](image_url)

The dark current for QWIP can be expressed as

\[I_D = A \cdot n_i F_\Phi \]

where \(F_\Phi \) is the device area, \(n_i \) is the carrier density contributing to the dark current, and \(v_F \) is the electron drift velocity. The thermally excited carrier density \(n_i \) is given by [2, 3]

\[n_i = \frac{1}{F_\Phi} \int_{E_c}^{\infty} T(E, V) f(E) \rho_{2D}(E) dE \]

where \(L_W \) is the MQW period, \(T(E, V) \) is the transmission coefficient for an electron with energy \(E \) tunnelling through the barrier and \(f(E) \) is the Fermi-Dirac distribution function. If we consider an effective barrier with potential \(E_b \) varying with bias and approximate \(T(E, V) \) by \(T(E, V) = 1 \) for \(E < E_b \) and \(T(E, V) = 1 \) for \(E > E_b \), then eqn. 4 becomes

\[n_i = \frac{m^* k_B T}{\pi^2 L_W} \log(1 + e^{-(E_b - E)/k_B T}) \]

When the temperature is sufficiently high (but low enough such
that \(kT \ll (E_i - E_f) \), the dark current will be dominated by thermally excited carriers. Substituting eqn. 5 into eqn. 3,

\[
-\log \left(\frac{I}{J} \right) \propto \frac{E_f - E_i}{kT}
\]

(6)

In Fig. 3, the inset plot shows the normalised dark current \((I/J) \) as a function of inverse temperature for two values of applied bias per period. The experimental data \(E_f - E_i \) is calculated from slope of straight line for each bias.

In conclusion, we have demonstrated an experimental method for measuring the doping density in thin-planar semiconductor material. The voltage dependence of the effective barrier height seen by the electrons going out of the quantum well is also determined experimentally.

Acknowledgments: This work is supported by the Advanced Research Projects Agency (ARPA), and by the US Air Force Office of Scientific Research.

© IEE 1995 Electronics Letters Online No. 19950180

Y. Xu, A. Shakouri and A. Yariv (Department of Applied Physics, California Institute of Technology, Pasadena, CA 91125, USA)

T. Krakach and S. Defewski (SL0-210, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91125, USA)

References

5. XU, Y., SHAKOURI, A., YARIV, A., KRABACH, T., and DEFWESKI, S.: To be published

Enhancement of potential barrier height by superlattice barriers in the InGaAsP/InP materials system

R.V. Chelakara, M.R. Islam and R.D. Dupuis

Indexing terms: Semiconductor superlattices, Band structure, Tunneling

The authors have calculated the electron wave reflectivities for a variety of superlattice barriers in the InAlAs/InGaAsP/InP materials system. For an optimum superlattice barrier, we have calculated an effective barrier height of more than five times the classical barrier height available in this system. The significant improvement in the potential barrier height implies that the overflow leakage of hot electrons from the active layer to the cladding layer generated by the Auger effect can be suppressed, thereby improving the threshold current and the temperature characteristics of lasers in this system.

In 1973, Tsu and Eaki analysed the tunnelling phenomena for a one-dimensional semiconductor superlattice [1]. Since then, many semiconductor devices relying on the properties of superlattices have been proposed. For example, the use of a superlattice barrier (SLB) was proposed to effectively enhance the barrier height of a heterojunction, thereby reducing the number of injected carriers overflowing from the active layer into the cladding layer of a laser diode [2]. At high temperatures \((T > 300\,\text{K}) \), high-power laser operation is often limited by the carrier overflow at the heterojunction. The use of superlattice barriers in laser structures has been previously studied in laser structures and has been shown to be effective in the InAlAsP system [3] and also in the InGaAsP system [4].

![Fig. 1. Schematic diagram of 20-period modulated InP/InGaAsP SLB structure](image-url)