
Security Analysis of Cryptographically Controlled
Access to XML Documents

MART́IN ABADI

University of California, Santa Cruz, and Microsoft Research, Silicon Valley, USA

and

BOGDAN WARINSCHI

University of Bristol, UK

Some promising recent schemes for XML access control employ encryption for implementing se-
curity policies on published data, avoiding data duplication. In this paper we study one such
scheme, due to Miklau and Suciu. That scheme was introduced with some intuitive explanations
and goals, but without precise definitions and guarantees for the use of cryptography (specifically,
symmetric encryption and secret sharing). We bridge this gap in the present work. We analyze
the scheme in the context of the rigorous models of modern cryptography. We obtain formal
results in simple, symbolic terms close to the vocabulary of Miklau and Suciu. We also obtain
more detailed computational results that establish security against probabilistic polynomial-time
adversaries. Our approach, which relates these two layers of the analysis, continues a recent thrust
in security research and may be applicable to a broad class of systems that rely on cryptographic
data protection.

Categories and Subject Descriptors: E.3 [Data Encryption]: ; H.2.7 [Database Administra-
tion]: Security, integrity, and protection; F.1.1 [Models of Computation]: Relations between
models

General Terms: Security, Theory

Additional Key Words and Phrases: access control, authorization, encryption, XML

1. INTRODUCTION

A classic method for enforcing policies on access to data is to keep all data in trusted
servers and to rely on these servers for mediating all requests by clients, authen-
ticating the clients and performing any necessary checks. An alternative method,
which is sometimes more attractive, consists in publishing the data in such a way
that each client can see only the appropriate parts. In a naive scheme, many sani-

This work was supported in part by the National Science Foundation under Grants CCR-0204162,
CCR-0208800, CCF-0524078, and ITR-0430594, and by ACI Jeunes Chercheurs JC 9005 and ARA
SSIA Formacrypt.
It was partly carried out while Bogdan Warinschi was affiliated with the University of California
at Santa Cruz, with Stanford University, and with Loria, INRIA, in Nancy.
Authors’s addresses: Mart́ın Abadi, Computer Science Department, University of California at
Santa Cruz, Santa Cruz, CA 95064, USA. Bogdan Warinschi, Department of Computer Science,
University of Bristol, Merchant Venturers Building, Woodland Road, Bristol, BS8 1UB, UK.
A preliminary version of this paper appears in the Proceedings of the 24th ACM Symposium on
Principles of Database Systems.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 0004-5411/20YY/0100-0001 $5.00

Journal of the ACM, Vol. V, No. N, Month 20YY, Pages 1–0??.

2 · Mart́ın Abadi and Bogdan Warinschi

tized versions of the data would be produced, each corresponding to a partial view
suitable for distribution to a subset of the clients. This naive scheme is impractical
in general. Accordingly, there has been much interest in more elaborate and useful
schemes for fine-grained control on access to published documents, particularly for
XML documents [Bertino et al. 2002; Bertino et al. 2001; Crampton 2004; Damiani
et al. 2002; Kudo and Hada 2000; Miklau and Suciu 2003; Yang and Li 2004]. This
line of research has led to efficient and elegant publication techniques that avoid
data duplication by relying on cryptography. For instance, using those techniques,
medical records may be published as XML documents, with parts encrypted in such
a way that only the appropriate users (physicians, nurses, researchers, administra-
tors, and patients) can see their contents.

The work of Miklau and Suciu [2003] is a crisp, compelling example of this line
of research. They develop a policy query language for specifying fine-grained access
policies on XML documents and a logical model based on the concept of “protec-
tion”. They also show how to translate consistent policies into protections, and how
to implement protections by XML encryption [Eastlake and Reagle 2002]. Roughly,
a protection is an XML tree in which nodes are guarded by positive boolean for-
mulas over a set of symbols {K1,K2, . . .} that stand for cryptographic keys. Pro-
tections have a simple and clear intended semantics: access to the information
contained in a node is conditioned on possession of a combination of keys that sat-
isfies the formula that guards the node. For example, access to a node guarded by
(K1∧K2)∨K3 requires possessing either keys K1 and K2 or key K3. (See Gifford’s
work for some of the roots of this approach [Gifford 1982].) Formally, a protection
describes a function that maps each possible set of keys to the set of nodes that
can be accessed using those keys, treating the keys as symbols. On the other hand,
the use of keys for deriving a partially encrypted document is not symbolic: this
process includes replacing the symbols K1,K2, . . . with actual keys, and applying a
symmetric encryption algorithm repeatedly, bottom-up, to the XML document in
question.

While Miklau and Suciu provide a thorough analysis of the translation of policies
into protections, they leave a large gap between the abstract semantics of protec-
tions and the use of actual keys and encryption. The existence of this gap should
not surprise us: an analogous gap existed in protocol analysis for 20 years, until re-
cent efforts to bridge it (e.g., [Abadi and Rogaway 2002; Backes et al. 2003; Herzog
2004; Laud 2004; Micciancio and Warinschi 2004]). Concretely, the gap means that
the protection semantics leaves many problematic issues unresolved. We describe
two such issues, as examples:

—Partial information: It is conceivable that even when a node should be hidden
according to a protection, the partially encrypted document may in fact leak
some information about the data in that node.

—Encryption cycles: From the point of view of the abstract semantics, encryption
cycles (such as encrypting a key with itself) are legitimate and do not contradict
security. On the other hand, there are encryption algorithms that satisfy standard
cryptographic definitions of security but that leak keys when encryption cycles
are created (see Section 4).

More generally, there are many encryption methods and many notions of security
Journal of the ACM, Vol. V, No. N, Month 20YY.

Security Analysis of Cryptographically Controlled Access to XML Documents · 3

for them (e.g., [Bellare and Rogaway 2005; Dolev et al. 2000; Goldwasser and Micali
1984]), and it is not clear which one, if any, provides adequate guarantees for this
application—nor is it exactly clear what those guarantees might be.

The immediate goal of this work is to bridge this gap by reconciling the abstract
semantics of protections with a more concrete, computational treatment of security,
and to define and establish precise security guarantees. We do not wish to replace
the abstract semantics, which certainly has its place, but rather to complement it.

From a broader perspective, our goal is to develop, apply, and promote useful
concepts and tools for security analysis in the field of database theory. These con-
cepts and tools do not pertain to statistical techniques, which have long been known
in database research (e.g., [Adam and Worthmann 1989; Castano et al. 1995; Ull-
man 1983]), but rather to cryptography. While sophisticated uses of cryptology
in database research may have been of modest scope, there is an obvious need for
database security, and we believe that cryptology has much to offer. In research
on cryptographic protocols, formal and complexity-theoretic methods have been
successful in providing detailed models and in enabling security proofs (sometimes
automated ones). The same methods are beneficial for a broad class of systems that
require security (e.g., [Micciancio and Panjwani 2006]). Each application, however,
can necessitate non-trivial, specific insights and results. In the techniques that we
study, partial and multiple encryptions occur in (large, XML) data instances; we
therefore depart from the situations most typically considered in the cryptogra-
phy literature, towards data management. It is this specificity that motivates the
present paper.

Overview of Results

Our analysis is directed at the core of the framework of Miklau and Suciu, which
aims to ensure data protection by an interesting combination of encryption schemes
and secret sharing schemes [Shamir 1979].

As a formal counterpart to their loose, informal concept of data secrecy, we
introduce a strong, precise cryptographic definition. The definition goes roughly
as follows. Consider a protection for an XML document. An adversary is given an
arbitrary set of keys, and the liberty of selecting two instantiations for the data in all
nodes that occur in the XML document. The only restriction on these instantiations
is that they should coincide on the nodes to which the adversary rightfully has access
according to its keys and the abstract semantics of protections. In other words, the
adversary selects two documents that contain the same information in the nodes
it can access but may differ elsewhere. Then the adversary is given the partially
encrypted document that corresponds to one of its two documents, and its goal
is to decide which of the two instantiations was used in generating this partially
encrypted document. Security means that the adversary cannot do much better
than picking at random. It implies that the partially encrypted document reveals
no information on the data in the nodes that should be hidden from the adversary,
for otherwise this information would be sufficient to determine which instantiation
was used.

Technically, we adapt and extend the approach of Abadi and Rogaway [2002],
which has been followed and developed in several pieces of recent work (e.g., [Laud
2004; Micciancio and Panjwani 2005; 2006]). The novelties of this paper include the

Journal of the ACM, Vol. V, No. N, Month 20YY.

4 · Mart́ın Abadi and Bogdan Warinschi

application to document access control, significant differences in basic definitions
motivated by this application, and the treatment of secret sharing. First we provide
an intermediate symbolic language for cryptographic expressions. We then define
patterns of expressions; intuitively, a pattern represents the information that an
expression reveals to an adversary. We show how to transform protections into
cryptographic expressions, and use patterns for providing an equivalent semantics
for protections. This equivalence is captured in Theorem 1. Going further, we
relate expressions to concrete computations on bit-strings. The most difficult result
of this paper is Theorem 2. Informally, it states that patterns faithfully represent
the information that expressions reveal, even when expressions and patterns are
implemented with actual encryption schemes (not symbolically). More precisely, we
associate probability distributions with an expression and its pattern by mapping
symbols to bit-strings and implementing encryption with a semantically secure
encryption scheme [Goldwasser and Micali 1984], and prove that these distributions
cannot be distinguished by any probabilistic polynomial-time algorithm. Our main
theorem, Theorem 4, reconciles the abstract semantics of protections with the actual
use of encryption. We establish that if data is hidden according to a protection,
then it is secret according to our definition of secrecy.

Contents

The next section, Section 2, is mostly a review. Section 3 introduces our for-
mal language for representing cryptographic expressions and defines an alternative
semantics of XML protections. Our main results are in Section 4, which gives con-
crete interpretations to expressions and relates the formal semantics of protections
to a strong definition of secrecy. Section 5 considers some variants and extensions.
Section 6 concludes. The Appendix contains additional proofs.

2. CONTROLLING ACCESS TO XML DOCUMENTS WITH PROTECTIONS

In this section we briefly recall the key aspects of the work of Miklau and Suciu. We
focus on protections. We describe the derivation of partially encrypted documents
from protections in the next section. We omit the policy query language because,
for our purposes, we can discuss the protections generated from policies rather than
the policies themselves.

XML Documents and Protections

We model XML documents as trees labeled with elements from a set Data =
{D1,D2, . . .}, which we assume to represent XML element names and actual data
values, though we make no syntactic distinction between these two possibilities.
We treat D1, D2, . . . as atomic data symbols. We use pre-order representations for
XML trees, described by the grammar:

XML ::= (Data) | (Data,XML,XML, . . . ,XML)

with terminals in Data ∪ {“(”, “)”}.
A protection consists of two components: a metadata XML tree obtained from

an XML tree by adding metadata nodes, and a mapping that attaches to each node
a positive boolean formula over Keys = {K1,K2, . . .}. Metadata nodes are nodes
that have special kinds of labels, and it is assumed that they can be distinguished
Journal of the ACM, Vol. V, No. N, Month 20YY.

