
Yarn Animation

An Experiment with Curves and Physics

April M. Grow, Julie Rej
University of California: Santa Cruz

1156 High Street
Santa Cruz, California

agrow@soe.ucsc.edu, jrej@ucsc.edu

ABSTRACT
As computers and technology become more powerful and
prevalent, we find them expanding into all corners of the
real, that is to say non-digital, world. Many objects have
been simulated, to varying degrees of success, but usually
toward a specific purpose, a means to an end. This project
abstracted away from creating yarn for dangling an object,
or creating yarn for decoration, and moved toward modeling
yarn for the sake of the yarn itself. In the following paper,
we examine three different curves, their pros and cons for
modeling yarn, physics on those curves, and procedural an-
imation of the curves for the purpose of creating yarn that
simply exists to be played with.

1. INTRODUCTION
Our project animates a yarn object made of appended curve
fragments using a mix of procedural animation and physics
animation. We were unable to meet our initial goals of colli-
sion detection and yarn-yarn or yarn-hook interaction. How-
ever, in lieu of those goals, we created other yarn-based ani-
mations using customizeable sine-wave based functions on a
curve that can be drawn using Bezier, B-spline, or Catmull-
Rom curve blending using matrix multiplication. We fo-
cused our efforts on the animation portion of the project and
are pleased with the progress we were able to accomplish,
even if it was not directly the same as our initial proposal.

2. RELATED WORKS
The inspiration for this project came from the senior Game
Design Sequence (CMPS 170-172) that both April and Julie
are participating in. Both authors are part of the same
team, U.S.E.D., which is responsible for creating Pattern[?],
a crochet simulator meant to teach the player about the craft
of crochet without the frustrating learning curve in handling
a crochet hook and yarn. While both authors planned to use
canned animations for the game project, this course offered a
unique opportunity to explore more thorough curve research
and animations for the game instead. See the References
Section (Section 7) for more information about Pattern.

3. TECHNICAL DETAIL
Our project’s design combines a number of elements that
were introduced in CMPS 161 this quarter, including but
not limited to curves and their matrices, physics-based ani-
mation, and procedural animation. There are also elements
of CMPS 160 that can be seen, such as camera control,
primitive-drawing, and texture mapping.

3.1 Curves
In contrast to most projects and assignments required for
CMPS 161, we built our project in XNA 3.1 using C#
rather than using C++ and OpenGL. This decision was
made based on our related work, Pattern, being in XNA
3.1 before the beginning of this quarter. As such, we were
not able to use many of OpenGL’s curve functions and had
to make them ourselves.

All of the following cubic curves (that is, all of them except
the nth degree bezier) are computed using the following for-
mula:

TMG

where T is a row matrix representing our cubic curves:

TCubic =
[
t3 t2 t 1

]
And G is a column matrix representing the four consecutive
control points starting at P :

GSplines =

Pi

Pi+1

Pi+2

Pi+3

The M for each curve is different and can be found in their
respective sections. The two curves in our project that cur-
rently implement the above setup (B-Spline and Catmull-
Rom) correctly function because their G’s are based off of
the four points. Hermite and Bezier have further restrictions
on their points to make the curves properly, and were left
out of our final project. Still, we researched them, so they
will be included in this paper’s discussions.

In our project, the yarn object is representing as a pair of
lists: a list of control points and a list of curve points. Con-
trol points are altered by the physics, procedural animation,
and directly by the user, and are the only means with which
the user can alter the curve. The curve itself is drawn us-
ing the curve points, which are calculated using the TMG
matrix multiplication above. At their core, curve points are
simply a list of points, but with cylinders drawn over them
they give our curve its yarn properties.

3.1.1 Bezier
The original design that we demonstrated mid-quarter was
based on a single nth-order bezier curve, where n was the
number of control points minus one. However, as Alex Pang
warned, dealing with Bezier curves in an environment where
we wanted to add line segments and animate their control
points was extraordinarily messy. We were able to add three
control points per segment in order to maintain curve conti-
nuity between the segments. Each segment used the follow-
ing matrix as a blending function[?]:

MBezier =

−1 3 −3 1
3 −6 3 0
−3 3 0 0
1 0 0 0

However, we were not able to easily ensure the continuity be-
tween adjacent Bezier segments upon application of physics
and procedural animation. Also, because of the following
two curves (Section 3.1.2, Section 3.1.3), generating one seg-
ment per newly introduced control point, where Bezier gen-
erates one segment per three control points, the curve would
not be as long nor fit properly into our data structures. Us-
ing Bezier segments was not intuitive or flexible enough for
our purposes. In a similar experiment, we also tested Her-
mite curves, but the miss-match between number of control
points also made it inconveneint to use. For posterity’s sake,
we kept the segmented Bezier algorithm and Hermite curve
in our program even though our project does not make use of
them. Here is the blending matrix for the Hermite curve[?]:

MHermite =

2 −2 1 1
−3 3 −2 −1
0 0 1 0
1 0 0 0

Ultimately, we ended up keeping the single nth-order bezier
curve to compare/contrast with the other curves we intro-
duced into the system (Section 3.1.2, Section 3.1.3). The
bezier algorithm that handles nth-order curves was derived
from the Wikipedia website on Bezier curves[?]. The algo-
rithm uses a combination of factorials and combinatorials in
order to handle the varying degrees it can be given.

