Rosetta-based modeling of peptide-MHC I complexes

Alastair Fyfe

Haussler/Sgourakis Labs

afyfe@soe.ucsc.edu

Adoptive T-cell therapy

Neoantigens in cancer immunotherapy

Precision immuno pipeline (in brief), Arjun Rao

- Matched tumor/normal sequencing: exome, RNASeq
- Haplotyping (phlat)
- Variant calling: mutations/indels (mutect,radia,somaticseq,..)
- Map to AA changes and epitopes
- MHC-binding predictions (netMHCpan, Rosetta?)

Knowledge-based vs. knowledge-based:

- NetMHCpan: neural-network classifier trained on 186,684 peptide-MHC affinity measurements from IEDB
- FlexPepDock : MCMC search over fragment database built from current* PDB database; detailed/realistic all-atom energy function

Test case: allele HLA-A*01:01

P1	CTELKLNDY	4NQX	flu (H7N9)
P2	CTELKSNDY	4NQV	flu (H7N9)
P3	EVDPIGHLY	5BRZ	MAGE-A3
P4	ESDPIVAQY	5BS0	Titin
P5	EADPTGHSY	3BO8	MAGE-A1

IEDB binding data:

Overview: peptide-MHC-I binding in 5BRZ

Sequence-independent peptide-MHC-I binding in 5BRZ

Peptide P1: "near" native vs. extended, 100 decoys

Superimposed MHC receptors: 4NQX and 5BRZ

Peptides P1 and P3, extended, 100 decoys

5BRZ: Contacts to C-terminal Tyr 9

Native and Modified P3 (Y9A), extended, 100 decoys

Next steps:

- Scale up to productions runs.
- Investigate existing FlexPepDock alternative score terms.
- Correlate IEDB training database with FlexPepDock score terms.

• Model water binding?