Security Analysis of Cryptographically Controlled Access to XML Documents · 5

< hosp >

< phys >

< admin >

< nurse >

< pat id > < pat id >

K 1

true

K 3

1

2

3 4

5

6
K 4

)(K 1 K 3 K 4

K 2

2

1

21

6

6

655

53

K

K

KKK

K
3

4K

4K

3K

< pat id >< pat id >

< nurse >

12

11109

8

7

6

5

4
K

2K

1K

true

true

AND

OR true

1K

< admin >

< phys >

< hosp >

Fig. 1. A tree protection (top) and an equivalent normalized one (bottom).

{D1,
(OR, (AND, ({K1

5}K1 , {K2
5}K1 , {K6}K5), {K6}K4 , {D2, ({D3}K3 , {D4}K4)}K6),

(D5, ({D6}K2)))}K1

Fig. 2. Expression associated with the normalized protection of Figure 1.

Journal of the ACM, Vol. V, No. N, Month 20YY.

6 · Mart́ın Abadi and Bogdan Warinschi

from the standard XML nodes. Their labels are one of the symbols OR and AND,
or hold keys in the set Keys or key shares in the set KeyShares defined by:

KeyShares = {Kj
i | Ki ∈ Keys, j ∈ 1..n}

for a fixed parameter n. Thus, in summary, protections are generated by the
grammar:

Prot ::= [(BData),Cond] |
[(BData,Prot,Prot, . . . ,Prot),Cond]

Cond ::= true | false | Keys | Cond ∧ Cond | Cond ∨ Cond

where

BData = Data ∪ Keys ∪ KeyShares ∪ {OR,AND}
is the set of node labels.

Roughly, the key shares K1
i , K2

i , . . ., Kn
i are pieces of information that together

allow the recovery of the key Ki, but of which no proper subset suffices for com-
puting Ki, or even non-trivial partial information about Ki. For example, the key
shares K1

i , . . ., Kn−1
i may be random strings of the same length as Ki, and Kn

i

may be the XOR of K1
i , . . ., Kn−1

i with Ki. We treat a framework more general
than the original one, which uses a particular way of sharing keys. We assume that
the number of shares for each key is some integer constant n (with n ≥ 2), and that
each key is shared only once. (This assumption holds in the original framework,
where n = 2.)

In a protection, the formula that guards a node describes a condition that needs
to be satisfied before a user is granted access to that node (and its children). For
example, accessing a node guarded by the formula K1 ∧ (K2 ∨K3) requires having
key K1 and at least one of the keys K2 and K3. In addition, the user should also
satisfy all formulas on the path from the root to the node.

Figure 1 gives an example (adapted from [Miklau and Suciu 2003]). The tree at
the top is an example of a protection over some XML medical database. Notice that
we preserved the original labels—we did not replace element names with symbols
D1, D2, A user that possesses only key K3 cannot access any node since the
root is guarded by K1. If the user knows also K1 then it should be able to access
the data in nodes {1, 2, 3, 5}.
Normalization

Using simple transformations, one can rewrite any protection into an equivalent,
normalized protection where all formulas that guard nodes are atomic, that is, one
of true, false, or K for some K ∈ Keys. Normalization requires adding metadata
nodes, keys, and key shares. Normalization can also include removing parts guarded
by false, so we assume that false does not appear in normalized formulas (departing
slightly from the original definition but without loss of generality). Normalized pro-
tections are important because, in standard encryption schemes, one can encrypt
under an atomic key but not under a boolean combination of keys. Normalized pro-
tections serve as the basis for producing partially encrypted documents by applying
an encryption algorithm repeatedly.
Journal of the ACM, Vol. V, No. N, Month 20YY.

Security Analysis of Cryptographically Controlled Access to XML Documents · 7

In Figure 1, the tree at the bottom is a normalized protection, equivalent to the
protection at the top. In the normalized protection, a user with keys K1 and K3

can recover the information in nodes 9 and 10, that is, the key shares K1
5 and K2

5 ,
and therefore K5. (Recall that, in [Miklau and Suciu 2003], keys are split into only
two shares.) The key K5 can then be used to recover the information in node 11,
that is, the key K6 which together with K1 provides access to the nodes {1, 2, 3, 5}
of the original tree.

A Semantics of Protections

Formally, the semantics of a protection P is the function AccP : P(Keys)→ P(Data)
that, given a set of keys T ⊆ Keys, returns the set of data that can be accessed using
the keys in T . Computing the function AccP (T) is an iterative process. The keys in
T are used to access new keys (by either obtaining them directly or recovering all
their shares), and the process is repeated until a maximal set of keys is obtained.
The output of AccP (T) is the set of all data contained in nodes that can be accessed
using this last set of keys.

We refer the reader to Miklau and Suciu [2003] for additional details on the
definition of AccP (T). In most of our analysis, we use an equivalent formulation of
the formal semantics, given in Section 3.

On Keys Derived from Data

In the description above and in the analysis that follows, we do not consider the
use of keys derived from data (for example, from mother’s maiden names and
social security numbers). There are at least three obstacles to obtaining security
guarantees with such keys. These obstacles are not specific to a particular scheme,
but they do arise in this context.

—First, the potential lack of entropy in data implies that the resulting keys may
offer no security. For example, keys computed from 9-digit social security num-
bers can have at most 109 values, which an attacker may try in order to recover
anything encrypted under those keys. An attacker may even learn the underlying
social security number when decryption with one of those values succeeds.

—Moreover, the key derivations can lose some data entropy. Specifically, Miklau
and Suciu compute a 128-bit key by breaking data into 128-bit blocks and XOR-
ing those blocks; if a piece of data yields blocks in which only the first m bits are
meaningful and the last 128−m bits contain a fixed pattern, then the resulting
key has at most m bits of entropy, no matter how much entropy was initially
present in the data.

—Finally, the resulting keys can be involved in questionable encryption cycles—for
instance, protecting a mother’s maiden name with a social security number and
vice versa.

3. FORMAL ANALYSIS

In this section we introduce a language for representing cryptographic expressions
that use symmetric encryption and secret sharing schemes. We rely on this language
for providing a formal account of the transformation of protections into partially
encrypted documents. We also define patterns of expressions, which capture the

Journal of the ACM, Vol. V, No. N, Month 20YY.

8 · Mart́ın Abadi and Bogdan Warinschi

information that expressions reveal to an adversary, in symbolic terms. This defi-
nition is a variant of ones suggested in other contexts [Abadi and Rogaway 2002;
Herzog 2004; Micciancio and Panjwani 2005]. Finally, we establish a relation be-
tween the semantics of protections and these patterns.

Basically, expressions are useful as an intermediate language between protections
and the world of probability distributions on bit-strings. They also serve as a
bridge to other work on formal analysis. That work includes the idea of patterns,
as generalizations of expressions. We adapt and extend that idea for the present
setting.

An Intermediate Cryptographic Language

We consider expressions built from the set of basic data BData (defined above),
using tupling and encryption with keys in Keys. The grammar for expressions is:

Exp ::= BData | (Exp,Exp, . . . ,Exp) | {Exp}Keys

For example, an element in Exp is the expression

({(D2,K
2
1)}K2 , {(D1, {K2}K3)}K1)

It represents the tupling of two ciphertexts. The first ciphertext is the encryption
under key K2 of data D2 and key share K2

1 . The second ciphertext is the encryption
under key K1 of the tuple formed from data D1 and the encryption under key K3

of key K2.
We sometimes omit parentheses in expressions. For example, we may write
{D1,K1}K2 rather than {(D1,K1)}K2 .

Associating Cryptographic Expressions to Protections

We use our language of expressions for giving a precise definition of how to map a
normalized protection to (a symbolic representation for) a partially encrypted doc-
ument. This definition is recursive. It relies on the intuition that each node of the
protection under consideration is (recursively) mapped to a part of the final, par-
tially encrypted document. If the node is guarded by a key, then the corresponding
part of the final document is encrypted under that key, otherwise it is left in clear.

Formally, we define the function E : Prot→ Exp inductively by:

—E([(B,P1, P2, . . . , Pl), true]) = (B,E(P1),E(P2), . . . ,E(Pl))
—E([(B,P1, P2, . . . , Pl),K]) = {(B,E(P1),E(P2), . . . ,E(Pl))}K
where l ≥ 0, each Pi (for i = 1, 2, . . . , l) is a normalized protection, B is an arbitrary
symbol in BData, and K is an arbitrary key in Keys.

For example, the expression of Figure 2 corresponds to the second protection in
Figure 1, with the element name contained in node i replaced with data symbol Di.

Cycles

The definition of expressions allows encryption cycles of the kind discussed in the
introduction. For some of our results, it is useful to focus on a class of acyclic
expressions:

Definition 1 Acyclic expressions. A plain occurrence of a key Kj in an
expression E1 is one where Kj is not the subscript in a subexpression {. . .}Kj

. Key
Journal of the ACM, Vol. V, No. N, Month 20YY.

Security Analysis of Cryptographically Controlled Access to XML Documents · 9

Ki encrypts key Kj in expression E if there exists a subexpression {E1}Ki
in E

such that Kj occurs plainly in E1 or Kk
j (for some k ∈ 1..n) occurs in E1. The

expression E is acyclic if the graph associated with its “encrypts” relation is acyclic.

For example, {K1}K2 and {{K1}K2}K2 are both acyclic expressions, while {K1}K1

and ({K1
1}K2 , {K2}K1) are not.

As long as data values are not used as keys, a protection P that results from the
translation of a policy never contains keys in its nodes. In turn, if normalizing P
yields P ′, then E(P ′) is an acyclic expression. (This point follows from the definition
of normalization [Miklau and Suciu 2003].)

Recoverable Keys

Given an expression E, we write keys(E) for the set of key symbols that occur in E
and key symbols whose shares occur in E. We call a key recoverable if the key occurs
in clear (that is, not encrypted), if the key occurs encrypted under recoverable keys,
or if each of its shares occurs in clear or encrypted under recoverable keys. More
precisely, a key is recoverable if it is in the least set S of expressions such that:

—E ∈ S,
—for all E1, . . . , Em ∈ Exp, if (E1, . . . , Em) ∈ S, then E1 ∈ S, . . . , Em ∈ S,
—for all E′ ∈ Exp and Kj ∈ Keys, if {E′}Kj

∈ S and Kj ∈ S, then E′ ∈ S,
—for all Kj ∈ Keys, if K1

j , . . . ,Kn
j ∈ S, then Kj ∈ S.