3.1.2 B-Spline
Our first Bezier-replacement was the uniform cubic B-spline[?].
We were primarily attracted to it as a result of its approxi-
mating its control points rather than interpolating them, as
well as its ability to maintain C2 continuity in its segments
after only adding a single control point[?]. Our algorithm
applies the uniform cublic B-spline blending function to a
set of four consecutive control points[?]:

MB−Spline =
1

6

−1 3 −3 1
3 −6 3 0
−3 0 3 0
1 4 1 0

In order to draw the whole curve, we iterate through the
blending function using n control points (P) as follows:

B − Spline Blend(Pi, Pi+1, Pi+2, Pi+3)

where n ≤ 4 and 0 < i ≤ n-3.

3.1.3 Catmull-Rom
As an experiment, we also wanted to test out what our curve
would look like when applied to an algorithm with C1 con-
tinuity[?] that interpolates some of its control points rather
than approximating them all. Professor Pang described the
Catmull-Rom Spline curve in class, and because of its similar
structure to uniform cubic B-splines, we decided to imple-
ment it. It uses the same blending method was the uniform
cubic B-spline:

Catmull −Rom Blend(Pi, Pi+1, Pi+2, Pi+3)

where n ≤ 4 and 0 < i ≤ n-3

However, the blend function accesses a different matrix, and
thus a different parametric equation[?]:

MCatmull−Rom =
1

2

−1 3 −3 1
2 −5 4 −1
−1 0 1 0
0 2 0 0

3.1.4 Controlling the Individual Control Point

Each individual control point can also be moved manually.
The control point can be moved in the x, y and z direction.
This functionality gives the user freedom to shape the yarn
however they want.

3.2 Cylinders and Camera
The authors were able to make use of CMPS 160 knowledge
for this project, and those contributions are worth noting
here. First, we built a cylinder primitive using triangle lists
and wrapped a single yarn texture around the cylinder. We
aligned the texture on the cylinder such that when the cylin-
ders lay end-to-end, the texture moves smoothly from one
cylinder to the next. Secondly, we had to orient the cylin-
der in 3D space using matrix multiplications in the correct
order. We laid the cylinders on the curve from curve point
to curve point (where those points are defined by the curve
blend functions (Sections 3.1.1 - 3.1.3)), and retained the
angular information of that line segment for use in orienting
the cylinder. Finally, we have a camera that the user can
zoom, pan, and change between a front view and a side view
of the yarn also using matrix multiplications.

3.3 Physics
The purpose of physics is to arrange the position of the
control points based on user input. Physics is composed
of two important functions: calculating the net force and
determining the curvature. Each time physics is called the

net force is calculated. Curvature then uses the net force to
determine the amount of curvature.

3.3.1 Finding the Net Force
The net force is equal to the constant minus the force of user
input.

Ftotal = |Fconstant||Finput|

The user input is received either through the left joystick
on the controller or through keys on the keyboard. If the
left stick is not being moved in any way, the force from user
input is equal to zero. As pressure is applied to the left
stick, the force due to user input increases. Input from the
keyboard works a little different. Four different keys are used
to control the amount of force applied in the positive and
negative direction along the x and y axis. If the user stops
giving input, the yarn will freeze at that position rather than
falling back to zero like in the case of the controller input.

Once the amount of force applied in the x and y diretion is
recorded, the total Finput is calculated using the Pythagorean
Theorem.

Finput =
√

FXinput2 + FY input2

The Finput can never exceed the Fconstant. If the input
force is greater than the constant force, the input force is
reassigned to equal the constant force.

3.3.2 Finding the Curvature
Before Curvature redistributes the control points, a call will
be made to the method that calculates the net force. The
net force will help determine the placement of the control
points for accurate curvature based on input. As shown in
Figure 1, if |Fconstant | > |Finput | the yarn will start to
curve. The less the input force is then the constant force,
the greater the curve in the yarn. When the forces are in
equilibrium, |Fconstant | = |Finput |, the yarn is completely
straight. Figure 2 shows the appearance of the yarn when
the forces are in equilibrium.

