
Private Authentication

Mart́ın Abadi

University of California at Santa Cruz

Cédric Fournet

Microsoft Research

Abstract

Frequently, communication between two principals reveals their identities and pres-
ence to third parties. These privacy breaches can occur even if security protocols are
in use; indeed, they may even be caused by security protocols. However, with some
care, security protocols can provide authentication for principals that wish to com-
municate while protecting them from monitoring by third parties. We discuss the
problem of private authentication and present two protocols for private authentica-
tion of mobile principals. Our protocols allow two mobile principals to communicate
when they meet at a location if they wish to do so, without the danger of tracking by
third parties. We also present the analysis of one of the protocols in the applied pi
calculus. We establish authenticity and secrecy properties. Although such properties
are fairly standard, their formulation in the applied pi calculus makes an original
use of process equivalences. In addition, we treat identity-protection properties, thus
exploring a formal model of privacy.

1 Privacy, authenticity, and the applied pi calculus

Although privacy may coexist with communication, it often does not, and
there is an intrinsic tension between them. Often, effective communication be-
tween two principals requires that they reveal their identities to each other.
Still, they may wish to reveal nothing to others. Third parties should not be
able to infer the identities of the two principals, nor to monitor their move-
ments and their communication patterns. For better or for worse, they often
can. In particular, a mobile principal may advertise its presence at a location
in order to discover and to communicate with certain other principals at the
location, thus revealing its presence also to third parties.

Authentication protocols may help in addressing these privacy breaches, as
follows. When a principal A wishes to communicate with a principal B, and is
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willing to disclose its identity and presence to B but not to other principals,
A might demand that B prove its identity before revealing anything. An au-
thentication protocol can provide this proof. It can also serve to establish a
secure channel for subsequent communication between A and B.

However, authentication protocols are not an immediate solution, and they
can in fact be part of the problem. Privacy is not one of the explicit goals
of common authentication protocols. These protocols often send names and
credentials in cleartext, allowing any eavesdropper to see them. An eaves-
dropper may also learn substantial information from encrypted packets, even
without knowing the corresponding decryption keys; for example, the packets
may contain key identifiers that link them to other packets and to certain
principals. Furthermore, in the course of authentication, a principal may re-
veal its identity to its interlocutor before knowing the interlocutor’s identity
with certainty. If A and B wish to communicate but each wants to protect its
identity from third parties, who should reveal and prove theirs first?

This last difficulty is more significant in peer-to-peer communication than in
client-server communication, although the desire for privacy appears in both
settings.

• In client-server systems, the identity of servers is seldom protected. How-
ever, the identity of clients is not too hard to protect, and this is often
deemed worthwhile. For example, in the SSL protocol [20], a client can first
establish an “anonymous” connection, then authenticate with the protec-
tion of this connection, communicating its identity only in encrypted form.
An eavesdropper can still obtain some addressing information, but this in-
formation may be of limited value if the client resides behind a firewall and
a proxy. (Similarly, the Skeme protocol [26] provides support for protecting
the identity of the initiator of a protocol session, but not the identity of the
responder; the JFK protocol [8] is also asymmetric in this respect.)
• The symmetry of peer-to-peer communication makes it less plausible that

one of the parties in an exchange would be willing to volunteer its identity
first. Privacy may nevertheless be attractive. In particular, mobile principals
may want to communicate with nearby peers without allowing others to
monitor them (cf. Bluetooth [12] and its weaknesses [25]). Thus, privacy
seems more problematic and potentially more interesting in the fluid setting
of mobile, peer-to-peer communication.

This paper gives a definition of a privacy property (first informally, then in
a process calculus). This property implies that each principal may reveal and
prove its identity to certain other principals, and hide it from the rest. The
definition applies even if all parties are peers and have such privacy require-
ments.
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Standard authentication protocols do not satisfy the privacy property. How-
ever, we show two protocols that do, and undoubtedly there are others (to
the extent that informally described protocols can satisfy informally defined
properties). In our protocols, a session between two principals A and B con-
sists of messages encrypted under public keys and under session keys in such
a way that only A and B discover each other’s identity. The protocols differ
from standard protocols by the absence of cleartext identity information. More
subtly, they rely on some mild but non-trivial assumptions on the underlying
cryptographic primitives. One of the protocols also includes a subtle “decoy”
message in order to thwart certain active attacks.

Our protocols do not assume that the principals A and B have a long-term
shared secret. Neither do they require an infrastructure of on-line trusted
third parties, or suppose that the world is organized into domains and that
each principal has a home domain. In this respect, the protocols contrast with
previous ones for related purposes (see for example [30,36,11,9] and section 9).
Because of their weak infrastructure needs, the protocols are consistent with
ad hoc networking.

As an example, consider a mobile principal A that communicates with others
when they are in the same (physical or virtual) location. In order to estab-
lish connections, A might constantly broadcast “hello, I am A, does anyone
want to talk?”. An eavesdropper could then detect A’s presence at a partic-
ular location. An eavesdropper could even monitor A’s movements without
much difficulty, given sensors at sufficiently many locations. Our protocols are
designed with this scenario in mind. Suppose that two principals A and B
arrive anonymously at a location. Although A and B may know of each other
in advance, they need not have a long-term shared key. Furthermore, neither
may be certain a priori that the other one is present at this location. If they
wish to communicate with one another, our protocols will enable them to do
it, without the danger of being monitored by others.

This paper also presents the analysis of one of our protocols in the applied pi
calculus [2], a recent variant of the pi calculus. This analysis is worthwhile for
several reasons:

• As we discussed above, the protocol aims to guarantee that third parties do
not learn the identity of protocol participants. Although this property and
similar ones appear prominently in several recent protocol designs, they
have hardly been specified and proved precisely to date. Therefore, this
paper develops an approach for stating and deriving those properties.
• In addition, the protocol is for a standard purpose, namely establishing

a session (with associated cryptographic keys), and it is concerned with
standard security properties, such as authenticity and secrecy. Therefore,
the analysis of the protocol exemplifies concepts and techniques relevant to
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many other protocols.
• The protocol includes some delicate features, and is not a trivial example

invented in order to illustrate formal techniques. On the other hand, the
protocol remains fairly simple, so we can give relatively concise treatments
of its main properties.

In the applied pi calculus, the constructs of the classic pi calculus can be used
to represent concurrent systems that communicate on channels, and function
symbols can be used to represent cryptographic operations and other opera-
tions on data. Large classes of important attacks can also be expressed in the
applied pi calculus, as contexts. These include the typical attacks for which
a symbolic, mostly “black-box” view of cryptography suffices (but not for
example some lower-level attacks that depend on timing behavior or on prob-
abilities). Thus, in general, the applied pi calculus serves for describing and
reasoning about many of the central aspects of security protocols. In partic-
ular, it is an appropriate setting for the analysis of the protocol for private
authentication. Some of the properties of the protocol can be nicely captured
in the form of equivalences between processes. Moreover, some of the proper-
ties are sensitive to the equations satisfied by the cryptographic functions upon
which the protocol relies. The applied pi calculus is well-suited for expressing
those equivalences and those equations.

In a sense, private authentication is about hiding the names (or identities) of
protocol participants, while the applied pi calculus permits hiding the names
that represent private communication channels and secret cryptographic keys
(through the restriction construct ν). Despite this superficial coincidence, the
name hiding of private authentication and that of the applied pi calculus
are rather different. However, the name hiding of the applied pi calculus is
crucial for expressing the protocol under consideration and for deriving the
equivalences that express its properties.

The next section defines and discusses the privacy property sketched above.
Section 3 presents the assumptions on which our protocols rely. Section 4 de-
velops the two protocols and some optimizations and extensions. Section 5
explains the applied pi calculus. Section 6 shows how to express one of our
protocols in the applied pi calculus. Section 7 treats the authenticity and se-
crecy properties of this protocol; section 8, its identity-protection properties.
Section 9 discusses some related problems and related work (including, in par-
ticular, work on message untraceability). Section 10 concludes. An appendix
contains proofs for the main claims of sections 7 and 8.

Parts of this paper have appeared in preliminary form in proceedings [1,19].
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2 The problem

Although we do not aim to provide a general definition of privacy (partly be-
cause one might have to be too vague or empty), we focus on the following
frequent scenario in which privacy is a central concern: two or more mobile
interlocutors wish to communicate securely, protecting their messages and also
their identities from third parties. This scenario arises often in mobile tele-
phony and mobile computing [18,34,30,36,9,25]. In these contexts, roaming
users may want to conceal their identities from others and even from infras-
tructure providers and operators. Furthermore, identity protection is a goal of
several recent protocols for communication at the IP level [26,8].

More specifically, suppose that a principal A is willing to engage in communi-
cation with some set of other principals SA (which may change over time), and
that A is willing to reveal and even prove its identity to these principals. This
proof may be required, for instance if A wishes to make a sensitive request
from each of these principals, or if these principals would reveal some sensitive
data only to A. The problem is to enable A to authenticate to principals in SA

without requiring A to compromise its privacy by revealing its identity or SA

more broadly:

(1) A should be able to prove its identity to principals in SA, and to establish
authenticated and private communication channels with them.

(2) A should not have to indicate its identity (and presence) to any principal
outside SA.

(3) Although an individual principal may deduce whether it is in SA from
A’s willingness to communicate, A should not have to reveal anything
more about SA.

Goal 1 is common; many cryptographic protocols and security infrastructures
have been designed with this goal in mind.

Goal 2 is less common. As discussed above, it is seldom met with standard
protocols, but it seems attractive. When C is a principal outside SA, this goal
implies that A should not have to prove its identity to C, but it also means
that A should not have to give substantial hints of its identity to C.

We could consider strengthening goal 2 by saying that A should have to reveal
its identity only to principals B ∈ SA such that A ∈ SB, in other words, to
principals with which A can actually communicate. On the other hand, if SB

is under B′s control, B could let A ∈ SB, or pretend that this is the case, in
order to learn A’s identity. (We revisit whether SB is under B′s control with
the definition of compliant principal in section 6.5.)

Goal 3 concerns a further privacy guarantee. Like goal 2, it is somewhat un-
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usual, seldom met with standard techniques, but attractive from a privacy
perspective. It might be relaxed slightly, in particular allowing A to reveal the
approximate size of SA.

Note that A may be willing to engage in anonymous communication with
some set of principals in addition to SA. We expect that A is programmed
and configured so that it does not spuriously reveal its identity (or other
private data) to those other principals accidentally. In actual systems, however,
principals may well reveal and even broadcast their names unnecessarily.

3 Assumptions

This section introduces the assumptions on which our protocols rely. They
generally concern communication and cryptography, and the power of the ad-
versary in these respects. (Menezes et al. [29] give the necessary background
in cryptography; we rely only on elementary concepts.) Although the assump-
tions may not hold in many real systems, they are realistic enough to be
implementable, and advantageously simple.

3.1 Communication

We assume that messages do not automatically reveal the identity of their
senders and receivers—for example, by mentioning them in headers. When
the location of the sender of a message can be obtained, for example, by
triangulation, this assumption implies that the location does not reveal the
sender’s identity. This assumption also entails some difficulties in routing mes-
sages. Techniques for message untraceability (see for example [15,32,33] and
section 9) suggest some sophisticated solutions. Focusing on a relatively sim-
ple but important case, we envision that all messages are broadcast within
some small area, such as a room or a building.

We aim to protect against an adversary that can intercept any message sent on
a public channel (within the small area under consideration or elsewhere). In
addition, the adversary is active: it can send any message that it can compute.
Thus, the adversary is essentially the standard adversary for security protocols,
as described, for example, by Needham and Schroeder [31].
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3.2 Cryptography

We also assume that each principal A has a public key KA and a corresponding
private keyK−1

A , and that the association between principals and public keys is
known. This association can be implemented with the help of a mostly-off-line
certification authority. In this case, some additional care is required: fetching
certificates and other interactions with the certification authority should not
compromise privacy goals. Alternatively, the association is trivial if we name
principals by their public keys, for example as in SPKI [17]. Similarly, it is also
trivial if we use ordinary principal names as public keys, with an identity-based
cryptosystem [37]. Therefore, we may basically treat public keys as principal
names.

When K−1 is a private key, we write {M}K−1 for M signed using K−1, in
such a way that M can be extracted from {M}K−1 and the signature verified
using the corresponding public key K. As usual, we assume that signatures
are unforgeable. Similarly, 1 when K is a public key, we write {M}K for the
encryption ofM usingK. We expect some properties of the encryption scheme:

(1) Only a principal that knows the corresponding private key K−1 should
be able to recover the plaintext of a message encrypted under a public
key K.

(2) Furthermore, decrypting a message with a private key K−1 should suc-
ceed only if the message was encrypted under the corresponding public
key K, and the success or failure of a decryption should be evident to the
principal who performs it.

(3) Finally, encryption should be which-key concealing [7,10,13], in the fol-
lowing sense. Someone who sees a message encrypted under a public
key K should not be able to tell that it is under K without knowl-
edge of the plaintext or the corresponding private key K−1, even with
knowledge of K and other messages under K. Similarly, someone who
sees several different messages encrypted under a public key K should
not be able to tell that they are under the same key without knowledge
of the corresponding private key K−1.

Property 1 is essential and standard. Properties 2 and 3 are not entirely stan-
dard. They are not implied by standard computational specifications of en-
cryption (e.g., [21]) but appear in formal models (e.g., [5]). Property 2 can
be implemented by including appropriate redundancy in encrypted messages,

1 These notations are concise and fairly memorable, but perhaps somewhat mis-
leading. In particular, they imply that the same key pair is used for both public-key
signatures and encryptions, and that the underlying algorithms are similar for both
kinds of operations (as in the RSA cryptosystem). We do not need to assume these
properties.
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without compromising secrecy properties. It is not essential, but we find it
convenient, particularly for the second protocol and its enhancements. Prop-
erty 3 is satisfied with standard cryptosystems based on the discrete-logarithm
problem [10,13], but it excludes implementations that tag all encryptions with
key identifiers. Although the rigorous study of this property is relatively re-
cent, it seems to be implicitly assumed in earlier work; for example, it seems to
be necessary for the desired anonymity properties of the Skeme protocol [26].

4 Two protocols

This section shows two protocols that address the goals of section 2. It also
discusses some variants of the protocols.

The two protocols are based on standard primitives and techniques (in par-
ticular on public-key cryptography), and resemble standard protocols. The
first protocol uses digital signatures and requires that principals have loosely
synchronized clocks. The second protocol uses only encryption and avoids the
synchronization requirement, at the cost of an extra message. The second
protocol draws attention to difficulties in achieving privacy against an active
adversary.

Undoubtedly, other protocols satisfy the goals of section 2. In particular, these
goals seem relatively easy to satisfy when all principals confide in on-line
authentication servers. However, the existence of ubiquitous trusted servers
may not be a reasonable assumption. The protocols of this section do not rely
on such trusted third parties.