We write recoverable(E) for the set of all recoverable keys in expression E.
For example, with n = 2, for the expression

E = ({K1,K
1
2 ,K1

6 ,K4}K3 , {K2
2}K2 ,K3, {K5}K4)

we have

keys(E) = {K1,K2,K3,K4,K5,K6}
and

recoverable(E) = {K1,K3,K4,K5}
while for the expression

E′ = ({K1,K
1
2 ,K1

6 ,K4}K3 , {K5}K2 ,K3, {K2
2}K4)

we have

keys(E′) = {K1,K2,K3,K4,K5,K6}
and

recoverable(E′) = {K1,K2,K3,K4,K5}
Expression Patterns

For each expression E, we define its structure struct(E). Essentially, the structure
of an expression is given by its parse tree in which the labels are replaced with fresh
symbols. We therefore introduce D, K0, and Kj

0 (for j ∈ 1..n), all disjoint from
BData, and define the structure of expressions by:

Journal of the ACM, Vol. V, No. N, Month 20YY.

10 · Mart́ın Abadi and Bogdan Warinschi

—struct(Ki) = K0 for all Ki ∈ Keys,
—struct(Kj

i) = Kj
0 for all Ki ∈ Keys, j ∈ 1..n,

—struct(Di) = D for all Di ∈ Data,
—struct(OR) = OR,
—struct(AND) = AND,
—struct((E1, E2, . . . , Em)) = (struct(E1), struct(E2), . . . , struct(Em)),
—struct({E}Ki

) = {struct(E)}K0 for all Ki ∈ Keys.

Thus, data symbols are replaced with D, key symbols are replaced with K0, and key
shares are replaced with corresponding shares of K0. For example, the structure of
the expression

{({K1,D2}K3 ,K
1
3)}K2

is

{({K0,D}K0 ,K
1
0)}K0

The encryption cycle in this structure is unimportant for our purposes. Alter-
native definitions of expression structure can avoid such cycles without affecting
our results. (For example, one such definition lets the structure of {E}Ki

be
{struct(E)}K′

0
, where K ′

0 is a fresh symbol distinct from K0.)
We write p(E, T) for the pattern that can be observed in expression E using for

decryption the keys in T ⊆ keys(E). The set of patterns is defined like the set of
expressions but over extended sets of atomic symbols that include D, K0, and Kj

0

(for j ∈ 1..n). The pattern p(E, T) is defined by:

—p(B, T) = B for all B ∈ BData,
—p((E1, E2, . . . , Em), T) = (p(E1, T), p(E2, T), . . . , p(Em, T)),
—p({E}Ki

, T) = {struct(E)}Ki
if Ki 	∈ T ,

—p({E}Ki
, T) = {p(E, T)}Ki

if Ki ∈ T .

The idea that motivates this definition is that a ciphertext encrypted under an
unknown key Ki reveals at most the structure of the underlying plaintext and the
identity of Ki, but not the encrypted value. Section 4 explains a computational
counterpart of this idea.

We write pattern(E) for the pattern obtained from E by using for decryption the
keys recoverable from E itself. We let:

pattern(E) = p(E, recoverable(E))

For example, the pattern of the expression

({D1}K1 , {D2}K2 ,K1)

is

({D1}K1 , {D}K2 ,K1)

Similarly, the pattern of the expression

({{D1}K2}K1 , {D2}K2 ,K1)
Journal of the ACM, Vol. V, No. N, Month 20YY.

Security Analysis of Cryptographically Controlled Access to XML Documents · 11

is

({{D}K2}K1 , {D}K2 ,K1)

Finally, when n = 2, the pattern of the expression

({D1}K1 , {{K1}K2}K3 ,K
1
3 ,K2

3 , {({K1,D2}K3 ,K
1
3)}K2)

is

({D}K1 , {{K0}K2}K3 ,K
1
3 ,K2

3 , {({K0,D}K0 ,K
1
0)}K2)

Secrecy, Symbolically

Using patterns, we characterize the set of visible data (and thus the set of secret
data) in formal expressions. By analogy with the definition of AccP (T), we define
the set of data accessible in expression E with keys in the set {K1,K2, . . . ,Kl} ⊆
keys(E) by:

AccE({K1,K2, . . . ,Kl}) = {Di ∈ Data | Di occurs in pattern(E,K1,K2, . . . ,Kl)}
The following theorem relates AccP (T) and AccE(T), thus justifying the similar-

ity in notation. It states that the set of data that can be accessed with keys K1,
K2,. . . , Kl according to protection P is precisely the set of data that can be seen
in the pattern of (E(P),K1,K2, . . . ,Kl). The purpose of the tupling with the keys
K1, K2,. . . , Kl is to make those keys immediately recoverable.

Theorem 1. Let P be a normalized protection and T ⊆ keys(E(P)). Then
AccP (T) = AccE(P)(T).

When T is empty, the theorem holds because AccP (∅) and AccE(P)(∅) both consist
of the data that occurs only under keys that can be recovered from E(P). More
generally, for an arbitrary T , it holds because AccP (T) and AccE(P)(T) both consist
of the data that occurs only under keys that can be recovered from the combination
of E(P) and T . We omit a complete proof of this theorem; in the rest of the paper
we rely primarily on AccE(T) rather than on AccP (T).

4. COMPUTATIONAL ANALYSIS

In this section we give a concrete interpretation for expressions and patterns as
probability distributions on bit-strings. This interpretation is computational in the
sense that it relies on computations on bit-strings rather than on symbolic expres-
sions. In particular, encryption is an actual computation on bit-strings, rather than
a formal operation. In this computational world, we give a cryptographic definition
for data secrecy, then prove our main results.

We first recall the definition of computational indistinguishability (a central in-
gredient for defining cryptographic secrecy) and those of encryption and secret
sharing schemes.

Indistinguishability of Distribution Ensembles

Let {D0
η}η and {D1

η}η be two distribution ensembles on bit-strings (sequences of
probability distributions on bit-strings, indexed by a security parameter η). We

Journal of the ACM, Vol. V, No. N, Month 20YY.

12 · Mart́ın Abadi and Bogdan Warinschi

write x
R←Di

η to indicate that x is sampled according to Di
η. Let A be an algorithm.

The advantage of A in distinguishing between the two ensembles is the quantity:

Advdist
D0,D1(A, η) = Pr

[
x

R←D0
η : A(x, η) = 1

]
− Pr

[
x

R←D1
η : A(x, η) = 1

]

We say that D0 and D1 are computationally indistinguishable, and write D0 ≈ D1,
if for any probabilistic polynomial-time algorithm A the quantity Advdist

D0,D1(A, η)
is negligible as a function of η. (A function f(η) is negligible if it is smaller than the
inverse of any polynomial for all sufficiently large inputs η [Bellare and Rogaway
2005].)

Encryption Schemes

An encryption scheme Π consists of algorithms (K, E ,D) for key generation, encryp-
tion, and decryption, respectively. The key generation algorithm is randomized; it
takes as input a security parameter η and returns a key k to be used for both
encryption and decryption. We write k

R←K(η) for the process of generating en-
cryption keys. The encryption algorithm is also randomized. It takes as input a
key k and a plaintext m, and outputs a ciphertext c. We write c

R←E(k,m) for the
process of encrypting message m with key k, producing c. Finally, the decryption
algorithm takes as input a key k and a ciphertext c. If c

R←E(k,m) for a key k and
a plaintext m, then D(k, c) = m. Decryption returns ⊥ if it does not succeed.

We use a standard notion of security for encryption: indistinguishability against
chosen plaintext attacks (IND-CPA), also known as semantic security [Goldwasser
and Micali 1984]. We define it next. For a given encryption scheme Π = (K, E ,D)
and a bit b, we consider a “left-right” oracle LRΠ,b(η). This oracle is a program that
generates a key k (via k

R←K(η)), and then answers queries of the form (m0,m1),
where m0 and m1 are bit-strings of equal length. The oracle always returns the
answer E(k,mb), that is, the encryption of the message selected by b. Scheme Π
is said to be IND-CPA secure if for any probabilistic polynomial-time adversary A
with access to the oracle described above, the quantity:

Advind-cpa
Π (A, η) = Pr

[
ALRΠ,0(η)(η) = 1

]
− Pr

[
ALRΠ,1(η)(η) = 1

]

is negligible as a function of η. The probabilities are induced by the randomness
used in the adversary and in the key-generation and encryption processes. Intu-
itively, the adversary A does not know b a priori, and it aims to discover b. The
advantage Advind-cpa

Π (A, η) will not be negligible if A can determine b by interact-
ing with the oracle. A fortiori, the advantage Advind-cpa

Π (A, η) will not be negligible
if A can break encryptions, and therefore determine b by decrypting the oracle’s
response to a query (m0,m1) where m0 	= m1.

According to this definition of security, encryption need not hide the length of
plaintexts (because m0 and m1 are required to be of equal length). Since length
may depend on structure, the structure of plaintexts may be revealed as well.
Furthermore, encryption need not hide the identity of keys: an adversary may
be able to distinguish two encryptions under the same unknown key from two
encryptions under different unknown keys. Finally, since the oracles are responsible
for generating and using the encryption keys, the adversary cannot guess or invent a
Journal of the ACM, Vol. V, No. N, Month 20YY.

Security Analysis of Cryptographically Controlled Access to XML Documents · 13

key and submit it for encryption under itself; hence the definition offers no guarantee
for such cyclic encryptions, which may therefore leak keys. Alternative notions
of security can yield stronger guarantees, but correspondingly they are harder to
satisfy. Section 5 considers some such notions.

Secret Sharing Schemes

An n-out-of-n secret sharing scheme SS = (S, C) for sharing keys of Π consists
of algorithms for share creation and share combination. The randomized share
creation algorithm S takes as input a key k and the security parameter η used to
generate it, and outputs n shares of k: k1, k2, . . . , kn. The share combination
algorithm C takes as input n shares k1, k2, . . . , kn, and attempts to reconstitute the
original key. The scheme is correct if C(S(k, η)) = k for any key k and any η.

Security of secret sharing means that a proper subset of the shares for a key
provides no useful information on the key—more precisely, we require that this
subset cannot be distinguished from a corresponding subset for another key. Let
sh(k) be a sample from the distribution S(k, η) of the n shares output by the sharing
algorithm for the key k, and sh(k)|S be the restriction of sh(k) to the indexes in
some set of indexes S ⊆ {1, 2, . . . , n}. We require that, for any proper subset of
indexes S ⊂ {1, 2, . . . , n} and any probabilistic polynomial-time adversary A, the
quantity:

Advss
SS(A, η) = Pr

[
k0, k1

R←K(η), sh(k0)
R←S(k0, η) : A(k0, k1, sh(k0)|S) = 1)

]
−

Pr
[
k0, k1

R←K(η), sh(k1)
R←S(k1, η) : A(k0, k1, sh(k1)|S) = 1)

]

is negligible as a function of η.
While this security requirement does not seem to be well-established, it should not

be too surprising. Particular schemes may have additional properties, for example
that sh(k0)|S and sh(k0)|S′ are indistinguishable whenever S and S′ are proper
subsets of indexes of the same size (so key shares may all look alike). We do not
need those properties.