Before the control points can be distributed, the pivot point
needs to be determined. The pivot point and all control
points that come before are not affected by the physics. Each
control point between the pivot point and the end point are
evaluated and redistributed in the x and y direction. Input
from the user should cause the yarn to move in a radial like
motion where the pivot point is the center of the circular
path.

When the yarn is at rest, the affected control points all have
the same x position. As the user applies a force the, the
points start to spread out. Regardless of the amount of
user force, as long as itŠs not zero, the control points will
be evenly space between the pivot point and the end point.
The more force, the more spread apart the control points
get. The amount of spreading is directly affected by the net
force.

Figure 1: Image of the yarn when |Fconstant| > |Fin-
put|

Figure 2: Image of the yarn when |Fconstant| =
|Finput|

At rest, the affected control points are evenly spaced apart
in the y position. Once the user applies a force, the control
points form a v shape. The pivot and end point are the
two high points in the v. As the user applies more force,
the points will flatten their v shape and become linear. The
sharpness of the drop in the v shape is directly affected by
the net force.

3.4 Procedural Animation
In lieu of collision and inter-yarn animation, we decided to
experiment with procedural animation. A simple algorithm
that is string- and wave-related, the sine wave, seemed like a
clear-cut choice. After CMPS 161 Program 4[?], the authors
realized how interesting it was to set up a system that the
user could simply play with, and that is what the procedural
animation section is based off of.

3.4.1 Sine Wave
The sine wave follows a straight-forward equation that many
students learn in trigonometry[?]:

y(t) = A · sin(ωt + ϕ)

We applied this formula to our control points, along with the
ability for the user to control the amplitude (A), wavelength
(ω), and speed or rate (ϕ). Using this equation, you can
simulate a number of animations that can be done with yarn,
such as playing jump-rope with the yarn, swinging the yarn
between your fingers, or shaking one end of the yarn. The
goal of this portion of the project was to interpolate control
points in a predictable pattern and see how the yarn reacted.
Each of the three curves (Sections 3.1.1 - 3.1.3) show vastly
different animations with the same control point animations.

4. RESULTS

In terms of displaying yarn, we found the uniform cubic B-
splines to be the best choice of the methods we tried. It
offers the smoothest use of control points because of its ap-
proximating them, offering the highest amount of continuity,
and is ultimately the simplest to use (in only having to add
a single control point per segment, as opposed to Bezier).
As a note specific to our CMPS 161 class, real-time collision
detection between animated oddly shaped and oriented ob-
jects is far too difficult to attempt to accomplish in the span
of a single final project. We are pleased with what we were
able to accomplish, both in exploring curve algorithms and
in animating those curves. We are glad that we scrapped our
collision-based animations in favor of more free-form ones.

5. CONCLUSION
Our project has explored at length the pros and cons of var-
ious curve drawing methods for yarn and other string-like
objects, as well as movement of those curves through space.
In our project, physics forces and animation forces control
the curve as a puppet master would: using the control points
as marionette handles and allowing the curve blending func-
tions to draw the resulting object. We did not use canned
spring forces for our yarn, and instead experimented with
new ways to orient the control points in order to achieve the
result of a nicely draping curve. Finally, we took advantage
of the yarnŠs curve structure and animated it based on the
oscillating sinusoidal wave function to simulate a piece of
yarn with different kinds of forces acting upon it. In future
work, we hope to successfully integrate collision detection
and resolution in order to allow yarn-yarn and yarn-hook
interactions to also take place.

6. ACKNOWLEDGEMENTS
The authors would like to acknowledge William Tuttle for
his help with the nth degree Bezier design and primitive
drawing in XNA 3.1.

7. REFERENCES
[1] Alex Pang. Ucsc cmps 161 winter 2011 program 4.

Online, 2011.
http://users.soe.ucsc.edu/ pang/161/w11/prog4/.

[2] Rick Parent. Computer Animation: Algorithms and
Techniques. Morgan Kaufmann Publishers, Burlington,
MA, 2nd edition, 2008.

[3] Wikipedia. B-spline — wikipedia, the free encyclopedia.
Online, 2011. http://en.wikipedia.org/wiki/B-spline.

[4] Wikipedia. Bezier — wikipedia, the free encyclopedia.
Online, 2011.
http://en.wikipedia.org/wiki/B%C3%A9zier curve.

[5] Wikipedia. Sine wave — wikipedia, the free
encyclopedia. Online, 2011.
http://en.wikipedia.org/wiki/Sine wave.

[6] Wikipedia. Smooth function — wikipedia, the free
encyclopedia. Online, 2011.
http://en.wikipedia.org/wiki/Smooth function.

[7] Katarina Yang. Pattern. Online, 2011.
http://people.ucsc.edu/ agrow/pattern/.