4.1 First protocol

In the first protocol, when a principal A wishes to talk to another principal B,
and B is willing to talk to a set of principals SB, A and B proceed as follows:

• A generates fresh key material K and a timestamp T , and sends out

“hello”, {“hello”, KA, {KA, KB, K, T}K−1
A
}KB

The tag “hello” indicates the type of the message; it is not essential in
this particular protocol. The key material may simply be a session key,
for subsequent communication; it may also consist of several session keys
and identifiers for those keys. The signature means that the principal with
public key KA (that is, A) says that it has generated the key material K
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for communicating with the principal with public key KB (that is, B) near
time T . The explicit mention of KB is crucial for security (see [6]).
• Upon receipt of any message that consists of “hello” and (apparently) a

ciphertext, the recipient B tries to decrypt the second component using its
private key. If the decryption yields a key KA and a signed statement of the
form {KA, KB, K, T}K−1

A
, then B extracts KA and K, verifies the signature

using KA, ensures that the message is not a replay using the timestamp T ,
and checks that A ∈ SB. If the plaintext is not of the expected form, if the
message is a replay, or if A /∈ SB, then B does nothing.
• A and B may use K for encrypting subsequent messages. Each of these

messages may be tagged with a key identifier, derived from K but indepen-
dent of A and B. When A or B receives a tagged message, the key identifier
suggests the use of K for decrypting the message.

This protocol is based on the Denning-Sacco public-key protocol and its cor-
rected version [16,6]. Noticeably, however, this protocol does not include any
identities in cleartext. In addition, the protocol requires stronger assumptions
on encryption, specifically that public-key encryption under KB be which-key
concealing. This property is needed so that A’s encrypted message does not
reveal the identity of its (intended) recipient B.

When A wishes to communicate with several principals B1, . . . , Bn at the
same time (for example, when A arrives at a new location), A may simply
start n instances of the protocol in parallel, sending different key material
to each of B1, . . . , Bn. Those of B1, . . . , Bn who are present and willing to
communicate with A will be able to do so using the key material. (Section 4.4
describes optimizations of the second protocol for this situation.)

4.2 Second protocol

In the second protocol, when a principal A wishes to talk to another princi-
pal B, and B is willing to talk to a set of principals SB, A and B proceed as
follows:

• A generates a fresh, unpredictable nonce NA, and sends out

“hello”, {“hello”, NA, KA}KB

(In security protocols, nonces are quantities generated for the purpose of
being recent; they are typically used in challenge-response exchanges.)
• Upon receipt of a message that consists of “hello” and (apparently) a ci-

phertext, the recipient B checks that it is not a replay 2 and tries to decrypt

2 The filtering of replays by B is not in the original description of the protocol [1],
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the second component using its private key. If the decryption succeeds, then
B extracts the corresponding nonce NA and key KA, checks that A ∈ SB,
generates a fresh, unpredictable nonce NB, and sends out

“ack”, {“ack”, NA, NB, KB}KA

If the message is a replay, if the decryption fails, if the plaintext is not of
the expected form, or if A /∈ SB, then B sends out a “decoy” message. This
message should basically look like B’s other message. In particular, it may
have the form

“ack”, {N}K

where N is a fresh nonce (with padding, as needed) and only B knows K−1,
or it may be indistinguishable from a message of this form.
• Upon receipt of a message that consists of “ack” and (apparently) a cipher-

text, A tries to decrypt the second component using its private key. If the
decryption succeeds, then A extracts the corresponding nonces NA and NB

and key KB, and checks that it has recently sent NA encrypted under KB.
If the decryption or the checks fail, then A does nothing.
• Subsequently, A and B may use NA and NB as shared secrets. In particular,
A and B may use NB as a session key, or they may compute session keys
by concatenating and hashing the two nonces. They may also derive key
identifiers, much as in the first protocol.

In summary, the message flow of a successful exchange is:

A→ B : “hello”, {“hello”, NA, KA}KB

B → A : “ack”, {“ack”, NA, NB, KB}KA

Section 4.4 describes variants of this basic pattern, for example (as mentioned
above) for the case where A wishes to communicate with n principals B1, . . . ,
Bn.

This protocol has some similarities with the Needham-Schroeder public-key
protocol [31] and others [27,26]. However, like the first protocol, this one does
not include any identities in cleartext, and again that is not quite enough for
privacy. As in the first protocol, public-key encryption should be which-key
concealing so that encrypted messages do not reveal the identities of their
(intended) recipients. Furthermore, the delicate use of the decoy message is
important:

and may be avoided under certain conditions on B’s behavior, but we believe that
it is a reasonable refinement, with useful consequences. We omit the details of how
to implement the filtering, which are fairly standard; as usual, some but not all
implementations preserve security properties.
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• B’s decoy message is unfortunately necessary in order to prevent an attack
where a malicious principal C /∈ SB computes and sends

“hello”, {“hello”, NC , KA}KB

and then deduces B’s presence and A ∈ SB by noticing a response. In order
to prevent this attack, the decoy message should look to C like it has the
form

“ack”, {“ack”, NC , NB, KB}KA

• B’s response to A when A /∈ SB should look as though B was someone else,
lest A infer B’s presence. Since B sends a decoy message when its decryption
fails, it should also send one when A /∈ SB.

The decoy message “ack”, {N}K is intended to address both of these require-
ments.

4.3 Properties and limitations

Intuitively, the protocols are supposed to establish shared secrets between A
and B. At the very least, we would expect that A and B, and only them, can
obtain a session key from these secrets. We would expect, moreover, that this
key be essentially independent of any other data. For example, it should not
be possible for an attacker without access to the key to compute a ciphertext
under the key from a record of the protocol messages. In short, the key should
behave much like a pre-established shared key. The only observable differences
between running the protocol and having a pre-established shared key should
be that an attacker can disrupt a protocol run, making it fail, and that an
attacker can notice that the protocol generates some opaque messages. Our
results of section 7 provide a more precise statement of this comparison, in
the form of an equivalence, for the second protocol.

The protocols are also supposed to assure A and B of each other’s identity.
However, the two participants have somewhat different states in this respect
at the conclusion of a key exchange.

• With the first protocol, after receiving and checking A’s message, B has
evidence that A is attempting to establish a session. On the other hand, A
knows nothing about B’s presence and interest in a session until receiving
messages under the session key.
• With the second protocol, after receiving and checking B’s message, A has

evidence that it shares the session key with the principal B that responded.
On the other hand, B has evidence that it shares the session key at most
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with A, but cannot be certain that A initiated the protocol run. Any other
principal C might have contacted B pretending to be A, but then C will
not obtain the key. Only after further communication can B be sure of A’s
participation in the session.

In addition, the protocols are supposed to protect the identity of the partici-
pants. This should mean, in particular, that an attacker cannot learn anything
when A wishes to communicate with B but not vice versa. It should also mean
that an attacker cannot distinguish a run between A and B from a run between
two other principals A′ and B′, under appropriate hypotheses. The hypotheses
should say, for example, that B is not the attacker, since B learns A’s iden-
tity. The hypotheses should also consider what the participants can do besides
running the protocol. For example, if A were to broadcast “A has a secret!”
after every protocol run, then A’s identity would clearly not be protected.
Similarly, if A would only contact C after sessions with B, then C could infer
B’s recent presence from A’s behavior. In general, the hypotheses need to ad-
dress possible leaks not caused by the protocol itself. Section 8 develops these
hypotheses and gives our privacy results, also relying on equivalences.

The protocols do not provide location information, so they do not guarantee
that two principals A and B that establish a session are necessarily in the same
location. In a distributed system, a relay could allow A and B to establish a
session remotely, perhaps with the intention of misleading A and B. Assuming
that each principal can name its own location, the protocols can easily be
extended with location indicators in order to detect relays across locations.

4.4 Efficiency considerations

Both protocols can be rather inefficient in some respects. These inefficiencies
are largely unavoidable consequences of the goals of private authentication.

• A generates its message and sends it before having any indication that B is
present and willing to communicate. In other situations, A might have first
engaged in a lightweight handshake with B, sending the names A and B
and waiting for an acknowledgment. Alternatively, both A and B might
have broadcast their names and their interest in communicating with nearby
principals. Here, these preliminary messages are in conflict with the privacy
goals, even though they do not absolutely prove the presence of A and B
to an eavesdropper. Some compromises may be possible; for example, A
and B may publish some bits of information about their identities if those
bits are not deemed too sensitive. In addition, in the second protocol, A
may precompute its message.
• Following the protocols,B may examine many messages that were encrypted
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under the public keys of other principals. This examination may be costly,
perhaps opening the door to a denial-of-service attack against B. In other
situations, Amight have included the nameB, the keyKB, or some identifier
for KB in clear in its message, as a hint for B. Here, again, the optimization
is in conflict with the privacy goals, and some compromises may be possible.

The second protocol introduces some further inefficiencies, but those can be
addressed as follows:

• In the second protocol, A may process many acknowledgments that were
encrypted under the public keys of other principals. This problem can be
solved through the use of a connection identifier: A can create a fresh iden-
tifier I, send it to B, and B can return I in clear as a hint that A should
decrypt its message.

A→ B : “hello”, I, {“hello”, NA, KA}KB

B → A : “ack”, I, {“ack”, NA, NB, KB}KA

The identifier I should also appear in B’s decoy message. Third parties may
deduce that the messages are linked, because I is outside the encryptions,
but cannot relate the messages to A and B.
• Suppose that A wishes to communicate with several principals, B1, . . . , Bn.

It could initiate n instances of the protocol. However, combining the mes-
sages from all the instances can be faster. In particular, although each of
B1, . . . , Bn should receive a different nonce, they can all share a connection
identifier. Moreover, when KA is long, its public-key encryption may be im-
plemented as a public-key encryption of a shorter symmetric key K plus an
encryption of KA using K; the key K and the latter encryption may be the
same for B1, . . . , Bn. Thus, A may send:

“hello”, I, {KA}K , {“hello”, H(KA), NA1, K}KB1
, . . . ,

{“hello”, H(KA), NAn, K}KBn

where H is a one-way hash function. Most importantly, the need for decoy
messages is drastically reduced. A principal that plays the role of B need
not produce n true or decoy acknowledgments, but only one. Specifically,
B should reply to a ciphertext encrypted under KB, if A included one in
its message, and send a decoy message otherwise. This last optimization
depends on our assumption that B can recognize whether a ciphertext was
produced by encryption under KB.

We have not attempted a careful analysis of these variants, or a thorough study
of alternative designs (for instance, with other treatments of identifiers). There
are opportunities for further work in these directions.

13



With these and other improvements, both protocols are practical enough in
certain systems, although they do not scale well. Suppose that principals wish
to communicate with few other principals at a time, and that any one mes-
sage reaches few principals, for instance because messages are broadcast within
small locations; then it should be possible for principals that come into con-
tact to establish private, authenticated connections (or fail to do so) within
seconds. What is “few”? A simple calculation indicates that 10 is few, and
maybe 100 is few, but 1000 is probably not few. Typically, the limiting per-
formance factor will be public-key cryptography, rather than communications:
each public-key operation takes a few milliseconds or tens of milliseconds in
software on modern processors (e.g., [28]). Perhaps the development of custom
cryptographic techniques (flavors of broadcast encryption) can lead to further
efficiency gains.

4.5 Groups

In the problem described above, the set of principals SA and SB with which
A and B wish to communicate, respectively, are essentially presented as sets
of public keys. In variants of the problem, SA, SB, or both may be presented
in other ways. The protocols can be extended to some situations where a
principal wants to deal with others not because of their identities but because
of their attributes or memberships in groups, such as “ACME printers” or
“Italians”. These extensions are not all completely satisfactory.

• Suppose that B is willing to communicate with any principal in a certain
group, without having a full list of those principals. However, let us still
assume that SA is presented as a set of public keys. In this case, we can
extend our protocols without much trouble: A can include certificates in its
encrypted message to B, proving its membership in groups.
• Suppose that, instead, A wants to communicate with any principal in a

certain group, and SB is presented as a set of public keys. The roles in the
protocols may be reversed to handle this case.
• However, the protocols do not address the case in which neither SA nor SB

is presented as a set of public keys, for example when both are presented
as groups. Introducing group keys should reduce this case to familiar ones,
but group keys are harder to manage and protect.

5 The applied pi calculus (overview)

The applied pi calculus is a simple, general extension of the pi calculus with
value passing, primitive function symbols, and equations between terms. In [2],
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we introduce this calculus, develop semantics and proof techniques, and apply
those techniques in reasoning about some security protocols. This section gives
only a brief overview. Later sections return to private authentication, relying
on the applied pi calculus.

5.1 Syntax and informal semantics

A signature Σ consists of a finite set of function symbols, such as h and decrypt,
each with an integer arity. Given a signature Σ, an infinite set of names, and
an infinite set of variables, the set of terms is defined by the grammar:

U, V,W ::= terms
a, n, . . . name
x, y, . . . variable
f(U1, . . . , Ul) function application

where f ranges over the function symbols of Σ and l matches the arity of f .
We use meta-variables u and v to range over both names and variables. We
write U = V to indicate that U and V are equal in an underlying equational
theory associated with Σ.

The grammar for processes is similar to the one in the pi calculus, except that
here messages can contain terms (rather than only names) and that names
need not be just channel names:

P,Q,R ::= processes (or plain processes)
0 null process
P | Q parallel composition
!P replication
νn.P name restriction (“new”)
if U = V then P else Q conditional
u(x).P message input
u〈V 〉.P message output

The null process 0 does nothing; P | Q is the parallel composition of P and Q;
the replication !P behaves as an infinite number of copies of P running in
parallel. The process νn.P makes a new name n then behaves as P . The
conditional construct if U = V then P else Q is standard, but we should
stress that U = V represents equality, rather than strict syntactic identity.
We abbreviate it if U = V then P when Q is 0. Finally, the input process
u(x).P is ready to input from channel u, then to run P with the actual message
replaced for the formal parameter x, while the output process u〈V 〉.P is ready
to output message V on channel u, then to run P . In both of these, we may
omit P when it is 0.
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Further, we extend processes with active substitutions:

A,B,C ::= extended processes
P plain process
A | B parallel composition
νn.A name restriction
νx.A variable restriction
{x = V } active substitution

We write {x = V } for the substitution that replaces the variable x with the
term V . The substitution {x = V } typically appears when the term V has
been sent to the environment, but the environment may not have the atomic
names that appear in V ; the variable x is just a way to refer to V in this
situation. The substitution {x = V } is active in the sense that it “floats” and
applies to any process that comes into contact with it. In order to control
this contact, we may add a variable restriction: νx.({x = V } | P ) corresponds
exactly to let x = V in P . Although the substitution {x = V } concerns only
one variable, we can build bigger substitutions by parallel composition. We
always assume that our substitutions are cycle-free. We also assume that, in
an extended process, there is at most one substitution for each variable, and
there is exactly one when the variable is restricted.

A frame is an extended process built up from active substitutions by parallel
composition and restriction. Informally, frames represent the static knowledge
gathered by the environment after communications with an extended process.
We let ϕ range over frames, and let ϕ(A) be the frame obtained from the
extended process A by erasing all plain subprocesses of A. We let dom(ϕ) be
the set of variables defined by substitutions in ϕ and not restricted in ϕ. As
usual, names and variables have scopes, which are delimited by restrictions
and by inputs. When E is any expression, fv(E), dv(E), bv(E), fn(E), and
bn(E) are the sets of free, defined, and bound variables and free and bound
names of E, respectively; E is closed when every variable is either bound or
defined by an active substitution. An evaluation context C[ ] is an extended
process with a hole in the place of an extended process. The context C[ ]
closes A when C[A] is closed.

We rely on a sort system for terms and extended processes [2, section 2]. We
always assume that terms and extended processes are well-sorted and that
substitutions and context applications preserve sorts.