Computational Interpretation of Expressions

Expressions and patterns induce distributions on bit-strings. These distributions
are obtained by replacing data symbols with bit-strings and implementing encryp-
tion and key sharing with actual encryption and secret sharing schemes.

Formally, for any expression or pattern E, given a function f : Data → {0, 1}∗
that maps data symbols to bit-string representations of XML element names and
values, an encryption scheme Π = (K, E ,D), a secret sharing scheme SS = (S, C),
and a security parameter η, we define the distribution [[E]]Π,SS,η

f (and thus a dis-
tribution ensemble [[E]]Π,SS

f) using a two-step procedure:

(1) In the first step, each key symbol is mapped to a bit-string. Specifically, we
assume that keys(E) = {K1, . . . ,Km}, and we generate a vector τ from the
distribution Km+1(η). This is a vector of m+1 keys, each obtained by running
the key generation algorithm on the security parameter. We map Ki to τ [i],
and in particular map K0 to τ [0]. We then obtain shares of the keys in τ

Journal of the ACM, Vol. V, No. N, Month 20YY.

14 · Mart́ın Abadi and Bogdan Warinschi

[[D]]Π,SS,η
f = data

[[Di]]
Π,SS,η
f = f(Di)

[[OR]]Π,SS,η
f = or

[[AND]]Π,SS,η
f = and

[[Ki]]
Π,SS,η
f = τ [i]

[[Kj
i]]

Π,SS,η

f = φ[i][j]

[[(E1, E2, . . . , El)]]
Π,SS,η
f = ([[E1]]Π,SS,η

f , [[E2]]Π,SS,η
f , . . . , [[El]]

Π,SS,η
f)

[[{E}Ki
]]Π,SS,η
f = E(τ [i], [[E]]Π,SS,η

f)

Fig. 3. Mapping expressions to bit-strings.

by running the secret sharing scheme SS; these shares are maintained in an
(m + 1)-by-n matrix φ whose rows are obtained by φ[i] R←S(τ [i], η).

(2) In the second step, we map each expression (or pattern) E to an interpretation
[[E]]Π,SS,η

f that we define inductively in Figure 3. This step assumes constant
bit-strings “or”, “and”, and “data”, as well as a tupling operation on bit-
strings.

The computational interpretation [[E(P)]]Π,SS,η
f associated with the expression

E(P) is the distribution of the partially encrypted document derived from protec-
tion P , generated with encryption scheme Π, secret sharing scheme SS, and η as
security parameter.

Because encryption may not hide the length of plaintexts, we typically need
hypotheses on the lengths of bit-string representations. For simplicity, we assume
that those lengths depend only on structure. More precisely, we assume that the
length of [[E]]Π,SS,η

f always equals the length of [[struct(E)]]Π,SS,η
f .

In the case where E is a data symbol, this assumption implies that we focus on
functions f : Data→ {0, 1}∗ that map data symbols to bit-strings of a fixed length:

Definition 2. A valuation is a function f : Data → {0, 1}∗ that maps every
data symbol to a bit-string of the same length as data.

In the case where E is a key symbol, the assumption means that the key generator
yields keys of a fixed length for each given security parameter. A similar condition
applies to key shares. In the case where E is a tuple, it suffices that the length of
a tuple be a function of the lengths of its components. Similarly, in the case where
E is an encryption, it suffices that the length of a ciphertext be a function of the
length of the underlying plaintext and of the security parameter. These conditions
on keys, key shares, tuples, and encryptions hold in most usual implementations.

Secrecy, Computationally

We use the concept of computational indistinguishability (≈) and the computational
interpretation of expressions for giving a computational characterization for secrecy
Journal of the ACM, Vol. V, No. N, Month 20YY.

Security Analysis of Cryptographically Controlled Access to XML Documents · 15

of data that occurs in expressions.

Definition 3. Let E be an expression, Π an encryption scheme, SS a secret
sharing scheme, and S ⊆ Data. The set S is computationally hidden in E (with Π
and SS) if for any two valuations f0 and f1 such that

f0(Di) = f1(Di) for all Di ∈ Data− S

it holds that [[E]]Π,SS
f0

≈ [[E]]Π,SS
f1

.

As explained in the introduction, this definition indicates that an adversary is
allowed to choose two interpretations for the data symbols in the expression E.
These interpretations must map data that is not secret to the same bit-strings, but
may map other data to different bit-strings of the same length. The adversary is
then given a bit-string selected from the distribution determined by one of the two
interpretations and its goal is to determine which interpretation was used. Secrecy
means that the adversary cannot do much better than guessing.

Main Results

The technical core of our results is the next theorem. It states that patterns faith-
fully represent the information that expressions reveal, even when expressions and
patterns are mapped to bit-strings. Specifically, we prove that the distribution
ensembles associated with E and pattern(E) are indistinguishable.

Theorem 2. Let E be an acyclic expression. If Π is an IND-CPA secure encryp-
tion scheme and SS is a secure secret sharing scheme, then for any valuation f it
holds that

[[E]]Π,SS
f ≈ [[pattern(E)]]Π,SS

f

The proof of this theorem relies on a so-called hybrid argument. It is presented in
the Appendix.

Next, we build on Theorem 2 in order to establish a link between symbolic and
computational notions of data secrecy.

Lemma 3. Let E be an acyclic expression and T = {K1,K2, . . . ,Kl} ⊆ keys(E)
a set of keys. If Π is an IND-CPA secure encryption scheme and SS is a se-
cure secret sharing scheme, then Data − AccE(T) is computationally hidden in
(E,K1,K2, . . . ,Kl) with Π and SS.
This lemma follows from the definition of AccE(T) and Theorem 2. Since AccE(T)
consists of the data symbols that occur in the pattern of (E,K1,K2, . . . ,Kl), we
have that:

[[pattern((E,K1,K2, . . . ,Kl))]]
Π,SS
f0

= [[pattern((E,K1,K2, . . . ,Kl))]]
Π,SS
f1

for any two valuations f0 and f1 that coincide on AccE(T). We conclude by Theo-
rem 2 and transitivity.

Going further, Theorem 4 relates the abstract semantics of a normalized protec-
tion P , as defined by the function AccP (·), to the secrecy of data in the partially
encrypted document associated with P . It requires that E(P) be acyclic, as we
would expect for protections derived from policies (see Section 3). It states that if

Journal of the ACM, Vol. V, No. N, Month 20YY.

16 · Mart́ın Abadi and Bogdan Warinschi

some data is secret according to the abstract semantics of protections, then that
data is in fact computationally hidden. Therefore, we regard Theorem 4 as the
main theorem of this paper.

Theorem 4. Let P be a normalized protection such that E(P) is an acyclic
expression. Let T = {K1,K2, . . . ,Kl} ⊆ keys(E(P)) be an arbitrary set of keys.
If Π is an IND-CPA secure encryption scheme and SS is a secure secret sharing
scheme, then Data− AccP (T) is computationally hidden in (E(P),K1,K2, . . . ,Kl)
with Π and SS.
This theorem is an immediate corollary of Theorem 1 and Lemma 3.

Consequences (Discussion)

It is important to understand what our results imply, and also what they do not
imply. Next we discuss some of their consequences. We focus this discussion on the
expression of Figure 2,

{D1,
(OR, (AND, ({K1

5}K1 , {K2
5}K1 , {K6}K5), {K6}K4 , {D2, ({D3}K3 , {D4}K4)}K6),

(D5, ({D6}K2)))}K1

which here we call E.
Theorem 4 implies that if T = {K1,K3} and if f0 and f1 are two valuations that

coincide on D1, D2, D3, and D5, then [[E]]Π,SS
f0

≈ [[E]]Π,SS
f1

. The two valuations
may differ on D4 and D6. The theorem implies that no probabilistic polynomial-
time adversary can get significant partial information on the values of D4 and D6

(beyond any information that it has a priori). In other words, the set {D4,D6} is
computationally hidden in E, as one might have expected.

The valuations f0 and f1 are allowed to result in some (partial or total) coinci-
dences in values. For instance, we may have f0(D4) = f0(D6) but f1(D4) 	= f1(D6).
The adversary cannot distinguish [[E]]Π,SS

f0
and [[E]]Π,SS

f1
despite these coincidences.

Thus, value repetitions are concealed. In terms of the protection of Figure 1, the
adversary cannot even tell whether the value of 〈pat id〉 of node 4 and the value
of 〈admin〉 of node 6 are the same.

Since the valuations f0 and f1 are universally quantified, they may be chosen
by the adversary. So, while the adversary obtains information about a document
only by observing it, we allow for the possibility that the adversary may influence
the contents of the document. This possibility seems realistic in many potential
applications. For instance, in our particular example, the adversary may be the
patient whose record is in node 4, and may therefore have some influence and prior
knowledge on the contents of node 4.

On the other hand, the guarantees that the theorem offers are perhaps not as
strong as some might expect, in particular with respect to document structure.
For instance, the theorem does not exclude that an adversary might be able to
distinguish a bit-string representation of E from a bit-string representation of the
expression that we obtain from E by replacing D6 with a non-atomic expression.
Theorem 4 notwithstanding, an adversary may learn a great deal about the length
and even the structure of encrypted material.
Journal of the ACM, Vol. V, No. N, Month 20YY.

Security Analysis of Cryptographically Controlled Access to XML Documents · 17

Unfortunately, this limitation of the theorem is not a shortcoming of our analysis,
but rather the result of an intrinsic shortcoming in the technique that we are ana-
lyzing. Under the standard definition of security that we adopt for encryption, one
cannot expect to do much better [Micciancio 2004]. As explained above, encryption
need not hide the length of plaintexts. (Indeed, the XML encryption method used
by Miklau and Suciu does not.) Moreover, if E0 and E1 are expressions with differ-
ent structures, the concrete bit-string implementations [[E0]]Π,SS,η

f and [[E1]]Π,SS,η
f

may well have different lengths, so it is possible that their encryptions could be dis-
tinguished. The next section discusses stronger—but less standard—assumptions
on encryption, and also other variants to our definitions.

5. EXTENSIONS

Alternative definitions are certainly possible, and perhaps attractive. In this section
we consider some alternative definitions and corresponding extensions of our main
results. We study additional security properties, addressing more stringent secrecy
requirements and some more powerful attacks.

Stronger Secrecy Requirements for Encryption

In particular, we may wish to require that a ciphertext encrypted under an unknown
key reveal nothing about the underlying plaintext—not even its structure or its
length [Abadi and Rogaway 2002].

Formally, we may replace the functions p and pattern of Section 3. For instance,
we may define replacements p′ and pattern′ as follows:

—p′(B, T) = B for all B ∈ BData,
—p′((E1, E2, . . . , Em), T) = (p′(E1, T), p(E2, T), . . . , p′(Em, T)),
—p′({E}Ki

, T) = {�}Ki
if Ki 	∈ T ,

—p′({E}Ki
, T) = {p′(E, T)}Ki

if Ki ∈ T ,

where � is a special symbol that represents undecryptable material, and

pattern′(E) = p′(E, recoverable(E))

The equation p′({E}Ki
, T) = {�}Ki

(for Ki 	∈ T) reflects the idea that encryption
does not reveal anything about the encrypted plaintext. For instance, we have that
pattern′({D1}K1) = pattern′({({D2}K2 , {D3}K3)}K1). An analogue of Theorem 1
holds with this definition. On the other hand, the other theorems of the paper are
more problematic in this respect. In particular, an analogue of Theorem 2 does not
hold. A stronger security requirement on encryption yields that analogue, and a
corresponding strengthening of Theorem 4. That requirement is obtained from the
definition of IND-CPA security by removing the restriction that the bit-strings m0

and m1 have equal length in queries (m0,m1) to the left-right oracle.
Going further, in another formal variation we may replace p and pattern with the

functions p′′ and pattern′′ defined as follows:

—p′′(B, T) = B for all B ∈ BData,
—p′′((E1, E2, . . . , Em), T) = (p′′(E1, T), p(E2, T), . . . , p′′(Em, T)),
—p′′({E}Ki

, T) = � if Ki 	∈ T ,
Journal of the ACM, Vol. V, No. N, Month 20YY.

18 · Mart́ın Abadi and Bogdan Warinschi

—p′′({E}Ki
, T) = {p′′(E, T)}Ki

if Ki ∈ T ,

thus hiding the occurrence of the key Ki when � is produced, and

pattern′′(E) = p′′(E, recoverable(E))

The equation p′′({E}Ki
, T) = � (for Ki 	∈ T) implies that an adversary that

does not know the encryption key Ki a priori cannot identify the use of Ki. For
instance, we have that pattern′′(({D1}K1 , {D2}K1) = pattern′′(({D1}K1 , {D2}K2);
this equation indicates that an adversary cannot tell whether the two pieces of
data D1 and D2 are protected by the same key. Such guarantees might matter in
settings where the security policy itself is sensitive information. They do not hold
with IND-CPA security, so they do not follow from Theorem 4. Again we need a
strengthening of IND-CPA security, such as type-0 security [Abadi and Rogaway
2002].

For brevity, we omit precise statements and proofs of the analogues of Theorems 2
and 4 for pattern′ and pattern′′.

Attacks with Multiple Queries

Definition 3 is concerned with an adversary that attempts to recover secret infor-
mation from a single document. In this section, we consider more general settings
in which the adversary attempts to extract information from several related docu-
ments.

As a motivating scenario, let us consider an electronic journal that offers several
types of possible subscriptions. Each type enables access to a selection of journal
sections. The access policy can be enforced by means of a protection: articles (and
groups of articles) are encrypted and each subscriber receives an appropriate set
of decryption keys. Some aspects of this scenario do not seem to be adequately
captured by Definition 3. In this scenario, an adversary may have access to several
related documents (several issues of the journal), and may influence the contents
of one document on the basis of the contents of past ones (for instance, by pub-
lishing articles in the journal). User dynamics (new subscriptions and cancelled
subscriptions) can cause further complications.

Next we give stronger security definitions, with such scenarios in mind. Then we
prove strengthenings of results of Section 4. These strengthenings do not require
additional cryptographic hypotheses, and yield security guarantees with respect to
more general, more active adversaries.

For our definitions, we introduce an oracle that enables an adversary to request
encrypted versions of documents of its choosing. Formally, we let EKG(η) generate
vectors of keys and key shares for security parameter η, and we write [[E]]Π,SS,η

φ,τ,fb

for the result of the procedure defined in Figure 3 for fixed τ and φ; then for
expression E, encryption scheme Π, secret sharing scheme SS, and set S ⊆ Data,
and for any (τ, φ) R←EKG(η), we introduce an oracle O([[E]]Π,SS

τ,φ , S, η, b) that expects
to receive a pair of valuations (f0, f1) that coincide on S and returns a sample from
[[E]]Π,SS,η

φ,τ,fb
. Thus, the oracle O uses a fixed pair (τ, φ); our results have analogues

for the case in which O generates a fresh pair (τ, φ) at each query. The oracle O
also uses a fixed expression E; we have yet to study the case in which E may vary
under control of the adversary.
Journal of the ACM, Vol. V, No. N, Month 20YY.

Security Analysis of Cryptographically Controlled Access to XML Documents · 19

Definition 4 is a variant of Definition 3 in which an adversary has access to such
an oracle O:

Definition 4. Let E be an expression, Π an encryption scheme, SS a secret
sharing scheme, and S ⊆ Data. The set S is computationally hidden in E (with
Π and SS) against multi-query adversaries if for any probabilistic polynomial-time
adversary A the function

Advdist-m
Π,SS,E,S(A, η) = Pr

[
(φ, τ) R←EKG(η) : AO([[E]]Π,SS

τ,φ ,S,η,1)(η) = 1
]
−

Pr
[
(φ, τ) R←EKG(η) : AO([[E]]Π,SS

τ,φ ,S,η,0)(η) = 1
]

is negligible.

The next theorem is an analogue of Theorem 2. Here, an adversary attempts to
distinguish between [[E]]Π,SS

τ,φ,f and [[pattern(E)]]Π,SS
τ,φ,f by adaptively choosing several

valuations f , for a randomly chosen pair (τ, φ) R←EKG(η). The formulation of the
theorem relies on an oracle O(E,Π,SS, τ, φ, η) that expects to receive valuations
as inputs, and that, on input f , returns a sample from distribution [[E]]Π,SS,η

τ,φ,f . We
call an adversary with access to such an oracle a pattern adversary.

Theorem 5. Let E be an acyclic expression. If Π is and IND-CPA secure en-
cryption scheme and SS is a secure secret sharing scheme, then for any probabilistic,
polynomial-time pattern adversary A the function

Advdist-pat
Π,SS,E (A, η) = Pr

[
(τ, φ) R←EKG(η) : AO(E,Π,SS,τ,φ,η)(η) = 1

]
−

Pr
[
(τ, φ) R←EKG(η) : AO(pattern(E),Π,SS,τ,φ,η)(η) = 1

]

is negligible.

The proof of this theorem resembles that of Theorem 2, and it is presented in the
Appendix.

Using this theorem, we obtain the following result, which relates symbolic secrecy
and secrecy with respect to multi-query adversaries.

Lemma 6. Let E be an acyclic expression and T = {K1,K2, . . . ,Kl} ⊆ keys(E)
a set of keys. If Π is an IND-CPA encryption scheme and SS is a secure secret shar-
ing scheme, then Data−AccE(T) is computationally hidden in (E,K1,K2, . . . ,Kl)
with Π and SS against multi-query adversaries.

In order to prove this theorem, we consider a multi-query adversary A, we let S be
the set Data − AccE(T) and let E′ be the expression (E,K1,K2, . . . ,Kl), and we
aim to show that Advdist-m

Π,SS,E′,S(A, η) is negligible. First we construct two pattern
adversaries A0 and A1. For b = 0, 1, adversary Ab executes A internally, and when
A produces a pair of valuations (f0, f1) as a query to its oracle, Ab passes fb to its
oracle and forwards the answer to A. The output of Ab is the final output of A. It
follows from the construction that for b = 0, 1:

Pr
[
(τ, φ) R←EKG(η) : A

O(E′,Π,SS,τ,φ,η)
b (η) = 1

]
=

Pr
[
(τ, φ) R←EKG(η) : AO([[E′]]Π,SS

τ,φ ,S,η,b)(η) = 1
]

Journal of the ACM, Vol. V, No. N, Month 20YY.

20 · Mart́ın Abadi and Bogdan Warinschi

(Here, the probabilities are over the choice (τ, φ) R←EKG(η), the coins of adversaries,
and those of oracles; for brevity, we omit (τ, φ) R←EKG(η) from formulas below.)
We obtain:

Advdist-m
Π,SS,E′,S(A, η)

= Pr
[
AO([[E′]]Π,SS

τ,φ ,S,η,1)(η) = 1
]
− Pr

[
AO([[E′]]Π,SS

τ,φ ,S,η,0)(η) = 1
]

= Pr
[
A

O(E′,Π,SS,τ,φ,η)
1 (η) = 1

]
− Pr

[
A

O(E′,Π,SS,τ,φ,η)
0 (η) = 1

]

=
(
Pr[AO(E′,Π,SS,τ,φ,η)

1 (η) = 1]− Pr
[
A

O(pattern(E′),Π,SS,τ,φ,η)
1 (η) = 1

])
+

(
Pr

[
A

O(pattern(E′),Π,SS,τ,φ,η)
1 (η) = 1

]
− Pr

[
A

O(pattern(E′),Π,SS,τ,φ,η)
0 (η) = 1

])
+

(
Pr

[
A

O(pattern(E′),Π,SS,τ,φ,η)
0 (η) = 1

]
− Pr

[
A

O(E′,Π,SS,η,τ,φ,1)
0 (η) = 1

])

= Advdist-pat
Π,SS,E′(A1, η) +(

Pr
[
A

O(pattern(E′),Π,SS,τ,φ,η)
1 (η) = 1

]
− Pr

[
A

O(pattern(E′),Π,SS,τ,φ,η)
0 (η) = 1

])
+

−Advdist-pat
Π,SS,E′(A0, η)

By Theorem 5, the first and the last summands are negligible. The middle sum-
mand is 0 because A’s queries (f0, f1) consist of valuations that coincide on the
set AccE′(T), and (by the definition of AccE′(T)) these are the only symbols that
occur in pattern(E′). We conclude that Advdist-m

Π,SS,E′,S(A, η) is negligible.
Finally, Theorem 1 and Lemma 6 immediately yield the following analogue of

Theorem 4:

Theorem 7. Let P be a normalized protection such that E(P) is an acyclic
expression. Let T = {K1,K2, . . . ,Kl} ⊆ keys(E(P)) be an arbitrary set of keys.
If Π is an IND-CPA secure encryption scheme and SS is a secure secret sharing
scheme, then Data−AccP (T) is computationally hidden in (E(P),K1,K2, . . . ,Kl)
with Π and SS against multi-query adversaries.

Attacks with Selective Decryption

We close this section with a brief discussion of security under selective decryption
attacks (SD-security for short) [Canetti et al. 1996]. Consider an attacker that
receives a set of ciphertexts and then chooses a subset to be decrypted; the choice
may depend on the ciphertexts received. The problem addressed by research on SD-
security is to show that the remaining, undecrypted plaintexts are still protected.