5.2 Examples

We further explain the applied pi calculus with examples motivated by our
second protocol. We start with formatted messages. We then discuss one-way
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hash functions and encryption functions.

In that protocol, we use two kinds of formated messages (“hello” and “ack”)
with two and three variable fields, respectively. Accordingly, we introduce bi-
nary and ternary function symbols hello( , ) and ack( , , ) in the signature Σ;
these symbols represent the message constructors. In addition, we introduce
inverse, unary function symbols hello.0 ( ), hello.1 ( ), ack.0 ( ), ack.1 ( ), and
ack.2 ( ) in order to select particular fields in messages. Finally, we describe
the intended behavior of formatted messages with the evident equations:

hello.0 (hello(x0, x1)) = x0

hello.1 (hello(x0, x1)) = x1

ack.0 (ack(y0, y1, y2)) = y0

ack.1 (ack(y0, y1, y2)) = y1

ack.2 (ack(y0, y1, y2)) = y2

A first equational theory may consist of these equations, and all equations
obtained by reflexivity, symmetry, and transitivity and by substituting terms
for the variables x0, . . . , y2.

In order to model the one-way hash computation of a session key out of the
nonces NA and NB, we introduce a binary function symbol h( , ) with no
equations. The fact that h(NA, NB) = h(N ′

A, N
′
B) only when NA = N ′

A and
NB = N ′

B models that h is collision-free. The absence of an inverse for h models
the one-wayness of h. In our protocol, these properties are important to guar-
antee that h(NA, NB) is indeed secret (as long as NA or NB is) and, further,
that the attacker cannot recover NA or NB even if it obtains h(NA, NB).

In order to model symmetric cryptography (that is, shared-key cryptography),
we may introduce binary function symbols encrypt( , ) and decrypt( , ) for
encryption and decryption, respectively, with the equation:

decrypt(encrypt(x, y), y) =x (1)

Here x represents the plaintext and y the key. We often use the notation
{U}V instead of encrypt(U, V ). For instance, the (useless) process νK.c〈{U}K〉
sends the term U encrypted under a fresh key K on channel c. It is only
slightly harder to model asymmetric (public-key) cryptography, where the
keys for encryption and decryption are different. In addition to encrypt( , )
and decrypt( , ), we introduce the unary function symbol pk( ) for deriving a
public key from a private key. Instead of (1), we use the equation:

decrypt(encrypt(x, pk(y)), y) =x (2)
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Since there is no inverse for pk( ), a public key pk(s) can be passed to the
environment without giving away the capability to decrypt messages encrypted
under pk(s).

For instance, a principal B with public key KB can be represented as a process
in a context PB[ ]

def
= νs.({KB = pk(s)} | [ ]) that binds a decryption key s

and exports the associated encryption key as a variable KB. As this example
indicates, we essentially view ν as a generator of unguessable seeds. In some
cases, those seeds may be directly used as passwords or keys; in others, some
transformations are needed.

5.3 Operational semantics

Given a signature Σ, we equip it with an equational theory (that is, with
an equivalence relation on terms with certain closure properties). We write
Σ ` U = V when the equation U = V is in the theory associated with Σ. We
usually keep the theory implicit, and abbreviate Σ ` U = V to U = V when
Σ is clear from context or unimportant. We write (U = V )ϕ when U and V
are equal after applying ϕ, with α-conversion on names and variables bound
in ϕ and free in U or V [2, section 4.2].

Structural equivalences, written A ≡ B, relate extended processes that are
equal by rearrangements of parallel compositions, restrictions, and active sub-
stitutions, and by equational rewriting of terms. Formally, structural equiv-
alence is defined as the smallest equivalence relation on extended processes
that is closed by α-conversion on both names and variables, by application of
evaluation contexts, and such that:

Par-0 A ≡ A | 0

Par-A A | (B | C) ≡ (A | B) | C

Par-C A | B ≡ B | A

Repl !P ≡ P |!P

New-0 νn.0 ≡ 0

New-C νu.νv.A ≡ νv.νu.A

New-Par A | νu.B ≡ νu.(A | B) when u 6∈ fv(A) ∪ fn(A)

Alias νx.{x = V } ≡ 0

Subst {x = V } | A ≡ {x = V } | A{x = V }

Rewrite {x = U} ≡ {x = V } when Σ ` U = V
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We say that a variable x can be derived from the extended process A when, for
some term V and extended process A′, we have A ≡ {x = V } | A′. Intuitively,
if x can be derived from A, then A does not reveal more information than
νx.A, because the context can build the term V and use it instead of x.

Reductions, written A→ B, represent silent steps of computation. Reduction
is defined as the smallest relation on extended processes closed by structural
equivalence and application of evaluation contexts such that:

Comm a〈x〉.P | a(x).Q → P | Q

Then if U = U then P else Q → P

Else if U = V then P else Q → Q

for any ground terms U and V such that Σ 6` U = V

Labelled transitions, written A
α−→ B, represent interactions with the envi-

ronment. They consist of message inputs and message outputs, respectively

written A
a(V )−−→ B and A

νũ.a〈V 〉−−−−→ B, with {ũ} ⊆ fv(V )∪ fn(V ) \ {a}. In both,
a represents a communication channel and V a message. In outputs, ũ collects
the names and variables revealed by the message. The labelled transition re-
lation is defined as the smallest relation indexed by labels α that is closed by
structural equivalence and such that:

In a(x).P
a(V )−−→ P{x = V } Out a〈V 〉.P a〈V 〉−−→ P

Open-Channel
A

a〈b〉−−→ A′ b 6= a

νb.A
νb.a〈b〉−−−−→ A′

Open-Variable

A
νũ.a〈V 〉−−−−→ A′ x ∈ fv(V ) \ {ũ}, z fresh

x can be derived from νũ.({z = V } | A′)

νx.A
νx,ũ.a〈V 〉−−−−−→ A′

Scope
A

α−→ A′ α is a〈V 〉 or a(V ), u does not occur in α

νu.A
α−→ νu.A′

Par
A

α−→ A′ bv(α) ∩ fv(B) = bn(α) ∩ fn(B) = ∅
A | B α−→ A′ | B

In contrast with some other process calculi, output transitions A
νũ.a〈V 〉−−−−→ B are

enabled only for messages V that effectively reveal the names and variables

in ũ. Typically, the transition is just of the form A
νx.a〈x〉−−−−→ B for some fresh
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variable x, and B contains an active substitution that associates x with a more

complex message. Input transitions A
a(V )−−→ B may use variables defined in A

(typically from previous message outputs) to form the message V .

5.4 Observational equivalences

In the analysis of protocols, we frequently argue that two given processes
cannot be distinguished by any context, that is, that the processes are obser-
vationally equivalent. As in the spi calculus, the context represents an active
attacker, and equivalences capture security properties in the presence of the
attacker. The applied pi calculus has a useful, general theory of observational
equivalence parameterized by Σ and its equational theory [2]. Specifically, the
following three relations are defined for any Σ and equational theory:

• Static equivalence, written ϕ ≈s ψ, relates frames with the same domain
that cannot be distinguished by any term comparison: dom(ϕ) = dom(ψ)
and, for all terms U and V , we have (U = V )ϕ if and only if (U = V )ψ.
Static equivalence is closed by structural equivalence, by reduction, and by
application of closing evaluation contexts. In the presence of the ν construct,
this relation is somewhat delicate and interesting. For instance, we have

νN.{x = h(N,KB)} ≈s νN.{x = h(N,KC)}

for any KB and KC , since the nonce N guarantees that both terms substi-
tuted for x have the same (null) equational properties, but

νN.{x = hello(N,KB)} 6≈s νN.{x = hello(N,KC)}

as soon asKB andKC differ, since the comparison hello.1 (x) = KB succeeds
only with the first frame.
• More generally, contextual equivalence relates extended processes that can-

not be distinguished by any evaluation context in the applied pi calculus,
with any combination of messaging and term comparisons. Observational
equivalence coincides with static equivalence on frames, but is strictly finer
on extended processes.
• Labelled bisimilarity, written ≈l, coincides with contextual equivalence, but

it is defined in terms of labelled transitions instead of arbitrary evaluation
contexts, and it is the basis for standard, powerful proof techniques. We
state our main results in terms of ≈l. We recall its definition below.

Definition 1 Labelled bisimilarity (≈l) is the largest symmetric relation R
on closed extended processes such that A R B implies:

(1) A ≈s B,
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(2) if A→ A′, then B →∗ B′ and A′ R B′ for some B′,
(3) if A

α−→ A′ and fv(α) ⊆ dom(A) and bn(α)∩ fn(B) = ∅, then B →∗ α−→→∗

B′ and A′ R B′ for some B′.

As usual, strong labelled bisimilarity (∼l) is defined analogously, requiring
B → B′ and B

α−→ B′ instead of B →∗ B′ and B →∗ α−→→∗ B′, respectively, in
the bisimulation clauses.

6 The second protocol in the applied pi calculus

In this section we give a precise model for our second protocol (described in
section 4.2) in the applied pi calculus: we first choose an adequate equational
theory, then detail our representation of principals and attackers, and finally
give processes that express the protocol.

We believe that the first protocol could be studied along similar lines. It intro-
duces one complication (the modeling of timestamps), but is otherwise much
simpler.

6.1 An equational theory

The following grammar of terms indicates the function symbols and notation
conventions that we use:

T, U, V, V0,W, . . . ::= terms
A,B,K, x1, x2, . . . variable
c1, c2, initA, acceptB, connectA, . . . name (for a channel)
N,NA, K

−1
A , . . . name (typically for a nonce or a key)

h(U, V ) cryptographic hash
pk(U) public-key derivation
{T}V public-key encryption
decrypt(W,U) private-key decryption
hello(U0, U1), ack(V0, V1, V2) constructor for protocol message
hello.0 (U) , . . . , ack.2 (V ) field selector for protocol message
∅ empty set
U.V set extension

This grammar includes primitives for constructing sets (∅ and .) but not a set
membership relation. We write V ∈ W as an abbreviation for W.V = W .
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Our equational theory is fairly standard. The equations on terms are:

decrypt({x}pk(z), z) = x private-key decryption

hello.j (hello(x0, x1)) = xj field selection in “hello” message

ack.j (ack(x0, x1, x2)) = xj field selection in “ack” message

(∅.x).x = ∅.x idempotence of set extension

(x.y).z = (x.z).y commutativity of set extension

The equational theory implicitly assumes that encryption is which-key con-
cealing, in the sense that someone who sees a message encrypted under a
public key K should not be able to tell that it is under K without knowledge
of the corresponding private key K−1 (see section 3.2). On the other hand,
it would be easy to add functions and equations that negate this property,
in order to model additional capabilities of an attacker. In particular, for the
benefit of the attacker, we could add the function symbols get-key, test-key, or
same-key, with respective equations:

get-key({x}z) = z

test-key({x}z, z) = true

same-key({x}z, {y}z) = true

These additions would not affect authentication and secrecy properties, but
they would compromise privacy properties.

6.2 The network and the attacker

In our model of the protocol, network messages are transmitted (asynchro-
nously) on the channels named c1 and c2. These represent two public commu-
nication channels, or a single public channel, perhaps the ether, in which tags
serve for differentiating traffic flows.

As explained in section 3, we assume that an attacker can interpose itself on
all public communication channels. In our model, an arbitrary environment
(an arbitrary evaluation context) represents the attacker. This environment
can interact with the configuration of principals using labelled transitions
on any free channel name. We obtain an attractively simple representation
of broadcast communication: each message is simply made available to the
attacker, on a public channel, and the attacker may then decide to transmit
the message, again on a public channel, to one or more principals.

As a special case, we sometimes model a weaker, passive attacker that only
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eavesdrops on messages. An attack step—that is, eavesdropping on a message—
amounts to a message interception (formally, with an output label) followed by

a re-emission of the same message (with an input label). We write A
νũ.c[Ṽ ]−−−−→ A′

as a shorthand for the sequence of two transitions A
νũ.c〈Ṽ 〉−−−−→ c(Ṽ )−−→ A′. Here,

νũ.c〈Ṽ 〉−−−−→ shows an output of the protocol and
c(Ṽ )−−→ shows the same message

being input.

6.3 The principals

We model arbitrary configurations of principals. Each principal may run any
number of sessions and may perform other operations after session establish-
ment or even independently of the protocol. Only some of these principals are
trustworthy. We are interested in the security properties that hold for them.

Our model of a principal A has two parts: an implementation of the proto-
col, written PA, and a “user process” (or “user protocol”), written UA. The
user process defines any additional behavior, such as when protocol runs are
initiated and what happens after each session establishment. It consumes the
shared secrets produced during the establishment of sessions and uses these
secrets. According to the user process, each principal may run several sessions
of the protocol, possibly playing both the role of initiator and that of respon-
der. Of course, security properties depend on both PA and UA. We define PA

below in section 6.4; on the other hand, we treat UA as a parameter.

We use the following control interface between the (abstract) user process and
the (specific) session-establishment protocol. The interface concerns both the
roles of session initiator and responder.

init : UA sends initA〈B〉 to trigger a session-establishment attempt with prin-
cipal B.

accept : PB sends acceptB〈A,K〉 to notify UB that it has accepted a session
apparently from principal A, with session key K.

connect : PA sends connectA〈B,K〉 to notify UA that its attempt to contact
principal B succeeded, with session key K.

In addition, for each principal B, the set SB represents all acceptable inter-
locutors for B. For simplicity, we do not provide an interface for updating this
set, so it remains constant (and therefore not under the control of UB). Thus,
the interface between the session-establishment protocol and the user process
for each principal X consists of the communication channels VX

def
= {initX ,

acceptX , connectX} plus a (constant) set of principals SX . These channels can
be restricted (with ν) in order to hide the interface from the environment.
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Note that the interface provides a key K to the user process, rather than
nonces NA and NB. We prefer to define K in such a way that NA and NB

cannot be computed from K (for example, K = h(NA, NB)). Our results can
thus be independent of how the user process applies K.

As suggested in the informal description of the protocol, we represent the
identity of each principal as its public key, using variables A, B, . . . for both
identities and public keys. For the present purposes, the essence of a princi-
pal lies in its ability to decrypt any message encrypted under its public key.
Accordingly, we associate a context of the form

PKA [ ]
def
= νK−1

A .
(
{A = pk(K−1

A )} | [ ]
)

with every principal identity A. This context restricts the use of the decryption
key K−1

A to the process in the context and it exports the corresponding public
key. Whenever we put a process R in this context, our intent is that R never
communicates K−1

A to the environment.

By definition of well-formed configurations in the applied pi calculus, a process
of the form C[PKA [R]] exports A, only R can access K−1

A , and we cannot
apply a context that would redefine A. On the other hand, C[ ] can define any
number of other principals. Thus, we obtain a fairly generous and convenient
model when we represent an attacker by an arbitrary context.

For example, the process PKA [0] indicates that A is a principal whose de-
cryption key is never used. This process concisely models an absent principal.

6.4 The protocol

In this section we give a formal counterpart to the description of message flows
of section 4.2.

Messages We rely on substitutions in order to define the protocol messages
and the key derivation, as follows.

σ1
def
= {x1 = {hello(NA, A)}B}

σ2
def
= {x2 = {ack(NA, NB, B)}A}

σ◦2
def
= {x2 = NB}

σK
def
= {K = h(NA, NB)}

Although NA and NB are free here, they represent fresh nonces. They will be
bound in any process that introduces these substitutions. The substitution σ◦2
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corresponds to the responder’s decoy message, in which here we use a name
rather than a ciphertext, for simplicity.

Syntactic sugar We sometimes use the following abbreviations.

For testing, we write if U1 = V1 and U2 = V2 then P else Q for the process
if U1 = V1 then (if U2 = V2 then P else Q) else Q, and rely on other similar
abbreviations.

For decryption, we use pattern matching on message contents. Specifically, we
write

if x = {ack(NA, νNB, B)}A using K−1
A then P else Q

for the process

νNB.

{NB = ack.1
(
decrypt(x,K−1

A )
)
} |

if x = {ack(NA, NB, B)}A then P else Q


with the assumption that NB 6∈ fv(Q), and we use analogous abbreviations
with νA and νNA. Here, we use the identifiers NA and NB as variables rather
than names, locally.

For filtering duplicate messages, we write

!c1(x \ V ).if x fresh then P else Q

for the process

νc.(c〈V 〉 | !c1(x).c(s).(c〈s.x〉 | if x ∈ s then Q else P ))

where c is a fresh channel name and s is a fresh variable. We use channel c
for maintaining a set V of previously received messages; Q is triggered instead
of P when one of those messages is received again.

Processes The following code represents the protocol. It includes definitions
of processes for the initiator role and for the responder role. We write A for the
initiator and B for the responder, but the definitions apply to every principal
by renaming.
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PA
def
= IA | RA

IA
def
= !initA(B).νNA. (c1〈x1σ1〉 | I ′A)

I ′A
def
= c2(x2).

if x2 = {ack(NA, νNB, B)}A using K−1
A then connectA〈B,KσK〉

RB
def
= !c1(x1 \ ∅).

if x1 fresh and x1 = {hello(νNA, νA)}B using K−1
B and A ∈ SB

then νNB. (c2〈x2σ2〉 | acceptB〈A,KσK〉) else νNB.c2〈x2σ
◦
2〉

Here, IA shows the initiator receiving a session request on channel initA and
sending the first protocol message; I ′A then shows the initiator receiving and
checking a response, and passing a session key on channel connectA if the
response is satisfactory. On the other hand, RB shows the responder receiving
a message, processing it, responding, and in some cases passing a session key
on channel acceptB. Both IA and RB are replicated processes.

As coded, the protocol has little resistance to multiplexing errors. In particular,
the initiator fails if the first response that it receives is not the expected one.
We could add retries without much difficulty, but this aspect of the protocol
is mostly irrelevant in the study of safety properties.

6.5 Configurations of principals

In our statements of security properties (not in the definition of the protocol
itself), we distinguish a particular finite, non-empty set C of compliant princi-
pals A, B, . . . . A compliant principal A is one in which the decryption keyK−1

A

is used exclusively in the session-establishment protocol. The initial configu-
ration of a single compliant principal A with user process UA is therefore an
extended process of the form:

QA
def
= νVA.

(
UA | PKA [PA]

)
This extended process is parameterized by the set SA, and (at least) exports
the variable A and has free channels c1 and c2. In QA, by definition, UA does
not have access to K−1

A .

Combining several such extended processes, we obtain a global configuration of
the form

∏
A∈CQA for any set of compliant principals C. Sometimes, however,

we do not need to distinguish the user processes of several compliant principals.
We can instead group them in a single (compound) user process U , letting
U =

∏
A∈C UA. Then, letting V =

⋃
A∈C VA, we consider configurations of the
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form:

P def
=

∏
A∈C PKA [PA]

Q def
= νV .

(
U | P

)
We assume that the user processes of compliant principals (UA and U) never
communicate control channels (V) in messages. For instance, the process
c1〈connectA〉 cannot be the user process of a compliant principal. This as-
sumption can easily be enforced by the sort system.

We use P in section 7 when we establish security properties that do not
depend on U , thus effectively regarding U as part of the attacker. We use Q
in section 8, with additional hypotheses on U , when we study privacy.

7 Authentication and secrecy properties

We begin our analysis of the protocol with traditional properties, namely re-
sponder authentication and session-key secrecy. We state and discuss the prop-
erties, leaving proofs for an appendix. Such standard properties are important,
and often a prerequisite for privacy properties. Moreover, their formulation in
the applied pi calculus illustrates the use of observational equivalence for ex-
pressing security properties. In contrast, many other formalisms for similar
purposes rely only on properties of traces, rather than on equivalences.

For a given set of compliant principals C, we study runs of the protocol in
the presence of an active attacker, by examining transitions P η−→ P ′ from
the configuration P defined above to some configuration P ′, where η is an
arbitrary sequence of labels.

In our statements, we let ω and ϕ abbreviate the series of actions and the
equational “net effect”, respectively, of a successful run of the protocol:

ω−→ def
=

initA(B)−−−−−→ νx1.c1[x1]−−−−−→→∗ νx2.c2[x2]−−−−−→→ νK.acceptB〈A,K〉−−−−−−−−−−→ connectA〈B,K〉−−−−−−−−→

ϕ
def
= νNA. (σ1 | νNB.(σ2 | σK))

Thus, ω shows a message that initiates a session-establishment attempt from
A to B, then two messages x1 and x2 on channels c1 and c2, respectively, then
some internal steps, and finally two messages that represent the establishment
of a session with a key K at B and A, respectively. The environment learns x1

and x2 by eavesdropping. According to the frame ϕ, x1 represents the “hello”
message and x2 represents the “ack” message; in addition, ϕ binds K to its
value h(NA, NB). Similarly, we let ω− and ϕ− abbreviate the series of actions
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and the equational “net effect”, respectively, of a failed (rejected) run of the
protocol:

ω−−→ def
=

initA(B)−−−−−→ νx1.c1[x1]−−−−−→→∗ νx2.c2[x2]−−−−−→→

ϕ−
def
= (νNA.σ1) | (νNB.σ

◦
2)

We have that if A ∈ SB then

P ω−→ Px1 | ϕ

else

P ω−−→ Px1 | ϕ−

where Px1 is P updated so that RB holds an element x1 in the set of messages
it has received. Thus, P may perform a complete run of the protocol, and this
run succeeds if authorized by the responder and fails otherwise. More generally
(in part because of the replications in P), for any P ′ such that P η−→ P ′, we
have that if A ∈ SB then

P ′ ω−→ P ′
x1
| ϕ

else

P ′ ω−−→ P ′
x1
| ϕ−

where P ′
x1

is a corresponding update of P ′. These results express the functional
correctness of the protocol. They hold independently of whether encryption is
which-key concealing.

The first theorem relates the two possible outcomes of an actual run to a
“magical” outcome ϕ◦

def
= νN1.{x1 = N1} | νN2.{x2 = N2} where the two in-

tercepted messages are trivially independent of the principals A and B and of
the established key.

Theorem 2 (Key freshness for complete runs) Let A,B ∈ C.

(1) (Success:) If P η−→ P ′ and A ∈ SB, then P ′ ω−→≈l P
′ | ϕ◦ | νN.{K = N}.

(Failure:) If P η−→ P ′ and A 6∈ SB, then P ′ ω−−→≈l P
′ | ϕ◦.

(2) Conversely, if P ω−→ P ′′, then A ∈ SB and P ′′ ≈l P | ϕ◦ | νN.{K = N}.

For instance, if A ∈ SB then P ω−→ Px1 | ϕ, as explained above; in this case
the theorem yields Px1 | ϕ ≈l P | ϕ◦ | νN.{K = N}, so the environment
cannot distinguish the actual messages and key (on the left-hand side) from
fresh, independent names (on the right-hand side). The active substitution
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νN.{K = N} exports the simplest definition of a fresh secret key, a fresh
name, rather than an expression computed from x1 and x2.

Interestingly, ϕ◦ and νN.{K = N} do not depend on A and B at all, so this
theorem implies a first privacy guarantee: one does not learn anything about
A and B from ϕ◦ | νN.{K = N}, and hence from ϕ. The equivalences ≈l

are used for rewriting P ′
x1
| ϕ and P ′

x1
| ϕ−, by simplifying ϕ and ϕ− and by

erasing x1 from the set of messages that RB has received, returning to the
process P ′ and hiding that a run has occurred. These equivalences hold only
if encryption is which-key-concealing. Otherwise, we would obtain only:

P ′
x1
| ϕ ≈l P

′
x1
| (νNA.σ1) | (νNANB.σ2) | (νN.{K = N})

On the right-hand side, we are left with messages x1 and x2 that contain the
public keys of A and B. Nonetheless, NA and NB are bound around σ1 and σ2,
so the independence of the session key is still guaranteed.

A direct corollary concerns two instances PA and PB of the protocol in the
initial state. This corollary emphasizes the transitions observed by an envi-
ronment with no access to the control channels.

PA | PB | initA〈B〉 →
νx1.c1[x1]−−−−−→→∗ νx2.c2[x2]−−−−−→→≈l

PA | PB | ϕ◦ |

νN.(acceptB〈A,N〉 | connectA〈B,N〉) if A ∈ SB

0 if A 6∈ SB

Intuitively, when we erase control messages, we obtain the same trace and
equational effect whether or not A ∈ SB.

We also obtain a complementary authentication property:

Theorem 3 (Responder authentication) Suppose that P η−→ P ′ and (1)

P η−→ P ′ has no internal communication step on c1 and c2; (2) P ′ has no
immediate output on channel acceptB.

If connectA〈B,K〉 occurs in η, then P ω−→ η′−→ P ′ for some permutation ωη′ of η.

In the statement of the theorem, we rely on α-conversion and assume that the
names and variables in processes and labels never clash. With this standard
assumption, the commutation of two transition steps (when enabled) can be
written simply as the commutation of their labels. Conditions 1 and 2 are
technically convenient for avoiding special cases in the statement of the theo-
rem, but they are not essential. Condition 1 rules out traces where a message
on c1 or c2 is not intercepted by the attacker, and is instead transmitted in-
ternally. (Formally, any internal communication A→ A′ on channel ci implies
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that A
νxi.ci[xi]−−−−−→ A′′ with A′ ≡ νxi.A

′′.) Condition 2 rules out traces where the
transition acceptB in ω has not occurred and is enabled in P ′.

In light of the results above, we can interpret this theorem partly as a corre-
spondence assertion: whenever A receives a connection message after a proto-
col run, apparently with B, we have that

(1) A initiated the session with B;
(2) B accepted the session with A;
(3) both parties are now sharing a fresh key K, as good as a fresh shared

name; and
(4) intercepted messages x1 and x2 are seemingly unrelated to A, B, and K.

8 Privacy properties

In this section, we focus on privacy properties. For this purpose, we need to
consider the behavior of user processes, not just the protocol itself (see sec-
tion 4.3). For a given set of compliant principals C, we address the question
of whether an attacker can distinguish two (compound) user processes U1

and U2 when we place these processes in the context νV .([ ]|P) that provides
local access to the session-establishment protocol. Therefore, indistinguisha-
bility for user processes depends on the identity-protection features of the
protocol, and it is coarser than ordinary observational equivalence ≈l (that is,
indistinguishability in all evaluation contexts).

For instance, if U1 and U2 each contain a message initA1〈B1〉 and initA2〈B2〉,
and if U1 and U2 “behave similarly” once a session is established, then U1

and U2 are indistinguishable in this specific sense. On the other hand, we have
initA1〈B1〉 ≈l initA2〈B2〉 only if A1 = A2 and B1 = B2.

In order to capture this notion of indistinguishability without having to pick
particular user processes, we introduce a special labelled transition system and
a notion of bisimulation. We obtain a general result in terms of that notion of
bisimulation, then derive some privacy properties as corollaries. Thus, for the
study of a particular protocol, we develop a special notion of observation of
user processes. In contrast, in recent, related work [4,3], we take a standard
notion of observation, and develop communication protocols that are secure
with respect to it (and which, for instance, rely on “noise” messages in order
to hide communication patterns between compliant principals).

We adopt the following notation convention. We write A, B for principals in
the set of compliant principals C, and E for a principal not in C.
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8.1 A labelled transition system

Next we define labelled transitions for user processes with control state. The
control state records the sets SB of acceptable interlocutors and abstractly
keeps track of the sessions being negotiated. The labelled transitions reflect
only what the environment can observe about these sessions, filtering out
identity information.

Formally, a control state ρ consists of two functions, one that maps each
principal B ∈ C to a set SB, and the other a finite map from integers to
entries t. The entries are of four kinds:

• A B: a session offer from A to B not yet considered by B.
• A B Ki: a session offer from A to B accepted by B with key Ki (when
A ∈ SB).
• A B − : a session offer from A to B rejected by B (when A 6∈ SB).
• A E: a session offer from A to some non-compliant principal E.

For any ρ and any integer i not in ρ’s domain, we let ρ[i 7→ t] be the control
state that extends ρ by mapping i to t. We assume that the keys Ki are all
distinct. We let Vρ be the union of V with the keys Ki for all integers i in the
domain of ρ.

We pair a process with a control state, with the notation ρ :U . We assume
that Ki is free in U only if ρ maps i to an entry of the form A B Ki. (In Q,
the user process U may have free variables defined by P , such as variables A
and B that represent compliant principals, or Ki for a computed key. When
we consider transitions of U or ρ :U , we treat these variables as names.)

Such a pair ρ :U may have the three sorts of transitions ρ :U
γ−→ ρ′ :U ′ that we

define next: ordinary transitions, blinded transitions, and external transitions.

• Ordinary transitions are essentially those of the process U . Let
λ−→ range

over → and
α−→ for all labels α that do not contain control channels or bind

keys Ki (that is, fn(α) ∩ Vρ = ∅ and bn(α) ∩ (C ∪ Vρ) = ∅). We have:

Lift
U

λ−→ U ′

ρ :U
λ−→ ρ :U ′

• The attacker can blindly intercept all messages sent on public channels by
the principals in C and resend any of these messages later. Specifically, the
attacker can notice new session attempts, make responders consider ses-
sion offers (either genuine or fake), and make initiators consider intercepted
“ack” messages. These attacker actions are correlated with messages on
restricted control channels, which the attacker cannot observe directly. Ac-
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cordingly, we reflect these actions using blinded transitions
init νi−−−→,

accept i−−−−→,
acceptB(A)−−−−−−→, and

connect i−−−−−→.

Init
U

initA〈B〉−−−−−→ U ′

ρ :U
init νi−−−→ ρ[i 7→ A B] :U ′

Accept

ρ[i 7→ A B] :U
accept i−−−−→

ρ[i 7→ A B Ki] :U | acceptB〈A,Ki〉 if A ∈ SB

ρ[i 7→ A B − ] :U if A 6∈ SB

Accept-Fake

ρ :U
acceptB(A)−−−−−−→

ρ :U | νN.acceptB〈A,N〉 if A ∈ SB

ρ :U if A 6∈ SB

Connect

ρ[i 7→ A B Ki] :U
connect i−−−−−→ ρ : νKi.(U | connectA〈B,Ki〉)

ρ[i 7→ A B − ] :U
connect i−−−−−→ ρ :U

• In addition, compliant principals may be willing to open sessions with non-
compliant ones. These sessions are also mediated by the protocol, even if
they are transparent to the attacker who can in principle decrypt all mes-
sages in these sessions. We reflect these actions using external transitions
νiE.initA〈i,E〉−−−−−−−−→,

acceptB(W,V )−−−−−−−−→,
connectA(i,E,V )−−−−−−−−−→, where E is a variable and V and W

are terms such that fn(V ) ∩ Vρ = fn(W ) ∩ Vρ = ∅.