Generally, formal methods do not give special consideration to selective decryp-
tion attacks; basically, selective decryption is not regarded as any more harmful
than any other decryption, and it need not endanger undecrypted plaintexts. On
the other hand, from a computational perspective, research on selective decommit-
ment [Dwork et al. 2003] (a closely related subject) would suggest that proving the
existence of SD-secure encryption schemes would require the development of new
cryptographic techniques.

This particular discrepancy between formal and computational views need not
be an immediate concern in the present setting, since it need not present the se-
Journal of the ACM, Vol. V, No. N, Month 20YY.

Security Analysis of Cryptographically Controlled Access to XML Documents · 21

lective decryption problem in full generality. Specifically, in Section 4, the set of
encryptions available to an adversary in a single document depends only on the
document, and is independent of the security parameter. Under analogous condi-
tions, it is possible to show that standard security implies SD-security for commit-
ment schemes [Dwork et al. 2003], and the proof may well extend to encryption
schemes. For more general adversaries (such as multi-query adversaries), other
solutions should be sought. One possibility may be to explore non-committing
encryption [Canetti et al. 1996], as in the setting of multi-party computation. Un-
fortunately, at present, non-committing encryption can be quite inefficient.

6. CONCLUSION

The main contribution of this paper is a precise justification of the encryption-
based techniques for enforcing access policies for XML documents, as developed by
Miklau and Suciu. More specifically, we provide a proof that XML data that is
secret according to an abstract, symbolic semantics is indeed secret with respect to
a strong, computational notion of security.

In defining the subject of our analysis, we have attempted to be faithful to the
work of Miklau and Suciu. In further research, one might like to depart from their
framework. In particular, like them, we have focused on protection against off-line
attacks. In such attacks, the adversary obtains information about a document only
by observing it. However, we have allowed for some interaction with the adversary,
enabling the adversary to influence the contents of documents; in further research,
it may be interesting to consider more general active attacks. It may also be inter-
esting to consider richer access control policies, including integrity requirements, as
well as richer data models with key constraints, functional dependencies, and other
refinements. The value of rigorous analysis may be even larger with these enrich-
ments, but our basic approach should remain applicable and helpful in bridging the
gap between high-level designs and precise guarantees.

ACKNOWLEDGMENTS

We are grateful to Véronique Cortier, Phokion Kolaitis, Daniele Micciancio, Gerome
Miklau, Dan Suciu, and Victor Vianu for helpful discussions on this work and its
presentation.

REFERENCES

Abadi, M. and Rogaway, P. 2002. Reconciling two views of cryptography (The computational
soundness of formal encryption). Journal of Cryptology 15, 2, 103–127.

Adam, N. R. and Worthmann, J. C. 1989. Security-control methods for statistical databases: a
comparative study. ACM Comput. Surv. 21, 4, 515–556.

Backes, M., Pfitzmann, B., and Waidner, M. 2003. A composable cryptographic library with
nested operations. In 10th ACM Conference on Computer and Communications Security.
220–330. Long version: IACR ePrint Archive, Report 2003/015.

Bellare, M. and Rogaway, P. 2005. Introduction to modern cryptography. Available at:
http://www.cs.ucsd.edu/∼mihir/cse207/classnotes.html.

Bertino, E., Carminati, B., and Ferrari, E. 2002. A temporal key management scheme for

secure broadcasting of XML documents. In 8th ACM Conference on Computer and Commu-
nications Security. 31–40.

Journal of the ACM, Vol. V, No. N, Month 20YY.

22 · Mart́ın Abadi and Bogdan Warinschi

Bertino, E., Castano, S., and Ferrari, E. 2001. Author-X: A comprehensive system for secur-
ing XML documents. IEEE Internet Computing 5, 3, 21–31.

Canetti, R., Dwork, C., Goldreich, O., and Naor, M. 1996. Adaptively secure multiparty
computation. In 28th ACM Symposium on Theory of Computing. 639–648.

Castano, S., Fugini, M. G., Martella, G., and Samarati, P. 1995. Database Security. Addison-
Wesley – ACM Press.

Crampton, J. 2004. Applying hierarchical and role-based access control to XML documents. In
ACM Workshop on Secure Web Services. 41–50.

Damiani, E., de Capitani di Vimercati, S., Paraboschi, S., and Samarati, P. 2002. A fine-
grained access control system for XML documents. ACM Transactions on Information and
System Security 5, 2, 169–202.

Dolev, D., Dwork, C., and Naor, M. 2000. Non-malleable cryptography. SIAM Journal of
Computing 30, 2, 391–437.

Dwork, C., Naor, M., Reingold, O., and Stockmeyer, L. J. 2003. Magic functions. Journal
of the ACM 50, 6, 852–921.

Eastlake, D. and Reagle, J. 2002. XML encryption syntax and processing. http://www.w3.

org/TR/xmlenc-core.

Gifford, D. K. 1982. Cryptographic sealing for information secrecy and authentication. Com-
mununications of the ACM 25, 4, 274–286.

Goldwasser, S. and Micali, S. 1984. Probabilistic encryption. Journal of Computer and System
Sciences 28, 270–299.

Herzog, J. 2004. Computational soundness for standard assumptions of formal cryptography.
Ph.D. thesis, Massachusetts Institute of Technology.

Kudo, M. and Hada, S. 2000. XML document security based on provisional authorization. In
7th ACM Conference on Computer and Communications Security. 87–96.

Laud, P. 2004. Symmetric encryption in automatic analyses for confidentiality against active
adversaries. In 2004 IEEE Symposium on Security and Privacy. 71–85.

Micciancio, D. 2004. Towards computationally sound symbolic security analysis. Talk
at DIMACS; slides available at: http://dimacs.rutgers.edu/Workshops/Protocols/slides/

micciancio.pdf.

Micciancio, D. and Panjwani, S. 2005. Adaptive security of symbolic encryption. In Theory of
Cryptography Conference (TCC 2005). Springer-Verlag, 169–187.

Micciancio, D. and Panjwani, S. 2006. Corrupting one vs. corrupting many: The case of broad-
cast and multicast encryption. In Automata, Languages and Programming, 33rd International
Colloquium, Proceedings, Part II. Springer-Verlag, 70–82.

Micciancio, D. and Warinschi, B. 2004. Soundness of formal encryption in the presence of active
adversaries. In Theory of Cryptography Conference (TCC 2004). Springer-Verlag, 133–151.

Miklau, G. and Suciu, D. 2003. Controlling access to published data using cryptography. In
VLDB 2003: 29th International Conference on Very Large Data Bases. 898–909.

Shamir, A. 1979. How to share a secret. Communications of the ACM 22, 11, 612–613.

Ullman, J. 1983. Principles of Database Systems. Computer Science Press, Potomac, MD.

Yang, X. and Li, C. 2004. Secure XML publishing without information leakage in the presence
of data inference. In VLDB 2004: 30th International Conference on Very Large Data Bases.
96–107.

A. APPENDIX: PROOF OF THEOREM 2

In this appendix we provide a proof of Theorem 2. Some aspects of the proof are
by now standard; the reader may wish to consult the proof of the main theorem in
the work of Abadi and Rogaway [Abadi and Rogaway 2002]. We start with some
notation and useful lemmas.

A permutation σ : Keys ∪ KeyShares→ Keys ∪ KeyShares is consistent if
Journal of the ACM, Vol. V, No. N, Month 20YY.

Security Analysis of Cryptographically Controlled Access to XML Documents · 23

—σ(Ki) ∈ Keys for all Ki ∈ Keys, and
—if Ki = σ(Kj), then Kl

i = σ(Kl
j) for all l ∈ {1, 2, . . . , n}.

For any consistent permutation σ, we write Eσ for the expression obtained from E
by renaming its keys and key shares according to σ. Consistent renamings do not
change the distribution ensembles associated with expressions:

Lemma 8. For any expression E, if σ is a consistent permutation, then:

[[E]]Π,SS
f ≈ [[Eσ]]Π,SS

f

This lemma holds because the output of the algorithm that associates a distribution
with an expression does not depend on the actual atomic symbols used in the
expression, but only on their meaning.

For each expression and pattern E, we write hidden(E) for the set of keys that
are not recoverable from E:

hidden(E) = keys(E)− recoverable(E)

The following lemma states that the keys in any acyclic expression E can be
reordered so that the first l keys are the keys hidden in E and the remaining keys
are the keys that can be recovered from E. Moreover, it is possible to reorder the
keys so that, in the resulting expression, for any two hidden keys Ki and Kj , if Ki

encrypts Kj then i < j.

Lemma 9. If E is an acyclic expression, m = |keys(E)|, and l = |hidden(E)|,
then there exists a consistent permutation σ such that:

—keys(Eσ) = {K1,K2, . . . ,Kl,Kl+1, . . . ,Km},
—hidden(Eσ) = {K1,K2, . . . ,Kl},
—for any 1 ≤ i, j ≤ l, if Ki encrypts Kj in Eσ then i < j.

By Lemmas 8 and 9, it is sufficient to prove the theorem under the following
additional assumptions:

—keys(E) = {K1,K2, . . . ,Kl,Kl+1, . . . ,Km},
—hidden(E) = {K1,K2, . . . ,Kl},
—for any 1 ≤ i, j ≤ l, if Ki encrypts Kj then i < j.

Proof of the Theorem

We prove the theorem by a hybrid argument: given an expression E as above, we
exhibit a series of distribution ensembles D0,D1, . . . ,Dl, such that:

(1) D0 = [[E]]Π,SS
f ,

(2) Dl = [[pattern(E)]]Π,SS
f , and

(3) Di−1 ≈ Di, for all 1 ≤ i ≤ l.

Since l is a fixed constant (independent of the security parameter), the conclusion
of the theorem immediately follows.

Consider the sequence of patterns E0, E1, . . . , El inductively defined by:

—E0 = E,
Journal of the ACM, Vol. V, No. N, Month 20YY.

24 · Mart́ın Abadi and Bogdan Warinschi

—Ei is obtained by replacing each subexpression of Ei−1 of the form {E′}Ki
with

{struct(E′)}Ki
.

For each 0 ≤ i ≤ l, we let Di be the distribution ensemble associated with
pattern Ei and prove that the resulting sequence of distribution ensembles sat-
isfies conditions 1–3. It is immediate that D0 = [[E]]Π,SS

f . Also, since pattern
El is obtained by replacing all subexpressions of E of the form {E′}Ki

for some
Ki ∈ hidden(E) with {struct(E′)}Ki

, we have that El = pattern(E) and, therefore,
that Dl = [[pattern(E)]]Π,SS

f . It only remains to be shown that, for each 1 ≤ i ≤ l,
the distribution ensembles Di−1 and Di are indistinguishable (condition 3). For
each 0 ≤ i ≤ l − 1, we introduce two intermediate distribution ensembles Di,0 and
Di,1 and we prove that:

Di ≈ Di,0 ≈ Di,1 ≈ Di+1

It follows that Di ≈ Di+1 for all 0 ≤ i ≤ l − 1, and we can conclude that

[[E]]Π,SS
f = D0 ≈ Dl = [[pattern(E)]]Π,SS

f

Consider the patterns Ei,0 and Ei,1 defined as follows:

—Ei,0 is obtained from Ei by replacing each occurrence of a key share symbol Kj
i+1

with a fresh key share symbol Kj , different from those in KeyShares ∪ {Kj
0 | j ∈

1..n}.
—Ei,1 is obtained from Ei,0 by replacing each occurrence of a subexpression of the

form {E′}Ki+1 with the corresponding expression {struct(E′)}Ki+1 .

It follows from the description above that Ei+1 can be obtained from Ei,1 by re-
placing each occurrence of a key share Kj with Kj

i+1.
Next we associate distributions (and therefore distribution ensembles) with the

patterns Ei,0 and Ei,1 via a slight modification of the algorithm of Section 4. Specif-
ically, we introduce computational interpretations for the newly introduced symbols
K1, K2, . . . , Kn: we add one new position to the array τ and one extra row to the
matrix φ and set:

τ [m + 1] R←K(η)
φ[m + 1] R←S(τ [m + 1], η)

We use the bit-strings contained in φ[m + 1] as interpretations of the symbols K1,
K2, . . . , Kn, so we add to the algorithm in Figure 3 the line:

[[Kj]]
Π,SS,η

f = φ[m + 1][j]

For each 0 ≤ i ≤ l−1, we let Di,0 and Di,1 be the distribution ensembles associated
with Ei,0 and Ei,1.

The remainder of the proof consists of three steps. They respective establish that
Di ≈ Di,0, that Di,0 ≈ Di,1, and that Di,1 ≈ Di+1.

Step 1 (Di ≈ Di,0). The proof is by reduction. Given an index 0 ≤ h ≤ l − 1
and an algorithm A such that Advdist

Dh,Dh,0(A, η) is non-negligible, we construct an
adversary B against SS such that Advss

SS(B, η) is also non-negligible. Therefore,
the scheme SS is not a secure secret sharing scheme.
Journal of the ACM, Vol. V, No. N, Month 20YY.

Security Analysis of Cryptographically Controlled Access to XML Documents · 25

In the construction of B we use the set

Sh = {j | Kj
h+1 occurs in Eh}

of indexes j for which the key share Kj
h+1 occurs in Eh. The occurrences of Kj

h+1

in question cannot be under hidden keys, because of the acyclicity hypothesis.
Therefore, crucially, Sh is a proper subset of {1, 2, . . . , n}, for otherwise the key
Kh+1 would not be in hidden(E).

The adversary B that we construct receives as input two keys k0, k1
R←K(η)

and a set of shares (s1, s2, . . . , st) sampled according to one of the two distributions
S(k0, η)|Sh

or S(k1, η)|Sh
. It constructs a string s so that if (s1, s2, . . . , st) is sampled

according to the distribution S(k0, η)|Sh
, then s is sampled according to Dh, and

if (s1, s2, . . . , st) is sampled according to the distribution S(k1, η)|Sh
, then s is

sampled according to Dh,0. Adversary B then invokes the algorithm A on input s
and outputs whatever A outputs. We therefore obtain that:

Advss
SS(B, η)

= Pr
[
k0, k1

R←K(η), sh(k0)
R←S(k0, η) : B(k0, k1, sh(k0)|Sh

) = 1)
]
−

Pr
[
k0, k1

R←K(η), sh(k1)
R←S(k1, η) : B(k0, k1, sh(k1)|Sh

) = 1)
]

= Pr
[
s

R← [[Eh]]Π,SS,η
f : A(s, η) = 1

]
− Pr

[
s

R← [[Eh,0]]Π,SS,η
f : A(s, η) = 1

]

= Advdist
Dh,Dh,0(A, η)

It follows that if the advantage of A is non-negligible then so is that of B.
Adversary B computes s by applying to Eh a variant of the algorithm given in

Section 4 for mapping expressions to bit-strings. Specifically, B starts by generating
the vector τ of keys in which the entries τ [h + 1] and τ [m + 1] are set to k0 and k1.
Next, B computes the entries in the matrix φ (used for defining the semantics of
the key shares that occur in Eh). Both τ and φ have the appropriate distributions
since k0 and k1 are randomly generated keys.

Then B computes the string s by recursively associating bit-strings with the
subexpressions of Eh. The only departure from the algorithm of Section 4 is as
follows. The bit-strings associated with the shares of Kh+1 are interpreted using the
input to B. (In the original algorithm, the bit-string interpretation of these shares
are the entries in φ[h + 1], that is, shares of τ [h + 1].) So, if Sh = {j1, j2, . . . , jt},
then the modified algorithm maps Kp

h+1 to sp, for each 1 ≤ p ≤ t. Crucially, if
(s1, s2, . . . , st) is sampled according to sh(k0)|Sh

, then the key Kh+1 is mapped to
k0 and all shares K

jp

h+1 are mapped to appropriate shares of k0. Therefore, the
string s is selected according to the distribution [[Eh]]Π,SS,η

f . On the other hand, if
(s1, s2, . . . , st) is sampled according to sh(k1)|Sh

, then although Kh+1 is mapped
to k0, all its shares are mapped to shares of k1—that is, to shares of a different key.
Therefore, in this case, s is selected according to the distribution [[Eh,0]]Π,SS,η

f , as
desired.

Step 2 (Di,0 ≈ Di,1). The proof is again by reduction. Given an index 0 ≤ h ≤ l−
1 and an algorithm A that distinguishes between Dh,0 and Dh,1 with non-negligible
probability, we construct an adversary B against Π such that Advind-cpa

Π (B, η) is
Journal of the ACM, Vol. V, No. N, Month 20YY.

26 · Mart́ın Abadi and Bogdan Warinschi

also non-negligible. The adversary B has access to the oracle LRΠ,b and constructs
a bit-string s that is sampled according to the distribution Dh,b. Then B invokes
algorithm A on input s and outputs whatever A outputs. We thus obtain:

Advind-cpa
Π (B, η)

= Pr[BLRΠ,0(η)(η) = 1]− Pr[BLRΠ,1(η)(η) = 1]

= Pr[s R←Dh,0 : A(s) = 1]− Pr[s R←Dh,1 : A(s) = 1]
= Advdist

Dh,0,Dh,1(A, η)

It follows that if the advantage of A is non-negligible then so is that of B. Therefore,
the scheme Π is not an IND-CPA secure encryption scheme.

Adversary B computes s by applying to Eh,0 a variant of the algorithm given
in Section 4. Specifically, B generates the vector of keys τ and the matrix of key
shares φ and then recursively maps each subexpression F of Eh,0 to a bit-string.
The interpretations of all basic symbols with the exception of the key Kh+1 are as
in Section 4. The interpretation of Kh+1 is set to k, the key of the oracle. Since
B does not actually have k, it is crucial that no share of Kh+1 occurs in Eh,0. By
acyclicity, there are no plain occurrences of Kh+1 in Eh,0 either. There may however
be uses of Kh+1 as an encryption key. In order to deal with those occurrences, B
makes uses of the oracle for producing encryptions under k, as follows.

Suppose that Eh,0 has a subexpression F of the form {E′}Kh+1 . First, B sam-
ples strings m0 and m1 from the distributions associated with E′ and struct(E′),
respectively. This task is mostly straightforward since B knows the interpretations
of all symbols that occur in E′ and struct(E′) with the exception of the interpreta-
tion of Kh+1. Whenever B needs to compute an encryption of a plaintext m under
the key k (which is the interpretation of Kh+1), B submits to the oracle the pair
(m,m) and obtains in return one such encryption. After producing m0 and m1 as
described above, B submits to the oracle the pair (m0,m1) and sets c to be the
answer returned by the oracle. Therefore, if the selection bit of the oracle is 0, then
c is an encryption of m0 under k, so c is distributed according to [[{E′}Kh+1]]Π,SS,η

f
.

If the selection bit of the oracle is 1, then c is an encryption of m1 under k, so
c is distributed according to [[{struct(E′)}Kh+1]]Π,SS,η

f
. Since Ei,1 is obtained by

replacing in Ei,0 each subexpression F of the form {E′}Ki+1 with {struct(E′)}Ki+1 ,
the overall result of B’s computation is distributed like the interpretation of Ei,b.

Importantly, B is a valid IND-CPA adversary: each query (m0,m1) that B makes
to its right-left oracle is valid since strings m0 and m1 are sampled according to dis-
tributions [[E′]]Π,SS,η and [[struct(E′)]]Π,SS,η, respectively, and therefore have equal
lengths (by the assumption on the implementation discussed in Section 4).

Step 3 (Di,1 ≈ Di+1). This step is similar to the proof that Di ≈ Di,0: one can
think of Ei,1 as obtained from Ei+1 by replacing the key share symbols Kj

i+1 with
fresh key share symbols Kj , that is, in precisely the same manner in which Ei,0 is
obtained from Ei. The same proof method applies.

B. APPENDIX: PROOF OF THEOREM 5

Since Theorem 5 is an extension of Theorem 2, the two proofs have the same
structure, and they share many ideas. While Theorem 2 could be obtained as a
Journal of the ACM, Vol. V, No. N, Month 20YY.

Security Analysis of Cryptographically Controlled Access to XML Documents · 27

corollary of Theorem 5, we prefer to present its proof separately, for clarity, and
then to omit a few common details in the following proof of Theorem 5.

Proof of the Theorem

By Lemmas 8 and 9 it is sufficient to prove the theorem under the additional
assumptions that:

—keys(E) = {K1,K2, . . . ,Kl,Kl+1, . . . ,Km},
—hidden(E) = {K1,K2, . . . ,Kl},
—for any 1 ≤ i, j ≤ l, if Ki encrypts Kj then i < j.

We define a series of oracles, O0(τ, φ, η), O2(τ, φ, η), . . . , Ol(τ, φ, η) such that the
following conditions hold for any (τ, φ) R←EKG(η):

(1) the behaviors of oracles O0(τ, φ, η) and O(E,Π,SS, τ, φ, η) are identical,
(2) the behavior of oracles Ol(τ, φ, η) and O(pattern(E),Π,SS, τ, φ, η) are identical,
(3) for all i ∈ {0, 1, . . . , l − 1}, no probabilistic polynomial-time pattern adversary

A can distinguish whether it interacts with oracle Oi or with oracle Oi+1.
Formally, for all 0 ≤ i ≤ l − 1 the function

Advdist
Oi,Oi+1

(A, η) = Pr
[
(τ, φ) R←EKG(η) : AOi(τ,φ,η)(η) = 1

]
−

Pr
[
(τ, φ) R←EKG(η) : AOi+1(τ,φ,η)(η) = 1

]

is negligible.