Init-E
U

νE.initA〈E〉−−−−−−−→ U ′

ρ :U
νiE.initA〈i,E〉−−−−−−−−→ ρ[i 7→ A E] :U ′

when (E 6= B)ϕ(U ′) for all B ∈ C

Accept-E ρ :U
acceptB(W,V )−−−−−−−−→ ρ :U | acceptB〈W,V 〉

when (W = A)ϕ(U)

for some A ∈ SB \ C

Connect-E ρ[i 7→ A E] :U
connectA(i,E,V )−−−−−−−−−→ ρ :U | connectA〈E, V 〉

8.2 Private bisimulation

In order to express hypotheses on the observable properties of user processes,
we define an ad hoc notion of bisimulation:

32



Definition 4 Private bisimilarity (≈C) is the largest symmetric relation R
on extended processes with control state such that, whenever T1 R T2 with
T1 = ρ1 :U1 and T2 = ρ2 :U2, we have:

(1) νVρ1 .U1 ≈s νVρ2 .U2,
(2) if T1 → T ′

1, then T2 →∗ T ′
2 and T ′

1 R T ′
2 for some T ′

2,

(3) if T1
γ−→ T ′

1 and fv(γ) ⊆ dom(νVρ1 .U1) and bn(γ) ∩ fn(νVρ2 .U2) = ∅,
then T2 →∗ γ−→→∗ T ′

2 and T ′
1 R T ′

2 for some T ′
2.

This definition is an adaptation of that of weak labelled bisimilarity for the
applied pi calculus (Definition 1 in section 5.4). The three clauses are analogous

to those for the applied pi calculus; the main novelty here is that
γ−→ ranges

over different transitions in clause 3.

We also let ε range over initial control states, that is, control states that have
no session entries and only define sets SB for B ∈ C. We write P(ε) for the
protocol P with these sets SB. When ε is clear from context, we may write
(as usual) P instead of P(ε).

Our main privacy result states that, if two user processes are privately bisimilar
(under our new notion of bisimulation), then the two corresponding configu-
rations are observationally equivalent from the environment’s point of view.
As we show below, this result provides an effective proof technique for privacy
properties.

Lemma 5 (Privacy) If ε1 :U1 ≈C ε2 :U2, then

νV .
(
U1 | P(ε1)

)
≈l νV .

(
U2 | P(ε2)

)

The hypothesis ε1 :U1 ≈C ε2 :U2 deals with arbitrary user processes and
sets SB, and is typically not difficult to establish in particular cases. Impor-
tantly, its statement does not depend on any detail of the session-establishment
protocol, only on its control interface. The conclusion νV .(U1 | P(ε1)) ≈l

νV .(U2 | P(ε2)) then says that two composite systems, each with a user pro-
cess, are indistinguishable.

The converse of Lemma 5 does not quite hold, at least because the definition of
labelled transitions is conservative in some respects. (For instance, in that def-
inition, we safely presume that the attacker has a private key associated with
any value E that U employs to identify a non-compliant principal.) Thus, user
processes that are not privately bisimilar may still be part of indistinguishable
systems. Such user processes can be excluded with additional hypotheses.
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8.3 Applications of the Privacy Lemma

One may formulate and prove many specific privacy properties for the proto-
col. The various properties may differ, in particular, on which user processes
and sets SB they consider. We give a series of simple examples of such prop-
erties. In the examples, the hypotheses can usually be made less demanding,
and more specific and complicated. The proofs follow directly from Lemma 5.

We begin with a basic example that concerns the anonymity of failed sessions.
Provided that U never inputs on channel initX for any X ∈ C, if A 6∈ SB and
A′ 6∈ SB′ , then replacing initA〈B〉 with initA′〈B′〉 in U does not affect Q up
to observational equivalence.

The next result deals with a single initial session attempt, and states that the
session attempt may not compromise any private bisimilarity that would hold
after establishing the session.

Theorem 6 (Equivalent sessions) For j = 1, 2, let

Uj
def
= initAj

〈Bj〉 | connectAj
(Bj, K).Vj

U ′
j

def
= νK.

(
acceptBj

〈Aj, K〉 | Vj

)
with Aj, Bj ∈ C and Aj ∈ SBj

in εj. If ε1 :U ′
1 ≈C ε2 :U ′

2, then ε1 :U1 ≈C ε2 :U2.

For any user processes V1 and V2 that do not use the control channels, the
private bisimilarity hypothesis holds as soon as νK.V1 ≈l νK.V2. With this
additional assumption and Lemma 5, we have a corollary expressed in terms of
standard labelled bisimilarity: we obtain that if νK.V1 ≈l νK.V2 then νV .(U1 |
P(ε1)) ≈l νV .(U2 | P(ε2)).

A further privacy property concerns compliant principals that attempt to open
sessions with one another but do not perform any action observable by the
attacker after establishing a session. (They may for instance use private chan-
nels, or public channels with adequate decoys.) We may describe any such
configuration of principals in C by a parallel compositions of initA messages
with A ∈ C, plus the sets (SB)B∈C. In this special case, we easily characterize
the equivalence of two configurations:

Theorem 7 (Silent sessions) Let U1 and U2 be parallel compositions of mes-
sages initA〈X〉 with A ∈ C. If

(1) U1 and U2 contain the same number of messages,
(2) U1 and U2 contain exactly the same messages initA〈W 〉 for W 6∈ C, and
(3) the sets SB \ C are identical in ε1 and ε2,
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then νV .(U1 | P(ε1)) ≈l νV .(U2 | P(ε2)).

In order to prove the theorem, we may establish ε1 :U1 ≈C ε2 :U2 by enumer-
ating a few blinded and external transitions, then apply Lemma 5. Conversely,
the three hypotheses seem necessary for the conclusion, since the attacker can
count the number of “hello” messages, can decrypt “hello” messages sent to
principals outside C (as long as W is a public key not in C), and can attempt
to establish a session with any B ∈ C.

We can derive other similar privacy results for uniform families of user pro-
cesses, such as processes that do not use any principal identity after establish-
ing sessions.

Our final result relates a configuration with a present but silent principal
to a configuration with an absent principal. (This theorem does not require
Lemma 5; it has a simple, direct bisimulation proof.)

Theorem 8 (Absent principal) Assume that |C| > 1, and let X 6∈ C and
SX = ∅. We have:

Q | νVX .PKX [PX ] ≈l Q | PKX [0]

The process on the left-hand side is structurally equivalent to a configura-
tion Q′ with compliant principals C ∪ {X}; the process on the right-hand side
includes an absent principal (a principal X whose decryption key is never
used). Hence, one may first use private bisimilarity to show that X is appar-
ently not involved in any session in Q′, then apply Theorem 8 to substitute an
absent principal for X. (Conversely, if C = {} or C = {A}, then the addition
of any instance of the protocol is observable.)

9 Related problems and related work

The questions treated here are related to traffic analysis, and how to pre-
vent it. This subject is not new, of course. In particular, work on message
untraceability has dealt with the question of hiding (unlinking) the origins
and destinations of messages (e.g., [15,32,33]). It has produced techniques
that allow a principal A to send messages to a principal B in such a way
that an adversary may know the identities of A and B and their locations,
but not that they are communicating with one another. Those techniques ad-
dress how to route a message from A to B without leaking information. In
the case of cellular networks, those techniques can be adapted to hide the
locations of principals [18,34]. In contrast, here we envision that all messages
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are broadcast within a location, simplifying routing issues, and focus on hid-
ing the identities of principals that meet and communicate at the location.
Other interesting work on untraceability in mobile networks has addressed
some important authentication problems under substantial infrastructure as-
sumptions, for instance that each principal has a home domain and that an
authentication server runs in each domain [30,36,9]. That work focuses on the
interaction between a mobile client and an authentication server of a domain
that the client visits, typically with some privacy guarantees for the former
but not for the latter. In contrast, we do not rely on those infrastructure as-
sumptions and we focus on the interaction between two mobile principals with
potentially similar privacy requirements.

There has been other research on various aspects of security in systems with
mobility (e.g., [14,40,39] in addition to [18,25,30,36,11,9], cited above). Some
of that work touches on privacy issues. In particular, the work of Jakobsson
and Wetzel points out some privacy problems in Bluetooth. The protocols of
this paper are designed to address such problems.

The questions treated here are also related to the delicate balance between
privacy and authenticity in other contexts. This balance plays an important
role in electronic cash systems (e.g., [23]). It can also appear in traditional
access control. Specifically, suppose that A makes a request to B, and that A
is member of a group that appears in the access control list that B consults for
the request. In order to conceal its identity, A might use a ring signature [35]
for the request, establishing that the request is from a member of the group
without letting B discover that A produced the signature. However, it may
not be obvious to A that showing its membership could help, and B may
not wish to publish the access control list. Furthermore, A may not wish to
show all its memberships to B. Thus, there is a conflict between privacy and
authenticity in the communication between A and B. No third parties need
be involved. In contrast, we do not guarantee the privacy of A and B with
respect to each other, and focus on protecting them against third parties.

Designated verifier proofs address another trade-off between confidentiality
and authenticity [24]. They allow a principal A to construct a proof that will
convince only a designated principal B. For instance, only B may be convinced
of A’s identity. Designated verifier proofs differ from the protocols of this
paper in their set-up and applications (e.g., for fair exchange). Moreover, in
general, they may leak information about A and B to third parties, without
necessarily convincing them. Therefore, at least in general, they need not
provide a solution to the problem of private authentication treated in this
paper.

More broadly, this paper is partly a contribution to the formal study of se-
curity protocols and of their properties. In recent years, the understanding
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of basic security properties such as integrity and confidentiality has become
both deeper and wider. There has also been substantial progress in the design
and verification of protocols that aim to guarantee these properties. On the
other hand, fundamental tasks such as secure session establishment remain the
subject of active, productive research. Moreover, properties beyond integrity
and confidentiality have been studied rather lightly to date. These properties
include, for example, protection of identity information and protection against
denial-of-service attacks. They may seem secondary but they are sometimes
important.

The literature contains many other formal treatments of protocols. We will
not attempt to survey that work here, but mention only the two most relevant
papers. One of them is our original paper on the applied pi calculus [2], which
considers session establishment and some of its properties, and which includes
additional references. The other is a recent paper by Hughes and Shmatikov
that defines several notions of anonymity and privacy [22]. A preliminary ver-
sion of that paper [38] sketches—in just a few sentences—an analysis of the
protocol that is the subject of this paper. Hughes and Shmatikov develop a
special formal framework for protocols, communication graphs. Despite some
thematic overlap, the applied pi calculus appears to be richer than communi-
cation graphs. In particular, communication graphs do not include an account
of user processes. While the definitions of anonymity and privacy seem appro-
priate and useful for communication graphs, it is not yet entirely clear whether
and how they would carry over to the applied pi calculus and other settings.

10 Conclusions

Security protocols can contribute to the tension between communication and
privacy, but they can also help resolve it. In this paper, we construct two
protocols that allow principals to authenticate with chosen interlocutors while
hiding their identities from others. In particular, the protocols allow mobile
principals to communicate when they meet, without being monitored by third
parties. The protocols resemble standard ones, but interestingly they rely on
some non-standard assumptions and messages to pursue non-standard objec-
tives. As virtually all protocols, however, they are only meaningful in the
context of complete systems. They are part of a growing suite of technical and
non-technical approaches to privacy.

We also analyze one of the protocols in the applied pi calculus. We cover stan-
dard authenticity and secrecy properties and also privacy (identity protection)
properties. The formulation of these properties mainly relies on equivalences,
which express indistinguishability in an arbitrary context. Our analysis con-
cerns not only the core of the protocol but also its composition with a user
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process, since this composition may endanger privacy properties. Thus, we
examine the protocol under several hypotheses on user processes. We obtain
several related results that transfer hypotheses on user processes to security
properties of complete systems.
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A Appendix: Proofs

This appendix contains the proofs for the results of sections 7 and 8 about
the second protocol. It partly relies on definitions and proof techniques for the
applied pi calculus [2]. As could be expected, the proofs require the considera-
tion of many details (sometimes abbreviated in this presentation); mechanical
support for such proofs may be useful in the future.
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We first give a co-inductive proof technique for establishing labelled bisim-
ilarity in the applied pi calculus. Recall that ∼l is the strong variant of la-
belled bisimilarity. We write →d for the subset of → that corresponds to
term-comparison steps and inputs on filter channels in the protocol—these
steps are deterministic and commute with any other step, so they can almost
be considered part of structural equivalence in weak bisimulation proofs.

Lemma 9 (Bisimulation proofs up to context, deterministic steps,
and strong bisimilarity) To establish that R ⊆ ≈l, it suffices to show that
R meets the conditions in the definition of ≈l (Definition 1) modified as fol-
lows: In conditions 2 and 3, instead of A′ R B′, we have A′ →∗

d∼l C[A′′],
B′ →∗

d∼l C[B′′], and A′′ R B′′ for some extended processes A′′ and B′′, and
some evaluation context C[ ].

The proof is a standard variation of the proof that ≈l is closed by application
of closing evaluation contexts (see [2]).

A.1 State translation

For a given set of compliant principals C, we translate (that is, we compile)
each abstract control state to a specific state of the process that implements
the session-establishment protocol. We first refine the abstract state and define
auxiliary substitutions, then give the translation, and finally state lemmas on
the frames that appear in the translation.

We refine the abstract state ρ so that it keeps track of additional transient
states for the protocol P . (Intuitively, the attacker can do less in the refined
states ρ, so these states need to appear only in transition invariants of the
proofs.)

• We supplement ρ with a third map from B ∈ C to finite sets of messages
FB already received in RB (and terms representing those sets). This map is
not modified in transitions between processes with control state.
• For each entry t, we introduce another entry ?t to represent the same session

state as t but with no subprocess I ′A (typically a state after I ′A received a
wrong message). We write ?t for t or ?t.

In extended processes with control states ρ :U , whenever ρ maps i to an en-
try ?t with target B (that is, t = A B, t = A B Ki, and t = A B − ), and ρ
maps B to FB, we assume that (x1i 6∈ FB)ϕ(U)—in the translation below, x1i

is selectively added to FB. We also assume that ?A B Ki and ?A B − occur
in ρ only if A ∈ SB in ρ and A 6∈ SB in ρ, respectively, and that A E occurs
in ρ only if E 6∈ C.
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We let σ◦K
def
= νN.{K = N} and σ◦1

def
= {x1 = NA}. We use indexed substitutions

σ1i, σ
◦
1i, σ2i, σ

◦
2i, σKi, and σ◦Ki instead of those defined in section 6.4 to represent

multiple instances of the substitutions with distinct free names and variables.
(For instance, σ2i is σ2 with defined variable x2i and free nonces NAi, NBi

instead of x2 and NA, NB.)