The conclusion of the theorem follows since:

Advdist-pat
Π,SS,E (A, η) = Pr

[
(τ, φ) R←EKG(η) : AO(E,Π,SS,τ,φ,η)(η) = 1

]
−

Pr
[
(τ, φ) R←EKG(η) : AO(pattern(E),Π,SS,τ,φ,η)(η) = 1

]

=
l−1∑
i=0

⎛
⎜⎝

Pr
[
(τ, φ) R←EKG(η) : AOi(τ,φ,η)(η) = 1

]
−

Pr
[
(τ, φ) R←EKG(η) : AOi+1(τ,φ,η)(η) = 1

]

⎞
⎟⎠

=
l−1∑
i=0

Advdist
Oi,Oi+1

(A, η)

Since the sum of a constant number of negligible functions is negligible, we conclude
that Advdist-pat

Π,SS,E (A, η) is negligible, as desired.
Consider the sequence of patterns E0, E1, . . . , El inductively defined as in the

proof of Theorem 2. For 0 ≤ i ≤ l, we let Oi be O(Ei,Π,SS, τ, φ, η). By con-
struction, E0 = E and El = pattern(E), so conditions 1 and 2 above are clearly
satisfied.

The next step is to show that, for any probabilistic-polynomial time adversary A,
the function Advdist

Oi,Oi+1
(A, η) is negligible (condition 3). For each i ∈ {0, 1, . . . , l−

1}, we introduce two intermediate oracles Oi,0(τ, φ, η) and Oi,1(τ, φ, η). We let
Oi,0(τ, φ, η) be O(Ei,0,Π,SS, τ, φ, η) and let Oi,1(τ, φ, η) be O(Ei,1,Π,SS, τ, φ, η),

Journal of the ACM, Vol. V, No. N, Month 20YY.

28 · Mart́ın Abadi and Bogdan Warinschi

where Ei,0 and Ei,1 are as in the proof of Theorem 2. We prove that, for 0 ≤ i ≤ l−1
and any probabilistic polynomial-time adversary A, the functions:

Advdist
Oi,Oi,0

(A, η) = Pr
[
(τ, φ) R←EKG(η) : AOi(τ,φ,η)(η) = 1

]
−

Pr
[
(τ, φ) R←EKG(η) : AOi,0(τ,φ,η)(η) = 1

]

Advdist
Oi,0,Oi,1

(A, η) = Pr
[
(τ, φ) R←EKG(η) : AOi,0(τ,φ,η)(η) = 1

]
−

Pr
[
(τ, φ) R←EKG(η) : AOi,1(τ,φ,η)(η) = 1

]

Advdist
Oi,1,Oi+1

(A, η) = Pr
[
(τ, φ) R←EKG(η) : AOi,1(τ,φ,η)(η) = 1

]
−

Pr
[
(τ, φ) R←EKG(η) : AOi+1(τ,φ,η)(η) = 1

]

are all negligible, so

Advdist
Oi,Oi+1

(η) = Advdist
Oi,Oi,0

(η) + Advdist
Oi,0,Oi,1

(η) + Advdist
Oi,1,Oi+1

(η)

is also negligible, as desired. Each of these functions is treated in an argument
analogous to one of Steps 1, 2, and 3 in the proof of Theorem 2.

Step 1 (Advdist
Oi,Oi,0

(η) is negligible). The proof is by reduction. Given an index
0 ≤ h ≤ l− 1 and an algorithm A such that Advdist

Oh,Oh,0
(A, η) is non-negligible, we

construct an adversary B against SS so that Advss
SS(B, η) is also non-negligible.

We let Sh be the set of indexes for the shares of Kh+1 that occur in Eh, as in the
proof of Theorem 2. Since adversary B is against the secret sharing scheme, it
receives as input two keys k0, k1

R←K(η) and a set of shares (s1, s2, . . . , st) sampled
according to one of the two distributions S(k0, η)|Sh

or S(k1, η)|Sh
.

The idea behind the construction of B is to execute A as a subroutine in such
a way that, if (s1, s2, . . . , st) is sampled according to S(k0, η)|Sh

, then A’s view is
as in its interaction with Oh(τ, φ, η), while if (s1, s2, . . . , st) is sampled according
to S(k1, η)|Sh

, then A’s view is as in its interaction with Oh,0(τ, φ, η), for some
(τ, φ) R←EKG(η) which is kept fixed throughout A’s execution in both cases. To
every query f from A, B returns a string s sampled according to the distribution
[[Eh]]Π,SS,η

τ,φ,f (in the former case) or [[Eh,0]]Π,SS,η
τ,φ,f (in the latter case). Furthermore,

whenever A outputs 1, B outputs 1. We therefore obtain that:

Advss
SS(B, η)

= Pr
[
k0, k1

R←K(η), sh(k0)
R←S(k0, η) : B(k0, k1, sh(k0)|Sh

) = 1)
]
−

Pr
[
k0, k1

R←K(η), sh(k1)
R←S(k1, η) : B(k0, k1, sh(k1)|Sh

) = 1)
]

= Pr
[
(τ, φ) R←EKG(η) : AOi(φ,τ,η)(η) = 1

]
−

Pr
[
(τ, φ) R←EKG(η) : AOi,0(φ,τ,η)(η) = 1

]

= Advdist
Oh,Oh,0

(A, η)

First, B generates a vector of keys τ to be used as interpretation for the key
symbols that occur in E. The entries τ [h + 1] and τ [m + 1] are set to k0 and k1

Journal of the ACM, Vol. V, No. N, Month 20YY.

Security Analysis of Cryptographically Controlled Access to XML Documents · 29

respectively. Then B computes the entries in matrix φ via the sharing algorithm
of SS. The resulting (φ, τ) is distributed according to EKG(η).

In order to answer a query f from A, B computes a string s by recursively
associating a bit-string with the subexpressions of Eh. The difference from the
algorithm of Section 4 is that the shares of Kh+1 are interpreted using the input
to B. These shares are shares of either τ [h + 1] or τ [m + 1].

Next, we reason as in Step 1 of the proof of Theorem 2. If (s1, s2, . . . , st) is
sampled according to S(k0, η)|Sh

, then key Kh+1 is mapped to k0 and its shares to
appropriate shares of k0, so the string s is sampled according to [[Eh]]Π,SS,η

τ,φ,f . The rest
of A’s queries are answered using the values (τ, φ) generated at the beginning of B’s
execution. We conclude that, in this case, A’s view is as in its interaction with oracle
O(Eh,Π,SS, τ, φ, η). Similarly, if (s1, s2, . . . , st) is sampled according to S(k1, η)|Sh

,
then Kh+1 is mapped to k0 and its shares are mapped to corresponding shares of k1

(that is, shares of τ [m+1]). Therefore, s is sampled according to [[Eh,0]]Π,SS,η
τ,φ,f , and

thus A’s view is as in its interaction with oracle O(Eh,0,Π,SS, τ, φ, η).

Step 2 (Advdist
Oh,0,Oh,1

(η) is negligible). The proof is again by reduction. Given
an index 0 ≤ h ≤ l − 1 and adversary A such that

Advdist
Oh,0,Oh,1

= Pr
[
(τ, φ) R←EKG(η) : AOh,0(τ,φ,η)(η) = 1

]
−

Pr
[
(τ, φ) R←EKG(η) : AOh,1(τ,φ,η)(η) = 1

]

is non-negligible we construct an adversary B so that Advind-cpa
Π (B, η) is also non-

negligible. Since adversary B is against encryption scheme Π, it has access to a
left-right oracle LRΠ,b(η).

The idea behind the construction of B is to execute A as a subroutine in such a
way that A’s view is as in interaction with oracle O(Eh,b,Π,SS, τ, φ, η), for some
(τ, φ) R←EKG(η) which is kept fixed throughout A’s execution. To every query f

from A, B returns a string s sampled according to the distribution [[Eh,b]]
Π,SS,η
τ,φ,f .

Furthermore, whenever A outputs 1, B outputs 1. Therefore, we obtain:

Advind-cpa
Π (B, η)

= Pr
[
BLRΠ,0(η)(η) = 1

]
− Pr

[
BLRΠ,1(η)(η) = 1

]

= Pr
[
(τ, φ) R←EKG(η) : AO(Eh,0,Π,SS,τ,φ,η)(η) = 1

]
−

Pr
[
(τ, φ) R←EKG(η) : AO(Eh,1,Π,SS,τ,φ,η)(η) = 1

]

= Advdist
Oh,0,Oh,1

(A, η)

First, B generates a vector τ of keys for encryption and the matrix φ of corre-
sponding key shares. The key τ [h+1] is set to be the key k of B’s left-right oracle.
Crucially, B does not actually need to know k: the shares of Kh+1 do not occur in
Eh,0 (by construction of Eh,0), and Kh+1 itself occurs only as an encryption key.
The corresponding encryptions are computed by B’s oracle.

In order to answer a query f from A, B recursively maps each subexpression F of
Eh,0 to a bit-string. As in the algorithm described in Section 4, basic symbols are

Journal of the ACM, Vol. V, No. N, Month 20YY.

30 · Mart́ın Abadi and Bogdan Warinschi

mapped to bit-strings. The interesting case is that of subexpressions where Kh+1

occurs. As explained above, these expressions contain Kh+1 only as encryption key
and B deals with this case by using its left-right oracle.

Specifically, the string associated to subexpression {E′}Kh+1 is computed as fol-
lows. First, B samples two strings m0 and m1 from the distributions associated
to E′ and struct(E′). As explained in the proof of Theorem 2, this process is
rather straightforward. Then B submits to its oracle the pair (m0,m1) and ob-
tains in return some bit-string c. The string associated with {E′}Kh+1 is set
to c. The distribution of c depends on the bit b of the left-right oracle. When
b = 0, string c is an encryption of m0 under k, and is therefore sampled accord-
ing to distribution [[{E′}Kh+1]]Π,SS,η

τ,φ,f
. Otherwise (that is, when b = 1), string c

is an encryption of m1 under k, and is therefore sampled according to distribu-
tion [[{struct(E′)}Kh+1]]Π,SS,η

τ,φ,f
. Since Eh,1 is obtained from Eh,0 by replacing all

subterms of the form {E′}Kh+1 with {struct(E′)}Kh+1 , it follows that the string
s obtained at the end of the procedure satisfies the desired condition, that is, it
is sampled according to [[Eh,b]]

Π,SS,η
τ,φ,f . In the rest of the execution, B answers A’s

queries following the procedure described above, and using (τ, φ) generated at the
beginning of its execution. We conclude that A’s view is as in its interaction with
oracle O(Eh,b,Π,SS, τ, φ, η), as desired.

Step 3 (Advdist
Oi,1,Oi+1

(η) is negligible). This step is similar to Step 1: expression
Ei,1 may be obtained from expression Ei+1 by replacing each share Ki

h+1 of Kh+1

with share Ki of a fresh key K, that is, in precisely the same manner in which Ei,0

is obtained from Ei. The same proof method applies.

Journal of the ACM, Vol. V, No. N, Month 20YY.