We translate ρ :U into the extended process Q(ρ :U) defined as follows:

Q(ρ :U)
def
= νVρ.(U | P(ρ))

P(ρ)
def
=

∏
A∈C PKA

[
IA | RA(SA, F

′
A) | ∏(i7→?t)∈ρ, t=A... S(i 7→?t)

]
F ′

B
def
= FB ] {x1i | ρ = ρ′[i 7→?A B (Ki or −)]}

S(i 7→?A B)
def
= νNAi.(σ1i |?I ′Ai)

S(i 7→?A B Ki)
def
= νNAi.(σ1i |?I ′Ai | νNBi.(σ2i | σKi))

S(i 7→?A B − )
def
= νNAi.(σ1i |?I ′Ai) | νNBi.σ

◦
2i | σ◦Ki

S(i 7→ A E)
def
= I ′Ai{B = E}

where ?I ′Ai
def
= I ′Ai when ? is nil and ?I ′Ai

def
= 0 when ? is ?, and where RA(SA, F

′
A)

is RA with sets SA of acceptable interlocutors and F ′
A of messages in the cache

(instead of ∅). In particular, we have P(ε) ≡ P and Q(ε :U) ≡ Q as defined
in section 6.5.

The state translation P(ρ) defines the variables

dv(P(ρ)) = C ] ⋃
(i7→?t)∈ρ


{x1i} when t = A B

{x1i, x2ij, Ki} when t = A B Ki or t = A B −

∅ when t = A E

We let D def
=

⋃
ρ dv(P(ρ))—this co-infinite set gathers all variables potentially

exported in P(ρ). When we write ρ :U , we always assume that the variables
in D \ dv(P(ρ)) do not occur in ρ and U .

At each stage of a session between compliant principals A and B, the corre-
sponding frame in the translation is given by ψ(i 7→?t)

def
= S(i 7→ ?t). Except

for the indexing on defined variables, ψ(i 7→ A B Ki) coincides with ϕ and
ψ(i 7→ AB− ) coincides with ϕ− | νN.{K = N} as defined for the theorems of
section 7. We also define auxiliary frames for fake messages to B with terms V
instead of a nonce and W instead of a public key:

χ(V,W B)
def
= νNB.({x2 = {ack(V,NB, B)}W} | {K = h(V,NB)})

χ◦
def
= νNB.σ

◦
2 | σ◦K
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A.2 Invariant lemma

Next, we systematically write down the protocol states and their transitions,
using the distinguished states P(ρ).

In the lemma below, we rely on the following notation conventions. Equality
on terms is to be interpreted in the frame associated with P(ρ) (so U = V
stands for (U = V )ϕ(P(ρ))). When we use structural equivalence to make
explicit some restrictions within P ′, we always assume that the bound names
and variables do not clash with P(ρ) and α.

Lemma 10 The transitions P(ρ)
α−→ P ′ are those enumerated below, with the

following properties of P ′. (We also mention the corresponding transition rules
of section 8.1, if any.)

• P(ρ)
initA(X)−−−−−→ P ′ for any A ∈ C. For each fresh index i, we have subcases

depending on X:
(1) P ′ ≡ νx1i.(c1〈x1i〉 | P(ρ[i 7→ A B])) if X = B ∈ C.
(2) P ′ ≡ νx1i.(c1〈x1i〉 | νNAi.(σ1i{B = E} | P(ρ[i 7→ A E]))) if X = E 6∈ C.

(These cases correspond to special transitions Init and Init-E.)

• P(ρ)
c1(X1)−−−−→ P ′. For each B ∈ C, we have subcases depending on ρ and X1:

(3) If ρ = ρ′[i 7→?A B] and X1 = x1i for some i, then we have

P ′ →+
d νx2iKi.

c2〈x2i〉 |

P(ρ′[i 7→?A B Ki])|acceptB〈A,Ki〉 if A ∈ SB

P(ρ′[i 7→?A B − ]) if A 6∈ SB


For the other subcases, let ρ′ be ρ with X1 added to FB.

(4) If X1 6∈ F ′
B and X1 = {hello(V,W )}B for some terms V and W with W ∈

SB, we have P ′ →+
d P(ρ′) | νx2, K.(c2〈x2〉 | acceptB〈V,K〉 | χ(V,W B)).

(5) Otherwise, we have P ′ →+
d P(ρ′) | νNB.c2〈x2σ

◦
2〉.

(These transitions do not depend on “?”, and always add X1 to B’s filter.
Case 3 corresponds to the two branches of Accept. Case 4 covers both the
first branch of Accept-Fake and Accept-E. Case 5 covers the second
branch of Accept-Fake.)

• P(ρ)
c2(X2)−−−−→ P ′. For each i such that ρ = ρ′[i 7→ t], we have subcases

depending on t and X2:
(6) t = ABKi, X2 = x2i, and we have P ′ →d P(ρ′[i 7→ ?t]) | connectA〈B,Ki〉;

t = A B − , X2 = x2i, and we have P ′ →d P(ρ′[i 7→ ?t]).
(7) t = A B or, for any X2 6= x2i, t = A B Ki or t = A B − . Then, we have

P ′ →d P(ρ′[i 7→ ?t]).
(8) t = A E, X2 = {ack(NAi, V, E)}A for some term V . Then, we have

P ′ →d P(ρ′) | connectA〈E, h(NAi, V )〉.
(9) t = A E for any other X2, and we have P ′ →d P(ρ′).

(Cases 6 and 8 correspond to rules Connect and Connect-E.)
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Proof: The proof follows from our definition of translated states, and is by
case analysis on the input prefixes in P(ρ). (P(ρ) has neither internal steps
nor outputs.) We detail the following cases:

• P(ρ)
initA(X)−−−−−→ P ′ is a replicated input of IA.

• P(ρ)
c1(X1)−−−−→ P ′ is a replicated input of RB for some B ∈ C. The deterministic

steps →+
d consist of a communication on the local channel c to read F ′

B

followed by a series of tests on X1 in RB: a test for freshness X1 6∈ F ′
B,

one for pattern matching X1 = {hello(NA, A)}B in a context that defines
{NA = hello.0(decrypt(X1, K

−1
B ))} and {A = hello.1(decrypt(X1, K

−1
B ))},

and one for authorization A ∈ SB.
3. The freshness test succeeds by hypothesis x1i 6∈ F ′

B when i 7→?A B (with
X1 added to F ′

B in the resulting state). By equational rewriting and struc-
tural equivalence, the pattern matching succeeds with A bound in PKA [ ]
and NA = NAi bound in S(i 7→?A B). If A ∈ B, the resulting subprocess
is:

νx2iKi.(c2〈x2i〉 | νNBi.(σ2i | σKi | acceptB〈A,Ki〉))

If A 6∈ B, we use 0 ≡ νKi.σ
◦
Ki and obtain by structural equivalence

νx2iKi.(c2〈x2i〉 | νNBi.σ
◦
2i | σ◦Ki)

In any case, we rely on the hypothesis on D and structural equivalence to
lift the restriction on x2i and Ki to the top level of the translation.

4. The three tests succeed, each using a hypothesis in the case definition,
with X1 added to FB in the resulting state. (The hypothesis X1 6∈ F ′

B

implies X1 6= x1i for any i with target B in the domain of ρ.)
5. If the freshness test fails, then ρ = ρ′. Otherwise, X1 6= x1i for any i with

target B in the domain of ρ, and X1 is added to FB. In any case, a fresh
decoy message is sent.

• P(ρ)
c2(X2)−−−−→ P ′ is a single input in a subprocess I ′Ai of P(ρ), which corre-

sponds to some A ∈ C and entry i 7→ t in ρ (not i 7→ ?t). After the test, I ′Ai

is replaced with either a message on connectA or the null process 0 and we
conclude by structural equivalence.

We detail the test in the pattern matching of I ′A in the cases i 7→ AB Ki

and i 7→ AB− with two subcases depending on A ∈ SB. (The cases i 7→ AB
and i 7→ A E are similar.) Since NAi and K−1

A are bound in P(ρ), we can
assume that they do not syntactically occur in X2. Let X be a term such
that fn(X) ∩ {NAi, K

−1
A } = ∅, and V and W be any terms. We have:

- X
(
σ1i | σ2i | σKi | {A = pk(K−1

A )}
)

= {ack(NAi, V,W )}A succeeds if and
only if X = x2i.

- X
(
σ1i | σ◦2i | σ◦Ki) | {A = pk(K−1

A )}
)

= {ack(NAi, V,W )}A always fails.

6. The test in I ′A succeeds or fails according to t, as detailed above. When
the test succeeds, we rely on structural equivalence and the active sub-
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stitution σKi in ψ(i 7→ A B Ki) to replace the key computation triggered
in I ′Ai by the defined variable Ki.

7. The test fails and yields 0 = ?I ′Ai.
8. The test succeeds and yields a connect message.
9. The test fails and yields 0. 2

A.3 Equational properties

The next lemmas relate frames appearing in the protocol implementation;
they crucially rely on which-key concealment.

Lemma 11 We have the following static equivalences:

PKA [0] | χ(V,A B)≈s PKA [0] | χ◦ (A.1)

PKB [0] | νNAi.σ1i≈s PKB [0] | νNAi.σ
◦
1i (A.2)

PKA [0] | PKB [0] | ψ(i 7→ A B Ki)

≈s PKA [0] | PKB [0] | ψ(i 7→ A B − ) (A.3)

Proof: Within our equational theory, we check that, for all terms with
free variables in the domain of the related frames, the substituted terms are
“equationally inert”, that is, do not enable any additional rewrite step.

Equivalence A.1 is an instance of:

νs,NB.


{A = pk(s)} |

{x2 = {ack(V,NB,W )}pk(s)} |

{K = h(V,NB)}

 ≈s νs,M,N.


{A = pk(s)} |

{x2 = M} |

{K = N}


where V and W range over arbitrary terms (up to ≡ and supposing s /∈
fn(V,W )). Consider two terms V1, V2 with fv(Vi) ⊆ {A, x2, K} and fn(Vi) ∩
{s,NB,M,N} = ∅. Let σ and σ◦ be the two plain substitutions obtained
from the frames above by discarding restrictions. We show that V1σ = V2σ
iff V1σ

◦ = V2σ
◦ by structural induction on V1 and V2. For each axiom in the

equational theory, we check the correspondence of rewrite steps after applying
either substitution: as regards x2, for instance, the rule for decryption does not
apply to x2 because the key term is not equal to s; the rule for field selection
does not apply to x2 because the encrypted message is not a plain message
constructor.
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Equivalence A.3 is obtained from equivalence A.1 (with A and B swapped) by
indexing K and x2 with i and applying the context PKA [0] | νNAi.(σ1i | ).

Equivalence A.2 follows from a more general static equivalence:

νs,NA.

 {B = pk(s)} |

{x1i = {hello(NA, V )}pk(s)}

 ≈s νs,M.

 {B = pk(s)} |

{x1i = M}


where V is an arbitrary term, with a similar proof. 2

By composing these static equivalences in evaluation contexts, we obtain that
the frame associated with any state of the protocol is equivalent to a frame
that defines all its variables as distinct fresh names, and is thus equationally
inert:

Lemma 12 ϕ(P(ρ)) ≈s
∏

x∈dv(P(ρ)) νN.{x = N}.

Proof: For a given ρ, let Is = {i | (i 7→?A B si) ∈ ρ} where s is nil, K,
or −. We have:

P(ρ)
def
=

∏
A∈C

PKA

[
PA |

∏
(i7→?t)∈ρ, t=A... S(i 7→?t)

]
≈s

∏
A∈C

PKA [0] |
∏
I

ψ(i 7→?A B) |
∏
IK

ψ(i 7→?A B Ki) |
∏
I−
ψ(i 7→?A B − )

(A.4)

≈s

∏
A∈C

PKA [0] |
∏
I

ψ(i 7→ A B) |
∏

IK∪I−
ψ(i 7→ A B − ) (A.5)

≡
∏
A∈C

PKA [0] |
∏

I∪IK∪I−
νNAi.σ1i |

∏
IK∪I−

(νNBi.σ
◦
2i | σ◦Ki)

≈s

∏
A∈C

PKA [0] |
∏

I∪IK∪I−
νNAi.σ

◦
1i |

∏
IK∪I−

(νNBi.σ
◦
2i | σ◦Ki) (A.6)

≈s

∏
A∈C

νN.{A = N} |
∏

I∪IK∪I−
νNAi.σ

◦
1i |

∏
IK∪I−

(νNBi.σ
◦
2i | σ◦Ki) (A.7)

≡ ∏
x∈dv(P(ρ)) νN.{x = N} (A.8)

where (A.4) is obtained by erasure of plain subprocesses PA and I ′A followed
by structural equivalence (since the decryption key does not occur anywhere
except in its definition); (A.5) follows from Lemma 11(A.3) for each i ∈ IK ;
(A.6) follows from Lemma 11(A.2) for each i ∈ I ∪ IK ∪ I−; (A.7) follows
from νs.{A = pk(s)} ≈s νN.{A = N}. (A.8) is a renaming of bound names.
2
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From Lemma 12, we obtain that, for any compliant user processes U and U ′

and any label α such that bv(α) ∩ D = ∅, we have:

(1) if U
α−→ U ′ considering the variables dv(P(ρ)) as distinct fresh names,

then U | P(ρ)
α−→ U ′ | P(ρ).

(2) if U | ϕ(P(ρ))
α−→ U ′′ | ϕ(P(ρ)), then U

α−→ U ′ considering the variables
dv(P(ρ)) as distinct fresh names, with U ′ | ϕ(P(ρ)) ≡ U ′′ | ϕ(P(ρ)).

The next lemma lifts Lemma 11 from frames to translated states:

Lemma 13 For any extended control state ρ and A,B ∈ C, we have:

P(ρ) | χ(V,A B)∼l P(ρ) | χ◦ (A.9)

Let ρ = ρ′[i 7→ A B Ki] and ρ1i be ρ′ with x1i added to FB. We have:

P(ρ1i) | νNA.σ1i≈l P(ρ′) | νNA.σ
◦
1i (A.10)

P(ρ1i) | ψ(i 7→ A B Ki)≈l P(ρ1i) | ψ(i 7→ A B − ) (A.11)

Proof:

(A.9): Let χ abbreviate χ(V,A B). By definition, we have:

χ
def
= νNB.({x2 = {ack(V,NB, B)}A} | {K = h(V,NB)})

χ◦
def
= νN.{x2 = N} | νN.{K = N}

For a given χ, let R be the relation that contains (A.9) for all ρ. We show
that R is a strong bisimulation up to context and conclude using (a strong
variant of) Lemma 9.

The static equivalence requirement is Lemma 11(A.1) in context. The
strong bisimulation requirements are easily established using the case anal-
ysis of Lemma 10: in each case, it suffices to check that all tests in P(ρ)
yield the same results when placed in parallel with χ and with χ◦.

We detail the cases 6–9 of Lemma 10 when ρ = ρ′[i 7→ t], which cover
all transitions leading to a decryption attempt of x2 with a decryption key
that matches the encryption key A used in χ. (For all other transitions, the
static equivalence of 11(A.1) suffices to conclude.) In the frames of P(ρ) | χ
and P(ρ) | χ◦, we have x2 6= x2i by Lemma 12, and thus case 6 is excluded.
Similarly, in both frames, x2 6= {ack(NA, V, E)}A for any E 6∈ C, since x2χ

◦

is not an encrypted message and x2χ has a third field B 6= E, and thus
case 8 is excluded. In case 7, we obtain processes related by R for the
control state ρ′[i 7→ ?t]. In case 9, we obtain processes related by R for the
control state ρ′.
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(A.10): The proof similarly relies on Lemmas 9, 11, and 10. We use a candi-
date relation R that contains all pairs

P(ρ1i) | νNA.σ1iRP(ρ′) | νNA.σ
◦
1i (A.12)

P(ρ1i) | νNA.σ1iRP(ρ1i) | νNA.σ
◦
1i (A.13)

The cases 3–5 of Lemma 10 cover all potential decryption attempts of x1i

as a “hello” message with decryption key K−1
B . In P(ρ′) | νNA.σ

◦
1i, the

message x1i passes the freshness test but fails the pattern matching (the
message is a nonce, not an encrypted message), a decoy is generated, and x1i

is added to FB. For all other processes related byR, we have x1i ∈ F ′
B, so the

message fails the freshness test, a decoy is generated, and the protocol state
is left unchanged. Thus, we are always in case 5 and obtain on each side the
processes related on line (A.13) in the evaluation context [ ] | νNB.c2〈x2σ

◦
2〉.

Other transitions are handled using Lemma 11(A.2).
(A.11): Similarly, x1i ∈ FB always excludes the decryption of x1i, and the test
in pattern matching of cases 6 and 8 always fails on x2i, either because the
first nonce is different from the expected one or because the message is not
encrypted under A. Other transitions are handled using Lemma 11(A.3).
2

A.4 Proofs of section 7

While its statement is optimized for the proof of Lemma 5, Lemma 10 also
provides precise syntactic support for establishing the theorems of section 7.
We first relate the results of arbitrary transitions of P to state translations in
context:

Lemma 14 If P η−→ P ′, then P ′ →∗
d≡ C[P(ρ)] for some control state ρ and

evaluation context C[ ], where C[ ] is obtained by composing the evaluation
contexts appearing in Lemma 10 and deleting their messages as they are con-
sumed by output transitions and internal communication steps on c1 and c2.

Proof: By induction on η, definition of (ordinary) labelled transitions, Lem-

ma 10, and subcommutation of →d with any other transition: if P1
η−→ P ′ and

P1 →∗
d≡ C[P(ρ)], then for some P ′′ and η′ obtained from η by deleting →d-

steps, we have P ′ →∗
d≡ P ′′ and C[P(ρ)]

η′−→≡ P ′′. The transition label (or, in
case of an internal communication on channels c1 or c2, the message consumed
in C[ ]) and the input prefix in P(ρ) determine the case in Lemma 10. 2

The next theorem corresponds to the discussion before Theorem 2; it uses the
same notation conventions.
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Theorem 15 (Complete runs) Let A,B ∈ C.

(1) (Success:) If P η−→ P ′ and A ∈ SB, then P ′ ω−→ P ′
x1
| ϕ.

(Failure:) If P η−→ P ′ and A 6∈ SB, then P ′ ω−−→ P ′
x1
| ϕ−.

(2) Conversely, if P ω−→ P ′′, then A ∈ SB and P ′′ ≡ Px1 | ϕ.

Proof of Theorem 15: We first apply Lemma 14 to obtain P ′ →∗
d≡

C[P(ρ)]. From the translation state P(ρ), we exhibit a particular trace
ω−→

(or
ω−−→), up to α-conversion to erase indices in bound variables in the trace

and avoid clashes with C[ ]. We then check that C[P(ρ)] (by construction)
and finally P ′ (by commutation of each→d step occurring in P ′ →d≡ C[P(ρ)]
with

ω−→) have the same trace.

The trace is obtained by composing the following transitions:

• transition 1 of Lemma 10 for some index i fresh in ρ, leading to P(ρ[i 7→
A B]) in evaluation context νx1i.(c1〈x1i〉 | );

• νx1i.c1〈x1i〉−−−−−−→ that discards this evaluation context;
• transition 3 with X1 = x1i, leading (after →+

d ) to P(ρ[i 7→ A B Ki]) in
evaluation context νx2iKi.(c2〈x2i〉 | | acceptB〈A,Ki〉);
• νx2i.c2〈x2i〉−−−−−−→ that discards the evaluation context νx2i.(c2〈x2i〉 | ) and leaves
P(ρ[i 7→ A B Ki]) in evaluation context νKi.( | acceptB〈A,Ki〉);
• transition 6 for i 7→ A B Ki leading (after →+

d ) to P(ρ[i 7→ ?A B Ki]) in
evaluation context νKi.( | acceptB〈A,Ki〉 | connectA〈B,Ki〉);
• νK.acceptB〈A,K〉−−−−−−−−−−→ connectA〈B,K〉−−−−−−−−→ (after α-converting Ki to K) that discard the

evaluation context given above and leave just P(ρ[i 7→ i 7→ ?A B Ki]) =
P(ρ)x1 | ϕ;

and, when A 6∈ B, similar initial five transitions leading to

νKi.(P(ρ[i 7→ ?A B − ]) ≡ P(ρ)x1 | ϕ−

To prove the second part of the theorem, we apply Lemma 14 for the labels ω
and check that, after each labelled transition, there is a unique reachable state
translation up to ≡ that enables the rest of the trace. 2

Proof of Theorem 2: It suffices to relate the processes obtained by The-
orem 15 and Lemma 14 to those appearing in the statement of Theorem 2,
that is, to show that

C[P(ρ)x1 ] | ϕ ≈l C[P(ρ)] | ϕ◦ | νN.{K = N}

≈l C[P(ρ)x1 ] | ϕ− | νN.{K = N}
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Moreover, for some evaluation context C ′[ ], we have

C[P(ρ)x1 ] | ϕ ≡ C ′[P(ρ)x1 | ϕ]

and similarly for the other frames. Since ≈l is closed by application of evalu-
ation contexts, it suffices to show that

P1 = P(ρ)x1 | ϕ

≈l P2 = P(ρ) | ϕ◦ | νN.{K = N}

≈l P3 = P(ρ)x1 | ϕ− | νN.{K = N}

Finally, P1 ≈l P3 is Lemma 13(A.11) and P2 ≈l P3 is Lemma 13(A.10) in
evaluation context [ ] | νNB.{x2 = NB} | νN.{K = N}. 2

Proof of corollary after Theorem 2: For all processes A, we have that

A
a(V )−−→ A′ implies A | a〈V 〉 → A′ and (for asynchronous outputs) A

νx.a〈x〉−−−−→ A′

implies A ≡ νx.(A′ | a〈x〉). We apply Theorem 2 (Success), then use these
remarks and the context-closure property of ≈l for the evaluation context
νK.(connectA〈B,K〉 | acceptB〈A,K〉 | ). We finally discard νN.{K = N} by
structural equivalence. 2

Proof of Theorem 3: We apply Lemma 14 to obtain P(ε)
η−→→∗

d≡ C[P(ρ)]
and use the case analysis of Lemma 10. Starting from the first transition
connectA〈B,W 〉−−−−−−−−−→ that occurs in η (for any term W ), and going backwards, we
successively identify preliminary input transitions that must appear in the
trace and correspond to the first branch of case 6, case 3 with A ∈ SB, and
case 1 of Lemma 10. Hypothesis (1) in the theorem guarantees that no input
transition described in Lemma 10 depends on C[ ].

• This first connect transition commutes with any preceding transition (as
given by Lemma 10) that does not introduce the message connectA〈B,W 〉
in C[ ]. The only transitions that introduce such message are described in
Lemma 10, case 6, and enabled only by an input of x2i for some index i
with state t = A B K.
• For this index i, we identify the two other input transitions in η that yield

the states t = A B and t = A B K at index i.
• The outputs of the messages x2i and x1i introduced by these transitions

necessarily precede their input in η.
• Hypothesis (2) ensures that the message acceptB〈A,K〉 introduced by case 3

with A ∈ SB yields an output transition
acceptB〈A,K〉−−−−−−−→ in η.
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Once we have identified ω as a subtrace of η, we easily check that each of
these transitions commute with any other preceding transition in η, using
again Lemma 10. 2

A.5 Proofs of section 8.2

We first refine our notion of private bisimilarity to deal with refined control
states and give some basic properties as regards failed sessions, then we prove
(a generalization of) our main result.

So far, private bisimilarity is defined only for processes with control states as
defined in section 8.2. The next lemma relates the control states of bisimilar
processes:

Lemma 16 (Related control states) If ρ1 :U1 ≈C ρ2 :U2, then ρ1 and ρ2

have identical domain, and yield session states tz of the same kind: either both
Az Bz, or both Az Bz Ki or Az Bz −, or both A E with the same A ∈ C and
E 6∈ C.

Proof: This property follows from the definition of transitions that oper-
ate on ρz. We apply the simulation hypothesis of private bisimilarity (Defini-

tion 4(3)) to specific transitions
γ−→ that characterize the structure of ρ. For in-

stance, for any index i, we have ρ :U
accept i−−−−→ ρ′ :U ′ if and only if (i 7→ AB) ∈ ρ

for some A,B ∈ C. 2

We now extend our definitions of labelled transitions and private bisimilarity
to user processes with refined control state.

• T γ−→ T ′ is defined as in section 8.1 (and leaves the sets FB unchanged),
except that rule Accept is extended to operate on failed states ?t:

Accept

ρ[i 7→? A B] :U
accept i−−−−→

ρ[i 7→? A B Ki] :U | acceptB〈A,Ki〉 if A ∈ SB

ρ[i 7→? A B − ] :U if A 6∈ SB

Conversely, “initiator” rules Connect and Connect-E are defined as be-
fore, and do not operate on entries ?t.
• ρ1 :U1 ≈C ρ2 :U2 is defined as in Definition 4 with two additional require-

ments:
4. For all B ∈ C, the sets FB in ρ1 and ρ2 are syntactically identical.
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5. ρ1 and ρ2 have identical domain and yield entries of the same kind (as
defined in Lemma 16) with ? at the same indices.

User processes with unrefined control states are closed under transitions, so
our extension of ≈C coincides with Definition 4 for such processes.

The next lemma describes how to change parts of the refined control state
while preserving private bisimilarity. These changes will be convenient to re-
flect changes in the state of the protocol translation.

Lemma 17 (Control changes) For all well-formed extended processes with
control state, we have:

(1) For some B ∈ C and z = 1, 2, let Tzx be Tz with the same term X1 added
to FB. If T1 ≈C T2, then T1x ≈C T2x.

(2) Let t1 and t2 be control states of the kind A B Ki or A B −.
If ρ1 : νKi.U1 ≈C ρ2 : νKi.U2, then ρ1[i 7→ ?t1] :U1 ≈C ρ2[i 7→ ?t2] :U2.
If ρ1[i 7→ t1] :U1 ≈C ρ2[i 7→ t2] :U2, then ρ1[i 7→ ?t1] :U1 ≈C ρ2[i 7→
?t2] :U2.

(3) If ρ1[i 7→ A E] :U1 ≈C ρ2[i 7→ A E] :U2, then ρ1 :U1 ≈C ρ2 :U2.

Proof: For each private bisimilarity claim in the lemma, we easily show that
the relation R containing all processes that meet the hypothesis is a private
bisimulation, up to an injective re-indexing on the domain of ρ1 and ρ2 for the
proof of 3.

(1) Our transitions are independent of FB.
(2) Conditions 1 in Definition 4 is structurally equivalent to condition 1 for

both private bisimilarity hypotheses. Conditions 2 and 3 follow from the
direct correspondence between the transitions of ρ[i 7→ ?t] :U and those
of ρ : νKi.U and ρ[i 7→ t] :U (although the latter processes have additional
labelled transitions).

(3) The proof is immediate, except for transitions with label νi that “reuse”
the index of the discarded session (rules Init and Init-E). For those
transition, we choose another fresh index i′ and conclude up to injective
re-indexing after the transitions. 2

Next, we relate transitions of translated protocol configurations to those of user
processes. In the lemma, we write Cz[ ] for the evaluation context around P( )
in Lemma 10(z).

Lemma 18 Let T = ρ :U . If Q(T )
α−→ Q′ with fn(α) ∩ Vρ = ∅ and bn(α) ∩

(C ∪ Vρ), then one of the following holds:
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(1) U
α−→ U ′, with T

α−→ T ′ = ρ :U ′ and Q′ ≡ Q(T ′).
(2) α = τ and P(ρ) receives a message on initA for some A ∈ C, with two

subcases:

(a) U
initA〈B〉−−−−−→ U ′ for some B ∈ C and, for any fresh index i,

T
init νi−−−→ T ′ = ρ[i 7→ A B] :U ′ and Q′ ≡ C1[Q(T ′)].

(b) U
νE.initA〈E〉−−−−−−−→ U ′ and, for any fresh index i,

T
νiE.initA〈i,E〉−−−−−−−−→ T ′ = ρ[i 7→ A E] :U ′ and Q′ ≡ νE.C2[Q(T ′)].

(3) α = τ and P(ρ) receives a message on c1 or c2.
(4) α is an input on c1 with ϕ(U) | P(ρ)

α−→ P ′ | ϕ(U) and Q′ ≡ νVρ.(U | P ′).
(5) α is an input on c2 with ϕ(U) | P(ρ)

α−→ P ′ | ϕ(U) and Q′ ≡ νVρ.(U | P ′).

Proof: By definition of (ordinary) transitions and Lemma 10, P(ρ) can
at most input on control channels (when U outputs on those channels) and
network channels c1 and c2 (when either U or the environment output on those
channels). For all other transitions, we also have U | ϕ(P(ρ))

α−→ U ′′ | ϕ(P(ρ)).
By Lemma 12, this implies U

α−→ U ′ (treating variables defined in ϕ(P(ρ)) as
distinct names) for some U ′ such that Q′ ≡ U ′ | P(ρ).

Case 2 of the lemma details an input on channel initA for some A ∈ C, cor-
responding to an output in U . For any such output, we can introduce a fresh
variable, E, use structural equivalence to introduce an active substitution that

defines E, and write the output U
νE.initA〈E〉−−−−−−−→ U ′. There are two subcases:

• If (E = B)ϕ(U ′) for some B ∈ C, then we also have the free variable output

U
initA〈B〉−−−−−→ U ′′. Let ρ′ = ρ[i 7→ A B] for some fresh i. By rule Init, we have

ρ :U
init νi−−−→ ρ′ :U ′′. Using Lemma 10(1), we have P(ρ)

initA(B)−−−−−→ C1[P(ρ′)] and
finally Q′ ≡ C1[νVρ′ .(U

′′ | P(ρ′))].

• Otherwise, let ρ′ = ρ[i 7→ A E]. By rule Init-E, we have U : ρ
νiE.initA〈i,E〉−−−−−−−−→

ρ′ :U ′. Using Lemma 10(2), we have P(ρ)
initA(E)−−−−−→ C2[P(ρ′)] and finally

Q′ ≡ νE.C2[νVρ′ .(U
′ | P(ρ′))]. 2

We are now ready to prove a privacy lemma that generalizes Lemma 5 to
arbitrary user processes with refined control states.

Lemma 19 (Privacy with state) If T1 ≈C T2, then Q(T1) ≈l Q(T2).

Proof: Our proof relies on the technique detailed in Lemma 9: we show
that the relation
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R def
= {(Q(T1),Q(T2)) | T1 ≈C T2}

where Tz = ρz :Uz range over processes with refined control states is a weak
bisimulation up to context, →d, and strong bisimilarity.

In order to establish the static equivalence requirement Q(T1) ≈s Q(T2), we
use

Q(Tz)
def
= νVρz .(Uz | P(ρz))

≈s νVρz .
(
Uz | ν(Nx)x∈D.{x̃ = Ñx}

)
≡ ν(Nx)x∈D.

(
{x̃ = Ñx} | νVρz.Uz

)
where D

def
= dv(P(ρz)) is the (identical) set of variables defined in P(ρ1)

and P(ρ2) and D′ is the subset of D without the variables Ki—these key
variables Ki appear in Vρz. The equivalences above follow from the defini-
tion of the translation, Lemma 12, and structural rearrangement. Finally, we
use the static equivalence requirement of our private bisimilarity hypothesis,
νVρ1.U1 ≈s νVρ2.U2, in the common context ν(Nx)x∈D.({x̃ = Ñx} | [ ]).

The proof of the two weak bisimulation properties is by case analysis of the
transitions Q(T1)

α−→ Q′
1 and their relation to the transitions of T1 (and U1)

and those of P(ρ1), using the cases of Lemma 18 then Lemma 10.

(1) We detail the case α 6= τ . (The case Q1 → Q′
1 is essentially the same.)

By Lemma 18, we have T1
α−→ T ′

1 and Q′
1 ≡ Q(T ′

1).
By private bisimilarity (Definition 4(3)), we have T2 →∗ α−→→∗ T ′

2 with
T ′

1 ≈C T
′
2.

Using rule Lift, we carry over this series of transitions to U2 in the
evaluation context νVρ2.( | P(ρ2)), and obtain Q(T2) →∗ α−→→∗ Q(T ′

2)
with Q(T ′

1) R Q(T ′
2).

(2) We use the subcases and notations of Lemma 18:

(a) By Lemma 18, we have T1
init νi−−−→ T ′

1 and Q′
1 ≡ C1[Q(T ′

1)]. By private

bisimilarity for the transition T1
init νi−−−→ T ′

1, we have T2 →∗ init νi−−−→→∗ T ′
2

with T ′
1 ≈C T

′
2, for some T ′

2 = ρ2[i 7→ A2 B2] :U
′
2.

By rules Init and Lift, we obtain transitions U2 →∗ initA2
〈B2〉−−−−−−→→∗ U ′

2

and finally Q(T2)→∗ C1[Q(T ′
2)]. Relying on Lemma 9 (bisimulation

up to context), we discard the common evaluation context C1[ ] and
conclude with Q(T ′

1) R Q(T ′
2).

(b) By Lemma 18, we have T1
νiE.initA〈i,E〉−−−−−−−−→ T ′

1 and Q′
1 ≡ νE.C2[Q(T ′

1)].

We use private bisimilarity for the transition T1
νiE.initA〈i,E〉−−−−−−−−→ T ′

1,
apply rules Init-E and Lift to the resulting transitions, discard
νE.C2[ ], and conclude similarly.
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(3) We decompose internal communication steps on c1 or c2 into an output
followed by an input on that channel, up to a variable restriction. We rely
on other cases (twice) for simulating these transitions, remark that the
resulting pair of labelled transitions can be composed to form an internal
step, and conclude up to context for the variable restriction.

(4) We use the cases of Lemma 10 for input on c1:
Case 3:
We have X1 = x1i with ρ1 = ρ′1[i 7→?A1 B1].
Let C3[ ]

def
= νx2i.(c2〈x2i | [ ]〉). Lemma 10 yields Q′

1 →+
d C3[Q(T ′

1)] with
two cases
T ′

1 = ρ′1[i 7→?A1 B1 Ki] :U1 | acceptB1
〈A1, Ki〉 or

T ′
1 = ρ′1[i 7→?A1 B1 −] :U1 depending on A1 ∈ SB1 in ρ1.

Rule Accept applies in both cases and yields T1
accept i−−−−→ T ′

1.
By private bisimilarity, ρ2 = ρ′2[i 7→?A2 B2] for some A2, B2 ∈ C, and

we have T2 →∗ accept i−−−−→→∗ T ′
2 with T ′

1 ≈C T
′
2 and two cases

T ′
2 = ρ′2[i 7→?A2 B2 Ki] :U

′
2 with U2 →∗ U ′

2, or
T ′

2 = ρ′2[i 7→?A2 B2−] :U ′
2 with U2 | acceptB2

〈A2, Ki〉 →∗ U ′
2 depending

on A2 ∈ SB2 in ρ2 (but not on A1 ∈ SB1 in ρ1).
Using rule Accept, rule Lift, and Lemma 10, we build transitions
Q2 →∗ α−→→∗

d→∗ C3[Q(T ′
2)]. We discard C3[ ] and conclude.

Case 4 when W = A, and
Case 5 with the same hypotheses except that A 6∈ SB in ρ1:
Let U ′

1 = U1 | νN.acceptB1
〈A1, N〉 if A ∈ SB in ρ1 and U ′

1 = U1

otherwise. By rule Accept-Fake, we have T1
acceptB(A)−−−−−−→ T ′

1
def
= ρ1 :U ′

1.

By private bisimilarity, we obtain T2 →∗ acceptB(A)−−−−−−→→∗ T ′
2 and T ′

1 ≈C T
′
2,

with two cases in the application of Accept-Fake, depending on A ∈
SB in ρ2.
For z = 1, 2, let T ′

zx be T ′
z with the additional message X1 in FB. Let

M
def
= νN.c2〈N〉. In case 4 (A ∈ SB in ρ1), we have

Q′
1 →+

d νx2, K.(c2〈x2〉 | Q(ρ1x :U1 | acceptB〈A,K〉) | χ(V,A B))

∼l νx2, K.(c2〈x2〉 | Q(ρ1x :U1 | acceptB〈A,K〉) | χ◦)

≡ M | Q(T ′
1x)

using equivalence (A.9) in Lemma 13. In case 5 (A 6∈ SB in ρ1), we
simply have

Q′
1 →+

d M | Q(ρ1x :U1) = M | Q(T ′
1x)

For each of the two cases of A ∈ SB in ρ2, we use rules Lift and
Accept-Fake to build transitions Q2 →∗ α−→→+

d∼l→∗ M | Q(T ′
2x),

which implies Q2 →∗ α−→→∗∼l M | Q(T ′
2x).
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By Lemma 17(1), we obtain T ′
1x ≈C T

′
2x. We discard M to conclude.

Case 4 when W ∈ SB \ C in ρ1: By rule Accept-E, we have

T1
acceptB(W,V )−−−−−−−−→ T ′

1 = ρ1 :U1 | acceptB〈W,V 〉

By private bisimilarity, T2 →∗ acceptB(W,V )−−−−−−−−→→∗ T ′
2 with T ′

1 ≈C T
′
2. More-

over, the condition of Accept-E ensures that W ∈ SB \ C in ρ2.
Let T ′

1x, T
′
2x be obtained from T ′

1, T
′
2 by adding the message X1 to FB.

By Lemma 17(1), we also have T ′
1x ≈C T

′
2x.

Let C4[ ]
def
= νx2K.([ ] | c2〈x2〉 | χ(V,W V )). By Lemma 10, we have

Q′
1 →+

d C4[Q(T ′
1x)]. Using rule Lift, rule Accept-E, and Lemma 10,

we build transitions Q(T2)→∗ α−→→∗ C4[Q(T ′
2x)]. We discard C4[ ] and

conclude using T ′
1x ≈C T

′
2x.

Case 5 except as above: Let T1x, T2x be obtained from T1, T2 by adding
the message X1 to FB (with no effect if X1 ∈ FB already).
By Lemma 17(1), we obtain T1x ≈C T2x.
Let Cr[ ]

def
= νNB.c2〈NB〉 | [ ]. By Lemma 10, we have

Q′
1 →+

d Cr[Q(T1x)] and Q(T2)
c1(X1)−−−−→→+

d Cr[Q(T2x)]

We discard Cr[ ] and conclude using T1x ≈C T2x.
(5) We use the cases of Lemma 10 for input on c2. Let ρ′z[i 7→ tz] = ρz for

z = 1, 2.

Case 6: By rule Connect, we have T1 = ρ′1[i 7→ t1] :U1 and T1
connect i−−−−−→

T ′
1 = ρ′1 : νKi.U

′
1, with two cases for U ′

1 depending on t1: either t1 =
A1B1Ki and U ′

1 = U1 | connectAz〈Bz, Ki〉, or t1 = A1B1− and U ′
1 = U1.

By private bisimilarity, we have T2 →∗ connect i−−−−−→→∗ T ′
2 with T ′

1 ≈C T
′
2 and

moreover T2 = ρ′2[i 7→ t2] :U2 and T ′
2 ≡ ρ′2 : νKi.U

′
2.

Let T ′′
z = ρ′z[i 7→ ?tz] :U

′
z. By Lemma 17(2), T ′

1 ≈C T
′
2 implies T ′′

1 ≈C
T ′′

2 . By Lemma 10, Q′
1 →d Q(T ′′

1 ). By rule Lemma 10 and rules Lift
and Connect, we obtain Q(T2) →∗ α−→→∗ Q(T ′′

2 ). We conclude using
T ′′

1 ≈C T
′′
2 .

Case 7: Let T ′
z be Tz with a ? at index i. We have Q′

1 →d Q(T ′
1) and

Q2
α−→→d Q(T ′

2). By Lemma 17(2), T1 ≈C T2 implies T ′
1 ≈C T

′
2.

Case 8: By rule Connect-E, we have

T1 = ρ′1[i 7→ A E] :U1
connectA(i,E,V )−−−−−−−−−→ T ′

1 = ρ′1 :U ′
1

with U ′
1 = U1 | connectA〈E, V 〉.

By private bisimilarity and rule Connect-E,

T2 = ρ′2[i 7→ A E] :U2 →∗ connectA(i,E,V )−−−−−−−−−→→∗ T ′
2 = ρ′2 :U ′

2
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and T ′
1 ≈C T

′
2 for some U ′

2. Let T ′′
z

def
= ρ′z[i 7→ ?A E] :U ′

z. By Lemma 10,
we have Q′

1 →d Q(T ′′
1 ) and we build Q(T2) →∗ α−→→∗ Q(T ′′

2 ). By
Lemma 17(3), we obtain T ′′

1 ≈C T
′′
2 and conclude.

Case 9: Let T ′
z be Tz without the session at index i. We have Q′

1 →d

Q(T ′
1) and Q2

α−→→d Q(T ′
2). By Lemma 17(3), T1 ≈C T2 implies T ′

1 ≈C
T ′

2. 2

Proof of Lemma 5: This is a special case of Lemma 19, with initial control
states εz instead of arbitrary control states ρz in T1 and T2. 2

A.6 Proofs of section 8.3

Proof of the basic example: For any process with control state ρ :U such
that A 6∈ SB and i is fresh, we have the blinded transitions

T
def
= ρ :U | initA〈B〉

init νi−−−→ Ti = ρ[i 7→ A B] :U
accept i−−−−→ Tr = ρ[i 7→ A B − ] :U

connect i−−−−−→ T ′ = ρ :U

For z = 1, 2, assume Az, Bz ∈ C with Az 6∈ SBz , and let Tz be T with Az, Bz

instead of A,B. In order to show that T1 ≈C T2, we establish that the relation

R def
=

⋃
ρ : U{(T1, T2), (T1i, T2i), (T1r, T2r)} ∪ ≈C

is a private bisimulation. By construction, R is closed by the transitions de-
tailed above. Any other transition does not depend on the init message and
leads to related processes with control state, in the same case of the definition
of R. 2

Proof of Theorem 6: Although each user process Uj initially attempts
a single session, the environment can trigger accept messages using transition
rules Accept-Fake or Accept-E. For any given series of transitions derived
from these rules, let Uaj be the resulting user subprocess—this subprocess
consists of accept messages and depends only on these transitions and εj. For
any fresh index i, we have
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Tj
def
= εj :Uaj | Uj

init νi−−−→ εj[i 7→ Aj Bj] :Uaj | connectAj
(Bj, K).Vj

accept i−−−−→ εj[i 7→ Aj Bj Ki] :Uaj | (acceptBj
〈Aj, Ki〉 | connectAj

(Bj, K).Vj

connect i−−−−−→ εj :Ua | νKi.

acceptBj
〈Aj, Ki〉 |

connectAj
〈Bj, Ki〉 | connectAj

(Bj, K).Vj


→ T ′

j
def
= εj :Uaj | U ′

j

We omit other, uniform transitions that extend Uaj or lead to the failure of
the session.

Let R relate these extended processes with control state, except (T ′
1, T

′
2).

From the hypothesis ε1 :U ′
1 ≈C ε2 :U ′

2, we show that T ′
1 ≈C←∗ T ′

2 by induction
on the series of transitions that yield Ua1 and Ua2. For each transition, we apply
clause 3 in the definition of private bisimilarity and remark that the labelled
transition commutes with any silent step. Similarly, we have T ′

1 →∗≈C T
′
2, and

thus T ′
1 ≈C T

′
2.

Using T ′
1 ≈C T

′
2, we easily show that R ∪ ≈C is a private bisimulation, and

conclude from the initial state T1 ≈C T2 when Ua1 = Ua2 = 0. 2

Proof of Theorem 7: Let U be a process of the form
∏n

i=1 initAi
〈Xi〉. Since

there is no internal step and rule Lift does not apply to control messages,
any acceptB or connectA message in parallel with U is inert. We let range
over parallel compositions of such messages.

The transitions of ε :U are interleavings of the following transitions:

(1) If Xi = B ∈ C then, independently of A and B, we have transitions

ε :U ′ | initAi
〈B〉 init νi−−−→ accept i−−−−→ connect i−−−−−→ ε :U ′ |

(2) Otherwise, we have transitions

ε :U ′ | initAi
〈Xi〉

νi.initAi
〈Xi〉−−−−−−−→ connect〈i,V 〉−−−−−−−→ ε :U ′ |

(3) Independently, we have transitions ε :U
acceptB〈E,V 〉−−−−−−−→ ε :U | (if and only

if E ∈ SB) and ε :U
acceptA〈B〉−−−−−−→ ε :U | (whether or not A ∈ SB).

Let R be the relation such that (1) (ε1 :U1 | , ε2 :U2 | ) ∈ R for all ε1 :U1

and ε2 :U2 that meet the conditions of Theorem 7 and (2) R is closed by
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application to both processes of any transitions appearing above in cases 1
and 2. The relation R is a private bisimulation, so R ⊆ ≈C. We conclude by
Lemma 5. 2

Proof of Theorem 8: In this proof, for all definitions, we use the set of
compliant principals C ] {X} with SX = ∅ (rather than C). In addition, we
let P−(ρ) be the translation state P(ρ) with 0 instead of PX . We use the
candidate relation R defined by

{(ν VX .P(ρ), ν VX .P−(ρ)) | ρ extends ε and has no t initiated by X}

We rely on Lemma 9 and the case analysis of Lemma 10. We conclude with
ρ = ε.

The processes on the left of R have extra transitions that use the replicated
input on c1 in PX (transition 3 with A 6∈ SB for B = X in Lemma 10). These
inputs can be simulated on the right using transitions 5 with C ∈ C—since
the received message X1 meets the condition for transition 4 for at most one
B ∈ C and |C| > 1, we can always choose some C ∈ C \ {B}.

All other transitions are in direct correspondence, and lead to related pro-
cesses for an updated ρ in the same evaluation context. The condition on ρ
is preserved by all transitions up to context because initX is restricted and
appears only in a replicated input in P(ρ). 2
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